
nShield Security World

CodeSafe 5 v13.6.5
Developer Guide
05 November 2024

Table of Contents

1. Introduction . 1

2. Overview of CodeSafe 5 . 2

2.1. Applications as container images . 2

2.2. Easy and fast network connectivity . 2

2.3. 'Secure by default' client communication . 2

2.4. Better language support . 3

2.5. Developer authentication . 3

3. Install the CodeSafe 5 SDK on Linux . 4

4. Install the CodeSafe 5 SDK on Windows. 5

4.1. Prerequisites . 5

4.2. Install the Security World Software . 5

4.3. Install CodeSafe 5 . 5

5. nShield 5c Codesafe 5 Configuration. 6

6. Build CodeSafe 5 SDK apps . 7

6.1. General SDK use . 7

6.2. Prerequisites. 7

6.3. SDK file structure overview. 7

6.3.1. SDK location . 7

6.3.2. Container root file system . 7

6.3.3. CMake . 8

6.3.4. Include directories . 8

6.3.5. SEE specific libraries . 9

6.3.6. Legacy compatibility . 9

6.4. Building new SEE machines with SEElib. 9

6.4.1. Developer authentication . 10

6.4.2. Deploying SEE machines . 10

6.4.3. SEE machine initialization requirements . 10

6.4.4. SEElib Functions . 10

6.4.5. Host/SEE machine communication . 12

6.5. Compatibility layer for legacy SEE machines . 12

6.5.1. Module-side compatibility layer . 13

6.5.2. Host-side compatibility layer . 14

6.5.3. Initialize module-side compatibility . 14

6.5.4. Use module-side compatibility . 14

6.5.5. Initialize host-side application compatibility . 15

6.5.6. Use host-side application compatibility . 15

7. Sign and deploy CodeSafe 5 SDK apps using csadmin . 18

7.1. Signing CodeSafe images . 18

7.2. The csadmin utility tool. 18

7.2.1. Generate loadable images. 19

7.2.2. Sign images. 22

7.2.3. Create a developer ID certificate. 23

7.3. Example CodeSafe developer process . 24

7.3.1. Create developer ID keys . 24

7.3.2. Load your certificate . 26

8. Build and sign example SEE machines on Linux . 28

8.1. Build module-side C examples. 28

8.2. Building Host Side C Examples . 28

8.3. Build CS5 Images for Python Examples . 29

8.4. Sign CodeSafe Images . 29

8.5. Run NetSEE examples . 30

8.5.1. helloworld_tcp. 31

8.5.2. helloworld_udp . 32

8.6. Run NetSEE examples via SSH tunnel . 34

8.6.1. helloworld_tcp via SSH Tunnel . 34

8.7. Run CSEE examples via SSH tunnel. 37

8.7.1. hello via SSH Tunnel . 37

8.7.2. tickets via SSH tunnel . 41

8.7.3. benchmark via SSH tunnel . 45

9. Build and sign example SEE machines on Windows . 49

9.1. Prerequisites. 49

9.2. Building Windows CodeSafe C, CSEE, and NETSEE examples 49

9.2.1. Host-side examples . 50

9.2.2. Module-side examples . 50

9.3. CS5 images for Python examples. 50

9.4. Sign CodeSafe images . 51

10. Debug CodeSafe 5 SEE machines . 54

10.1. config log set enabled . 54

10.2. config log set disabled. 54

10.3. log get . 54

10.4. log clear. 55

11. Uninstall the CodeSafe 5 SDK . 56

12. Port existing CodeSafe application to CodeSafe 5 . 57

12.1. The compatibility layer . 57

12.1.1. Module-side compatibility layer . 58

12.1.2. Host-side compatibility layer . 58

12.2. Required module-side changes for porting. 58

12.3. Required host-side changes for porting. 59

12.3.1. Initialization . 59

12.3.2. Replacing SEEJob-related method calls. 60

12.4. Rebuilding and Recompiling . 62

12.4.1. Rebuilding host-side. 62

12.4.2. Rebuilding Module Side . 62

13. Supporting legacy CodeSafe Direct . 63

13.1. Legacy CodeSafe Direct. 63

13.2. CodeSafe 5. 63

14. SEE API documentation . 64

14.1. Why CodeSafe 5 needs a compatibility layer . 64

14.2. SEElib functions . 65

14.2.1. SEElib_init . 65

14.2.2. SEElib_ReadUserData . 65

14.2.3. SEElib_ReleaseUserData. 65

14.2.4. SEElib_InitComplete . 65

14.2.5. SEElib_StartTransactListener . 65

14.2.6. SEElib_Transact . 66

14.2.7. SEElib_MarshalSendCommand . 66

14.2.8. SEElib_GetUnmarshalResponse . 66

14.2.9. SEElib_FreeCommand. 67

14.2.10. SEElib_FreeReply . 67

14.2.11. SEElib_SubmitCoreJob . 67

14.2.12. SEElib_GetCoreJob . 67

14.2.13. SEElib_GetUserDataLen . 68

14.2.14. SEElib_Submit . 68

14.2.15. SEElib_Query . 68

14.3. About the SEElib compatibility layer . 69

14.4. SEE machine module side compatibility layer . 69

14.4.1. SEElib_Legacy_Support_Init . 70

14.4.2. SEElib_AwaitJob. 70

14.4.3. SEElib_AwaitJobEx . 70

14.4.4. SEElib_ReturnJob . 71

14.4.5. SEElib_StartProcessorThreads . 71

14.4.6. SEElib_StartSEEJobListener . 72

14.4.7. SEElib_QuerySEEJob. 73

14.4.8. SEElib_ReleaseSEEJob . 73

14.5. Compatibility layer API Host side . 73

14.5.1. netsee_initialize_legacy_seejob_support . 74

14.5.2. netsee_submit_legacy_seejob . 74

14.5.3. netsee_wait_legacy_seejob. 74

14.5.4. netsee_transact_legacy_seejob. 75

14.5.5. netsee_simple_transact_legacy_seejob . 76

15. System calls allowed by CodeSafe 5 SEE machines . 77

1. Introduction
CodeSafe is a runtime on the Entrust nShield HSM that allows third-party developers to run

their own code within the secure boundary of the module. Using the CodeSafe Developer

Kit, developers write their own CodeSafe Apps, cross-compile them and package them to

run on the HSM. While on the HSM, the CodeSafe App is segregated from the actual keys

loaded onto the module, including the keys the App uses. This means that CodeSafe can be

used without affecting the FIPS 140 validation of the module it runs on.

Where the HSMs provide security controls on key usage, CodeSafe provides control over

application code. Depending on the runtime used, you are either sending nCore commands

to the HSM, or designing your own protocol to send data and commands back and forth.

The CodeSafe Developer Kit includes the Secure Execution Engine (SEE) technology. The

CodeSafe product comprises a suite of cross-compilers and support tools that allow you to

develop SEE machines.

With CodeSafe, you can build and deploy Trusted Agents to perform application-specific

security functions on your behalf on unattended servers, or in unprotected environments

where the operation of the system is outside of your direct control. Examples of Trusted

Agents include digital meters, authentication agents, timestamp servers, audit loggers,

digital signature agents and custom encryption processes.

Traditionally, HSMs have protected cryptographic keys within a defined security boundary;

SEE allows you to extend that security boundary to include code that utilizes those

protected keys. The code itself is signed to provide additional protection.

Chapter 1. Introduction

CodeSafe 5 v13.6.5 Developer Guide 1/79

2. Overview of CodeSafe 5

2.1. Applications as container images

In CodeSafe 5, the application is a container image, meaning a complete filesystem image

that can contain multiple executables, libraries, scripts, and data files.

This has the following benefits:

• Data files can be written to the local filesystem and persisted over container shutdown

and restart.

• The application can comprise multiple co-operating processes. This can enhance

security by separating memory spaces and reliability by allowing individual processes

to be restarted if they crash or leak memory.

• Third-party or pre-existing Linux source code can be built and run without

modification.

• Standalone tools can be executed as subprocesses.

• Dynamically-loaded libraries work in a regular way. Code architectures that make use of

plug-in modules make code development easier and reduce the attack surface by

excluding unwanted code.

2.2. Easy and fast network connectivity

nShield 5 HSMs and CodeSafe 5 containers are logically connected via TCP/IP networking.

The container running the SEE Machine can receive incoming connections from the host

side app, establishing two-way communication between host side app and SEE machine.

Existing software that makes use of incoming or outgoing network connections can run

with little or no modifications.

Kernel-implemented networking provides good performance both for throughput and for

latency.

2.3. 'Secure by default' client communication

The CodeSafe 5 execution environment includes both a configurable firewall and an SSH

server. The firewall is set according to configuration in the signed CodeSafe 5 application

package so that only the network ports required by the application are allowed. The SSH

server allows a secure tunnel to be established to the CodeSafe 5 application. The client

credentials required to access this tunnel can be configured using the support tools.

Chapter 2. Overview of CodeSafe 5

CodeSafe 5 v13.6.5 Developer Guide 2/79

This means that applications, including applications ported from older CodeSafe SEE

machines, can benefit from strong authentication of their clients and protection from

unauthorized network traffic without additional code.

2.4. Better language support

The CodeSafe 5 SDK supports:

• C and C++

• Python 3.8

The nfpython module provides easy access to nCore API commands.

The container environment has a regular Linux filesystem and supports system calls for

network and file I/O, so a wide range of standard and third-party Python modules can

be used without modification.

CodeSafe applications can be written using mixed languages with the usual range of IPC

and calling mechanisms available to the developer.

2.5. Developer authentication

CodeSafe 5 uses Entrust X.509 certificates to link the CodeSafe application to a real-world

developer identity through code signing.

This allows the administrator of an HSM to, for example, restrict the HSM to authorized in-

house applications or to those provided by trusted development partners.

Chapter 2. Overview of CodeSafe 5

CodeSafe 5 v13.6.5 Developer Guide 3/79

3. Install the CodeSafe 5 SDK on Linux
1. Make sure that the following nShield ISO images are available locally:

◦ SecWorld_Lin64-13.x.y.iso

◦ Codesafe_Lin64-13.x.y.iso

Where <x.y> are the same versions for Security World and CodeSafe.

2. Create a mount directory for each ISO:

mkdir ~/secworld_iso_mountpoint
mkdir ~/codesafe_iso_mountpoint

3. Mount the ISO images to their respective directories:

sudo mount <PATH_TO>/SecWorld_Lin64-13.x.y.iso ~/secworld_iso_mountpoint/
sudo mount <PATH_TO>/Codesafe_Lin64-13.x.y.iso ~/codesafe_iso_mountpoint/

The nShield CodeSafe 5 hostside is located in tarballs under:

ls ~/codesafe_iso_mountpoint/linux/amd64/
csdref.tar.gz csd.tar.gz

The nShield Security World hostside is located in tarballs under:

ls ~/secworld_iso_mountpoint/linux/amd64/
ctd.tar.gz devref.tar.gz javasp.tar.gz ncsnmp.tar.gz
ctls.tar.gz hwsp.tar.gz jd.tar.gz raserv.tar.gz

4. Untar the tarballs into the root directory:

tar -zxvf ~/codesafe_iso_mountpoint/linux/amd64/csd.tar.gz -C /
tar -zxvf ~/codesafe_iso_mountpoint/linux/amd64/csdref.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/ctd.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/devref.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/javasp.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/ncsnmp.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/ctls.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/hwsp.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/jd.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/raserv.tar.gz -C /

This installs the nShield CodeSafe 5 SDK to /opt/nfast/c/csd5 and the nShield

CodeSafe 5 SDK Python files to /opt/nfast/python3/csd5.

Chapter 3. Install the CodeSafe 5 SDK on Linux

CodeSafe 5 v13.6.5 Developer Guide 4/79

4. Install the CodeSafe 5 SDK on Windows

4.1. Prerequisites

Make sure that the following nShield ISO images are available locally:

• SecWorld_Windows-13.x.y.iso

• Codesafe_Windows-13.x.y.iso

Where <x.y> are the same versions for Security World and CodeSafe.

4.2. Install the Security World Software

1. Log in as Administrator or as a user with local administrator rights.

2. Mount the Security World Software ISO image and navigate into the mounted

directory.

3. Launch setup.msi.

4. Follow the on-screen instructions.

5. Accept the license terms and select Next to continue.

6. Specify the installation directory and select Next to continue.

7. Select Install.

8. Select Finish to complete the installation.

4.3. Install CodeSafe 5

1. Mount the CodeSafe 5 SDK ISO image and navigate into the mounted directory.

2. Launch setup.msi.

3. Follow the on-screen instructions.

4. Accept the license terms and select Next to continue.

5. Specify the installation directory and select Next to continue.

6. Select Install.

7. Select Finish to complete the installation.

This installs the nShield CodeSafe 5 SDK C:\Program Files\nCipher\nfast\c\csd5 and

the nShield CodeSafe 5 SDK Python files to C:\Program

Files\nCipher\nfast\python3\csd5.

Chapter 4. Install the CodeSafe 5 SDK on Windows

CodeSafe 5 v13.6.5 Developer Guide 5/79

5. nShield 5c Codesafe 5 Configuration
To use CodeSafe 5 with a nShield 5c you must generate and exchange launcher service

keys between the client and the nShield 5c. These keys are essential for secure

communication and access to the launcher service on the module. See CodeSafe setup for

the nShield 5c for more information.

Chapter 5. nShield 5c Codesafe 5 Configuration

CodeSafe 5 v13.6.5 Developer Guide 6/79

https://nshielddocs.entrust.com/security-world-docs/v13.6.5/hsm-user-guide/hsm-mgmt/codesafe.html#nc5setup
https://nshielddocs.entrust.com/security-world-docs/v13.6.5/hsm-user-guide/hsm-mgmt/codesafe.html#nc5setup

6. Build CodeSafe 5 SDK apps

6.1. General SDK use

The CodeSafe 5 SDK provides the tools necessary to build and run SEE machines on

nShield 5 HSMs. The CodeSafe 5 SEE machines are containerized. The SDK provides the

structure of the container, including a root file system, libraries required for communication

with the nCore API, and libraries to enable communication between the SEE machine and

the host. The SDK provides libraries for development, libraries built for maintaining

backwards compatibility for legacy applications, a root file system with libraries useful for

development of new applications, such as libglib and libc, and useful binaries including

touch, cat, grep.

6.2. Prerequisites

GCC 8.x or later.

6.3. SDK file structure overview

6.3.1. SDK location

The default installation location of the CodeSafe 5 SDK is:

• Linux: /opt/nfast/c/csd5/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\

Some tools required for SEE machine operations might be found elsewhere in the main

install. For example, csadmin, which enables loading, starting, and stopping SEE machines, is

installed in the following default locations:

• Linux: /opt/nfast/bin/csadmin

• Windows: C:\Program Files\nCipher\nfast\bin\csadmin (Windows)

These cases are described in the following sections as required.

6.3.2. Container root file system

The container root file system is located in:

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.6.5 Developer Guide 7/79

• Linux: /opt/nfast/c/csd5/rootfs/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\rootfs\

This root file system contains two main parts: binary files and libraries.

6.3.2.1. Binaries

rootfs/bin/ (Linux) or rootfs\bin\ (Windows) contains many useful common Linux

binaries that you might need within the container such as cat, grep, and touch.

rootfs/sbin/ (Linux) or rootfs\sbin\ (Windows) contains the init script for the container.

6.3.2.2. Libraries

rootfs/lib/ and rootfs/usr/lib/ (Linux) or rootfs\lib\ and rootfs\usr\lib\ (Windows)

contain various useful libraries a developer might need, such as libglib and libc. Some of

these libraries are also essential for the proper running of the container and execution of

various examples.

6.3.3. CMake

The SDK installs a directory which includes CMake toolchains used for building example

SEE machines:

• Linux: /opt/nfast/c/csd5/cmake

• Windows: C:\Program Files\nCipher\nfast\c\csd5\cmake

These toolchains can serve as examples themselves for creating custom toolchains.

6.3.4. Include directories

The SDK provides two directories with header files that can be included along with their

respective libraries to provide additional functionality in SEE machines. These headers are

stored in:

• Linux:

◦ /opt/nfast/c/csd5/gcc/*

◦ /opt/nfast/c/csd5/include-see/*

• Windows:

◦ C:\Program Files\nCipher\nfast\c\csd5\gcc*

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.6.5 Developer Guide 8/79

◦ C:\Program Files\nCipher\nfast\c\csd5\include-see*

6.3.5. SEE specific libraries

The C libraries which are specific to SEE machines, including seelib.a and librtusr.a, are

located in:

• Linux: /opt/nfast/c/csd5/lib-ppc64-linux-musl/*

• Windows: C:\Program Files\nCipher\nfast\c\csd5\lib-ppc64-linux-musl*

These libraries must be included to enable critical SEE machine functionality such as

communication with the nCore API.

The Python module specific to SEE machines is seeapi.py. This module is located under

Python site packages in nshield.ipcdaemon.seeapi. This must be imported as SEEAPI to

enable critical SEE machine functionality such as communication with the nCore API.

6.3.6. Legacy compatibility

The CodeSafe 5 SDK and nShield 5 HSMs are sufficiently different from previous

implementations that legacy applications cannot run with the CodeSafe 5 SDK. For ease of

use, the CodeSafe 5 SDK supplies a compatibility layer in the form of headers, files, and

libraries to enable legacy applications to be used in nShield 5 HSMs.

Legacy applications require recompilation with new libraries to run on nShield 5 HSMs, see

Compatibility layer for legacy SEE machines.

Do not use these compatibility layer libraries, files, and headers to

create new SEE machines. They are only supplied to allow legacy

applications to be quickly re-compiled and run on nShield 5 HSMs.

6.4. Building new SEE machines with SEElib

An SEE machine is a container image with a complete filesystem which can be loaded onto

an CodeSafe 5-enabled HSM as part of a container. The SEElib library enables SEE

machines to interface with the nCore API via the IPC daemon.

Source code is compiled using one of the GCC cross-compilers supplied with the

CodeSafe SDK. For details of required compiler options, toolchains, makefiles and so on,

see the CMake files supplied with the examples, as well as Build and sign example SEE

machines on Linux and Build and sign example SEE machines on Windows.

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.6.5 Developer Guide 9/79

The container image must be signed using the csadmin utility tool.

6.4.1. Developer authentication

CodeSafe 5 requires a signed CodeSafe image to run SEE machines on the HSM.

The CodeSafe developer needs to request a developer ID certificate by sending a

Certificate Signing Request (CSR) to Entrust support. The tool used to create the CSR is

integrated into the HSM software as a subcommand of csadmin utility.

For security purposes, a developer keypair must be created and stored within the HSM. In

addition, the keypair must be OCS protected to provide authorization control on its use.

The developer keypair will be created by csadmin if it does not already exist.

After the certificates are received, they are installed on the HSM and are used to sign

CodeSafe application images with the csadmin tool.

The implementation of this is described in more detail in Sign and deploy CodeSafe 5 SDK

apps using csadmin.

6.4.2. Deploying SEE machines

After the code has been compiled, built, and signed, the csadmin utility tool is used to

deploy the SEE machine. It is used to load the signed CodeSafe application image and then

to start the SEE machine. The SEE machine then runs the entrypoint including the main()

function.

For more information on the csadmin utility, see Sign and deploy CodeSafe 5 SDK apps

using csadmin.

6.4.3. SEE machine initialization requirements

An SEE machine must initialize the SEElib before making use of any of the SEElib

functionality. This is done by calling SEElib_init(). It is recommended that this call is made

immediately within the main() function of an SEE machine.

6.4.4. SEElib Functions

After initialization, SEElib functions can be used to communicate with the nCore API via the

IPC daemon. These methods call functions identically to previous CodeSafe versions

although the underlying methodology has changed.

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.6.5 Developer Guide 10/79

6.4.4.1. SEElib_Transact()

To send a command to the nCore API and block waiting for a reply:

int SEElib_Transact(struct M_Command *cmd, struct M_Reply *reply)

This sends the cmd command to the nCore API and waits for the reply to be written to

reply.

6.4.4.2. SEElib_Submit() / SEElib_Query()

To send a non-blocking command to the nCore API:

int SEElib_Submit(M_Command *cmd, M_Reply *reply, PEVENT ev, SEElib_ContextHandle tctx)

The cmd command is submitted to the nCore API. The transaction listener thread will call

EventSet ev, if ev is non-NULL when the reply returns for this command. The reply is

unmarshalled into reply and tctx is returned to the caller with SEElib_Query(M_Reply

**replyp, SEElib_ContextHandle *tctx_r).

Before using the SEElib_Submit() method, SEElib_StartTransactListener() must have

been called to start the transaction listener.

Unlike SEElib_SubmitCoreJob(), SEElib_Submit() does not block and

wait for all other calls to SEElib_Transact() to complete.

6.4.4.3. SEElib_SubmitCoreJob / SEElib_GetCoreJobEx()

To submit a job to the nCore API:

extern int SEElib_SubmitCoreJob(const unsigned char *data, unsigned int len)

To receive a job from the nCore API:

extern int SEElib_GetCoreJobEx(unsigned char *buf, M_Word *len_io, unsigned flags)

SEElib_SubmitCoreJob() is blocking. It waits for the job to be submitted, which includes

waiting for existing calls made to SEElib_Transact() to be completed. The same is true for

SEElib_GetCoreJobEx().

For non-blocking calls, consider using SEElib_Submit().

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.6.5 Developer Guide 11/79

6.4.4.4. Other SEElib methods

For a comprehensive list of all functionality provided via the SEElib, see: SEE API

documentation.

6.4.5. Host/SEE machine communication

The newest CodeSafe 5 implementation simplifies the host/SEE machine connection.

Host/SEE machine communication does not need to use SEEJobs or pass through the

hardserver and nCore API. Communication between the host-side app and SEE machine is

done via TCP/IPv6 networking.

The ncoreapi service can only connect to one CodeSafe container at a

time.

6.4.5.1. Update Connects running in an IPv4 context

The host side of the CodeSafe 5 examples will only be able to communicate over IPv6.

Connects running in an IPv4 context will not be able to run examples without changing how

CodeSafe 5 is configured on the Connect. See Working with CodeSafe for more

information.

6.5. Compatibility layer for legacy SEE machines

The CodeSafe 5 SDK provides libraries for developing new SEE machines. It also provides

libraries, files, and headers designed for maintaining backwards compatibility with legacy

CodeSafe SEE machines.

Do not use the compatibility layer libraries, files, and headers to create

new SEE machines. They are only supplied to allow legacy applications

to be quickly re-compiled and run on nShield 5 HSMs.

The requirement for a compatibility layer arises from changes made to the overall structure

of how CodeSafe 5 SEE machines interact with both the host and with the nCore API:

• Host-SEE machine communication

In legacy CodeSafe implementations, for older HSMs, communication between a host-

side application and an SEE machine would be done via the nCore API using SEEJobs.

Using the nCore API to relay SEEJobs between the host-side and the SEE machine is no

longer supported.

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.6.5 Developer Guide 12/79

https://nshielddocs.entrust.com/security-world-docs/v13.6.5/hsm-user-guide/hsm-mgmt/codesafe.html

Communication via the nCore API has been replaced with direct communication

between the host and SEE machine using TCP/UDP socket connections. Optionally,

communication can be over an SSH tunnel for security. This allows greater control of

the creation, management, and use of connections between the host and SEE machine

for developers. It also improves performance as SEEJobs no longer have to be sent to

the nCore API before being forwarded to the SEE machine.

• SEE machine - nCore API communication

Communication between the host and SEE machine no longer requires the nCore API

as an intermediary. Communication intended to be exclusively between the SEE

machine and the nCore API has also changed with the addition of the container IPC

daemon. The IPC daemon is provided by Entrust, exists within the container, and

maintains connections between the container and the nCore API.

The IPC daemon forwards commands to the nCore API sent using the SEElib. Outside

of the addition of the intermediary forwarder, the communication between the SEE

machine and the nCore API remains functionally unchanged.

The ncoreapi service can only connect to one CodeSafe container at a time.

The compatibility layer contains two main parts: * liblegacy_compatibility.a, the module-

side library. * include-see/legacy-compatibility-host/*, the host-side compatibility

interface.

6.5.1. Module-side compatibility layer

The module-side compatibility layer provides the methods necessary to connect the SEE

machine to the host-side application via network connection.

The module-side compatibility layer comprises the liblegacy_compatibility.a library. Its

install location is:

• Linux: /opt/nfast/c/csd5/lib-ppc64-linux-musl/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\lib-ppc64-linux-musl\

Legacy SEE machines must be built with liblegacy_compatibility.a. When initialized, the

module-side compatibility layer opens and maintains a connection between the host-side

application and the SEE machine. This allows legacy applications to continue using

SEElib_AwaitJob() and SEElib_ReturnJob() to accept incoming jobs and return them to

the host-side application when completed.

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.6.5 Developer Guide 13/79

6.5.2. Host-side compatibility layer

The host-side compatibility layer provides the methods necessary to connect the host-side

application to the SEE machine via network connection.

The host-side compatibility layer comprises the following files:

• legacy-csee-host-side-compatibility.h contains all necessary function declarations.

• legacy-csee-host-side-compatibility.c contains required host-side function

definitions required to connect to and maintain the connection to legacy SEE

machines.

Their install location is:

• Linux: /opt/nfast/c/csd5/examples/csee/utils/hostside/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\examples\csee\utils\hostside\

Legacy host-side applications must be built with legacy-csee-host-side-compatibility.h

and legacy-csee-host-side-compatibility.c. This is done by emulating the connection

which was previously created and managed by the hardserver and the nCore API.

legacy-csee-host-side-compatibility.c is compiled and added to the libutil.a library.

Applications should link to it if they need to connect to legacy SEE machines.

6.5.3. Initialize module-side compatibility

Initialize the module-side compatibility layer:

extern void SEElib_Legacy_Support_Init(const char* PORT)

See Classic SEE (CSEE) examples in Port existing CodeSafe application to CodeSafe 5 for

how the module-side legacy support can be initialized to open a socket connection at port

PORT to communicate between host-side and SEE machines.

6.5.4. Use module-side compatibility

Legacy applications expect incoming messages from the host to be piped from the host to

the nCore API via the hardserver. From there, they eventually become accessible within the

SEE machine via calls to SEElib_AwaitJob() and SEElib_ReturnJob(). After the module-side

compatibility layer is initialized (see Initialize module-side compatibility), these functions

will work exactly as they have in previous CodeSafe applications. No further changes are

necessary.

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.6.5 Developer Guide 14/79

Initializing the compatibility layer functionality via the SEElib_Legacy_Support_Init() call

allows the compatibility layer to handle incoming and outgoing jobs as would previously

have been done by the nCore API. The Classic SEE (CSEE) examples show that the only

change made to the SEE machines to allow for backwards compatibility is the initialization

of the compatibility layer.

The compatibility layer only supports one client connection at a time

while the hardserver can support many.

6.5.5. Initialize host-side application compatibility

Initialize the host-side legacy application to allow connection to the SEE machine,

communicating to the host via PORT:

netsee_initialize_legacy_seejob_support(const char * cseeContainerMachineIPv6, const char *
cseeContainerMachinePort)`

Here, cseeContainerMachinePort must match the PORT initialized by the SEE machine.

cseeContainerMachineIPv6 is the container’s IPv6 address. See the execution of CSEE

examples in Port existing CodeSafe application to CodeSafe 5 for more information on

passing in the IPv6 address of the container.

netsee_initialize_legacy_seejob_support() establishes a connection to the SEE

machine’s container at port cseeContainerMachinePort. The compatibility layer maintains

this connection and handles the sending of SEEJobs between the host and module SEE

machine.

6.5.6. Use host-side application compatibility

The compatibility layer allows host-side application calls to interact with the SEE machine

to remain largely unchanged. Some changes to calls are, however, required. These changes,

rather than changing how the functions operate, largely serve to remove no longer required

elements, such as NFastApp_Connection.

• netsee_transact_legacy_seejob(const M_Command *command, M_Reply *reply,

struct NFast_Transaction_Context *tctx)

replaces:

NFastApp_Transact(NFastApp_Connection conn, struct NFast_Call_Context *cctx,

const M_Command *command, M_Reply *reply, struct NFast_Transaction_Context

*tctx)

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.6.5 Developer Guide 15/79

The NFastApp_Connection and NFast_Call_Context are no longer

required and should not be passed in.

• netsee_simple_transact_legacy_seejob(const M_Command *cmd, M_Reply *reply,

int fatal)

replaces:

simple_transact (NFastApp_Connection nc, M_Command *pcmd, M_Reply *preply,

int fatal)

The NFastApp_Connection is no longer required and should not be

passed in.

• netsee_submit_legacy_seejob(const M_Command *cmd, M_Reply *reply, struct

NFast_Transaction_Context *tctx)

replaces:

NFastApp_Submit(NFastApp_Connection conn, struct NFast_Call_Context *cctx,

const M_Command *command, M_Reply *reply, struct NFast_Transaction_Context

*tctx)

The NFastApp_Connection and NFast_Call_Context are no longer

required and should not be passed in.

• netsee_wait_legacy_seejob(M_Reply **replyp, struct NFast_Transaction_Context

**tctx)

replaces:

NFastApp_Wait(NFastApp_Connection conn, struct NFast_Call_Context *cctx,

M_Reply **replyp, struct NFast_Transaction_Context **tctx_r)

The NFastApp_Connection and NFast_Call_Context are no longer

required and should not be passed in.

With these changes implemented, legacy host-side applications, when run in conjunction

with an SEE machine properly initialized with liblegacy_compatibility.a, should function

identically to when run in previous implementations of CodeSafe.

This section demonstrated how to use the compatibility layer to quickly

bring legacy applications into the new CodeSafe 5 environment. New

applications should never be written with the compatibility layer. It is

advised that, when possible, a user defined TCP/IPv6 network

connection between the host-side application and the SEE machine is

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.6.5 Developer Guide 16/79

implemented, rather than using the compatibility layer to transact jobs.

However, the compatibility layer does perform this job when no such

custom implementation can be made.

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.6.5 Developer Guide 17/79

7. Sign and deploy CodeSafe 5 SDK apps
using csadmin

7.1. Signing CodeSafe images

All CodeSafe images must be signed before they can be loaded on to an HSM. Entrust

recommends that you have two signing keys: one that you use to sign CodeSafe images

that are still under development, and one that you only use for signing tested CodeSafe

images that are ready for deployment. In this guide, the two recommended keys are

referred to as the development signing key and the production signing key, however you

can name these keys as required by your particular development organisation.

Signed CodeSafe images can be loaded to an HSM if the certificate

associated with the signing key is also loaded to that HSM. Therefore

you must ensure that the certificates associated with development

signing keys are never distributed outside of your development

organisation. If you develop CodeSafe images for customers who are

not part of your development organisation, you should only send them

CodeSafe images that have been signed by, and certificates that are

associated with, a production signing key.

You can create as many signing keys as you require. This allows you to use different signing

keys to group your CodeSafe images based on whatever criteria you require. For example,

you could use different signing keys based on the intended customer or on the

functionality of the CodeSafe image.

You must keep track of which key has been used to sign which image and ensure that the

end user receives the correct matching certificate and does not receive certificates that

they do not require.

The following sections describe the commands used to create the signing keys and

certificates followed by a worked example showing the entire process of building, signing,

loading, and running a CodeSafe image.

7.2. The csadmin utility tool

The following examples use a Linux machine for the deployment of

CodeSafe applications. The same commands can be applied to a

Windows machine.

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.6.5 Developer Guide 18/79

The csadmin tool is used to manage CodeSafe images throughout the development and

deployment process. It is available as part of the Security World ISO. It must be installed as

instructed in Install the CodeSafe 5 SDK on Linux and Install the CodeSafe 5 SDK on

Windows.

You must be logged in as an Administrator or a user with local administrator rights to

execute csadmin commands.

You must have /opt/nfast/bin in your PATH environment variable to use csadmin.

Executing csadmin displays the available subcommands:

To view the help text included here while using csadmin, run a command or sub-command

with the -h|--help option.

The csadmin tool covers CodeSafe application deployment from both

the perspective of a CodeSafe application developer and a CodeSafe

application user. The help text displays the complete set of commands

available. This document details the commands that are specific to

CodeSafe developers. See csadmin for an overview of the csadmin tool

and details of the other commands available.

7.2.1. Generate loadable images

CS5 images are generated with csadmin image generate. Before generating an image, the

CodeSafe 5 SDK must be previously installed. This includes an installation of Python and

nfpython suitable to run on the HSM. To display the generate operation’s usage, execute it

with the --help option :

$ csadmin image generate --help
usage: csadmin image generate [-h] --package-name PACKAGE_NAME --version-str VERSION_STR --entry-point
ENTRY_POINT --network-conf NETWORK_CONF
--packages-conf PACKAGES_CONF --rootdir ROOTDIR [--verbose] CS5FILE

positional arguments:
 CS5FILE The cs5 file to be handled

optional arguments:
 -h, --help show this help message and exit
 --package-name PACKAGE_NAME
 Short name describing the product contents
 --version-str VERSION_STR
 Version number of this package contents
 --entry-point ENTRY_POINT
 Full path, within the container, to the entry point application to be executed upon start
 --network-conf NETWORK_CONF
 Full path, outside the container, to the network config file to be copied into the
container meta data
 --packages-conf PACKAGES_CONF
 Full path, outside the container, to the extra packages config file used to copy
additional packages into container rootfs

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.6.5 Developer Guide 19/79

https://nshielddocs.entrust.com/security-world-docs/v13.6.5/utilities/csadmin.html

 --rootdir ROOTDIR Directory where the contents of the new container are located
 --verbose Print verbose logs

Generating an image requires the name of the CS5 file and the use of the following

mandatory command-line arguments:

• --package-name

• --version-str

• --entry-point

• --network-conf

• --packages-conf

• --rootdir

The following items are also required:

• A container directory (not necessarily named "container") that points to what would be

the SEE machine’s root directory.

This directory must include any files used by the application, including the entry point

program, for example:

container/
├── home
└── usr
 └── bin
 └── entrypoint

The container directory can be located anywhere in the host file system. Ensure you

pass the full path to the generate command via the --rootdir argument, as specified in

the command usage.

• An entry point program.

This is the program that runs when the SEE container is started (on launcher start). It

must be made executable so it can be launched accordingly. In the previous example,

the entry point program is in container/usr/bin/entrypoint.

• A network configuration file. (See Example network-conf.json file.)

The valid range for container_port is 1024 - 65535.

• A file with extra packages information. (See Example extra-packages-conf.json file)

7.2.1.1. Example csadmin image generate operation

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.6.5 Developer Guide 20/79

$ csadmin image generate --package-name "MyCodeSafeApp" --entry-point /usr/bin/entrypoint --network-conf network-
conf.json --packages-conf extra-packages-conf.json --version-str 1.0 --rootdir container/ myapp.cs5
INFO: creating content package
INFO: Creating content tar ball
INFO: Creating copy of source file: network-conf.json into dest: cs5_build/meta/network-conf.json
INFO: Creating copy of source file: extra-packages-conf.json into dest: cs5_build/meta/extra-packages-conf.json
INFO: Creating compressed tar ball cs5_build/extra-packages.tar.gz out of cs5_build/extra-packages
INFO: Creating compressed tar ball cs5_build/container.tar.gz out of container/
INFO: Creating uncompressed tar ball content.tar out of cs5_build
INFO: creating cs5 file myapp.cs5
INFO: adding content hash to the package

INFO: File myapp.cs5 was created successfully!

--entry-point points to the full path of the executable program relative to the container’s

root.

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.6.5 Developer Guide 21/79

7.2.1.2. Example extra-packages-conf.json file

{
 "packages": [{
 "package": "python",
 "description": "python 3.8 binaries",
 "host_path": "python3/csd5/ppc64/usr/bin",
 "machine_path": "usr/bin",
 "exclude": ""
 },
 {
 "package": "python",
 "description": "python 3.8 libraries",
 "host_path": "python3/csd5/ppc64/usr/lib/python3.8",
 "machine_path": "python3",
 "exclude": ""
 },
 {
 "package": "binaries",
 "description": "binaries for script support 1.0.0",
 "host_path": "c/csd5/rootfs/bin",
 "machine_path": "bin",
 "exclude": ""
 }
]
}

7.2.1.3. Example network-conf.json file

{
 "incoming" : {
 "tcp" : {
 "protos" : ["ipv6"], "ports" : [8000, 8001, 8888]
 }
 },
 "outgoing" : {
 "udp" : {
 "protos" : ["ipv4"], "ports" : [53]
 }
 },
 "ssh_tunnel" : {
 "container_port" : 8000
 }
}

7.2.1.4. Example entry point script

#!/bin/sh
export PYTHONHOME=/usr/bin
export PYTHONPATH=/usr/lib/python3.8/:/usr/lib/python3.8/lib-dynload:/usr/lib/python3.8/site-packages
python -m http.server --directory / --bind :: 8888

7.2.2. Sign images

CodeSafe images are signed with csadmin image sign. A signing key must be created

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.6.5 Developer Guide 22/79

before the CS5 file is signed, because signing must be done using HSM-protected keys.

csadmin image sign --help
usage: csadmin image sign [-h] --askeyname ASKEYNAME --devkeyname DEVKEYNAME --devcert DEVCERT [--startdate
STARTDATE] [--expirydate EXPIRYDATE]
 [--out OUT] [--verbose]
 CS5FILE

positional arguments:
 CS5FILE The cs5 file to be signed

options:
 -h, --help show this help message and exit
 --askeyname ASKEYNAME
 Name (ident) of the application signing key
 --devkeyname DEVKEYNAME
 Name (ident) of the developer signing key
 --devcert DEVCERT The signed developer certificate PEM file
 --startdate STARTDATE
 Start of validity period for the signed ASK cert in Unix time (default: no start date)
 --expirydate EXPIRYDATE
 End of validity period for the signed ASK cert in Unix time (default: no expiration date)
 --out OUT Name of the output file. If not specified, the cs5 file is overwritten.
 --verbose Print verbose logs

For more information, see Signing CodeSafe images.

7.2.3. Create a developer ID certificate

Developer ID certificates are created with csadmin ids create. This command generates a

developer ID key with the given name (if it doesn’t exist already) and a certificate signing

request so a certificate can be generated (see Signing CodeSafe images):

$ csadmin ids create --help
usage: csadmin ids create [-h] --keyname KEYNAME [-m MODULE] --x509cname COMMON_NAME [--x509country COUNTRY]
 [--x509province STATE_OR_PROVINCE] [--x509locality LOCALITY] --x509org ORGANIZATION [--
x509orgunit ORGANIZATIONAL_UNIT] [--verbose]

options:
 -h, --help show this help message and exit
 --keyname KEYNAME Name for the certificate's key.
 -m MODULE, --module MODULE
 Module to generate the key with.
 --x509cname COMMON_NAME
 The CN part of the key's DN.
 --x509country COUNTRY
 The C part of the key's DN.
 --x509province STATE_OR_PROVINCE
 The ST part of the key's DN.
 --x509locality LOCALITY
 The L part of the key's DN.
 --x509org ORGANIZATION
 The O part of the key's DN.
 --x509orgunit ORGANIZATIONAL_UNIT
 The OU part of the key's DN.
 --verbose Print verbose logs

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.6.5 Developer Guide 23/79

7.3. Example CodeSafe developer process

The examples in this chapter show how various csadmin commands can be used to create a

signed CodeSafe image for deployment. For details of the csadmin tool (See The csadmin

utility tool)

7.3.1. Create developer ID keys

To sign CodeSafe images, you must create a developer ID for your development

organisation and obtain a matching certificate from Entrust. You can obtain a certificate by

creating a Certificate Signing Request (CSR) file and sending it to Entrust Support who will

process the CSR and return a signed certificate to you.

Entrust strongly recommend that you create at least two developer IDs:

a 'development' ID for signing CodeSafe images that are still in

development, and a 'production' ID for signing images that are ready to

be deployed.

The csadmin ids create command provides the functionality to generate a developer ID

key if it does not already exist, as well as the CSR file in a single step.

Keep track of which certificate matches each developer ID key. When

you send a signed CodeSafe image to a customer you will need to also

send them the matching certificate for them to be able to load the

image on their HSM.

The developer ID keys only need to be created once. The certificates matching them have a

limited validity period and will need to be refreshed before they expire.

When you refresh a certificate you must send it to anyone who received

a copy of a SEE machine that is signed by the key matching that

certificate. Users of SEE machines require a valid certificate every time

they start the SEE machine.

To refresh a certificate, use the csadmin ids create command with an existing key. This

creates a CSR file for the existing key, which should be sent to Entrust Support who will

process the CSR and return a new signed certificate.

The integrity of the signing process relies on the procedural steps being followed to secure

a CodeSafe application image.

For this reason, developer ID keys are OCS protected and therefore to sign a CodeSafe

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.6.5 Developer Guide 24/79

application a quorum of OCS cards and associated passphrases must be available for the

signing.

Only use your 'production' developer ID key to sign fully tested

CodeSafe images that you know to be ready for deployment.

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.6.5 Developer Guide 25/79

7.3.1.1. Generate an HSM-protected developer ID key and CSR

csadmin ids create --keyname developerid --x509cname developer.entrust.com --x509country US --x509province
Minnesota --x509locality Shakopee --x509org "CodeSafe App Development" --x509orgunit "Entrust CodeSafe"

Generate key 'testdeveloperkey' ...

Loading `TestOCS':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: empty
Card reading complete.

OK
Generate a CSR in 'testdeveloperkey.csr' ...
OK
Created CSR file 'testdeveloperkey.csr'. Please send it to Entrust Support

 This creates the CSR file in the location where the command was run.

keyname must conform with character set restrictions. For more

information, see ident in the Key properties table.

This developer ID creation was done with TestOCS, quorum of 1/1. Exact

output might vary slightly with different OCS quorums.

Send the resulting CSR to customer support to be signed by Entrust.

7.3.2. Load your certificate

When you receive your signed certificate chain back from Entrust Support, load the

developer ID certificate chain in the HSM using csadmin ids add.

You can use csadmin ids list to view the loaded certificate.

$ csadmin ids add entrust_developerid_cert_chain.pem
FEDC-BA09-8765 SUCCESS
$ csadmin ids list
FEDC-BA09-8765 SUCCESS
Certificates:
{'serialNumber': '1', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust CodeSafe,
Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'abcdef12345678900987654321fedcbaabcdef12', 'authKeyid': '0987654321fedcbaabcdef123456789009876543', 'notBefore':
'2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}
{'serialNumber': '2', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust CodeSafe,
Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'1234567890abcdeffedcba098765432112345678', 'authKeyid': 'fedcba09876543211234567890abcdeffedca098', 'notBefore':
'2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}

7.3.2.1. Generate an Application Signing Key (ASK) with generatekey

This generates a simple ECDSA NIST521P key.

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.6.5 Developer Guide 26/79

https://nshielddocs.entrust.com/security-world-docs/v13.6.5/key-mgmt/key-generation-options.html#key-properties

The following example specifies the key to be protected with an OCS.

/opt/nfast/bin/generatekey --batch --module=1 simple type=ECDSA curve=NISTP521 ident=ask plainname=ask
protect=token

7.3.2.2. Sign the CodeSafe image

This example signs a CodeSafe application called hello.cs5:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out ~/hello-
signed.cs5 ~/hello.cs5

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.6.5 Developer Guide 27/79

8. Build and sign example SEE machines on
Linux

8.1. Build module-side C examples

1. Create an empty directory to build the module side examples into, for example:

mkdir ~/buildmodule/

2. Navigate to the empty directory:

cd ~/buildmodule/

3. Build the module side examples with cmake using the following commands:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd5/cmake/codesafe-toolchain-nshield5-csee.cmake
/opt/nfast/c/csd5/examples/

cmake --build .

Successful builds create .cs5 images for each example. For example, the classic SEE Hello

example has a .cs5 image at ~/buildmodule/n5/csee/hello/module/hello.cs5.

8.2. Building Host Side C Examples

1. Create an empty directory to build the host-side clients for the SEE machines, for

example:

mkdir ~/buildhost/

2. Navigate to the directory where the host-side examples will be built:

cd ~/buildhost/

3. Build the host-side examples with cmake using the following commands:

cmake /opt/nfast/c/csd5/examples/

cmake --build .

Successful builds create executable host-side clients for each example. For example, the

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 28/79

classic SEE Hello example has an executable program at

~/buildhost/n5/csee/hello/host/hello.

8.3. Build CS5 Images for Python Examples

1. Create an empty directory to build the Python examples into, for example:

mkdir ~/build_python

2. Navigate to the empty directory:

cd ~/build_python/

3. Build the examples with cmake using the following commands:

cmake /opt/nfast/python3/csd5/examples

cmake --build .

Successful builds create .cs5 images and executable host-side clients for each example.

For example, the hello_tcp example has a .cs5 image at

~/build_python/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp.cs5 and the

executable program is located at

~/build_python/n5/netsee/helloworld_tcp/hostside/helloworld_host_tcp.py.

8.4. Sign CodeSafe Images

1. Use csadmin ids create to generate the developer ID key, if it does not already exist,

as well as the CSR file in a single step. If the key already exists, it only generates the

CSR.

csadmin ids create --keyname developerid --x509cname developer.entrust.com --x509country US --x509province
Minnesota --x509locality Shakopee --x509org "Entrust CodeSafe" --x509orgunit "Entrust CodeSafe"

Generate key 'testdeveloperkey' ...

Loading `TestOCS':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: empty
Card reading complete.

OK
Generate a CSR in 'testdeveloperkey.csr' ...
OK
Created CSR file 'testdeveloperkey.csr'. Please send it to Entrust Support

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 29/79

This creates the CSR file in the location where the command was

run. This developer ID creation was done with TestOCS, quorum of

1/1. Exact output might vary slightly with different OCS quorums.

2. Send the CSR to customer support to be signed by Entrust. You must obtain the

signed developer ID certificate in order to sign and load an application.

For more detailed information on Developer IDs and CSRs, see Sign

and deploy CodeSafe 5 SDK apps using csadmin.

3. Use nfast generatekey to generate a simple ECDSA NIST521P application signing key

(ASK). The following example specifies the key to be protected by the module.

However, end users are encouraged to protect the key with an OCS.

/opt/nfast/bin/generatekey --batch --module=1 simple type=ECDSA curve=NISTP521 ident=ask plainname=ask
protect=module

4. Sign the CodeSafe image, for example:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out
/tmp/hello-signed.cs5 ~/ca/hello.cs5

Additional examples are provided later in this chapter.

5. Use csadmin ids add to install the developer ID certificate chain from Entrust.

You can use csadmin ids list to view the loaded certificate.

$ csadmin ids add entrust_developerid_cert_chain.pem
FEDC-BA09-8765 SUCCESS
$ csadmin ids list
FEDC-BA09-8765 SUCCESS
Certificates:
{'serialNumber': '1', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'abcdef12345678900987654321fedcbaabcdef12', 'authKeyid': '0987654321fedcbaabcdef123456789009876543',
'notBefore': '2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}
{'serialNumber': '2', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'1234567890abcdeffedcba098765432112345678', 'authKeyid': 'fedcba09876543211234567890abcdeffedca098',
'notBefore': '2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}

8.5. Run NetSEE examples

NetSEE examples communicate between the client and SEE machine directly through a

TCP/IPv6 network connection to the container, unlike legacy applications, such as for Solo

XC or Solo+, which communicate through the hardserver to the nCore API.

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 30/79

8.5.1. helloworld_tcp

To execute the helloworld TCP example that opens a socket within the container and uses

the connection to transact a "helloworld" message:

1. Sign the .cs5 image using devcert and askeys:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-signed.cs5
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp.cs5

2. Load the signed .cs5 image using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-
signed.cs5

The output of csadmin load contains the UUID of the loaded

container. This UUID will be required for starting the container. The

UUID can always be retrieved from the output of csadmin list.

3. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef

csadmin list lists the UUIDs of all containers. The IPv6 address of

the started container appears in the output of the csadmin start

command. It can also be found in the output of csadmin list and

csadmin stats.

4. Run the host-side application.

The host-side application takes three positional arguments, the IPv6 address of the

container, the port number, and the message to send to the container. The port

number used by this example is 8888 by default. The message can be any string of

valid characters.

~/buildhost/n5/netsee/helloworld_tcp/hostside/helloworld_host_tcp ffff::fff:ffff:ffff:ffff%nshield0 8888
hello_module

Expected output:

nseeContainerMachineIP=ffff::fff:ffff:ffff:ffff%nshield0
nseeContainerMachinePort=8888
mesg=hello_module
Successful Connection to Socket...

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 31/79

Host>Sending TCP Message-->hello_module
Host>Hello World From HSM!

The IPv6 address is link-local and requires the zone index to be

appended (typically %nshield0).

8.5.1.1. helloworld_tcp for nShield 5c

The process is the same as the 5s example, but the host-side application command will

differ. Instead of IPv6, you can use the Connect’s IPv4 address:

The examples for the nShield 5c work similarly to the 5s module, but the IP addresses and

ports refer to the 5c Connect network. Similarly, for the TCP example, you can use the

Connect’s IPv4 address:

~/buildhost/n5/netsee/helloworld_tcp/hostside/helloworld_host_tcp 192.168.1.100 8888 hello_module

Example output:

nseeContainerMachineIP=192.168.1.100
nseeContainerMachinePort=8888
mesg=hello_module
Successful Connection to Socket...
Host>Sending TCP Message-->hello_module
Host>Hello World From HSM!

8.5.2. helloworld_udp

To execute the helloworld UDP example that opens a socket within the container and uses

the connection to transact a "helloworld" message:

1. Sign the .cs5 image using devcert and askeys:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out
~/buildmodule/n5/netsee/helloworld_udp/module/helloworld_mod_udp-signed.cs5
~/buildmodule/n5/netsee/helloworld_udp/module/helloworld_mod_udp.cs5

2. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/netsee/helloworld_udp/module/helloworld_mod_udp-
signed.cs5

Example output:

FEDC-BA09-8765: Uploading ~/buildmodule/n5/netsee/helloworld_udp/module/helloworld_mod_udp-signed.cs5

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 32/79

FEDC-BA09-8765: creating machine
FEDC-BA09-8765 SUCCESS
UUID: fedcba09-8765-4321-1234-567890abcdef

The output of csadmin load contains the UUID of the loaded

container. This UUID will be required for starting the container. The

UUID can always be retrieved from the output of csadmin list.

3. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
IP ADDRESS: ffff::fff:ffff:ffff:ffff

csadmin list will list the UUIDs of all containers. The IPv6 address

of the started container appears in the output of the csadmin start

command. It can also be found in the output of csadmin list and

csadmin stats.

4. Run the host-side application.

The host-side application takes three positional arguments, the IPv6 address of the

container, the port number, and the message to send to the container. The port

number used by this example is 8888 by default. The message can be any string of

valid characters.

~/buildhost/n5/netsee/helloworld_udp/hostside/helloworld_host_udp ffff::fff:ffff:ffff:ffff%nshield0 8888
hello_module

Example output:

nseeContainerMachineIP=ffff::fff:ffff:ffff:ffff%nshield0
nseeContainerMachinePort=8888
mesg=hello_module
Successful Connection to Socket...
Host>Sending UDP Message-->hello_module
Host>Hello World From HSM!

The IPv6 address is link-local and requires the zone index to be

appended (typically %nshield0).

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 33/79

8.5.2.1. helloworld_udp for 5c

The process is the same as the 5s example, but the host-side application command will

differ. Instead of IPv6, you can use the Connect’s IPv4 address:

The examples for the nShield 5c work similarly to the 5s module, but the IP addresses and

ports refer to the 5c Connect network.

~/buildhost/n5/netsee/helloworld_udp/hostside/helloworld_host_udp 192.168.1.100 8888 hello_module

Example output:

nseeContainerMachineIP=192.168.1.100
nseeContainerMachinePort=8888
mesg=hello_module
Successful Connection to Socket...
Host>Sending UDP Message-->hello_module
Host>Hello World From HSM!

8.6. Run NetSEE examples via SSH tunnel

NetSEE examples communicate between the client and SEE machine directly through a

TCP/IPv6 network connection to the container, unlike legacy applications, such as for Solo

XC or Solo+, which communicate through the hardserver to the nCore API.

On the nShield 5c network, the SSHD listening address may be an IPv4

address instead of IPv6. Adjustments to the steps below may be

needed to accommodate this.

8.6.1. helloworld_tcp via SSH Tunnel

To execute the helloworld TCP example via an SSH Tunnel that opens a socket within the

container and uses the connection to transact a "helloworld" message:

1. Create an SSHD key for the hello example:

mkdir ~/examplekeys/
ssh-keygen -t ecdsa -f ~/examplekeys/helloworld_tcp_ecdsa_key

2. Modify the network-conf.json of the helloworld_tcp example to support SSH

tunneling, for example:

cat ~/buildmodule/n5/netsee/helloworld_tcp/module/network-conf.json
{
 "incoming": {

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 34/79

 "tcp":
 {
 "protos": ["ipv6"],
 "ports": [8888]
 }
 },
 "outgoing" : {
 "tcp" :
 {
 "protos": ["ipv6"],
 "ports": []
 }
 },
 "ssh_tunnel" : {
 "container_port" : 8888
 }
}

When the container server app accepts a client connection on the specified incoming

port (for example 8888), it designates and responds to the client on an ephemeral port

in the range [32768-60999] as the outgoing port. This port does not have to be defined

in the network-conf.json.

3. Rebuild the .cs5 image with the updated network-conf.json so the loaded container

will allow SSH tunneling:

sudo /opt/nfast/bin/csadmin image generate --package-name "helloworld_tcp" --entry-point
/usr/bin/entrypoint --network-conf ~/buildmodule/n5/netsee/helloworld_tcp/module/network-conf.json
--packages-conf ~/buildmodule/n5/netsee/helloworld_tcp/module/extra-packages-conf.json --version-str 1.0
--rootdir ~/buildmodule/n5/netsee/helloworld_tcp/module/container/
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp.cs5

Most paths used in generating the new image are paths to the file locations on the host

that is building the image However, the --entry-point path is the absolute path to the

entrypoint file within the container and should be /usr/bin/entrypoint, not

~/buildmodule/n5/netsee/helloworld_tcp/module/container/usr/bin/entrypoint.

4. Sign the new .cs5 image using devcert and askeys:

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-signed.cs5
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp.cs5

5. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-
signed.cs5

The output of csadmin load contains the UUID of the loaded container. This UUID will

be required for starting the container and managing the SSHD keys of the container.

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 35/79

The UUID can always be retrieved from the output of csadmin list.

6. Load the public key created earlier (helloworld_tcp_ecdsa_key) to the container using

csadmin sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba09-8765-4321-1234-567890abcdef --keyfile
~/examplekeys/helloworld_tcp_ecdsa_key.pub

7. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
SSHD PORT: 6789
LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa

The output of sshd state enable contains the SSHD Port number and the listening

address of the container SSHD.

8. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef

csadmin list lists the UUIDs of all containers. The IPv6 address of the started

container appears in the output of the csadmin start command. It can also be found in

the output of csadmin list and csadmin stats.

9. Setup the SSH tunnel on the host:

Run csadmin sshd state get and collect the following information:

◦ Container tunnel address (ffff::fff:ffff:ffff:ffff)

◦ Container port (8888)

◦ SSHD port (6789)

◦ SSHD listening address (aaaa::aa:aaaa:aaaa:aaaa)

On nShield Connect the SSHD listening address may be an IPv4 or

IPv6 address

Next, choose a local IP address and port number through which to access the tunnel.

Typically localhost is chosen as the local IP address (127.0.0.1 or [::1])

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 36/79

The SSH tunnel command is formatted as follows:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_PORT:[TUNNEL_ADDRESS%lxcbr0]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr0]:8888 -f -N -p
6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshield0

When using nShield 5s the IPv6 address is link-local and requires

the zone index to be appended (typically %nshield0). If you are

working with a 5c network, replace the IPv6 address with the

appropriate nShield5c network address (IPv4 or IPv6) for your

configuration.

10. Run the host-side application.

The host-side application takes three positional arguments, the IPv6 address set up in

the forwarding step [::1], the port number, and the message to send to the container.

The port number used by this example is 8888 by default. The message can be any

string of valid characters.

~/buildhost/n5/netsee/helloworld_tcp/hostside/helloworld_host_tcp ::1 8888 hello_module

Expected Output:

nseeContainerMachineIP=::1
nseeContainerMachinePort=8888
mesg=hello_module
Successful Connection to Socket...
Host>Sending TCP Message-->hello_module
Host>Hello World From HSM!

8.7. Run CSEE examples via SSH tunnel

The Classic SEE (CSEE) examples are legacy examples modified to run with CodeSafe 5 to

demonstrate use of the compatibility layer. These examples are identical to examples

provided with previous iterations of nShield HSMs and CodeSafe. This section describes

running the CSEE examples using an SSH Tunnel

8.7.1. hello via SSH Tunnel

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 37/79

This section describes executing the legacy hello example using the compatibility layer via

an SSH Tunnel. The CSEE hello example operates functionally identically to previous hello

examples for Solo XC and Solo+.

The hello example sends a string from the host to the module. The module converts the

string to uppercase and returns the string to the host.

1. Generate an input file containing a character string to be sent to the module.

echo UPPERCASElowercase > ~/inputfile

This input file has both uppercase and lowercase characters.

2. Generate an SSHD key for the hello example:

mkdir ~/examplekeys/
ssh-keygen -t ecdsa -f ~/examplekeys/hello_ecdsa_key

3. Modify the network-conf.json of the hello example to configure SSH tunneling, for

example:

cat ~/buildmodule/n5/csee/hello/module/network-conf.json
{
 "incoming": {
 "tcp":
 {
 "protos": ["ipv6"],
 "ports": [8888]
 }
 },
 "outgoing" : {
 "tcp" :
 {
 "protos": ["ipv6"],
 "ports": []
 }
 },
 "ssh_tunnel" : {
 "container_port" : 8888
 }
}

When the container server app accepts a client connection on the

specified incoming port (for example 8888), it designates and

responds to the client on an ephemeral port in the range [32768-

60999] as the outgoing port. This port does not have to be defined

in the network-conf.json.

4. Rebuild the .cs5 image with the updated network-conf.json so the loaded container

will allow SSH tunneling:

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 38/79

sudo /opt/nfast/bin/csadmin image generate --package-name "hello" --entry-point /usr/bin/entrypoint
--network-conf ~/buildmodule/n5/csee/hello/module/network-conf.json --packages-conf
~/buildmodule/n5/csee/hello/module/extra-packages-conf.json --version-str 1.0 --rootdir
~/buildmodule/n5/csee/hello/module/container/ ~/buildmodule/n5/csee/hello/module/hello.cs5

Most paths used in generating the new image are paths to the file locations on the host

that is building the image. However, the --entry-point path is the absolute path to the

entrypoint file within the container and should be /usr/bin/entrypoint, not

~/buildmodule/n5/csee/hello/module/container/usr/bin/entrypoint.

5. Sign the .cs5 image using devcert and askeys:

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/csee/hello/module/hello-signed.cs5
~/buildmodule/n5/csee/hello/module/hello.cs5

6. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/csee/hello/module/hello-signed.cs5

Example output:

FEDC-BA09-8765: Uploading ~/buildmodule/n5/csee/hello/module/hello-signed.cs5
FEDC-BA09-8765: creating machine
FEDC-BA09-8765 SUCCESS
UUID: fedcba09-8765-4321-1234-567890abcdef

The output of csadmin load contains the UUID of the loaded container. This UUID will

be required for starting the container and managing the SSHD keys of the container.

The UUID can always be retrieved from the output of csadmin list.

7. Load the public key created earlier (hello_ecdsa_key) to the container using csadmin

sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba09-8765-4321-1234-567890abcdef --keyfile
~/examplekeys/hello_ecdsa_key.pub

8. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
SSHD PORT: 6789

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 39/79

LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa

The output of sshd state enable contains the SSHD port number and the listening

address of the container SSHD.

9. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
IP ADDRESS: ffff::fff:ffff:ffff:ffff

csadmin list lists the UUIDs of all containers. The IPv6 address of the started

container appears in the output of the csadmin start command. It can also be found in

the output of csadmin list and csadmin stats.

10. Setup the SSH tunnel on the host:

Run csadmin sshd state get and collect the following information:

◦ Container tunnel address (ffff::fff:ffff:ffff:ffff)

◦ Container port (8888)

◦ SSHD port (6789)

◦ SSHD listening address (aaaa::aa:aaaa:aaaa:aaaa)

On nShield Connect the SSHD listening address may be an IPv4 or

IPv6 address

Next, choose a local IP address and port number through which to access the tunnel.

Typically localhost is chosen as the local IP address (127.0.0.1 or [::1])

The SSH tunnel command is formatted as follows:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_PORT:[TUNNEL_ADDRESS%lxcbr0]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr0]:8888 -f -N -p
6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshield0

 When using nShield 5s the IPv6 address is link-local and requires

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 40/79

the zone index to be appended (typically %nshield0).

11. Run the host-side application.

The host-side application takes one required positional argument, and three required

optional arguments. The required optional arguments are the IPv6 address set up in the

forwarding step [::1] (--ipv6), the UUID of the container (--uuid), and the file path to

the signed container image (--cs5). The required positional argument is the input file

containing a string to convert to uppercase on the module.

~/buildhost/n5/csee/hello/hostside/hello --uuid fedcba09-8765-4321-1234-567890abcdef --ipv6 ::1 --cs5
~/buildmodule/n5/csee/hello/module/hello-signed.cs5 ~/inputfile

Example output:

Worldid: 0x1234abcd
UPPERCASELOWERCASE

The module has received the input string UPPERCASElowercase and has converted and

returned it as a fully uppercase string UPPERCASELOWERCASE.

8.7.2. tickets via SSH tunnel

This section describes executing the legacy tickets example using the compatibility layer

via an SSH Tunnel. The CSEE tickets example operates functionally identically to previous

tickets examples for Solo XC, Solo+. The tickets example serves to demonstrate

cryptographic functionality by encrypting and having the module decrypt a user-provided

string.

1. Generate a simple RSA key to encrypt with:

sudo /opt/nfast/bin/generatekey --module=1 simple type=RSA pubexp=3 ident=encryptionkeytickets
plainname=encryptionkeytickets protect=module nvram=no size=2048

2. Generate an SSHD key for the tickets example:

mkdir ~/examplekeys/
ssh-keygen -t ecdsa -f ~/examplekeys/tickets_ecdsa_key

3. Modify the network-conf.json of the tickets example to configure SSH tunneling, for

example:

cat ~/buildmodule/n5/csee/tickets/module/network-conf.json

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 41/79

{
 "incoming": {
 "tcp":
 {
 "protos": ["ipv6"],
 "ports": [8888]
 }
 },
 "outgoing" : {
 "tcp" :
 {
 "protos": ["ipv6"],
 "ports": []
 }
 },
 "ssh_tunnel" : {
 "container_port" : 8888
 }
}

When the container server app accepts a client connection on the

specified incoming port (for example 8888), it designates and

responds to the client on an ephemeral port in the range [32768-

60999] as the outgoing port. This port does not have to be defined

in the network-conf.json.

4. Rebuild the .cs5 image with the updated network-conf.json:

sudo /opt/nfast/bin/csadmin image generate --package-name "tickets" --entry-point /usr/bin/entrypoint
--network-conf ~/buildmodule/n5/csee/tickets/module/network-conf.json --packages-conf
~/buildmodule/n5/csee/tickets/module/extra-packages-conf.json --version-str 1.0 --rootdir
~/buildmodule/n5/csee/tickets/module/container/ ~/buildmodule/n5/csee/tickets/module/seetickets.cs5

Most paths used in generating the new image are paths to the file locations on the host

that is building the image. However, the --entry-point path is the absolute path to the

entrypoint file within the container and should be /usr/bin/entrypoint, not

~/buildmodule/n5/csee/tickets/module/container/usr/bin/entrypoint.

5. Sign the .cs5 image using devcert and askeys:

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5
~/buildmodule/n5/csee/tickets/module/seetickets.cs5

6. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5

Example output:

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 42/79

FEDC-BA09-8765: Uploading ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5
FEDC-BA09-8765: creating machine
FEDC-BA09-8765 SUCCESS
UUID: fedcba09-8765-4321-1234-567890abcdef

The output of csadmin load contains the UUID of the loaded container. This UUID will

be required for starting the container and managing the SSHD keys of the container.

The UUID can also be retrieved from the output of csadmin list.

7. Load the public key created earlier (tickets_ecdsa_key) to the container using csadmin

sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba09-8765-4321-1234-567890abcdef --keyfile
~/examplekeys/tickets_ecdsa_key.pub

8. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
SSHD PORT: 6789
LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa

The output of sshd state enable contains the SSHD Port number and the listening

address of the container sshd.

9. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
IP ADDRESS: ffff::fff:ffff:ffff:ffff

The IPv6 address of the started container appears in the output of

the csadmin start command. It can also be found in the output of

csadmin list and csadmin stats.

10. Setup the SSH tunnel on the host:

Run csadmin sshd state get and collect the following information:

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 43/79

◦ Container tunnel address (ffff::fff:ffff:ffff:ffff)

◦ Container port (8888)

◦ SSHD port (6789)

◦ SSHD listening address (aaaa::aa:aaaa:aaaa:aaaa)

On nShield Connect the SSHD listening address may be an IPv4 or

IPv6 address

Next, choose a local IP address and port number through which to access the tunnel.

Typically localhost is chosen as the local IP address (127.0.0.1 or [::1])

The SSH tunnel command is formatted as follows:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_PORT:[TUNNEL_ADDRESS%lxcbr0]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr0]:8888 -f -N -p
6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshield0

When using nShield 5s the IPv6 address is link-local and requires

the zone index to be appended (typically %nshield0).

11. Run the host-side application.

The host-side application takes three required optional arguments. The required

optional arguments are the IPv6 address set up in the forwarding above [::1] (--ipv6),

the UUID of the container (--uuid), and the file path of the signed .cs5 image (--cs5).

The host-side also accepts the encryption key created earlier as an optional argument (

--key).

~/buildhost/n5/csee/tickets/hostside/hosttickets --uuid fedcba09-8765-4321-1234-567890abcdef --ipv6 ::1
--cs5 ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5 --key simple,encryptionkeytickets

12. When prompted, enter a string to encrypt (for example, testencryption) and press

Return:

Enter string to be encrypted (256 characters maximum): testencryption

The host encrypts the message then the module decrypts it and returns it in plain text

format.

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 44/79

Example output:

HostSide> Loading security world key (simple,encryptionkeytickets)
HostSide> Creating World: init status was 0 (OK)
HostSide> Sending ticket for private RSA key to module
HostSide> Generating AES session key and creating blob under public RSA key
HostSide> Sending key blob to module
HostSide> Sending cipher-text to module
HostSide> decrypted cipher text received from SEE machine:
"testencryption"
HostSide> Thank you for watching. The end.

8.7.3. benchmark via SSH tunnel

This section describes executing the legacy benchmark example using the compatibility

layer via an SSH tunnel. The CSEE benchmark example operates functionally identically to

previous benchmark examples for Solo XC and Solo+. The benchmark example will transact

asynchronously with the module running multiple threads processing transactions. The

benchmark example will output transactions/second data every second.

1. Generate a simple key for signing a ticket in the bm-machine on the module:

sudo /opt/nfast/bin/generatekey --module=1 simple type=RSA pubexp=3 ident=signingkeybenchmark
plainname=signingkeybenchmark protect=module nvram=no size=2048

2. Generate an SSHD key for the benchmark example:

mkdir ~/examplekeys/
ssh-keygen -t ecdsa -f ~/examplekeys/benchmark_ecdsa_key

3. Modify the network-conf.json of the benchmark example to configure SSH tunneling,

for example:

cat ~/buildmodule/n5/csee/benchmark/module/network-conf.json
{
 "incoming": {
 "tcp":
 {
 "protos": ["ipv6"],
 "ports": [8888]
 }
 },
 "outgoing" : {
 "tcp" :
 {
 "protos": ["ipv6"],
 "ports": []
 }
 },
 "ssh_tunnel" : {
 "container_port" : 8888
 }

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 45/79

}

When the container server app accepts a client connection on the

specified incoming port (8888), it designates and responds to the

client on an ephemeral port in the range [32768-60999] as the

outgoing port. This port does not have to be defined in the

network-conf.json.

4. Rebuild the .cs5 image with the updated network-conf.json:

sudo /opt/nfast/bin/csadmin image generate --package-name "bm-machine" --entry-point /usr/bin/entrypoint
--network-conf ~/buildmodule/n5/csee/benchmark/module/network-conf.json --packages-conf
~/buildmodule/n5/csee/benchmark/module/extra-packages-conf.json --version-str 1.0 --rootdir
~/buildmodule/n5/csee/benchmark/module/container/ ~/buildmodule/n5/csee/benchmark/module/bm-machine.cs5

Most paths used in generating the new image are paths to the file locations on the host

that is building the image. However, the --entry-point path is the absolute path to the

entrypoint file within the container and should be /usr/bin/entrypoint, not

~/buildmodule/n5/csee/benchmark/module/container/usr/bin/entrypoint.

5. Sign the .cs5 image using devcert and askeys:

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5
~/buildmodule/n5/csee/benchmark/module/bm-machine.cs5

6. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5

Example output:

FEDC-BA09-8765: Uploading ~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5
FEDC-BA09-8765: creating machine
FEDC-BA09-8765 SUCCESS
UUID: fedcba09-8765-4321-1234-567890abcdef

The output of csadmin load contains the UUID of the loaded container. This UUID will

be required for starting the container and managing the SSHD keys of the container.

The UUID can always be retrieved from the output of csadmin list.

7. Load the public key created earlier (benchmark_ecdsa_key) to the container using

csadmin sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba09-8765-4321-1234-567890abcdef --keyfile

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 46/79

~/examplekeys/benchmark_ecdsa_key.pub

8. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
SSHD PORT: 6789
LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa

The output of sshd state enable contains the SSHD port number

and the listening address of the container SSHD.

9. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
IP ADDRESS: ffff::fff:ffff:ffff:ffff

The IPv6 address of the started container appears in the output of the csadmin start

command. It can also be found in the output of csadmin list and csadmin stats.

10. Setup the SSH tunnel on the host:

Run csadmin sshd state get and collect the following information:

◦ Container tunnel address (ffff::fff:ffff:ffff:ffff)

◦ Container port (8888)

◦ SSHD port (6789)

◦ SSHD listening address (aaaa::aa:aaaa:aaaa:aaaa)

On nShield Connect the SSHD listening address may be an IPv4 or

IPv6 address

Next, choose a local IP address and port number through which to access the tunnel.

Typically localhost is chosen as the local IP address (127.0.0.1 or [::1])

The SSH tunnel command is formatted as follows:

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 47/79

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_PORT:[TUNNEL_ADDRESS%lxcbr0]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr0]:8888 -f -N -p
6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshield0

When using nShield 5s the IPv6 address is link-local and requires

the zone index to be appended (typically %nshield0).

11. Run the host-side application.

The host-side application takes three required optional arguments and two positional

arguments. The required optional arguments are the IPv6 address set up in the

forwarding above [::1] (--ipv6), the UUID of the container (--uuid), and the path to

the signed .cs5 image (--cs5). The required positional arguments are the simple

signing key created earlier.

~/buildhost/n5/csee/benchmark/hostside/bm-test --uuid fedcba09-8765-4321-1234-567890abcdef --ipv6 ::1 --cs5
~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5 simple signingkeybenchmark

Example output:

Worldid: 0x1234abcd
1 759 759.00
2 1522 761.00
3 2361 787.00
4 3324 831.00
5 4238 847.60
6 5124 854.00
7 5948 849.71
8 6723 840.38
9 7579 842.11
10 8408 840.80

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.6.5 Developer Guide 48/79

9. Build and sign example SEE machines on
Windows

9.1. Prerequisites

• Visual Studio 2022 buildtools

• CMAKE version 3.9 or newer

• Ninja build system latest version

• Visual Studio 2022 workload-vctools

9.2. Building Windows CodeSafe C, CSEE, and NETSEE
examples

1. Start the Developer Command Prompt for VS 2022 as Administrator from the Start

menu.

2. Navigate to the following directory:

cd "c:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\Common7\Tools"

3. Install the MSVC C and C++ compiler cl.exe.

4. Execute VsDevCmd.bat:

VsDevCmd.bat

5. Run cl:

cl

6. Because the default is 32bit mode, the version displayed will show x86. Change to

64bit cl Compiler:

cd "c:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Auxiliary\Build"

7. Execute vcvars64.bat:

vcvars64.bat

Chapter 9. Build and sign example SEE machines on Windows

CodeSafe 5 v13.6.5 Developer Guide 49/79

8. Run cl and verify that the x64 version is displayed:

cl

you can build the following examples in the same VS2022 Command window:

9.2.1. Host-side examples

c:\>mkdir examples\host

c:\>cd c:\examples\host\

c:\examples\host>cmake -G Ninja -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=cl "c:\Program
Files\nCipher\nfast\c\csd5\examples"

c:\examples\host>ninja

9.2.2. Module-side examples

c:\>mkdir examples\module

c:\>cd c:\examples\module\

c:\examples\module>cmake -G "Ninja" -DCMAKE_TOOLCHAIN_FILE="c:\Program Files\nCipher\nfast\c\csd5\cmake\codesafe-
toolchain-nshield5-csee.cmake" "c:\Program Files\nCipher\nfast\c\csd5\examples"

c:\examples\module>ninja

9.3. CS5 images for Python examples

Build the following images in the VS2022 Command window configured in Building

Windows CodeSafe C, CSEE, and NETSEE examples. You do not need to build host-side

and module-side Python examples separately. They are both built into

examples\python\n5\netsee\<example>\.

c:\>mkdir examples\python

c:\>cd c:\examples\python\

c:\examples\python>cmake -G "Ninja" "c:\Program Files\nCipher\nfast\python3\csd5\examples"

c:\examples\python>ninja

For example:

c:\examples\python\n5\netsee\tickets>dir
Volume in drive C is OS

Chapter 9. Build and sign example SEE machines on Windows

CodeSafe 5 v13.6.5 Developer Guide 50/79

Volume Serial Number is 582A-CFB6 Directory of c:\examples\python\n5\netsee\tickets 03/21/2023 12:32 PM <DIR>
.
03/21/2023 12:32 PM <DIR> ..
03/21/2023 12:32 PM <DIR> hostside
03/21/2023 12:32 PM <DIR> module
 0 File(s) 0 bytes
 4 Dir(s) 906,165,829,632 bytes free

9.4. Sign CodeSafe images

Signing CodeSafe Images requires a Security World and Operator Card

Set (OCS).

1. Insert the OCS card.

2. Create a certificate signing request (CSR) that should be sent to Entrust to be signed:

c:\ca_ids\>csadmin ids create --keyname testdeveloperkey --x509cname developer.entrust.com --x509country US
--x509province FL --x509locality Shakopee --x509org Entrust --x509orgunit "Entrust CodeSafe"
Generate key 'testdeveloperkey' ...

Loading `TestOCS':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: empty
Card reading complete.

OK
Generate a CSR in 'testdeveloperkey.csr' ...
OK
Created CSR file 'testdeveloperkey.csr'. Please send it to Entrust Support

The developer ID creation in this example was done with TestOCS,

quorum of 1/1. Exact output may vary slightly with different OCS

quorums.

3. Send the resulting CSR to customer support to be signed by Entrust. You must obtain

the signed developer ID certificate in order to sign and load an application.

For more detailed information on Developer IDs and CSRs, see Sign and deploy

CodeSafe 5 SDK apps using csadmin.

4. Create the ASK on the HSM (the name of the key in this example is test-ask). The

following example specifies the key to be protected by the module. However, end

users are encouraged to protect the key with an OCS:

c:\ca_ids>C:\Progra~1\nCipher\nfast\bin\generatekey.exe --module=1 simple type=ECDSA curve=NISTP521
ident=test-ask plainname=test-ask
protect: Protected by? (token, module) [token] > module
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate

Chapter 9. Build and sign example SEE machines on Windows

CodeSafe 5 v13.6.5 Developer Guide 51/79

 application Application simple
 protect Protected by module
 verify Verify security of key yes
 type Key type ECDSA
 ident Key identifier test-ask
 plainname Key name test-ask
 nvram Blob in NVRAM (needs ACS) no
 curve Elliptic curve NISTP521
Key successfully generated.
Path to key: C:\ProgramData\nCipher\Key Management Data\local\key_simple_test-ask

5. Confirm that the keys were created in the previous step:

c:\ca_ids>nfkminfo -k
Key list - 2 keys
 AppName simple Ident test-ask
 AppName simple Ident testdeveloperkey

6. Sign the netsee\tickets example. You need the signed cert.pem from customer

support for this step and the OCS card must be inserted for signing.

c:\examples\module\n5\netsee\tickets_netsee\module>csadmin image sign --askeyname test-ask --devkeyname
testdeveloperkey --devcert c:\ca_ids\testdeveloperid_cert.pem --out seetickets_netsee-signed-with-hsm.cs5
seetickets_netsee.cs5
INFO: Reading CS5 file contents...
INFO: Getting key handle from HSM...

INFO: Signing the Application Signing Key...
INFO: hashing contents using 'SHA512Hash'
INFO: Obtaining public key data from HSM...
INFO: Storing public key data on CS5 file...
INFO: Getting key handle from HSM...
INFO: Requesting signature from HSM...
INFO: Saving CS5 file to disk...
INFO: file 'seetickets_netsee.cs5' was signed successfully!

Directory of c:\examples\module\n5\netsee\tickets_netsee\module

02/16/2023 03:53 PM 27,167,860 seetickets_netsee-signed-with-hsm.cs5
 1 File(s) 27,167,860 bytes
 0 Dir(s) 775,613,321,216 bytes free

7. Install the developer ID certificate chain from Entrust using csadmin ids add:

csadmin ids add entrust_developerid_cert_chain.pem
FEDC-BA09-8765 SUCCESS

csadmin ids list
FEDC-BA09-8765 SUCCESS
Certificates:
{'serialNumber': '1', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'abcdef12345678900987654321fedcbaabcdef12', 'authKeyid': '0987654321fedcbaabcdef123456789009876543',
'notBefore': '2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}
{'serialNumber': '2', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'1234567890abcdeffedcba098765432112345678', 'authKeyid': 'fedcba09876543211234567890abcdeffedca098',
'notBefore': '2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}

Chapter 9. Build and sign example SEE machines on Windows

CodeSafe 5 v13.6.5 Developer Guide 52/79

8. Execute netsee\tickets:

c:\examples\module\n5\netsee\tickets_netsee\module>csadmin load seetickets_netsee-signed-with-hsm.cs5
FEDC-BA09-8765: Uploading seetickets_netsee-signed-with-hsm.cs5
FEDC-BA09-8765: creating machine
FEDC-BA09-8765 SUCCESS
UUID: fedcba09-8765-4321-1234-567890abcdef

c:\examples\module\n5\netsee\tickets_netsee\module>cd c:\examples\host\n5\netsee\tickets_netsee\hostside

c:\examples\host\n5\netsee\tickets_netsee\hostside>nopclearfail -aO
Module 1, command ClearUnitEx: OK

c:\examples\host\n5\netsee\tickets_netsee\hostside>csadmin start -u fedcba09-8765-4321-1234-567890abcdef
FEDC-BA09-8765 SUCCESS
IP ADDRESS: ffff::fff:ffff:ffff:ffff

c:\examples\host\n5\netsee\tickets_netsee\hostside>csadmin list
FEDC-BA09-8765
UUID State Name IP Address
--
fedcba09-8765-4321-1234-567890abcdef RUNNING seetickets_netsee ffff::fff:ffff:ffff:ffff

c:\examples\host\n5\netsee\tickets_netsee\hostside>hosttickets_netsee.exe -p 8888 -U fedcba09-8765-4321-
1234-567890abcdef -i ffff::fff:ffff:ffff:ffff%10 -c
c:\examples\module\n5\netsee\tickets_netsee\module\seetickets_netsee-signed-with-hsm.cs5
WSAStartup() Success.
HostSide>Enter string to be encrypted (8 characters maximum): hello
HostSide>Reading Identities from container
HostSide>Generating RSA keypair
HostSide>Creating World: init status was 0 (OK)
HostSide>Sending ticket for private RSA key to module
HostSide>Sending key blob to module
HostSide>Sending cipher-text to module
HostSide>decrypted cipher text received from SEE machine:
"hello"
HostSide>Thank you for watching. The end.

Chapter 9. Build and sign example SEE machines on Windows

CodeSafe 5 v13.6.5 Developer Guide 53/79

10. Debug CodeSafe 5 SEE machines
csadmin exposes several commands you can use to manage SEE application logging.

The following SEE logging-related commands are supported by the csadmin utility.

10.1. config log set enabled

The config log set enabled command should be issued before the start command. It

uses the following format:

/opt/nfast/bin/csadmin config set log enabled -u <SEE-machine-UUID> --esn <host-ESN>

• <SEE-machine-UUID> is the UUID of the SEE machine created by the load command.

• <host-ESN> is the ESN of the HSM hosting the SEE Machine.

For example:

/opt/nfast/bin/csadmin config set log enabled -u fedcba09-8765-4321-1234-567890abcdef --esn FEDC-BA09-8765

When successful, the command returns with no error.

10.2. config log set disabled

The config log set disabled command should be issued while the SEE machine is not

running. It uses the following format:

/opt/nfast/bin/csadmin config set log disabled -u <SEE-machine-UUID> --esn <host-ESN>

• <SEE-machine-UUID> is the UUID of the SEE machine created by the load command.

• <host-ESN> is the ESN of the HSM hosting the SEE Machine.

For example:

/opt/nfast/bin/csadmin config set log disabled -u fedcba09-8765-4321-1234-567890abcdef --esn FEDC-BA09-8765

When successful, the command returns with no error.

10.3. log get

Chapter 10. Debug CodeSafe 5 SEE machines

CodeSafe 5 v13.6.5 Developer Guide 54/79

The get command returns the current SEE log contents, if any. It uses the following format:

/opt/nfast/bin/csadmin log get -u <SEE-machine-UUID>

<SEE-machine-UUID> is the UUID of the SEE machine created by the load command.

For example:

/opt/nfast/bin/csadmin log get -u fedcba09-8765-4321-1234-567890abcdef
FEDC-BA09-8765 SUCCESS
Success: Started ipcdaemon

10.4. log clear

The clear command deletes the current SEE log file if present. It uses the following format:

/opt/nfast/bin/csadmin log clear -u <SEE-machine-UUID>

<SEE-machine-UUID> is the UUID of the SEE machine created by the load command.

For example:

/opt/nfast/bin/csadmin log clear -u fedcba09-8765-4321-1234-567890abcdef
FEDC-BA09-8765 SUCCESS
log: log cleared

Chapter 10. Debug CodeSafe 5 SEE machines

CodeSafe 5 v13.6.5 Developer Guide 55/79

11. Uninstall the CodeSafe 5 SDK

Do not uninstall Security World or CodeSafe 5 software unless you are

certain it is no longer required or you are going to upgrade it.

If you are using CodeSafe 5 with an nShield 5s HSM, you must back up

its sshadmin keys by running hsmadmin keys backup before you uninstall

Security World or CodeSafe 5.

The uninstaller only removes files that were created during the installation. To remove key

data or Security World data, navigate to the installation directory and delete the files in the

%NFAST_KMDATA% folder.

If you intend to remove your Security World before uninstalling the Security World

Software, Entrust recommends that you erase the OCS before you erase the Security

World or uninstall the Security World Software. Except where Remote Administration cards

are used, after you have erased a Security World, you can no longer erase any cards that

belonged to it.

1. Log in to the host computer as Administrator or as a user with local administrator

rights.

2. Run the following command to erase the OCS:

createocs -m# -s0 --erase

Where # is the module number.

3. Uninstall the Security World and CodeSafe software:

◦ Linux:

Run the following command:

/opt/nfast/sbin/install -u

◦ Windows:

1. Navigate to the Windows Control Panel, and select Programs and Features.

2. Select the Security World Software entry, then select Uninstall to remove the

software.

If required, you can safely remove the nShield module after shutting down all connected

hardware.

Chapter 11. Uninstall the CodeSafe 5 SDK

CodeSafe 5 v13.6.5 Developer Guide 56/79

12. Port existing CodeSafe application to
CodeSafe 5
Follow the steps in this chapter if you need to port an existing legacy SEE machine to run

on CodeSafe 5.

The porting of legacy CodeSafe application examples in this chapter assumes the

perspective of a CodeSafe application developer. CodeSafe users wanting to port legacy

third party CodeSafe applications to nShield 5 might need to have the third party issuer of

said legacy CodeSafe applications port the applications and sign the ported applications.

CodeSafe users porting third party applications should ensure that the third party

CodeSafe developer is a trusted party, and should verify that the ported CodeSafe image

has a genuine certificate issued by the trusted developer. After a third party CodeSafe

application is ported and signed, the application user can skip to the "Load the signed

container" step in the following examples and continue the procedures from there.

Full examples of legacy SEE machines that have been ported with use of the compatibility

layer can be found in Build and sign example SEE machines on Linux. These Classic SEE

"CSEE" examples are legacy examples that have been modified to run with CodeSafe 5

specifically to demonstrate use of the compatibility layer. In all other ways, these examples

are identical to examples provided with previous iterations of nShield HSMs and CodeSafe.

It is assumed that an ASK and developer ID key have already been

generated, and that required certificates have already been obtained

from Entrust and installed into the target HSM.

12.1. The compatibility layer

Legacy CodeSafe transacted data between host application and module SEE machines

using SEEJobs. SEEJobs were sent from the host-side application to the nCore API which

then passed the jobs on to the SEE machine, and vice versa. CodeSafe 5 removes the need

to communicate with SEE machines via the nCore API using SEEJobs.

Instead, CodeSafe 5 allows a network connection to be established directly between a

host-side application and an SEE machine. As such, support for transacting SEEJobs, and all

related methods has been removed from CodeSafe 5.

The compatibility layer provides support for SEEJobs. All methods that dealt with

transacting exist in the compatibility layer, but instead of passing SEEJobs to the nCore API

and having the nCore API forward them, the Compatibility layer creates a network

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.6.5 Developer Guide 57/79

connection between the SEE machine and host application.

The methods function similarly, but the mechanism for data transaction has been updated.

The compatibility layer is split into two parts: the module-side compatibility layer, and the

host-side compatibility layer. Both parts work together to provide support for legacy SEE

machines.

The module-side SEE machine and corresponding host-side application

must both be ported successfully for them to function on CodeSafe 5.

It is not sufficient to port one side but not the other.

12.1.1. Module-side compatibility layer

The module-side compatibility layer provides the methods necessary to connect the SEE

machine to the host-side application via network connection.

The module-side compatibility layer comprises the liblegacy_compatibility.a library. Its

install location is:

• Linux: /opt/nfast/c/csd5/lib-ppc64-linux-musl/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\lib-ppc64-linux-musl\

12.1.2. Host-side compatibility layer

The host-side compatibility layer provides the methods necessary to connect the host-side

application to the SEE machine via network connection.

The host-side compatibility layer comprises the following files:

• legacy-csee-host-side-compatibility.h

• legacy-csee-host-side-compatibility.c

Their install location is:

• Linux: /opt/nfast/c/csd5/examples/csee/utils/hostside/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\examples\csee\utils\hostside\

12.2. Required module-side changes for porting

To port a legacy SEE machine to CodeSafe 5, only a single line change is required in code.

Initialize the compatibility layer by calling SEElib_Legacy_Support_Init() after

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.6.5 Developer Guide 58/79

SEElib_Init() is called but before any legacy methods such as SEElib_AwaitJob() are

called. This waits for a compatible host-side application to connect before proceeding.

An example SEE machine main() properly initializing the compatibility layer:

int main(void) {

 /* initialize the SEE environment */
 SEElib_init();

 /* initialize legacy SEE support */
 SEElib_Legacy_Support_Init("8888");

 /* The compatibility layer is initialized
 carry on with SEE machine operation */
 Perform_SEE_Machine_Tasks();
 return 0;
}

By default, all provided example SEE machines communicate through

port 8888. You can use any port when initializing the compatibility layer,

however you must ensure that the host-side application compatibility

layer is passed and attempts to connect to the same port number as the

one initialized on the module-side.

After the compatibility layer has been initialized, all SEEJob-related methods, such as

SEElib_ReturnJob() or SEElib_AwaitJob(), will work. No further changes in code are

required for legacy SEE machines to run using CodeSafe 5.

A full list of methods the compatibility layer provides support for can be

found in the "SEE Machine Module Side Compatibility Layer" section of

SEE API documentation.

12.3. Required host-side changes for porting

Porting host-side applications to CodeSafe 5 requires changes to some method calls, in

addition to the initialization.

12.3.1. Initialization

Initialize the host-side compatibility layer using the following command:

netsee_initialize_legacy_seejob_support(const char * cseeContainerMachineIPv6, const char *
cseeContainerMachinePort)`

It takes two arguments:

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.6.5 Developer Guide 59/79

• The SEE machine container IP, which can be found using csadmin list

• The SEE machine port number

The port number must match the port number passed on to the module-side compatibility

layer when the module-side compatibility layer is initialized.

The container IP must be passed to the host-side application. You can pass it in as a

command line argument, as in the classic SEE examples described in Build and sign example

SEE machines on Linux, however the exact implementation is the decision of the porting

developer.

12.3.2. Replacing SEEJob-related method calls

Unlike the module-side compatibility layer, which allows all SEEJob-related method calls to

be called without changes, porting the host-side requires certain method calls to be

updated.

This is because the compatibility layer’s replacement methods need to replace the role of

the nCore API and send SEEJobs to and from the SEE machine’s module-side compatibility

layer.

The methods specific to the nCore API that host-side applications previously used to

transact SEEJobs still exist to communicate with the nCore API, but no longer support

SEEJobs.

Only nCore API calls for SEEJobs need to be updated. Other unrelated

calls to the nCore API do not need to be modified.

Host-side compatibility calls no longer require the NFastApp_Connection and

NFast_Call_Context arguments to be passed in, as demonstrated in the following examples.

For more detailed descriptions of these methods, see the "Compatibility layer API Host-

side" section of SEE API documentation.

12.3.2.1. NFastApp_Submit()

Replace SEEJob calls to NFastApp_Submit() with calls to netsee_submit_legacy_seejob().

For example:

NFastApp_Submit(nc, NULL, &cmd, &reply, &tctx);

Becomes:

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.6.5 Developer Guide 60/79

netsee_submit_legacy_seejob(&cmd, &reply, &tctx);

12.3.2.2. NFastApp_Wait()

Replace SEEJob calls to NFastApp_Wait() with calls to netsee_wait_legacy_seejob().

For example:

NFastApp_Wait(conn, NULL, &replyp, &tctxp);

Becomes:

netsee_wait_legacy_seejob(&replyp, &tctxp);

12.3.2.3. NFastApp_Transact()

Replace SEEJob calls to NFastApp_Transact() with calls to

netsee_transact_legacy_seejob().

For example:

NFastApp_Transact(conn, NULL, &cmd, &reply, &tctx);

Becomes:

netsee_transact_legacy_seejob(&cmd, &reply, &tctx);

12.3.2.4. simple_transact()

Replace SEEJob calls to simple_transact() with calls to

netsee_simple_transact_legacy_seejob().

For example:

simple_transact(conn, NULL, &cmd, &reply, 1);

Becomes:

netsee_simple_transact_legacy_seejob(&cmd, &reply, 1);

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.6.5 Developer Guide 61/79

12.4. Rebuilding and Recompiling

After the host-side application and module-side SEE machine compatibility layers have

been properly initialized, and all host-side SEEJob method replacements have been made in

the code, both the host-side application and the module-side SEE machine should be

rebuilt with their respective compatibility layers properly linked and included.

The provided Classic SEE examples are practical examples of how the compatibility layer

should be implemented, and how the compatibility layer libraries and files should be linked

the build chain creating the SEE machine.

12.4.1. Rebuilding host-side

Include legacy-csee-host-side-compatibility.h in host-side application scripts that are

being ported. Recompile host-side applications so that legacy-csee-host-side-

compatibility.c is included in the source.

12.4.2. Rebuilding Module Side

Link the compatibility layer library liblegacy_compatibility.a to the module-side SEE

machine after the changes to the SEE machine source code have been made to initialize

the compatibility layer.

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.6.5 Developer Guide 62/79

13. Supporting legacy CodeSafe Direct
CodeSafe Direct is no longer available in CodeSafe 5. The following sections describe the

usage of legacy CodeSafe Direct and how similar functionality is accomplished via

CodeSafe 5.

13.1. Legacy CodeSafe Direct

Originally, the application would connect to the HSM through the Security World

hardserver. With legacy CodeSafe Direct, the nShield Connect could be configured to

receive direct socket connections to the SEE machine via see-sock-serv, removing the

need for a client machine. You could do this by specifying postload_prog and

postload_args in the load_seemachine section of the nShield Connect hardserver

configuration file, located in NFAST_KMDATA/hsm-<ESN>, where <ESN> is the Electronic Serial

Number of the HSM.

13.2. CodeSafe 5

The CodeSafe 5 modern architectural approach provides a container which has an IPC

daemon (UNIX domain socket) that is used to send and receive nCore API commands and

replies. The communication between the host application and CodeSafe 5 container is

provided by a secure SSH daemon making use of port forwarding.

The Cmd_SEEJob nCore API command is no longer supported by the nCoreAPI service.

Instead, the command is now requested directly from the client application on the host to

the SEE machine using a direct TCP connection. A support library is needed to support this

new connection, and this is part of the compatibility layer.

Containers listening on a specific port via the secure channel is a 'CodeSafe Direct'

replacement.

There are cli commands using the 'csadmin' utility that can establish the secure SSHD port

forwarding on the host client machine. The cs5-port-monitor will validate and then forward

the ports specified in network-conf.json. See Build and sign example SEE machines on

Linux for examples of using an SSH tunnel to communicate between the client and SEE

machine directly through a TCP/IPv6 network connection to the container. Containers can

be configured to listen to ports using the network-conf.json file.

Chapter 13. Supporting legacy CodeSafe Direct

CodeSafe 5 v13.6.5 Developer Guide 63/79

14. SEE API documentation
SEElib is an API that enables an SEE machine to execute nCore API commands. Historically,

the SEElib also provided the functionality which connected SEE machines to their host-

side applications via the nCore API. In CodeSafe 5, SEElib still provides the methods

necessary to execute nCore API commands, but communication between the SEE machine

and the host-side application is expected to be done using TCP/IPv6 network connections

which are managed directly by the SEE machine. To allow for a more seamless integration

of legacy SEE machines, which previously transacted with their host-side application via

the nCore API, a compatibility layer has been created to automatically manage these legacy

transactions.

The SEElib API is provided as a library seelib.a that can be found in the

rootfs after install. Its install location is /opt/nfast/c/csd5/lib-ppc64-

linux-musl/seelib.a on Linux.

14.1. Why CodeSafe 5 needs a compatibility layer

The compatibility layer allows pre-existing CodeSafe users to port legacy SEE machines

that were developed for nShield XC or Solo+ HSMs to the CodeSafe 5 environment.

CodeSafe 5 has a Launcher service for managing the SEE container, instead of using nCore

API commands. All requests related to container (SEE machine) management, for example

to load a new SEE machine onto the HSM or to start, stop, or destroy a SEE machine, are

made directly to the new Launcher service.

Legacy SEElib applications previously allocated memory by the Cmd_CreateSEEWorld nCore

API command. In CodeSafe 5, launcher receive, launcher create, and launcher start

requests are made to the Launcher service in combination with a new

Cmd_CreateSeeConnection command to the nCore API service to get a SEE machine running

and able to communicate with the nCore API service.

For CodeSafe 5 applications, the nCore API service does not support the Cmd_SEEJob nCore

API command. Instead, the command is requested directly from the client application on

the host to the SEE machine using a direct TCP/IPv6 network connection. The compatibility

layer provides support for this new connection method.

CodeSafe 5 does not use the concept of UserData. A developer can include any files, using

any directory structure, in the container image that is installed in the HSM.

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 64/79

14.2. SEElib functions

14.2.1. SEElib_init

extern void SEElib_init(void);

This function initializes the SEElib library.

 This function does not return on error.

14.2.2. SEElib_ReadUserData

extern int SEElib_ReadUserData (M_Word offset, unsigned char *buf, M_Word len);

This function reads selected bytes from the UserData block, starting at offset bytes in and

continuing for len bytes. It returns an M_Status value.

UserData in CodeSafe 5 is a file located inside the container (/etc/codesafe.userdata) and

must be added when the image is constructed.

14.2.3. SEElib_ReleaseUserData

extern void SEElib_ReleaseUserData(void);

In CodeSafe 5 this function does not do anything. It is only present to satisfy the linker.

14.2.4. SEElib_InitComplete

extern void SEElib_InitComplete(M_Word status);

In CodeSafe 5 this function does not do anything. It is only present to satisfy the linker.

14.2.5. SEElib_StartTransactListener

extern void SEElib_StartTransactListener(void);

This function starts the thread that listens for SEElib_Transact calls and dispatches them.

This function must be called before any use is made of SEElib_Transact.

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 65/79

14.2.6. SEElib_Transact

extern int SEElib_Transact(struct M_Command *cmd, struct M_Reply *buf);

This function marshals a command, submits it, waits for the response, and unmarshals it

into a reply structure.

14.2.7. SEElib_MarshalSendCommand

extern int SEElib_MarshalSendCommand(M_Command *cmd);

This function marshals a command and places it on the input queue for processing by the

nShield core.

The command takes a reference to an M_Command structure, as described in the nCore

CodeSafe API Documentation.

The SEE machine can submit any of the nCore API commands listed in the Basic

commands and Key-Management commands sections of the nCore CodeSafe API

Documentation except:

• RetryFailedModule

• GetWhichModule

• MergeKeyIDs.

If the SEE machine attempts to submit one of these commands, the nShield core returns a

response with the status code NotAvailable.

The SEElib_MarshalSendCommand function returns an M_Status value. This value is OK if the

command was marshalled and transferred to the nShield core correctly.

Do not mix calls to SEE_Transact() and SEElib_MarshalSendCommand()

and SEElib_GetUnmarshalResponse(), because the replies may be

misdirected.

14.2.8. SEElib_GetUnmarshalResponse

extern int SEElib_GetUnmarshalResponse(M_Reply *buf);

If there is a reply in the input queue for this SEE world, this function returns the first job in

the queue. Otherwise, it blocks and waits for the nShield core to return a job.

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 66/79

On return, M_Reply contains the unmarshalled reply.

The SEElib_GetUnmarshalResponse function returns an M_Status value. This value is OK if the

reply was unmarshalled successfully. The return of this value does not necessarily mean

that the command was completed successfully, only that the reply was unmarshalled. You

must also check the M_Status within the reply.

14.2.9. SEElib_FreeCommand

extern int SEElib_FreeCommand(struct M_Command *cmd);

This function frees a command structure and is equivalent to the generic stub function

NFastApp_FreeCommand (described in the nCore CodeSafe API Documentation).

14.2.10. SEElib_FreeReply

extern int SEElib_FreeReply(struct M_Reply *reply);

This function frees a reply structure and is equivalent to the generic stub function

NFastApp_FreeReply (described in the nCore CodeSafe API Documentation).

14.2.11. SEElib_SubmitCoreJob

extern int SEElib_SubmitCoreJob(const unsigned char *data, unsigned int len);

This function puts a job on the input queue for processing by the core. The byte block is

passed in data and len. It should be a full marshalled M_Command with a valid tag at the start.

This function returns an M_Status, which is typically OK or BufferFull (if len is too big).

14.2.12. SEElib_GetCoreJob

extern int SEElib_GetCoreJob (unsigned char *buf, M_Word *len_io);

This function blocks and waits for a job submitted to the core to be returned. On entry, buf

points to a buffer of length (*len_io) max. On exit, if successful, *len_io is the length of

bytes returned.

This function returns an M_Status, which is typically OK or BufferFull (if len_io is too big).

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 67/79

14.2.13. SEElib_GetUserDataLen

extern M_Word SEElib_GetUserDataLen (void);

In CodeSafe 5, this function gets the length in bytes of the /etc/userdata.codesafe file in

the filesystem of the container.

If this data has been discarded because SEElib_ReleaseUserData() has been called, this

function returns 0.

14.2.14. SEElib_Submit

extern int SEElib_Submit(M_Command *cmd, M_Reply *reply, PEVENT ev, SEElib_ContextHandle tctx);

This function submits the command specified in cmd. The transaction listener thread calls

EventSet ev, if ev is non-NULL, when the reply returns for this command. The reply is

unmarshalled into reply and tctx is returned to the caller in SEElib_Query.

Unlike SEElib_SubmitCoreJob this function can be called at the same time as another thread

is blocking in SEElib_Transact.

SEElib_StartTransactListener must have been called before this function is called.

14.2.15. SEElib_Query

extern int SEElib_Query(M_Reply **replyp, SEElib_ContextHandle *tctx_r);

This function is called to receive a reply that is being held by the transaction listener thread.

It is typically called after having been woken from EventWait as a result of the transaction

listener thread posting to the event passed in to SEElib_Submit.

If *replyp is NULL, SEElib_Query accepts any returned reply, and *replyp is changed to

point to that reply. If *replyp is not NULL, the function accepts the reply specified; other

replies are queued internally.

tctx_r can be NULL. If it is not, the tctx used when submitting the reply is stored in

*tctx_r. SEElib_Query can return, in addition to the usual return values,

TransactionNotYetComplete if the reply (or any reply if *replyp was NULL) has not come

back from the core yet.

SEElib_StartTransactListener must have been called before this function is called.

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 68/79

14.3. About the SEElib compatibility layer

The compatibility layer is provided to help port existing SEE machines and their host-side

applications to the new CodeSafe 5 architecture. The compatibility layer provides support

for legacy methods that dealt with the host-side application/SEE machine connection

(sending SEEJobs between the two and their supporting methods). Because the new

CodeSafe 5 architecture has removed the need to send SEEJobs between the host-side

application and the SEE machine by using the nCore API as an intermediary, these methods

are no longer found in the CodeSafe 5 SEElib API.

For detailed examples of the SEElib compatibility layer’s use, refer to the provided "CSEE"

or "Classic SEE" examples. These examples are legacy SEE machine examples that have

been ported using the compatibility layer.

14.4. SEE machine module side compatibility layer

The module-side compatibility layer provides a small API to emulate the deprecated CSEE

methods while using the CodeSafe 5 architecture and TCP/IPv6 network connections

underneath.

To continue to use legacy methods within an SEE machine, the SEE machine must be

recompiled with the compatibility layer library: liblegacy_compatibility.a. The default

install location is /opt/nfast/c/csd5/lib-ppc64-linux-musl/liblegacy_compatibility.a on

Linux. This library provides support for the legacy SEElib methods described below.

There is only a one-line change that needs to be made within an SEE machine’s source to

initialize the compatibility layer. A call to SEElib_Legacy_Support_Init(). This call must be

made before any of the legacy SEElib calls are made, typically in main() after

SEElib_init(). After this call is made, all legacy methods operate functionally identically to

legacy versions of CodeSafe, while using TCP/IPv6 network connections behind the scenes.

Do not write new applications using the compatibility layer. The

compatibility layer is provided to simplify the porting of existing legacy

applications to CodeSafe 5.

CodeSafe 5 allows the use of TCP/IPv6 network connections to connect the host-side

application to an SEE machine, simplifying the communication between the two, and

expanding the functionality of the communication between the two. The compatibility layer

allows legacy applications to run using the old style of SEEJobs, but doing so with new

applications is not advised.

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 69/79

14.4.1. SEElib_Legacy_Support_Init

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

extern void SEElib_Legacy_Support_Init(const char* PORT);

This function initializes the compatibility layer for legacy SEE machines for use with

CodeSafe 5. This method must be called before any other legacy methods. This method

initializes all the support required for legacy SEE machines to function properly.

14.4.2. SEElib_AwaitJob

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

extern int SEElib_AwaitJob(M_Word *tag_out, unsigned char *buf, M_Word *len_io);

This function blocks and waits for the next SEEJob to come in from the host-side

application. On entry, *buf and *len_io give the base and length of a buffer area to receive

the job. On return, *len_io is set to the length delivered (if the job is received successfully).

This buffer is a copy of the seeargs field of the SEEJob that was sent by the host-side

application.

The *tag_out value is the tag for this command. Each transaction must have a unique tag

when sent from the host-side application to ensure transactions are returned to their

required caller. The generation of unique tags is handled by the host-side compatibility

layer. The tag must be returned in the SEElib_ReturnJob so that the host-side compatibility

layer associates the reply with this transaction.

The SEElib_AwaitJob function returns an M_Status, which is OK on success and normally, but

not always, BufferFull on failure.

If you use SEElib_StartProcessorThreads(), these function calls are

done automatically and you should not call this function yourself.

14.4.3. SEElib_AwaitJobEx

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 70/79

extern void SEElib_AwaitJobEx(M_Word *tag_out, unsigned char *buf, M_Word *len_io, unsigned flags);

Block on the socket waiting for a SEEJob command from the host.

The output parameters are filled with information obtained from the message itself. On

entry, *buf and *len_io give the base and length of a buffer area to receive the job. On

return, *len_io is set to the length delivered (if the job is received successfully). This buffer

is a copy of the seeargs field of the SEEJob command. The *tag_out value is the tag for this

command.

14.4.4. SEElib_ReturnJob

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

extern void SEElib_ReturnJob(M_Word tag, const unsigned char *data, unsigned int len);

This function returns an SEEJob reply to the host-side application. It is sent in a way that the

host-side compatibility layer can interpret and write into the corresponding reply struct on

the host-side.

If you use the SEElib_StartProcessorThreads() function, it calls

SEElib_ReturnJob() for you.

The tag field must match the tag supplied in the SEElib_AwaitJob() call that created the

job.

The given data is copied away and forms the seereply field of the SEEJob reply on the host-

side application.

14.4.5. SEElib_StartProcessorThreads

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

struct ProcessThreadCtx; /* User-defined */
typedef struct SEElib_ProcessContext
{
 struct ProcessThreadCtx *uc;

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 71/79

 unsigned char *iobuf;
 int iobuf_maxlen;
}
 SEElib_ProcessContext;

typedef struct ProcessThreadCtx * (*SEEJobInitFn) (SEElib_ProcessContext *pC);

/* Function called during thread initialisation */
typedef int (*SEEJobFn) (SEElib_ProcessContext *pC, M_Word tag, int in_len);

/* Function to process an SEEJob; data is sent in & out via pC->iobuf.
Returns length being returned.
*/
extern int SEElib_StartProcessorThreads(int nthreads, int stacksize, SEEJobInitFn
pfnInit, SEEJobFn pfnProcess);

This function causes the SEE compatibility layer to start a number of processing threads.

Each thread has its own SEElib_ProcessContext allocated, which remains constant

throughout the life of the thread.

A working buffer for a given thread is allocated; the iobuf member points to this buffer and

iobuf_maxlen is set to the size. Data for the SEEJob is passed in and out through this buffer.

For each thread, the supplied SEEJobInitFn is called first, and the ProcessThreadCtx pointer

it returns is stored in the SEElib_ProcessContext structure. This structure is typically a

convenient thread-local storage. The pointer may be NULL if it is not required.

When a job arrives for the given thread, the supplied SEEJobFn is called. It is passed the

SEElib_ProcessContext pointer pC, a tag, and a length (in_len). The SEEJob data is at pC

→iobuf, length in_len. The tag is for information only. The function processes the data and

leave a reply at pC→iobuf. The return value from the function indicates the number of bytes

to be returned from this buffer.

14.4.6. SEElib_StartSEEJobListener

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

extern int SEElib_StartSEEJobListener(PEVENT ev);

This function starts the SEEJob listener thread which blocks calling SEElib_AwaitJob, caches

the new job and then sets the event ev if ev is non-NULL.

Use SEElib_QuerySEEJob to receive any SEEJobs that have been cached by this listener

thread, followed by SEElib_ReturnJob to reply to the SEEJob, then followed by

SEElib_ReleaseSEEJob to free the buffer.

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 72/79

It is safe to call this function multiple times, however calls after the first call have no effect.

14.4.7. SEElib_QuerySEEJob

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

extern M_Status SEElib_QuerySEEJob(M_Word *tag_out, unsigned char **buf, M_Word *len);

This function is called to receive a SEEJob that is being held by the SEEJob listener thread. It

is typically called after having been woken from EventWait as a result of the SEEJob listener

thread setting the event passed in to SEElib_StartSEEJobListener.

buf is set to the buffer containing the SEEJob, len is set to the length of the data contained

in buf.

This function returns TransactionNotYetComplete if there were no outstanding SEEJobs.

14.4.8. SEElib_ReleaseSEEJob

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

extern void SEElib_ReleaseSEEJob(unsigned char **buf);

This function is called to release a buffer which was returned from SEElib_QuerySEEJob. It

must be called after the buffer specified by buf in a call to SEElib_QuerySEEJob has been

finished with. This function is safe to call even if *buf is NULL. In addition, it sets *buf to

NULL on completion.

14.5. Compatibility layer API Host side

Legacy host-side applications need to be modified to use the network interface to talk the

SEE machine instead of the nCore API. The bulk of this work is handled automatically by

including the host-side compatibility layer and recompiling. However, all calls to the nCore

API which use CMD_SEEJob need to be modified slightly to reference the new CodeSafe 5

compatible methods. The compatibility layer provides support to emulate the use cases of

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 73/79

the Cmd_SEEJob message interface. The compatible calls and the methods they replace are

described below. All other calls by the host-side application to the nCore API will remain

unchanged.

14.5.1. netsee_initialize_legacy_seejob_support

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

extern int netsee_initialize_legacy_seejob_support(const char * cseeContainerMachineIPv6, const char *
cseeContainerMachinePort);

This function initializes host-side application compatibility layer to support legacy

CodeSafe SEEJob commands. netsee_initialize_legacy_seejob_support() must be

called to initialize legacy support for CodeSafe 5. The call creates all necessary processor

threads, initializes all values and fields required to process SEEJob M_Commands, and creates

a connection to the SEE machine via TCP/IPv6 networking. This call must be made before

any of the other methods described below are called.

14.5.2. netsee_submit_legacy_seejob

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

extern int netsee_submit_legacy_seejob(const M_Command *cmd, M_Reply *reply, struct NFast_Transaction_Context
*tctx);

This function transmits a SEEJob command to the SEE application.

Replaces NFastApp_Submit().

The compatibility layer strips the relevant SEEJob information from the M_Command, issues a

unique tag, and marshals this information to a form the compatibility layer compiled SEE

machine understands. It then sends the command to the module directly via a TCP/IPv6

connection initialized by the compatibility layer.

14.5.3. netsee_wait_legacy_seejob

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 74/79

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

extern int netsee_wait_legacy_seejob(M_Reply **replyp, struct NFast_Transaction_Context **tctx);

This function waits to receive a reply from the SEE machine.

Replaces NFastApp_Wait().

The compatibility layer reads an incoming reply from the module, parses the information,

and writes it to the correct M_Reply corresponding to the tag the command was sent with.

It does not proceed beyond the call until this reply has been processed. After a reply is

received and marshaled by the compatibility layer, netsee_wait_legacy_seejob() will return

with the correct reply.

14.5.4. netsee_transact_legacy_seejob

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

extern int netsee_transact_legacy_seejob(const M_Command *command, M_Reply *reply, struct
NFast_Transaction_Context *tctx);

This function transacts a SEEJob command and waits until a reply is received and written to

*reply.

Replaces NFastApp_Transact().

The compatibility layer strips the relevant SEEJob information from the M_Command, issues a

unique tag, and marshals this information to a form the compatibility layer compiled SEE

machine understands. It then sends the command to the module SEE machine directly via a

TCP/IPv6 connection initialized by the compatibility layer.

After sending the command, it waits for a reply from the SEE machine via the established

network connection. The compatibility layer reads the incoming reply from the module,

parses the information, and writes it to the correct M_Reply corresponding to the tag the

command was sent with.

After a reply is received and marshaled by the compatibility layer,

netsee_transact_legacy_seejob() returns with the correct M_Reply having been written to

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 75/79

*reply.

14.5.5. netsee_simple_transact_legacy_seejob

This function is provided by the compatibility layer to ease porting

applications from Solo XC to nShield 5. Do not use it for new

applications.

extern int netsee_simple_transact_legacy_seejob(const M_Command *cmd, M_Reply *reply, int fatal);

Transact a SEEJob command and wait until a reply is received and written to *reply. If fatal

is true, and an error occurs, exit(4).

Replaces simple_transact().

The compatibility layer strips the relevant SEEJob information from the M_Command, issues a

unique tag, and marshals this information to a form the compatibility layer compiled SEE

machine will understand. It then sends the command to the module SEE machine directly

via a TCP/IPv6 connection initialized by the compatibility layer. Then, it waits for a reply

from the SEE machine via the established network connection. The compatibility layer

reads the incoming reply from the module, parses the information, and writes it to the

correct M_Reply corresponding to the tag the command was sent with. Once a reply is

received and marshaled by the compatibility layer,

netsee_simple_transact_legacy_seejob() will return with the correct M_Reply having been

written to *reply.

Chapter 14. SEE API documentation

CodeSafe 5 v13.6.5 Developer Guide 76/79

15. System calls allowed by CodeSafe 5 SEE
machines
SEE machines are restricted to a subset of Linux system calls they can execute.

An SEE machine that attempts to execute a system call that is not allowed will be

immediately terminated by a safeguarding process.

Allowed system calls

1 __NR_exit 2 __NR_fork

3 __NR_read 4 __NR_write

5 __NR_open 6 __NR_close

7 __NR_waitpid 8 __NR_creat

9 __NR_link 10 __NR_unlink

11 __NR_execve 12 __NR_chdir

13 __NR_time 15 __NR_chmod

19 __NR_lseek 20 __NR_getpid

21 __NR_mount 22 __NR_umount

24 __NR_getuid 29 __NR_pause

33 __NR_access 36 __NR_sync

37 __NR_kill 38 __NR_rename

39 __NR_mkdir 40 __NR_rmdir

41 __NR_dup 42 __NR_pipe

45 __NR_brk 47 __NR_getgid

49 __NR_geteuid 50 __NR_getegid

54 __NR_ioctl 55 __NR_fcntl

60 __NR_umask 63 __NR_dup2

64 __NR_getppid 65 __NR_getpgrp

66 __NR_setsid 78 __NR_gettimeofday

83 __NR_symlink 85 __NR_readlink

88 __NR_reboot 90 __NR_mmap

91 __NR_munmap 94 __NR_fchmod

Chapter 15. System calls allowed by CodeSafe 5 SEE machines

CodeSafe 5 v13.6.5 Developer Guide 77/79

Allowed system calls

99 __NR_statfs 102 __NR_socketcall

106 __NR_stat 107 __NR_lstat

108 __NR_fstat 114 __NR_wait4

119 __NR_sigreturn 120 __NR_clone

122 __NR_uname 125 __NR_mprotect

140 __NR_llseek 141 __NR_getdents

145 __NR_readv 146 __NR_writev

160 __NR_sched_get_priority_min 162 __NR_nanosleep

163 __NR_mremap 167 __NR_poll

172 __NR_rt_sigreturn 173 __NR_rt_sigaction

174 __NR_rt_sigprocmask 175 __NR_rt_sigpending

176 __NR_rt_sigtimedwait 177 __NR_rt_sigqueueinfo

178 __NR_rt_sigsuspend 179 __NR_pread64

181 __NR_chown 182 __NR_getcwd

185 __NR_sigaltstack 190 __NR_ugetrlimit

195 __NR_stat64 196 __NR_lstat64

197 __NR_fstat64 202 __NR_getdents64

204 __NR_fcntl64 205 __NR_madvise

207 __NR_gettid 221 __NR_futex

229 __NR_io_getevents 232 __NR_set_tid_address

234 __NR_exit_group 246 __NR_clock_gettime

250 __NR_tgkill 252 __NR_statfs64

281 __NR_ppoll 286 __NR_openat

300 __NR_set_robust_list 326 __NR_socket

327 __NR_bind 328 __NR_connect

329 __NR_listen 330 __NR_accept

331 __NR_getsockname 332 __NR_getpeername

333 __NR_socketpair 334 __NR_send

335 __NR_sendto 336 __NR_recv

Chapter 15. System calls allowed by CodeSafe 5 SEE machines

CodeSafe 5 v13.6.5 Developer Guide 78/79

Allowed system calls

337 __NR_recvfrom 338 __NR_shutdown

339 __NR_setsockopt 340 __NR_getsockopt

341 __NR_sendmsg 342 __NR_recvmsg

343 __NR_recvmmsg 344 __NR_accept4

349 __NR_sendmmsg 359 __NR_getrandom (See note)

365 __NR_membarrier

getrandom is not implemented in nShield 5. Use either /dev/random or the

Cmd_GenerateRandom nCore command instead.

Chapter 15. System calls allowed by CodeSafe 5 SEE machines

CodeSafe 5 v13.6.5 Developer Guide 79/79

	nShield Security World: CodeSafe 5 v13.6.5 Developer Guide
	Table of Contents
	1. Introduction
	2. Overview of CodeSafe 5
	2.1. Applications as container images
	2.2. Easy and fast network connectivity
	2.3. 'Secure by default' client communication
	2.4. Better language support
	2.5. Developer authentication

	3. Install the CodeSafe 5 SDK on Linux
	4. Install the CodeSafe 5 SDK on Windows
	4.1. Prerequisites
	4.2. Install the Security World Software
	4.3. Install CodeSafe 5

	5. nShield 5c Codesafe 5 Configuration
	6. Build CodeSafe 5 SDK apps
	6.1. General SDK use
	6.2. Prerequisites
	6.3. SDK file structure overview
	6.3.1. SDK location
	6.3.2. Container root file system
	6.3.3. CMake
	6.3.4. Include directories
	6.3.5. SEE specific libraries
	6.3.6. Legacy compatibility

	6.4. Building new SEE machines with SEElib
	6.4.1. Developer authentication
	6.4.2. Deploying SEE machines
	6.4.3. SEE machine initialization requirements
	6.4.4. SEElib Functions
	6.4.5. Host/SEE machine communication

	6.5. Compatibility layer for legacy SEE machines
	6.5.1. Module-side compatibility layer
	6.5.2. Host-side compatibility layer
	6.5.3. Initialize module-side compatibility
	6.5.4. Use module-side compatibility
	6.5.5. Initialize host-side application compatibility
	6.5.6. Use host-side application compatibility

	7. Sign and deploy CodeSafe 5 SDK apps using csadmin
	7.1. Signing CodeSafe images
	7.2. The csadmin utility tool
	7.2.1. Generate loadable images
	7.2.2. Sign images
	7.2.3. Create a developer ID certificate

	7.3. Example CodeSafe developer process
	7.3.1. Create developer ID keys
	7.3.2. Load your certificate

	8. Build and sign example SEE machines on Linux
	8.1. Build module-side C examples
	8.2. Building Host Side C Examples
	8.3. Build CS5 Images for Python Examples
	8.4. Sign CodeSafe Images
	8.5. Run NetSEE examples
	8.5.1. helloworld_tcp
	8.5.2. helloworld_udp

	8.6. Run NetSEE examples via SSH tunnel
	8.6.1. helloworld_tcp via SSH Tunnel

	8.7. Run CSEE examples via SSH tunnel
	8.7.1. hello via SSH Tunnel
	8.7.2. tickets via SSH tunnel
	8.7.3. benchmark via SSH tunnel

	9. Build and sign example SEE machines on Windows
	9.1. Prerequisites
	9.2. Building Windows CodeSafe C, CSEE, and NETSEE examples
	9.2.1. Host-side examples
	9.2.2. Module-side examples

	9.3. CS5 images for Python examples
	9.4. Sign CodeSafe images

	10. Debug CodeSafe 5 SEE machines
	10.1. config log set enabled
	10.2. config log set disabled
	10.3. log get
	10.4. log clear

	11. Uninstall the CodeSafe 5 SDK
	12. Port existing CodeSafe application to CodeSafe 5
	12.1. The compatibility layer
	12.1.1. Module-side compatibility layer
	12.1.2. Host-side compatibility layer

	12.2. Required module-side changes for porting
	12.3. Required host-side changes for porting
	12.3.1. Initialization
	12.3.2. Replacing SEEJob-related method calls

	12.4. Rebuilding and Recompiling
	12.4.1. Rebuilding host-side
	12.4.2. Rebuilding Module Side

	13. Supporting legacy CodeSafe Direct
	13.1. Legacy CodeSafe Direct
	13.2. CodeSafe 5

	14. SEE API documentation
	14.1. Why CodeSafe 5 needs a compatibility layer
	14.2. SEElib functions
	14.2.1. SEElib_init
	14.2.2. SEElib_ReadUserData
	14.2.3. SEElib_ReleaseUserData
	14.2.4. SEElib_InitComplete
	14.2.5. SEElib_StartTransactListener
	14.2.6. SEElib_Transact
	14.2.7. SEElib_MarshalSendCommand
	14.2.8. SEElib_GetUnmarshalResponse
	14.2.9. SEElib_FreeCommand
	14.2.10. SEElib_FreeReply
	14.2.11. SEElib_SubmitCoreJob
	14.2.12. SEElib_GetCoreJob
	14.2.13. SEElib_GetUserDataLen
	14.2.14. SEElib_Submit
	14.2.15. SEElib_Query

	14.3. About the SEElib compatibility layer
	14.4. SEE machine module side compatibility layer
	14.4.1. SEElib_Legacy_Support_Init
	14.4.2. SEElib_AwaitJob
	14.4.3. SEElib_AwaitJobEx
	14.4.4. SEElib_ReturnJob
	14.4.5. SEElib_StartProcessorThreads
	14.4.6. SEElib_StartSEEJobListener
	14.4.7. SEElib_QuerySEEJob
	14.4.8. SEElib_ReleaseSEEJob

	14.5. Compatibility layer API Host side
	14.5.1. netsee_initialize_legacy_seejob_support
	14.5.2. netsee_submit_legacy_seejob
	14.5.3. netsee_wait_legacy_seejob
	14.5.4. netsee_transact_legacy_seejob
	14.5.5. netsee_simple_transact_legacy_seejob

	15. System calls allowed by CodeSafe 5 SEE machines

