@

ENTRUST

Time Stamp Option Pack

TSOP v7.20.0 SDK
Reference Guide

10 April 2024

© 2024 Entrust Corporation. All rights reserved.

Table of Contents

L Introduction 1
11. Overview of the TSOP SDK 1
2. Getting started. 3
21. Install the TSOP SDK 3
2.2. Locations of the installed software and examples 3
2.3.Java examples 4
2.4. C examples 5
3. C language API functions and specifications 7
3.1. Functional overview 7
3.2. Functions and specifications. 8
3.3 APl functions 8
3.4, Utility functions. 33
4. Java API functions and specifications 37
41, ComponNents 37
4.2. Functional overview 37
5. Deprecated functions. 39
S51LTTI_EncodeTSQ 39
52. TTIL._DecodeTSQ 40
5.3. TTI_GetTST_TSTINfo. 41
54. TTI_GetTAC_CertInfo. e 42
55 . TTIL_GetTAC_TimingMetrics 43
5.6. TTI_GetTST_TSACert. 44
57 TTI_GetTST_TimeAttributeCert 45
5.8. TTI_CheckTAC _MatchesTST. 47

5.9. TTI VerifyTST_Signature. 48

Chapter 1. Introduction

1. Introduction

The Entrust nShield Time Stamp Option Pack (TSOP) Software Development Kit
enables you to integrate an Entrust nShield Time Stamp Server™ (TSS) PKIX-
compliant time-stamp into an application, file, log, or transaction. The TSOP SDK
documentation includes:

* Instructions for installing the SDK.
e Guidelines for API development.

 Sample code.

This section provides instructions for installing the SDK and example applications
on various operating systems. It also provides information about the locations
where the software and example applications are installed.

1.1. Overview of the TSOP SDK

The TSOP SDK provides Java and C libraries implementing a set of functions that
enable you to develop time-stamping applications or integrate time-stamping into
existing applications. The SDK also includes sample code and a set of test
applications.

The functions provided by the API include:

* Encoding and decoding time-stamp requests.
* Decoding time-stamp responses.

* Decoding time-stamp tokens.

* Generating digests.

* Verifying digital signatures of time-stamp tokens.
The API is available in Java language classes and in C language libraries.
The C language API is available as a 64-bit DLL and a Linux static library.

The API supports the cryptographic mechanisms that create hashes, validate
tokens, certify signatures, and establish TSS sessions.

The sample code and applications provided in the SDK include examples of:

* Generating digests and building time-stamp requests.

¢ Using the Time-Stamp TCP/IP protocol to submit requests and get responses
from a TSS.

TSOP v7.20.0 SDK Reference Guide 1/50

Chapter 1. Introduction

* Decoding and verifying time-stamp responses.

TSOP v7.20.0 SDK Reference Guide 2/50

Chapter 2. Getting started

2. Getting started

2.1. Install the TSOP SDK

The following sections explain how to install the SDK on Windows and Linux.

2.1.1. Windows installation
To install on a Windows workstation, follow these steps:

1. Ensure you have uninstalled any previously installed version of the SDK.

2. Insert the SDK disk (named TSOP-SDK-x.xx.xx, where x.xx.xx represents the
disk’s version number) into your CD/DVD drive.

3. Run the executable file setup.exe, and follow the onscreen instructions.

2.1.2. Linux installation

The SDK is distributed as three compressed .tar files. To install on a Linux
workstation, follow these steps:

1. Ensure you have uninstalled any previously installed version of the SDK.
2. Unpack the files from the root directory using the following commands:

o For C:

tar -xvf TSOP-SDK-x.xx.xx/linux/c/devel.tar

o For Java:

tar -xvf TSOP-SDK-x.xx.xx/linux/java/devel.tar

In these commands, x.xx.xx represents the disk’s version number.

2.2. Locations of the installed software and examples

On Windows, the Java and C versions of the SDK software are installed,
respectively, in:

e %NFAST_HOME%\java\dsesdk

TSOP v7.20.0 SDK Reference Guide 3/50

Chapter 2. Getting started

* %NFAST_HOME%\c\dsesdk

On Linux, the Java and C versions of the SDK software are installed, respectively,

in:

* /opt/nfast/java/dsesdk
* /opt/nfast/c/dsesdk

2.3. Java examples
The following example Java applications are supplied on each operating system:

Example applications Use

TtiTest.java These applications get a time-stamp from a server and print

information from the time-stamp to the screen.
HttpTest.java

TtiTest.java uses the TCP/318 socket-based protocol to get the time-
stamp from the server.

HttpTest.java uses the HTTP protocol to get the time-stamp from the

server.
TtiStress.java These applications provide information on:
HttpStress.java e Total running time in milliseconds.

¢ Total count of successful time-stamps received.
¢ The count of time-stamps received during this second.
¢ Average time-stamps per second since program start-up.

e Total count of network retries followed by the count of double,
triple, and quadruple retries.

¢ Total number of ignored exceptions.

The contents of the java/dsesdk/ directory tree is the same for all operating
systems (the path descriptions here use Unix-style directory separators, but you
can substitute Windows-style directory separators as appropriate).

File / directory Description

classes/tti.jar This file is the .jar file that contains all the public classes from the Java
version of the SDK.

classes/asnirt.jar This is an internal support library for tti.jar.
docs/ This directory contains the Javadoc documentation for the SDK Java
classes.

TSOP v7.20.0 SDK Reference Guide 4/50

Chapter 2. Getting started

File / directory Description
examples/sample/ This directory contains example applications:

e TtiTest.java
* HttpTest.java
* TtiStress.java

e HttpStress.java.

examples/util/ This directory does not contain example applications but rather a
collection of example classes, in the form of sample code that you can
use and modify.

docs-util/ This directory contains Javadoc documentation generated from the
source example classes in the examples/util/ directory.

classes/util/util.jar This file is the compiled .jar file from the sample class files in the
examples/util/ directory.

0 See the example help message for details of parameters that can
be varied.

2.4. C examples

The following sections discuss the C application examples available for Windows
and Linux.

o See the example help message for details of parameters that can
be varied.

2.4.1. C examples for Windows

The contents of $NFAST_HOME%\c\dsesdk\ provide the source and compiled binaries
for two sample applications:

Example applications Use

ttitest This application uses the TCP/318 socket-based protocol to get the
time-stamp from the server and then prints the information from the
time-stamp to the screen.

iptsdemo This application (IP Time-Stamp Demo), is a Windows GUI time-stamp
application. There is no version of IP Time-Stamp Demo for Linux.

In %$NFAST_HOME%\c\dsesdk\ you will find:

TSOP v7.20.0 SDK Reference Guide 5/50

Chapter 2. Getting started

File / directory Description
vs2017-64\11ib\tti.d11l This is the DLL that implements the SDK functions.
prebuilt\ This directory includes prebuilt versions of the example applications

ttitest.exe and iptsdemo.exe.

bin\ This is the output directory for the example projects Visual Studio
builds (and also contains prebuilt versions)

vs2017-64\include\ This directory contains the header files for the SDK.
vs2017-64\1ib\tti.lib This is the library file for linking with the SDK DLL.

ttitest\ This directory contains the source for the ttitest application.
iptsdemo\ This directory contains the source for IP Time-Stamp Demo, iptsdemo.

2.4.2. C examples for Linux

Linux installations provide the source, compiled binaries, and Makefiles for the
example C application ttitest.

Example application Use

ttitest This application uses the TCP/318 socket-based protocol to get the
time-stamp from the server and then prints the information from the
time-stamp to the screen.

On Linux, the /opt/nfast/c/dsesdk directory contains:

File / directory Description

gcc/include/ This directory contains header files for the SDK.

gcc/lib/1libtti.a This is the library file for the SDK.

gcc/examples/ This directory contains the compiled binary executables, source code,

and Makefiles for the ttitest application.

TSOP v7.20.0 SDK Reference Guide 6/50

Chapter 3. C language API functions and specifications

3.

C language API functions and

specifications

This section describes the API functions and specifications.

e ‘ The C language APl is currently provided in Windows and Linux

versions.

3.1. Functional overview

The SDK can be used to obtain a time-stamp from a TSS with four basic steps:

Create an encoded request
Submit the request to the TSS
Decode the result

Verify the integrity of the time-stamp

To obtain a time-stamp from a TSS:

1.

Using the TTI_SHA* functions, generate a digest of the data to be time-
stamped.

. Generate a nonce for the request. A nonce is a large random number that

protects the request against replay attacks.

Populate a time-stamp request structure, TTI_TSQ_Ex, with the digest, nonce,
and other relevant information.

Call TTI_EncodeTSQ_Ex to create an ASN.1 encoded version of the request.

5. Submit the encoded request to a TSS. The request will usually be submitted

via a TCP/IP connection.

Unpack the response returned by the TSS by calling TTI_UnpackTSR. This will
verify and remove the transport specific headers from the response.

Call TTI_GetTSR_Status to verify the response successfully produced a time-
stamp token.

Call TTI_GetTSR_EncodedToken to get the time-stamp token from the response.
This produces an encoded time-stamp token.

The encoded time-stamp token is a PKCS #7 SignedData object and the
signature can be verified with any cryptographic toolkit that supports PKCS
#7.

TSOP v7.20.0 SDK Reference Guide 7/50

Chapter 3. C language API functions and specifications

The TTI_VerifyTST_SignatureEx function can also be used to verify the time-
stamp signature.

9. Verify the time-stamp token signature. Use TTI_VerifyTST_SignatureEx or a
cryptographic toolkit that supports PKCS #7.

10. Call TTI_GetTST_TSTInfoEx to populate a TTI_TSTInfoEx structure with the
contents of the time-stamp token.

1. Verify that:

o The value in the time-stamp token (TST) matches the values in the time-
stamp request (TSQ).

> The message imprint matches.
- The nonce matches.
- |f the request included a specific policy identifier, this should match.

> The time contained in the time-stamp is reasonably close to the current
system time (only perform this check if you can trust the system time to
be relatively accurate).

3.2. Functions and specifications

The following sections document the API functions and their specifications.

3.3. API functions

The following sections explain the API specifications.

3.31. TTl _EncodeTSQ_Ex

Uses the information in a TTI_TSQ_Ex structure to create an encoded time-stamp
request.

int TTI_EncodeTSQ_Ex(
const TTI_TSQ_Ex * pTSq,
byte * encodedReq,
size t * encodedReqlen,
TTI_TransportFormat transportFormat);

3.3.1.1. Parameters

TSOP v7.20.0 SDK Reference Guide 8/50

Chapter 3. C language API functions and specifications

pTSQ [in] Points to a populated TTI_TSQ_Ex structure. The information in this
structure is used to create the encoded time-stamp request. The
TTI_TSQ_Ex structure supports nonce and serial numbers up to 40

bytes.
encodedReq [out] Points to a buffer to receive the encoded time-stamp request.
encodedReglen [in/out] Points to a value specifying the size, in bytes, of the encodedReq

buffer. When the function returns, this value contains the size, in bytes,
of the encoded time-stamp request.

transportFormat [in] A flag indicating which type of additional transport encoding
should be included in the request.

Currently defined format types are:

TTI_RAW Returns the encoded time-stamp request with no headers and no
special encoding.

TTI_TCP Returns the encoded time-stamp request prepended with a five-byte
TCP header.

TTI_HTTP Returns the time-stamp request encoded as an HTTP encoded request.

TTI_SMTP Reserved for future use.

3.3.1.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).
If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER pTSQ and encodedRegLen must not be NULL.

transportFormat must be a valid TTI_TransportFormat value.

TTI_BUFFER_TOO_SMALL The size indicated by encodedReqlen is too small. When the function
returns, the required size is returned in the value pointed to by
encodedRegLen.

TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI_GetLastAsnError.

TTI_NOT_SUPPORTED TTI_SMTP is not supported at this time.

3.3.1.3. Remarks

This function creates an encoded time-stamp request that includes the

TSOP v7.20.0 SDK Reference Guide 9/50

Chapter 3. C language API functions and specifications

information supplied in the TTI_TSQ_Ex structure. The request is formatted
according to version one of the PKIX Time-Stamp protocol. This function will also
encode the request for a particular transport mechanism. At this time, two
transport format options are supported: TTI_RAW and TTI_TCP. TTI_RAW returns the
encoded time-stamp request with no headers and no special encoding. TTI_TCP
returns the request with a five-byte TCP header prepended. This header includes
the size of the request and a flag byte set to zero (tsaMsg).

When this function is used with the transportFormat set to TTI_TCP, the resulting
encoded time-stamp request may be submitted directly to a TSS via a TCP socket
connected to port 318 of the server.

3.3.2. TTI_DecodeTSQ_Ex

Decodes an encoded time-stamp request and writes the information into a
TTI_TSQ _Ex structure.

int TTI_DecodeTSQ_Ex(
TTI_TSQ Ex * pTsq,
const byte * encodedReq,
size_t encodedReqlen);

3.3.2.1. Parameters
pTSQ [out] Points to a TTI_TSQ Ex structure that receives information from

the encoded time-stamp request. The TTI_TSQ_Ex structure supports
nonce and serial numbers up to 40 bytes.

encodedReq [in] Points to a buffer that contains an encoded time-stamp request.

encodedReglen [in] Specifies the size, in bytes, of the encoded time-stamp request.

3.3.2.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID PARAMETER pTSQ and encodedReqglen must not be NULL.
TTI_ASN_ERROR Received unexpected results from an ASN function.
TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI_GetLastAsnError.

TSOP v7.20.0 SDK Reference Guide 10/50

Chapter 3. C language API functions and specifications

3.3.2.3. Remarks

This function can be used to decode a time-stamp request that was encoded with
TTI_EncodeTSQ_Ex. It is potentially useful if the original TTI_TSQ_Ex structure that was
used to create the encoded request is not available.

3.3.3. TTl _UnpackTSR

Converts a transport-specific response into a raw time-stamp response by
removing transport-specific headers.

int TTI_UnpackTSR(

byte * encodedResp,
size_t * encodedResplen,
int * responseCode,

TTI_TransportFormat transportFormat);

3.3.3.1. Parameters

encodedResp [in/out] Points to a buffer that contains a transport-specific response.
When the function returns, this buffer will contain a raw time-stamp
response.

encodedResplLen [in/out] Points to a value specifying the size, in bytes, of the transport-
specific response. When the function returns, this value contains the
size, in bytes, of the raw time-stamp response.

responseCode [out] Points to an integer to receive the response code from a TTI_TCP
response.
transportFormat [in] The transport mechanism that produced this response.

Currently defined format types are:

TTI_RAW Encoded time-stamp response with no headers and no special
encoding.

TTI_TCP Encoded time-stamp response prepended with a five-byte TCP header.

TTI_HTTP Encoded time-stamp response with HTTP response headers.

TTI_SMTP Reserved for future use.

3.3.3.2. Return values

If this function succeeds, the return value is zero (TTI_SUCCESS).

TSOP v7.20.0 SDK Reference Guide 11/50

Chapter 3. C language API functions and specifications

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER encodedResp, encodedRespLen, and responseCode must not be
NULL. transportFormat must be a valid TTI_TransportFormat
value.

TTI_RESPONSE_SIZE_MISMATCH The size from the TCP header did not match the actual size of

the response. The expect size from the TCP header is
returned in the value pointed to by encodedRespLen.

TTI_TSA_UNEXPECTED_RESPONSE The response flag in the TCP header contained an
unexpected value. The only expect value is 5 (finalMsgRep).
The actual value is returned in the value pointed to by
responseCode.

TTI_NOT_SUPPORTED TTI_SMTP is not supported at this time.

3.3.3.3. Remarks

This function removes the header and special encoding that is added to a time-
stamp response by the transport mechanism. The transport format options
supported are:

e TTI_RAW (only supported for completeness)
e TTI_TCP.

If the format is TTI_RAW, this function simply returns TTI_SUCCESS without doing any

processing because none is needed. If the format is TTI_TCP, this function will verify
and remove the TCP header from the time-stamp response.

3.3.4. TTl_GetTSR_Status

Decodes a time-stamp response and writes the information into a
TTI_PKIStatusInfo structure.

int TTI_GetTSR_Status(
TTI_PKIStatusInfo * pPKIStatusInfo,
const byte * encodedResp,
size_t encodedRespLen);

3.3.4.1. Parameters

pPKIStatusInfo [out] Points to a TTI_PKIStatusInfo that receives information from the
encoded time-stamp response.

TSOP v7.20.0 SDK Reference Guide 12/50

Chapter 3. C language API functions and specifications

encodedResp [in] Points to a buffer that contains an encoded time-stamp response.

encodedResplLen [in] Specifies the size, in bytes, of the encoded time-stamp response.

3.3.4.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER pPKIStatusInfo and encodedResp must not be NULL.
TTI_ASN_ERROR Received unexpected results from an ASN function.
TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI GetLastAsnError.

3.3.4.3. Remarks

This function retrieves the status information from a time-stamp response. This
status information indicates whether a time-stamp token was issued in the
response. If a timestamp token was not issued, the status information indicates the
reason for the failure.

3.3.5. TTl_GetTSR_EncodedToken

Retrieves the encoded time-stamp token from an encoded time-stamp response.

int TTI_GetTSR_EncodedToken(

byte * tokenBuf,

size_t * tokenBuflLen,

const byte * encodedResp,
size_t encodedResplLen);

3.3.5.1. Parameters

tokenBuf [out] Points to a buffer that receives the encoded time-stamp token.

tokenBuflLen [in/out] Points to a value specifying the size, in bytes, of the
tokenBufbuffer. When the function returns, this value contains the size,
in bytes, of the encoded time-stamp token.

encodedResp [in] Points to a buffer that contains an encoded time-stamp response.

TSOP v7.20.0 SDK Reference Guide 13/50

Chapter 3. C language API functions and specifications

encodedResplen [in] Specifies the size, in bytes, of the encoded time-stamp response.

3.3.5.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).
If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER encodedResp and tokenBufLen must not be NULL.

TTI_BUFFER_TOO_SMALL The size indicated by tokenBufLen is too small. When the
function returns, the required size is returned in the value
pointed to by tokenBuflLen.

TTI_ASN_ERROR Received unexpected results from an ASN function.

TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error
code, call TTI_GetlLastAsnError.

TTI_INVALID_RESPONSE_STATUS The time-stamp response status was not PKIS_granted or
PKIS_grantedWithMods. This indicates that the timestamp
response was a failure response, therefore there is no time-
stamp token in the response.

TTI_NO_TOKEN_PRESENT No token was present in the response. This is an unexpected
situation and indicates corrupt data.

3.3.5.3. Remarks

A time-stamp response is what a TSS returns for a request. The response contains
status information indicating what kind of response this is. If the status
information indicates PKIS_granted or PKIS_grantedWithMods, the time-stamp
response will also contain a time-stamp token. This function copies the time-
stamp token into the supplied buffer. The time-stamp token is a Cryptographic
Message Syntax SignedData object (see RFC 3369 [CMS2], RFC 3852 [CMS] and
RFC 2315 [PKCS #7]). The time-stamp token represents the data that should be
stored for future reference. This is the time-stamp.

3.3.6. TTI_GetTST_TSTInfoEx

Decodes an encoded time-stamp token and writes the encapsulated TSTInfo data
into a TTI_TSTInfoEx structure.

int TTI_GetTST_TSTInfoEx(

TSOP v7.20.0 SDK Reference Guide 14/50

Chapter 3. C language API functions and specifications

TTI_TSTInfoEx * pTSTInfo,
const byte * encodedToken,
size_t encodedTokenLen);

3.3.6.1. Parameters
pTSTInfo [out] Points to a TTI_TSTInfoEx structure that receives information from

the encoded time-stamp token. The TTI_TSTInfoEx structure supports
nonce and serial numbers up to 40 bytes.

encodedToken [in] Points to a buffer that contains an encoded time-stamp token.

encodedTokenLen [in] Specifies the size, in bytes, of the encoded time-stamp token.

3.3.6.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER encodedResp and tokenBuflLen must not be NULL.
TTI_ASN_ERROR Received unexpected results from an ASN function.
TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI_GetLastAsnError.

3.3.6.3. Remarks

This is the core data of a time-stamp token. The TSTInfo is part of the signed data
of the time-stamp token and therefore is protected against modification. This
function reads and decodes this portion of the time-stamp token and writes the
information into a TTI_TSTInfoEx structure.

3.3.7.TTl_GetTST_TSACertEx

Retrieves the encoded TSA certificate from an encoded time-stamp token.

int TTI_GetTST_TSACertEx(

byte * certBuf,

size_t * certBuflLen,
const byte * encodedToken,
size_t encodedTokenLen,

TTI_VerificationModes verifyModes,
TTI_SigningCert_Kind * signingCertKind);

TSOP v7.20.0 SDK Reference Guide 15/50

Chapter 3. C language API functions and specifications

3.3.7.1. Parameters

certBuf

certBuflLen

encodedToken
encodedTokenlLen

verifyModes

signingCertKind

[out] Points to a buffer that receives the encoded TSA certificate.

[in/out] Points to a value specifying the size, in bytes, of the certBuf
buffer. When the function returns, this value contains the size, in bytes,
of the encoded TSA certificate.

[in] Points to a buffer that contains an encoded time-stamp token.
[in] Specifies the size, in bytes, of the encoded time-stamp token.

[in] A bitmask identifying how to verify the signing certificate (see
below).

[out] On success, points to a value identifying how the signing
certificate was verified (see below).

The supported values for verifyModes are:

TTI_VerifyMode_ESSCertID
TTI_VerifyMode_ESSCertIDv2

TTI_VerifyMode_ESSCertID |
TTI_VerifyMode _ESSCertIDv2

Checks the first SHA-1 hash in the ESSCertID list.

Checks the first SHA-2 hash in the ESSCertIDv2 list.

Checks the first SHA-2 hash in the ESSCertIDv2 list. If no
SHA-2 hashes are present, checks the first SHA-1 hash in the
ESSCertID list.

The supported values for signingCertKind are:

TTI_Verified_SigningCert_ESSCertID The signing certificate was verified using the

SHA-1 hash in the ESSCertID list.

TTI_Verified_SigningCert_ESSCertIDv2 The signing certificate was verified using the

3.3.7.2. Return values

SHA-2 hash in the ESSCertIDv2 list.

If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER

TTI_BUFFER_TOO_SMALL

encodedToken and certBufLen must not be NULL, and verifyModes must
be a supported combination of TTI_VerificationModes values.

The size indicated by certBuflLen is too small. When the function
returns, the required size is returned in the value pointed to by
certBufLen.

TSOP v7.20.0 SDK Reference Guide 16/50

Chapter 3. C language API functions and specifications

TTI_INVALID_TST The content of the encodedToken buffer is not recognized as a valid
encoded time-stamp token.

TTI_NO_TSACERT_PRESENT The encoded time-stamp token did not contain the signing certificate.
A time-stamp token will only contain the signing certificate if the time-
stamp request specified that the certificate be included.

TTI_ESSCERTID_FAILED The hash of the Time Attribute certificate did not match a value stored
in the signed attributes of the time-stamp token.

3.3.7.3. Remarks

If the encoded time-stamp token contains the signing certificate, this function
copies the encoded signing certificate into the supplied buffer. This function does
not validate the signature on the time-stamp token. This function verifies the
signing certificate based on the verifyModes bitmask described above. The
ESSCertID provides cryptographic binding of the time-stamp token to a particular
identity certificate, whereas the signature only binds the time-stamp token to the
public key. Checking ESSCertIDv2 rather than ESSCertID will succeed only if the
TSS is configured to include ESSCertIDv2 in the certificate as per RFC 5816.

3.3.8. TTl_GetTST_TimeAttributeCertEx

Retrieves the encoded Time Attribute Certificate from an encoded time-stamp
token.

int TTI_GetTST_TimeAttributeCertEx(

byte * certBuf,

size_t * certBuflLen,
const byte * encodedToken,
size_t encodedTokenLen,

TTI_VerificationModes verifyModes,
TTI_SigningCert_Kind * signingCertKind);

3.3.8.1. Parameters

certBuf [out] Points to a buffer that receives the encoded Time Attribute
Certificate.
certBuflLen [in/out] Points to a value specifying the size, in bytes, of the certBuf

buffer. When the function returns, this value contains the size, in bytes,
of the encoded Time Attribute Certificate.

encodedToken [in] Points to a buffer that contains an encoded time-stamp token.

TSOP v7.20.0 SDK Reference Guide 17/50

Chapter 3. C language API functions and specifications

encodedTokenLen [in] Specifies the size, in bytes, of the encoded time-stamp token.

verifyModes [in] A bitmask identifying how to verify the Time Attribute Certificate
(see below).

signingCertKind [out] On success, points to a value identifying how the Time Attribute

Certificate was verified (see below).

The supported values for verifyModes are:

TTI_VerifyMode_ESSCertID Checks the SHA-1 hashes in the ESSCertID list.

TTI_VerifyMode_ESSCertIDv2 Checks the SHA-2 hashes in the ESSCertIDv2 list.

TTI_VerifyMode_ESSCertID | Checks the SHA-2 hashes in the ESSCertIDv2 list. If no SHA-2

TTI_VerifyMode_ESSCertIDv2 hashes are present, checks the SHA-1 hashes in the ESSCertID
list.

The supported values for signingCertKind are:

TTI_Verified_SigningCert_None The Time Attribute Certificate was not verified
against any hash in either of the ESSCertID or
ESSCertIDv2 lists.

TTI_Verified_SigningCert_ESSCertID The Time Attribute Certificate was verified using
the SHA-1 hash in the ESSCertID list.

TTI_Verified_SigningCert_ESSCertIDv2 The Time Attribute Certificate was verified using
the SHA-2 hash in the ESSCertIDv2 list.

3.3.8.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID PARAMETER encodedToken and certBufLen must not be NULL, and verifyModes must
be a supported combination of TTI_VerificationModes values.

TTI_BUFFER_TOO_SMALL The size indicated by certBuflLen is too small. When the function
returns, the required size is returned in the value pointed to by
certBufLen.

TTI_INVALID_TST The content of the encodedToken buffer is not recognized as a valid

encoded time-stamp token.

TSOP v7.20.0 SDK Reference Guide 18/50

Chapter 3. C language API functions and specifications

TTI_NO_TAC_PRESENT The encoded time-stamp token did not contain the Time Attribute
certificate. A time-stamp token will only contain the Time Attribute
certificate if the time-stamp request specified that the certificate be
included.

TTI_ESSCERTID_FAILED The hash of the Time Attribute certificate did not match a value stored
in the signed attributes of the time-stamp token.

3.3.8.3. Remarks

If the encoded time-stamp token contains the Time Attribute Certificate, this
function copies the encoded TAC into the supplied buffer. This function verifies
that the time-stamp token was issued under the Time Attribute Certificate before
the function returns. This function verifies the Time Attribute Certificate based on
the verifyModes bitmask described above. If the Time Attribute Certificate in the
encoded time-stamp token is embedded within the set of SignerAttributes and
not the certificate list, the TAC will not be verified using ESSCertID or ESSCertIDv2
hashes. This will be indicated by the value TTI_Verified_SigningCert_None being set
in signingCertKind. This check is necessary because the certificate list in a time-
stamp token is not protected by the signature. The cryptographic binding of a
time-stamp to a Time Attribute Certificate is accomplished by including the
appropriate hash of the Time Attribute Certificate in ESSCertID or ESSCertIDv2.
Both ESSCertID and ESSCertIDv2 are protected by the signature of the time-
stamp token. Checking ESSCertIDv2 rather than ESSCertID will succeed only if the
TSS is configured to include ESSCertIDv2 in the certificate as per RFC 5816.

3.3.9. TTI_GetTAC_TimingMetricsEx

Decodes an encoded Time Attribute certificate and writes the encapsulated
TimingMetrics attribute data into a TTI_TimingMetricsEx structure.

int TTI_GetTAC_TimingMetricsEx(
TTI_TimingMetricsEx * pTimingMetrics,
const byte * certBuf,
size_t certBuflen);

3.3.9.1. Parameters

pTimingMetrics [out] Points to a TTI_TimingMetricsEx structure that receives
information from the encoded Time Attribute certificate.

TSOP v7.20.0 SDK Reference Guide 19/50

Chapter 3. C language API functions and specifications

certBuf [in] Points to a buffer that contains an encoded Time Attribute
certificate.

certBufLen [in] Specifies the size, in bytes, of the encoded Time Attribute
certificate.

3.3.9.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER pTimingMetrics and certBuf must not be NULL.
TTI_ASN_ERROR Received unexpected results from an ASN function.
TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI GetLastAsnError.

3.310. TTI_GetTAC_TimingPolicy

Decodes an encoded Time Attribute certificate and writes the encapsulated
TimingPolicy attribute data into a TTI_TimingPolicy structure.

int TTI_GetTAC_TimingPolicy(
TTI_TimingPolicy * pTimingPolicy,
const byte * certBuf,
size_t certBuflen);

3.3.10.1. Parameters

pTimingPolicy [out] Points to a TTI_TimingPolicy structure that receives information
from the encoded Time Attribute certificate.

certBuf [in] Points to a buffer that contains an encoded Time Attribute
certificate.

certBuflLen [in] Specifies the size, in bytes, of the encoded Time Attribute
certificate.

3.3.10.2. Return values

If this function succeeds, the return value is zero (TTI_SUCCESS).

TSOP v7.20.0 SDK Reference Guide 20/50

Chapter 3. C language API functions and specifications

If this function fails, the return value is a nonzero error code.

TTI_NO_TAC_TIMINGPOLICY_PRESENT The Time Attribute Certificate does not contain
Timing Policy information.

TTI_INVALID_PARAMETER pTimingPolicy and certBuf must not be NULL.

TTI_ASN_ERROR Received unexpected results from an ASN
function.

TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the

ASN error code, call TTI_GetlLastAsnError.

3.3.11. TTI_CheckTAC_MatchesTSTEXx

Verifies that the time-stamp token was issued under the Time Attribute certificate.

int TTI_CheckTAC_MatchesTSTEx(

const byte * certBuf,

size_t certBufLen,
const byte * encodedToken,
size_t encodedTokenLen,

TTI_VerificationModes verifyModes,
TTI_SigningCert_Kind * signingCertKind);

3.3.11.1. Parameters

certBuf [in] Points to a buffer that contains an encoded Time Attribute
certificate.

certBuflLen [in] Specifies the size, in bytes, of the encoded Time Attribute
certificate.

encodedToken [in] Points to a buffer that contains an encoded time-stamp token.

encodedTokenLen [in] Specifies the size, in bytes, of the encoded time-stamp token.

verifyModes [in] A bitmask identifying how to verify the Time Attribute Certificate

(see below).

signingCertKind [out] On success, points to a value identifying how the Time Attribute
Certificate was verified (see below).

The supported values for verifyModes are:

TTI_VerifyMode_ESSCertID Checks the SHA-1 hashes in the ESSCertID list.

TTI_VerifyMode_ESSCertIDv2 Checks the SHA-2 hashes in the ESSCertIDv2 list.

TSOP v7.20.0 SDK Reference Guide 21/50

Chapter 3. C language API functions and specifications

TTI_VerifyMode_ESSCertID | Checks the SHA-2 hashes in the ESSCertIDVv2 list. If no SHA-2
TTI_VerifyMode_ESSCertIDv2 hashes are present, checks the SHA-1 hashes in the ESSCertID
list.

The supported values for signingCertKind are:

TTI_Verified_SigningCert_None The Time Attribute Certificate was not verified
against any hash in either of the ESSCertID or
ESSCertIDVv2 lists.

TTI_Verified_SigningCert_ESSCertID The Time Attribute Certificate was verified using
the SHA-1 hash in the ESSCertID list.

TTI_Verified_SigningCert_ESSCertIDv2 The Time Attribute Certificate was verified using
the SHA-2 hash in the ESSCertIDv2 list.

3.3.11.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID PARAMETER certBuf and encodedToken must not be NULL, and verifyModes must be a
supported combination of TTI_VerificationModes values.

TTI_ASN_ERROR Received unexpected results from an ASN function.

TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call
TTI_GetLastAsnError.

TTI_ESSCERTID_FAILED The hash of the Time Attribute certificate did not match a value stored
in the signed attributes of the time-stamp token.

3.3.11.3. Remarks

This function verifies that the time-stamp token was issued under the Time
Attribute certificate. This function is especially useful when the time-stamp token
does not contain a Time Attribute certificate and the user wants to verify that the
time-stamp token was issued under a TAC that the user retrieved from a previous
time-stamp or some other mechanism. This verification is done based on the
verifyModes bitmask described above. If the Time Attribute Certificate in the
encoded time-stamp token is embedded within the set of SignerAttributes and
not the certificate list, the TAC will not be verified using ESSCertID or ESSCertIDv2
hashes. This will be indicated by the value TTI_Verified_SigningCert_None being set

TSOP v7.20.0 SDK Reference Guide 22/50

Chapter 3. C language API functions and specifications

in signingCertKind. The cryptographic binding of a time-stamp to a Time Attribute
certificate is accomplished by including the appropriate hash of the Time Attribute
certificate in ESSCertID or ESSCertIDv2. Both ESSCertID and ESSCertIDv2 are
protected by the signature of the time-stamp token. Checking ESSCertIDv2 rather
than ESSCertID will succeed only if the TSS is configured to include ESSCertIDv2
in the certificate as per RFC 5816.

3.312. TTI_GetTAC_CertIinfoEx

Decodes an encoded Time Attribute certificate and writes the encapsulated
certificate data into a TTI_TAC_CertInfoEx structure.

int TTI_GetTAC_CertInfoEx(
TTI_TAC_CertInfoEx * pTAC,
const byte * certBuf,
size_t certBuflLen);

3.3.12.1. Parameters

pTAC [out] Points to a TTI_TAC CertInfoEx structure that receives information
from the encoded Time Attribute certificate. The TTI_TAC_CertInfoEx
structure supports nonce and serial numbers up to 40 bytes.

certBuf [in] Points to a buffer than contains an encoded Time Attribute
certificate.

certBuflLen [in] Specifies the size, in bytes, of the encoded Time Attribute
certificate.

3.3.12.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER pTimingMetrics and certBuf must not be NULL.
TTI_ASN_ERROR Received unexpected results from an ASN function.
TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI GetLastAsnError.

3.3.13. Signature validation function

TSOP v7.20.0 SDK Reference Guide 23/50

Chapter 3. C language API functions and specifications

The following section explains the signature validation function.

3.313.1. TTI_VerifyTST_SignatureEx

Verifies the signature on an encoded time-stamp token.

int TTI_VerifyTST_SignatureEx(

const byte *

size_t

const byte *

size_t

TTI VerificationModes

encodedToken,
encodedTokenLen,
tsaCert,
tsaCertlen,
verifyModes,

TTI_SigningCert_Kind * signingCertKind);

3.3.13.2. Parameters

encodedToken
encodedTokenlLen

tsaCert

tsaCertLen

verifyModes

signingCertKind

[in] Points to a buffer that contains an encoded time-stamp token.

[in] Specifies the size, in bytes, of encoded time-stamp token.

[in, optional] Points to a buffer that contains the TSA certificate that
signed this token. If this parameter is NULL, this function attempts to
verify the signature with a certificate included in the time-stamp token.

[in] Specifies the size, in bytes, of the encoded certificate.

[in] A bitmask identifying how to verify the signing certificate (see
below).

[out] On success, points to a value identifying how the signing
certificate was verified (see below).

The supported values for verifyModes are:

TTI_VerifyMode _ESSCertID
TTI_VerifyMode_ESSCertIDv2

TTI_VerifyMode_ESSCertID |
TTI_VerifyMode_ESSCertIDv2

Checks the first SHA-1 hash in the ESSCertID list.
Checks the first SHA-2 hash in the ESSCertIDv2 list.

Checks the first SHA-2 hash in the ESSCertIDv2 list. If no
SHA-2 hashes are present, checks the first SHA-1 hash in the
ESSCertID list.

The supported values for signingCertKind are:

TTI_Verified_SigningCert_ESSCertID The signing certificate was verified using the

SHA-1 hash in the ESSCertID list.

TSOP v7.20.0 SDK Reference Guide 24/50

Chapter 3. C language API functions and specifications

TTI_Verified_SigningCert_ESSCertIDv2 The signing certificate was verified using the
SHA-2 hash in the ESSCertIDv2 list.

3.3.13.3. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER encodedToken is not allowed to be NULL and verifyModes must be a
supported combination of TTI_VerificationModes values..

TTI_INVALID_TST encodedToken did not contain a valid encoded time-stamp token.
TTI_INVALID SIGNATURE The time-stamp token signature was not valid.
TTI_NO_TSACERT_PRESENT The encoded time-stamp token did not contain the signing certificate.

A time-stamp token contains the signing certificate only if the time-
stamp request required that the certificate be included.

TTI_ESSCERTID_FAILED The hash of the Time Attribute certificate did not match a value stored
in the signed attributes of the time-stamp token.

3.313.4. Remarks

This function is provided so that APl users can validate the signature of a time-
stamp token. However, if you have access to other PKI tools, we recommend you
use those to validate the signature. Asking the API to validate its own signature is
of limited value. In addition to verifying the signature on the time-stamp token,
TTI_VerifyTST_Signature verifies the cryptographic binding of the time-stamp token
to a particular identity certificate using either ESSCertID or ESSCertIDv2. The
function achieves this using the verifyModes bitmask described above. Checking
ESSCertIDv2 rather than ESSCertID will succeed only if the TSS is configured to
include ESSCertIDv2 in the certificate as per RFC 5816.

3.3.14. Hash functions

The following sections document hash functions.

3.3.14.1. TTI_SHAT_Init

Creates a SHA-1 hash object and returns a handle that can be used to access the

TSOP v7.20.0 SDK Reference Guide 25/50

Chapter 3. C language API functions and specifications

object.

TTI_SHAT_HANDLE TTI_SHA1 Init();

3.3.14.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

3.3.14.3. Remarks

Use the TTI_SHA1_Update function to feed data to the hash object. After a successful
call to this function, the returned handle must eventually be released with a call to
TTI_SHA1 Final.

3.314.4. TTI_SHA1_Update

Used to feed data to a specified hash object. Before calling this function, the
TTI_SHA1 Init function must be called to get a handle to a hash object.

void TTI_SHA1_Update(
TTI_SHAT_HANDLE hSHA,
const void * pData,
size_t cbData);

3.3.14.5. Parameters

hSHA [in] Handle of the SHA-1 hash object.

pData [in] Points to a buffer containing the data to be added to the SHA-1
hash object.

cbData [in] Number of bytes of data to be added.

3.3.14.6. Remarks

This function may be called multiple times to compute the hash of long or
discontiguous data streams.

3.314.7. TTI_SHA1_Final

TSOP v7.20.0 SDK Reference Guide 26/50

Chapter 3. C language API functions and specifications

Used to retrieve the value from a hash object and to release the hash object.

void TTI_SHA1 Final(
TTI_SHAT_HANDLE hSHA,
byte * pbHash);

3.3.14.8. Parameters

hSHA [in] Handle of the SHA-1 hash object.

pbHash [out] Points to a buffer that receives the hash. The buffer must be at
least 20 bytes in length.

3.314.9. Remarks

After this function is called, the TTI_SHA1T _HANDLE that was passed in becomes
invalid. It must not be used for future calls to TTI_SHA1_Update or TTI_SHA1_Final.

3.3.14.10. TTI_MDS5_Init

Creates an MD5 hash object and returns a handle that can be used to access the
object.

TTI_MD5_HANDLE TTI_MD5_Init();

3.3.14.11. Return values

If this function succeeds, the return value is a nonzero handle. If this function fails,
the return value is zero.

3.3.14.12. Remarks

Use the TTI_MD5_Update function to feed data to the hash object. After a successful
call to this function, the returned handle must eventually be released with a call to
TTI_MD5_Final.

3.3.14.13. TTI_MD5_Update

Used to feed data to a specified hash object. Before calling this function, the
TTI_MD5_Init function must be called to get a handle to a hash object.

TSOP v7.20.0 SDK Reference Guide 27/50

Chapter 3. C language API functions and specifications

void TTI_MD5_Update(
TTI_MD5_HANDLE hMD5,
const void * pData,
size_t cbData);

3.3.14.14. Parameters

hMD5 [in] Handle of the MD5 hash object.

pData [in] Points to a buffer containing the data to be added to the MD5
hash object.

cbData [in] Number of bytes of data to be added.

3.3.14.15. Remarks

This function may be called multiple times to compute the hash of long or
discontiguous data streams.

3.3.14.16. TTI_MDS5_Final

Used to retrieve the value from a hash object and to release the hash object.

void TTI_MD5_Final(
TTI_MD5_HANDLE hMD5,
byte * pbHash);

3.3.14.17. Parameters

hMD5 [in] Handle of the MD5 hash object.

pbHash [out] Points to a buffer that receives the hash. The buffer must be at
least 20 bytes in length.

3.3.14.18. Remarks

After this function is called, the TTI_MD5_HANDLE that was passed in becomes invalid.
It must not be used for future calls to TTI_MD5_Update or TTI_MD5_Final.

3.3.14.19. TTI_SHA256_Init

Creates an SHA256 hash object and returns a handle that can be used to access the

TSOP v7.20.0 SDK Reference Guide 28/50

Chapter 3. C language API functions and specifications

object.

TTI_SHA256_HANDLE TTI_SHA256_Init();

3.3.14.20. Return values

If this function succeeds, the return value is a nonzero handle. If this function fails,
the return value is zero.

3.3.14.21. Remarks

Use the TTI_SHA256_Update function to feed data to the hash object. After a
successful call to this function, the returned handle must eventually be released
with a call to TTI_SHA256_Final.

3.314.22. TTI_SHA256_Update

Used to feed data to a specified hash object. Before calling this function, the
TTI_SHA256_Init function must be called to get a handle to a hash object.

void TTI_SHA256_Update(
TTI_SHA256_HANDLE hSHA,
const void * pData,
size_t cbData);

3.3.14.23. Parameters

hSHA [in] Handle of the SHA hash object.

pData [in] Points to a buffer containing the data to be added to the SHA
hash object.

cbData [in] Number of bytes of data to be added.

3.314.24. Remarks

This function may be called multiple times to compute the hash of long or
discontiguous data streams.

3.3.14.25. TTI_SHA256_Final

TSOP v7.20.0 SDK Reference Guide 29/50

Chapter 3. C language API functions and specifications

Used to retrieve the value from a hash object and to release the hash object.

void TTI_SHA256_Final(
TTI_SHA256_HANDLE hSHA,
byte * pbHash);

3.314.26. Parameters

hSHA [in] Handle of the SHA hash object.

pbHash [out] Points to a buffer that receives the hash. The buffer must be at
least 20 bytes in length.

3.314.27. Remarks

After this function is called, the TTI_SHA256_HANDLE that was passed in becomes
invalid. It must not be used for future calls to TTI_SHA256_Update or TTI_SHA256_Final.

3.3.14.28. TTI_SHA384_Init

Creates a SHA384 hash object and returns a handle that can be used to access the
object.

TTI_SHA384_HANDLE TTI_SHA384_Init();

3.3.14.29. Return values

If this function succeeds, the return value is a nonzero handle. If this function fails,
the return value is zero.

3.3.14.30. Remarks

Use the TTI_SHA384_Update function to feed data to the hash object. After a
successful call to this function, the returned handle must eventually be released
with a call to TTI_SHA384 Final.

3.314.31. TTI_SHA384_Update

Used to feed data to a specified hash object. Before calling this function, the
TTI_SHA384 Init function must be called to get a handle to a hash object.

TSOP v7.20.0 SDK Reference Guide 30/50

Chapter 3. C language API functions and specifications

void TTI_SHA384_Update(
TTI_SHA384_HANDLE hSHA,
const void * pData,
size_t cbData);

3.3.14.32. Parameters

hSHA [in] Handle of the SHA hash object.

pData [in] Points to a buffer containing the data to be added to the SHA384
hash object.

cbData [in] Number of bytes of data to be added.

3.3.14.33. Remarks

This function may be called multiple times to compute the hash of long or
discontiguous data streams.

3.3.14.34. TTI_SHA384_Final

Used to retrieve the value from a hash object and to release the hash object.

void TTI_SHA384_Final(
TTI_SHA384_HANDLE hSHA,
byte * pbHash);

3.3.14.35. Parameters

hSHA [in] Handle of the SHA hash object.

pbHash [out] Points to a buffer that receives the hash. The buffer must be at
least 20 bytes in length.

3.314.36. Remarks

After this function is called, the TTI_SHA384_HANDLE that was passed in becomes
invalid. It must not be used for future calls to TTI_SHA384_Update or TTI_SHA384_Final.

3.3.14.37. TTI_SHAS512_Init

Creates a SHA512 hash object and returns a handle that can be used to access the

TSOP v7.20.0 SDK Reference Guide 31/50

Chapter 3. C language API functions and specifications

object.

TTI_SHA512_HANDLE TTI_SHA512_Init();

3.3.14.38. Return values

If this function succeeds, the return value is a nonzero handle. If this function fails,
the return value is zero.

3.3.14.39. Remarks

Use the TTI_SHA512_Update function to feed data to the hash object. After a
successful call to this function, the returned handle must eventually be released
with a call to TTI_SHA512_Final.

3.314.40. TTI_SHAS512_Update

Used to feed data to a specified hash object. Before calling this function, the
TTI_SHA512_Init function must be called to get a handle to a hash object.

void TTI_SHA512_Update(
TTI_SHA512_HANDLE hSHA,
const void * pData,
size_t cbData);

3.3.14.41. Parameters

hSHA [in] Handle of the SHA hash object.

pData [in] Points to a buffer containing the data to be added to the SHA512
hash object.

cbData [in] Number of bytes of data to be added.

3.314.42. Remarks

This function may be called multiple times to compute the hash of long or
discontiguous data streams.

3.314.43. TTI_SHAS512_Final

TSOP v7.20.0 SDK Reference Guide 32/50

Chapter 3. C language API functions and specifications

Used to retrieve the value from a hash object and to release the hash object.

void TTI_SHA512_Final(
TTI_SHA512_HANDLE hSHA,
byte * pbHash);

3.314.44. Parameters

hSHA [in] Handle of the SHA hash object.

pbHash [out] Points to a buffer that receives the hash. The buffer must be at
least 20 bytes in length.

3.314.45. Remarks

After this function is called, the TTI_SHA512 _HANDLE that was passed in becomes
invalid. It must not be used for future calls to TTI_SHA512_Update or TTI_SHA512_Final.

3.4. Utility functions

The following sections document the utility functions available.

3.41. TTl _GetLastAsnError

Used to retrieve extended ASN error codes. This function should be called after an
encoding or decoding function returns TTI_TSR_ASN_ERROR.

int TTI_GetlastAsnError();

3.4.1.1. Return values

Returns the last ASN error code that occurred during an encoding or decoding
function. This value is set before an encoding or decoding function returns
TTI_TSR_ASN_ERROR.

3.4.1.2. Remarks

There are a large number of error codes that may be returned from this function.
These errors usually occur only when an invalid or corrupted buffer is passed to a
decode function. Since these errors are unexpected, this document does not

TSOP v7.20.0 SDK Reference Guide 33/50

Chapter 3. C language API functions and specifications

contain a complete list of possible values. However, this function provides help
with technical support in the case of unexpected errors.

3.4.2. TTI_TSTInfoTolDData

This function will modify the encapsulated content type in a time-stamp token,
changing it from id-ct-TSTInfo to id-data.

int TTI_TSTInfoToIDData(
const byte * encodedToken,

size_t encodedTokenLen,
byte * encodedObjectBuf,
size_t * encodedObjectBuflLen);

3.4.2.1. Parameters

encodedToken [in] Points to a buffer that contains an encoded time-stamp token.

encodedTokenLen [in] Specifies the size, in bytes, of the encoded time-stamp token.

encodedObjectBuf [out] Points to a buffer to receive the modified encoded time-stamp
token.

encodedObjectBuflLen [in/out] Points to a value specifying the size, in bytes, of the

encodedObjectBuf buffer. When the function returns, this value contains
the size, in bytes, of the modified encoded time-stamp token.

3.4.2.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).
If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER pbEncodedToken and pcbEncodedObjectLength must not be NULL.

TTI_BUFFER_TOO_SMALL The size indicated by encodedObjectBufLen is too small. When the
function returns, the required size is returned in the value pointed to
by encodedObjectBuflLen.

TTI_ASN_ERROR Received unexpected results from an ASN function.

TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call
TTI_GetLastAsnError.

3.4.2.3. Remarks

TSOP v7.20.0 SDK Reference Guide 34/50

Chapter 3. C language API functions and specifications

The TSS issues time-stamp tokens that follow the requirements specified in RFC
3161. The encoded time-stamp tokens are CMS SignedData objects with an
encapsulated content type of id-ct-TSTInfo.

However, testing has shown that several PKI tool sets cannot handle this
embedded content type. Therefore, these tools cannot validate the signature on
time-stamp tokens. This TTI_TSTInfoToIDData function provides a temporary
solution for using one of these PKI tools. Modifying the encapsulated content type
to id-data has no adverse affect on signature validation and allows a time-stamp
token signature to be validated by popular tool sets. Now that RFC 3161 exists and
the time-stamp protocol is no longer just an Internet Engineering Task Force
(IETF) draft, we expect that the popular PKI tool sets will be updated to handle
the id-ct-TSTInfo object identifier.

3.4.3. TTI_RemoveAttrCerts

Removes attribute certificates from a time-stamp token.

int TTI_RemoveAttrCerts(
const byte * encodedToken,

size_t encodedTokenLen,
byte * encodedObjectBuf,
size t * encodedObjectBuflLen);

3.4.3.1. Parameters

encodedToken [in] Points to a buffer that contains an encoded time-stamp token.

encodedTokenlLen [in] Specifies the size, in bytes, of the encoded time-stamp token.

encodedObjectBuf [out] Points to a buffer to receive the modified encoded time-stamp
token.

encodedObjectBuflLen [in/out] Points to a value specifying the size, in bytes, of the

encodedObjectBuf buffer. When the function returns, this value contains
the size, in bytes, of the modified encoded time-stamp token.

3.4.3.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).
If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER pbEncodedToken and pcbEncodedObjectLength must not be NULL.

TSOP v7.20.0 SDK Reference Guide 35/50

Chapter 3. C language API functions and specifications

TTI_BUFFER_TOO_SMALL The size indicated by encodedObjectBufLen is too small. When the
function returns, the required size is returned in the value pointed to
by encodedObjectBufLen.

TTI_ASN_ERROR Received unexpected results from an ASN function.

TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call
TTI GetLastAsnError.

3.4.3.3. Remarks

If the time-stamp token contains a certificate list, the certificate list will contain at
least one attribute certificate, most likely the Time Attribute certificate. Many PKI
tool sets cannot handle SignedData objects that contain attribute certificates.
Therefore PKI tools cannot validate signatures on time-stamp tokens. The
TTI_RemoveAttrCerts function provides a work-around for anyone using one of these
PKI tools. Removing the attribute certificates has no adverse affect on signature
validation and allows a time-stamp token signature to be validated by popular tool
sets.

TSOP v7.20.0 SDK Reference Guide 36/50

Chapter 4. Java API functions and specifications

4.

Java API functions and specifications

This section provides an overview of the contents and use of the API/JDK.

Detailed documentation of the API Java classes is provided in HTML format in the

docs subdirectory of your install directory.

4.1. Components

The API/JDK consists of a tti.jar file, Javadoc documentation and a sample

application that demonstrates proper usage.

4.2. Functional overview

The API/JDK can be used to obtain a time-stamp from a TSS with four basic steps:

Create an encoded request.
Submit it to the TSS.
Decode the result.

Verify the integrity of the time-stamp.

To obtain a time-stamp from a TSS:

1.

Using standard java.security classes, generate a digest of the data to be time-
stamped.

. Generate a nonce for the request (a large random number that protects the

request against replay attacks.)

. Create a TimeStampRequest object with the digest, nonce, and other relevant

information.

Call TimeStampRequest.encodeRequest to create an ASN.1 encoded version of the
request.

5. Create a TimeStampServerTCP object with the IP address of a time-stamp server.

Call TimeStampServerTCP.submitRequest to request and receive the encoded time-
stamp token. The encoded time-stamp token is a PKCS #7 SignedData object
and the signature can be verified with any cryptographic tool kit that supports
PKCS #7.

Create a TimeStampToken object with the encoded time-stamp token.

Call TimeStampToken.getTSTInfo to obtain a TSTInfo object that contains the
time-stamp specific information (such as the time).

TSOP v7.20.0 SDK Reference Guide 37/50

Chapter 4. Java API functions and specifications

9. Verify the integrity of the time-stamp token by checking that the time
contained in the time-stamp is reasonably close to the current system time.
Each of these steps is illustrated in the example program TtiTest.java included
with the API/JDK.

TSOP v7.20.0 SDK Reference Guide 38/50

Chapter 5. Deprecated functions

5. Deprecated functions

This appendix provides information about the deprecated API functions and
specifications.

Although the deprecated functions and structures listed in this
appendix are operational, they do not support the use of SHA-
0 384 or SHA-512. The hash value size in these structures is limited
to 40 bytes, which is not sufficient to support SHA-384 or SHA-
512.

51 TTl_EncodeTSQ

This function has been replaced by TTI_EncodeTSQ_Ex. See
o TTI_EncodeTSQ_Ex for more information. Uses the information
ina TTI_TSQ structure to create an encoded time-stamp request.

int TTI_EncodeTSQ(

const TTI_TSQ * pTSQ,
byte * encodedReq,
size_t * encodedReqlen,

TTI_TransportFormat transportFormat;

5.1.1. Parameters

pTSQ [in] Points to a populated TTI_TSQ structure. The information in this
structure is used to create the encoded time-stamp request.

encodedReq [out] Points to a buffer to receive the encoded time-stamp request.

encodedReglen [in/out] Points to a value specifying the size, in bytes, of the encodedReq
buffer. When the function returns, this value contains the size, in bytes,
of the encoded time-stamp request.

transportFormat [in] A flag indicating which type of additional transport encoding
should be included in the request.

Currently defined format types are:

TTI_RAW Returns the encoded time-stamp request with no headers and no
special encoding.

TTI_TCP Returns the encoded time-stamp request prepended with a five-byte
TCP header.

TSOP v7.20.0 SDK Reference Guide 39/50

Chapter 5. Deprecated functions

TTI_HTTP Returns the time-stamp request encoded as an HTTP encoded request.

TTI_SMTP Reserved for future use.

51.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).
If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER pTSQ and encodedReqlLen must not be NULL. transportFormat must be a
valid TTI_TransportFormat value.

TTI_BUFFER_TOO_SMALL The size indicated by encodedReqlen is too small. When the function
returns, the required size is returned in the value pointed to by
encodedReqgLen.

TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI_GetLastAsnError.

TTI_NOT_SUPPORTED TTI_SMTP are not supported at this time.

5.1.3. Remarks

This function creates an encoded time-stamp request that includes the
information supplied in the TTI_TSQ structure. The request is formatted according
to version one of the PKIX Time-Stamp protocol. This function will also encode the
request for a particular transport mechanism. At this time, two transport format
options are supported: TTI_RAW and TTI_TCP. TTI_RAW returns the encoded time-
stamp request with no headers and no special encoding. TTI_TCP returns the
request with a five-byte TCP header prepended. This header includes the size of
the request and a flag byte set to zero (tsaMsg).

When this function is used with the transportFormat set to TTI_TCP, the resulting
encoded time-stamp request may be submitted directly to a TSS via a TCP socket
connected to port 318 of the server.

5.2. TTl _DecodeTSQ

This function has been replaced by TTI_DecodeTSQ_Ex. See
o TTI_DecodeTSQ_Ex for more information. Decodes an encoded
time-stamp request and writes the information into a TTI_TSQ

TSOP v7.20.0 SDK Reference Guide 40/50

Chapter 5. Deprecated functions

structure.

int TTI_DecodeTSQ(

TTI_TSQ * pTsQ,
const byte * encodedReq,
size_t encodedReqglen);

5.2.1. Parameters

pTSQ [out] Points to a TTI_TSQ structure that receives information from the
encoded time-stamp request.

encodedReq [in] Points to a buffer that contains an encoded time-stamp request.

encodedReglen [in] Specifies the size, in bytes, of the encoded time-stamp request.

5.2.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER pTSQ and encodedReq must not be NULL.
TTI_ASN_ERROR Received unexpected results from an ASN function.
TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI GetLastAsnError.

5.2.3. Remarks

This function can be used to decode a time-stamp request that was encoded with
TTI_EncodeTSQ. It is potentially useful if the original TTI_TSQ structure that was used
to create the encoded request is not available.

53. TTI_GetTST_TSTInfo

This function has been replaced by TTI_GetTST_TSTInfoEx. See

0 TTI _GetTST_TSTInfoEx for more information. Decodes an
encoded time-stamp token and writes the encapsulated TSTInfo
data into a TTI_TSTInfo structure.

TSOP v7.20.0 SDK Reference Guide 41/50

Chapter 5. Deprecated functions

int TTI_GetTST_TSTInfo(
TTI_TSTInfo * pTSTInfo,
const byte * encodedToken,
size_t encodedTokenLen);

5.3.1. Parameters

pTSTInfo [out] Points to a TTI_TSTInfo structure that receives information from
the encoded time-stamp token.

encodedToken [in] Points to a buffer that contains an encoded time-stamp token.

encodedTokenLen [in] Specifies the size, in bytes, of the encoded time-stamp token.

5.3.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER encodedResp and tokenBuflLen must not be NULL.
TTI_ASN_ERROR Received unexpected results from an ASN function.
TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI_GetLastAsnError.

5.3.3. Remarks

This is the core data of a time-stamp token. The TSTInfo is part of the signed data
of the time-stamp token and therefore is protected against modification. This
function reads and decodes this portion of the time-stamp token and writes the
information into a TTI_TSTInfo structure.

54. TTI_GetTAC_CertInfo

This function has been replaced by TTI_GetTAC CertInfoEx. See

o TTI_GetTAC_CertInfoEx for more information. Decodes an
encoded Time Attribute certificate and writes the encapsulated
certificate data into a TTI_TAC CertInfo structure.

int TTI_GetTAC_CertInfo(

TSOP v7.20.0 SDK Reference Guide 42/50

Chapter 5. Deprecated functions

TTI_TAC_CertInfo * pTAC,
const byte * certBuf,
size_t certBuflen);

5.4.1. Parameters

pTAC [out] Points to a TTI_TAC_CertInfo structure that receives information
from the encoded Time Attribute certificate.

certBuf [in] Points to a buffer than contains an encoded Time Attribute
certificate.

certBufLen [in] Specifies the size, in bytes, of the encoded Time Attribute
certificate.

5.4.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER pTimingMetrics and certBuf must not be NULL.
TTI_ASN_ERROR Received unexpected results from an ASN function.
TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI GetLastAsnError.

55.TTl_GetTAC_TimingMetrics

This function has been replaced by TTI_GetTAC_TimingMetricsEx.
See TTI_GetTAC_TimingMetricsEx for more information.

o Decodes an encoded Time Attribute certificate and writes the
encapsulated TimingMetrics attribute data into a

TTI_TimingMetrics structure.

int TTI_GetTAC_TimingMetrics(
TTI_TimingMetrics * pTimingMetrics,
const byte * certBuf,
size_t certBuflLen);

5.5.1. Parameters

TSOP v7.20.0 SDK Reference Guide 43/50

Chapter 5. Deprecated functions

pTimingMetrics [out] Points to a TTI_TimingMetrics structure that receives information
from the encoded Time Attribute certificate.

certBuf [in] Points to a buffer that contains an encoded Time Attribute
certificate.

certBufLen [in] Specifies the size, in bytes, of the encoded Time Attribute
certificate.

5.5.2. Return values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER pTimingMetrics and certBuf must not be NULL.
TTI_ASN_ERROR Received unexpected results from an ASN function.
TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI_GetLastAsnError.

56. TTlI_GetTST_TSACert

This function has been replaced by TTI_GetTST_TSACertEx. See
o TTI_GetTST_TSACertEx for more information. Retrieves the
encoded TSA certificate from an encoded time-stamp token.

int TTI_GetTST_TSACert(

byte * certBuf,

size_t * certBuflLen,

const byte * encodedToken,
size_t encodedTokenlLen);

5.6.1. Parameters

certBuf [out] Points to a buffer that receives the encoded TSA certificate.

certBufLen [in/out] Points to a value specifying the size, in bytes, of the certBuf
buffer. When the function returns, this value contains the size, in bytes,
of the encoded TSA certificate.

encodedToken [in] Points to a buffer that contains an encoded time-stamp token.

TSOP v7.20.0 SDK Reference Guide 44/50

Chapter 5. Deprecated functions

encodedTokenLen [in] Specifies the size, in bytes, of the encoded time-stamp token.

5.6.2. Return Values

If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER encodedToken and certBufLen must not be NULL.

TTI_BUFFER_TOO_SMALL The size indicated by certBuflLen is too small. When the function
returns, the required size is returned in the value pointed to by
certBufLen.

TTI_INVALID_TST The content of the encodedToken buffer is not recognized as a valid

encoded time-stamp token.

TTI_NO_TSACERT_PRESENT The encoded time-stamp token did not contain the signing certificate.
A time-stamp token will only contain the signing certificate if the time-
stamp request specified that the certificate be included.

TTI_ESSCERTID_FAILED The hash of the signing certificate did not match a value stored in the
signed attributes of the time-stamp token.

5.6.3. Remarks

If the encoded time-stamp token contains the signing certificate, this function
copies the encoded signing certificate into the supplied buffer. This function does
not validate the signature on the time-stamp token. By default, this function
verifies the signing certificate against the first SHA-2 hash in the ESSCertIDv2 list
before the function returns. The ESSCertIDv2 provides cryptographic binding of
the time-stamp token to a particular identity certificate, whereas the signature
only binds the time-stamp token to the public key. If the
TTI_VERIFY_ESSCERTIDV2 environment variable is set to O, the function will
instead carry out the comparable checks against the first SHA-1 hash in the
ESSCertID list. Checking ESSCertIDv2 rather than ESSCertID will succeed only if
the TSA is configured to include ESSCertIDv2 in the certificate as per RFC 5816.

57 . TTl _GetTST_TimeAttributeCert

This function has been replaced by
o TTI_GetTST _TimeAttributeCertEx. See

TSOP v7.20.0 SDK Reference Guide 45/50

Chapter 5. Deprecated functions

TTI_GetTST_TimeAttributeCertEx for more information.
Retrieves the encoded Time Attribute certificate from an

encoded time-stamp token.

int TTI_GetTST_TimeAttributeCert(

byte * certBuf,

size_t * certBuflLen,

const byte * encodedToken,
size_t encodedTokenlLen);

5.71. Parameters

certBuf

certBufLen

encodedToken

encodedTokenLen

[out] Points to a buffer that receives the encoded Time Attribute
Certificate.

[in/out] Points to a value specifying the size, in bytes, of the buffer.
When the function returns, this value contains the size, in bytes, of the
encoded Time Attribute certificate.

[in] Points to a buffer that contains an encoded time-stamp token.

[in] Specifies the size, in bytes, of the encoded time-stamp token.

5.7.2. Return Values

If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER

TTI_BUFFER_TOO_SMALL

TTI_INVALID_TST

TTI_NO_TAC_PRESENT

TTI_ESSCERTID_FAILED

encodedToken and certBufLen must not be NULL.

The size indicated by certBuflLen is too small. When the function
returns, the required size is returned in the value pointed to by
certBuflLen.

The content of the encodedToken buffer is not recognized as a valid
encoded time-stamp token.

The encoded time-stamp token did not contain the Time Attribute
certificate. A time-stamp token will only contain the Time Attribute
certificate if the time-stamp request specified that the certificate be
included.

The hash of the Time Attribute certificate did not match a value stored
in the signed attributes of the time-stamp token.

TSOP v7.20.0 SDK Reference Guide 46/50

Chapter 5. Deprecated functions

5.7.3. Remarks

If the encoded time-stamp token contains the Time Attribute certificate, this
function copies the encoded TAC into the supplied buffer. This function verifies
that the timestamp token was issued under the Time Attribute certificate before
the function returns. By default, this verification is done by checking the
ESSCertIDv2 list of SHA-2 hashes for the SHA-2 hash of the Time Attribute
certificate. This check is necessary because the certificate list in a time-stamp
token is not protected by the signature. The cryptographic binding of a time-
stamp to a Time Attribute certificate is accomplished by including the SHA-2 hash
of the Time Attribute certificate in the ESSCertIDv2. The ESSCertIDv2 is protected
by the signature of the time-stamp token. If the TTI_VERIFY_ESSCERTIDV2
environment variable is set to O, the function will instead carry out the comparable
operations using SHA-1, checking the ESSCertID list of SHA-1 hashes for the SHA-1
hash of the Time Attribute certificate. Checking ESSCertIDv2 rather than
ESSCertID will succeed only if the TSA is configured to include ESSCertIDv2 in the
certificate as per RFC 5816.

5.8. TTI_CheckTAC_MatchesTST

This function has been replaced by TTI_CheckTAC_MatchesTSTEx.

0 See TTl_CheckTAC_MatchesTSTEx for more information. Verifies
that the time-stamp token was issued under the Time Attribute
certificate.

int TTI_CheckTAC_MatchesTST(
const byte * certBuf,

size_t certBufLen,
const byte * encodedToken,
size_t encodedTokenLen);

5.8.1. Parameters

certBuf [in] Points to a buffer that contains an encoded Time Attribute
certificate.

certBufLen [in] Specifies the size, in bytes, of the encoded Time Attribute
certificate.

encodedToken [in] Points to a buffer that contains an encoded time-stamp token.

encodedTokenLen [in] Specifies the size, in bytes, of the encoded time-stamp token.

TSOP v7.20.0 SDK Reference Guide 47/50

Chapter 5. Deprecated functions

5.8.2. Return Values

If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER certBuf and encodedToken must not be NULL.
TTI_ASN_ERROR Received unexpected results from an ASN function.
TTI_TSR_ASN_ERROR An unexpected ASN error occurred. To get the ASN error code, call

TTI GetLastAsnError.

TTI_ESSCERTID_FAILED The hash of the Time Attribute certificate did not match a value stored
in the signed attributes of the time-stamp token.

5.8.3. Remarks

This function verifies that the time-stamp token was issued under the Time
Attribute certificate. This function is especially useful when the time-stamp token
does not contain a Time Attribute certificate and the user wants to verify that the
time-stamp token was issued under a TAC that the user retrieved from a previous
time-stamp or some other mechanism. By default, this verification is done by
checking the ESSCertIDv2 list of SHA-2 hashes for the SHA-2 hash of the Time
Attribute certificate. The cryptographic binding of a time-stamp to a Time
Attribute certificate is accomplished by including the SHA-2 hash of the Time
Attribute certificate in the ESSCertIDv2. The ESSCertIDv2 is protected by the
signature on the time-stamp token. If the TTI_VERIFY_ESSCERTIDV2 environment
variable is set to O, the function will instead carry out the comparable checks
against SHA-1 hashes in the ESSCertID list. Checking ESSCertIDv2 rather than
ESSCertID will succeed only if the TSA is configured to include ESSCertIDv2 in the
certificate as per RFC 5816.

5.9. TTI VerifyTST_Signature

This function has been replaced by TTI_VerifyTST_SignatureEx.
o See TTI_VerifyTST_SignatureEx for more information. Verifies
the signature on an encoded time-stamp token.

int TTI_VerifyTST_Signature(
const byte * encodedToken,
size_t encodedTokenLen,
const byte * tsaCert,

TSOP v7.20.0 SDK Reference Guide 48/50

Chapter 5. Deprecated functions

size_t tsaCertlen);

5.9.1. Parameters

encodedToken [in] Points to a buffer that contains an encoded time-stamp token.
encodedTokenlLen [in] Specifies the size, in bytes, of encoded time-stamp token.
tsaCert [in, optional] Points to a buffer that contains the TSA certificate that

signed this token. If this parameter is NULL, this function attempts to
verify the signature with a certificate included in the time-stamp token.

tsaCertLen [in] Specifies the size, in bytes, of the encoded certificate.

5.9.2. Return Values
If this function succeeds, the return value is zero (TTI_SUCCESS).

If this function fails, the return value is a nonzero error code.

TTI_INVALID_PARAMETER encodedToken is not allowed to be NULL.

TTI_INVALID_TST encodedToken did not contain a valid encoded time-stamp token.
TTI_INVALID_SIGNATURE The time-stamp token signature was not valid.

TTI_NO_TSACERT_PRESENT The encoded time-stamp token did not contain the signing certificate.

A time-stamp token contains the signing certificate only if the time-
stamp request required that the certificate be included.

TTI_ESSCERTID FAILED The hash of the signing certificate did not match a value stored in the
signed attributes of the time-stamp token.

5.9.3. Remarks

This function is provided so that APl users can validate the signature of a time-
stamp token. However, if you have access to other PKI tools, we recommend you
use those to validate the signature. Asking the API to validate its own signature is
of limited value. In addition to verifying the signature on the time-stamp token,
TTI_VerifyTST_Signature verifies the cryptographic binding of the time-stamp token
to a particular identity certificate using either ESSCertID or ESSCertIDv2. By
default, the function achieves this by verifying the signing certificate against the
first SHA-2 hash in the ESSCertIDv2 list before the function returns. If the
TTI_VERIFY_ESSCERTIDV2 environment variable is set to O, the function will

TSOP v7.20.0 SDK Reference Guide 49/50

Chapter 5. Deprecated functions

instead carry out the comparable checks against the first SHA-1 hash in the
ESSCertID list. Checking ESSCertIDv2 rather than ESSCertID will succeed only if
the TSA is configured to include ESSCertIDv2 in the certificate as per RFC 5816.

TSOP v7.20.0 SDK Reference Guide 50/50

	Time Stamp Option Pack: TSOP v7.20.0 SDK Reference Guide
	Table of Contents
	1. Introduction
	1.1. Overview of the TSOP SDK

	2. Getting started
	2.1. Install the TSOP SDK
	2.2. Locations of the installed software and examples
	2.3. Java examples
	2.4. C examples

	3. C language API functions and specifications
	3.1. Functional overview
	3.2. Functions and specifications
	3.3. API functions
	3.4. Utility functions

	4. Java API functions and specifications
	4.1. Components
	4.2. Functional overview

	5. Deprecated functions
	5.1. TTI_EncodeTSQ
	5.2. TTI_DecodeTSQ
	5.3. TTI_GetTST_TSTInfo
	5.4. TTI_GetTAC_CertInfo
	5.5. TTI_GetTAC_TimingMetrics
	5.6. TTI_GetTST_TSACert
	5.7. TTI_GetTST_TimeAttributeCert
	5.8. TTI_CheckTAC_MatchesTST
	5.9. TTI_VerifyTST_Signature

