©

ENTRUST

nShield Security World

PKCS 11 Reference Guide
for nShield Security World
v13.6.14

28 November 2025

© 2025 Entrust Corporation. All rights reserved.

Table of Contents

Tntroduction ... 1
11.Read thisguide if... 2

1.2. Additional useful documentation. 2

1.3. Security World Software default directories 2

1.4. Utility help options 3

1.5. Further information 4

1.6. Security adVvisOries 4

1.7. Contacting Entrust nShield Support. 5
2.nShield Architecture. 6
2.1. Security World Software modules. 6

2.2. Security World Software server. 6

2.3. Stubs and interface libraries 7
2.4. Using aninterface library 7
2.5. Writing a custom application. ... 8
2.6. Acceleration-only or key management. 8

3. PKCS #11 Developer libraries 9
3.1. Checking the installation of the nShield PKCS #11library. 9

3.2. PKCS #11 security assurance mechanism. 9
320 Key seCUrity 10

4. PKCS #11 with load sharingmode. 1
4. LogaiNg IN. .o 1
4.2, SeSSION O JECES 12
4.3.Module failure 12
4.4. Compatibility 12
4.5, Restrictions on function calls in load-sharingmode. 12
5.PKCS #1Mwith HSM Poolmode i 14
5. Module failure. 14

5.2. MOdUIE rECOVENY 14

5.3. Restrictions on function callsin HSM Poolmode 14

6. Generating and deleting NVRAM-stored keys with PKCS #11.................... 16
6.1. Generating NVRAM-stored Keys 16
6.2. Deleting NVRAM-stored Keys. 17
7.PKCS #11with key reloading 18
7. Usageunder preload 18
710 Persistent preload files 19
7.2.Supported functioncalls 19

7.3.Retrying key reloads. 19

7.4 Adding new HSMs 19

8. PKCS #11 without load-sharing or HSM Poolmodes. 21
8.1.K/N support for PKCS #11 21
O.PKCS #1Mwithpreload. 23
10. PKCS #11 Security Officer 24
11. nShield-specific PKCS #11 APl extensions i 25
111 CLoginBegin 25
1.2. C_LoginNext. 25
1.3, CLOgiNENG . . . 26

12. Compiling and liNKiNg 27
T2 WINAOWS .o 27
12.2. LINUX . 27

13. nShield PKCS #11 library environment variables 29
13.1. CKNFAST_ASSUME_SINGLE_PROCESS 30
13.2. CKNFAST_ASSURANCE_LOG 31
13.3. CKNFAST_CARDSET_HASH . . . 31
13.4. CKNFAST_CONCATENATIONKDF_X963_COMPLIANCE 31
13.5. CKNFAST_DEBUG 31
13.6. CKNFAST_DEBUGDIR. 32
13.7. CKNFAST_DEBUGFILE 32
13.8. CKNFAST_DH_LSB 32
13.9. CKNFAST_EDDSA_PUBKEY_FORMAT 32
13.10. CKNFAST_FAKE_ACCELERATOR_LOGIN 33
1311 CKNFAST_HSM_POOL 33
13.12. CKNFAST_JCE_COMPATIBILITY 33
13.13. CKNFAST_LOADSHARING 33
13.14. CKNFAST_NO_ACCELERATOR_SLOTS. 34
13.15. CKNFAST_NO_SYMMETRIC. 34
13.16. CKNFAST_NO_UNWRAP. . . 34
13.17. CKNFAST_NONREMOVABLE 34
13.18. CKNFAST_NVRAM_KEY_STORAGE i 35
13.19. CKNFAST_OVERRIDE_SECURITY_ASSURANCES 35
13100 all 36

13.19.2. N0ONE . . 36

13.19.3. tokenKeys. . . 36

13.19.4. longterm[=days] 37

13.19.5. explicitness 37

13.09.6. IMpPoOrt . . 38

13.10.7. Wrapping_Crypt ... 38

13.19.8. unwrap_KekK 38

13.19.9. derive_kek 39
131910, derive_XOor. 39
13.19.11. derive_concatenate. 39
13.19.12. UNWrap_rsa_aeSs_KWP 39
13.19.13. weak_<algorithm> 40
13.19.14. shortkey_<algorithm=bitlength> 40
131905, silent . 40
13.19.16. Diagnostic warnings about questionable operations. 41
13.20. CKNFAST_SEED_MAC_ZERO 41
13.21. CKNFAST_SESSION_THREADSAFE. i 41
13.22. CKNFAST_SESSION_TO_TOKEN 41
13.23. CKNFAST_SHARE_SESSION_KEYS 42
13.24. CKNFAST_TOKENS_PERSISTENT 42
13.25. CKNFAST_USE_THREAD_UPCALLS 43
13.26. CKNFAST_LOAD_KEYS . .. 43
13.27. CKNFAST_WRITE_PROTECTED 43
13.28. CKNFAST_RELOAD_KEYS 43
14, ObjeCts. . 44
14.1. Certificate Objects and Data Objects. 45
14.2. Key Objects 45
14.3. Card passSphrases. 45
15, MeChaniSMS. 47
150 Footnote 1. . il 52
15.2. Footnote 2 . . . 53
15.3. Footnote 3 . . . 53
15.4. Footnote 4 . . i 53
15.5. Footnote 5 . . 53
15.6. Footnote 6 53
15.7. Footnote 7 .. . 54
15.8. Footnote 8 54
15.9. Footnote O . . . 55
15.10. Footnote 10 55
1510 Footnote 11 . . 55
15.12. Footnote 12 55
15.13. Footnote 13, . .. 56
15.14. Footnote 14 . . 56
1515, Footnote 15 56

15.16. Footnote 16 .. . 56

15.7. Footnote 17. 56

15.18. Footnote 18 57
16. Vendor annotations on P11 mechanisms. 58
16.1. CKM_RSA_PKCS_OAEP 58
16.2. CKM_RSA_PKCS_PSS and CKM_SHA*_RSA_PKCS_PSS 58
17.Vendor-defined mechanisms 60
17.1. CKM_SEED_ECB_ENCRYPT_DATA and CKM_SEED_CBC_ENCRYPT_DATA. 60
17.2. CKM_CAC_TK_DERIVATION 60
17.3. CKM_SHA*_HMAC and CKM_SHA*_HMAC_GENERAL 61
17.4. CKM_NC_ECKDF_HYPERLEDGER 62
17.5. CKM_HAST60 ... 63
17.6. CKM_PUBLIC_FROM_PRIVATE 64
17.7. CKM_NC_AES_CMAC. . . . 64
17.8. CKM_NC_AES_CMAC_KEY_DERIVATION and
CKM_NC_AES_CMAC_KEY_DERIVATION_SCPO3. 64
17.9. CKLINC_AES_CMAC_KEY_DERIVATION_PARAMS 66
17.10. CKM_COMPOSITE_LEMV_T_ARQC, CKM_WATCHWORD_PIN1 and
CKM_WATCHWORD_PINZ . . . 66
1701 CKMINC_ECIES. . 66
17.12. CKM_NC_MILENAGE_OPC 68
17.13. CKM_NC_MILENAGE, CKM_NC_MILENAGE_AUTS,
CKM_UNC_MILENAGE_RESYNC 68
17131 CKMLNC_MILENAGE 69
17.13.2. CKM_NC_MILENAGE_RESYNC 69
17.13.3. CKM_NC_MILENAGE_AUTS (testingonly) 70
17.14. CKMLNC_TUAK_TOPC 70
17.15. CKM_NC_TUAK, CKM_NC_TUAK_AUTS, CKM_NC_TUAK_RESYNC 70
1750 CKMLNC _TUAK . . 71
17.15.2. CKMLNC_TUAK_RESYNC. 72
17.15.3. CKM_NC_TUAK_AUTS (testingonly) 72
18. KISAAlgorithm mechanisms. 73
181 KCDSA KEYS . .o 73
18.2. Pre-hashing 73
18.3. CKM_KCDSA_SHA1, CKM_KCDSA_HAS160, CKM_KCDSA_RIPEMD160 74
18.4. CKM_KCDSA_KEY_PAIR_GEN. 74
18.5. CKM_LKCDSA_PARAMETER_GEN 75
18.6. CKM_HAST60 75
18.7.SEED secret Keys 75

18.71. CKM_SEED_KEY_GEN 75

18.7.2. CKM_SEED_ECB, CKM_SEED_CBC, CKM_SEED_CBC_PAD 75

18.7.3. CKM_SEED_MAC, CKM_SEED_MAC_GENERAL 76

19, Attributes . . 77
19.1. CKA_SENSITIVE 77
19.2. CKA _PRIVATE . .. 77
19.3. CKA_EXTRACTABLE . . . 77
19.4. CKA_LENCRYPT, CKA_DECRYPT, CKA_SIGN, CKA_VERIFY 78
19.5. CKA_WRAP, CKA_UNWRAP. . . 78
19.6. CKA_WRAP_TEMPLATE, CKA_LUNWRAP_TEMPLATE 79
19.7. CKA_SIGN_RECOVER 80
19.8. CKALVERIFY_RECOVER 81
19.9. CKA_DERIVE .. 81
19.10. CKA_ALLOWED_MECHANISMS 81
19.10.1. CKM_CONCATENATE_BASE_AND_KEY 81
19.10.2. CKM_RSA_AES_KEY_WRAP 82
19.11. CKA_MODIFIABLE . . 82
1902, CKA_TOKEN. .. 82
19.13. CKA_START_DATE, CKA_LEND_DATE 82
19.14. CKA_TRUSTED and CKA_WRAP_WITH_TRUSTED 82
19.15. CKA_COPYABLE and CKA_DESTROYABLE. 83
19.16. RSAKeY ValUuEs 84
10.17. DSAKEY ValUBS 84
19.18. Vendor specific error Codes. 84
20. Utilities 85
20.0.ckdes3gen ... 85
20.2. CKINTO. . 85
20.3. CKlist. . 85
20.4. ckmechinfo 86
20.5. CKrsagen. 86
20.6. CkSOtOOl . . . 86
21 FUNCioNS .. 87
21.1.Choosing functions 87
21.1.1. Generating random numbers and keys.o 87
21.1.2. Digital signatures. 87
21.1.3. Asymmetric encryption. 88
21.1.4. Symmetric encryption. 88
21.15. Message digest 88
21.01.6. Mechanisms 88

2117, Key WrappIiNgo 88

22. General purpose fUNCLIONS 89

220 C_Finalize .. . 89
220 NOtes. i 89
22.2.C_GetInfo. 89
22.3. C_GetFunctionList 89
22.4.C_Initialize 89
224 0. NOtes . 89

23. Slot and token management functions 91
231 C_GetSlotInfo 91
23.2.C_GetTokenInfo 91
23.3. C_GetMechanismList 91
23.4.C_GetMechanismInfo. 91
23.5. C_GetSIlotList. 91

23 5. NOteS. . 92

23.6. C_InitToken 92
23.6.1. NOtesS. . 92

23.7. CLInitPIN . 92
237 0. NOtes. 93

23.8. C_SetPIN . 93
23,8 NOteS . 93

24. Standard session management functions ... 94
24.0. C_OpPenSesSION 94
24.2. C_CloSESESSION 94
24.3. C_CloseAllSesSioNs 94
244 C_GetOperationState 94
24.5.C_SetOperationState 94
24.6. C_LOgin. ..o 95
24.7. C_LOgOUL . . 95

25. nShield session management functions 96
250 C_LoginBegin. 96
25.2. C_LoginNext 96
25.3.C_LoginENd . . . 96
25.4. C_GetSessionInfo 96
25.5. nShield session management functionnotes, 96

26. Object management functions 97
26.1.C_CreateObject 97
26.1.1. CKKLNC_MILENAGERC 97
26.2.C_CopyObject 98

26.3. C_DestroyObject. 98

26.4. C_GetObjectSize 98

26.5. C_GetAttributeValue 99
26.6. C_SetAttributeValue 99
26.7. C_FindObjectsInit 99
26.8. C_FINdObjects 99
26.9. C_FindObjectsFinal. 99
27.Encryption functions. 100
270 C_Encryptinit. .o 100
27, 2. G ENCIY Pt 100
27.3. C_EncryptUpdate 100
27.4. C_EncryptFinal. 100

28. Decryption functions. 101
28.1.C_DecryptInit. 101
28.2. CDecrypt. . 101
28.3. C_DecryptUpdate 101
28.4. C_DecryptFinal 101

29. Message digesting functions 102
29.1. C_DigestInit 102
29.2. CDigest . . . 102
29.3.C_DigestUpdate. 102
29.4. C_DigestFinal 102

30. Signing and MACing functions 103
300 CSignlInit . .. 103
30.2. CSigN . 103
30.3. C_SignRecoverlnit. 103
30.4. C_SIgNRECOVEr. 103
30.5. C_SignUpdate ... 103

30. 5. NoOtes . .. 104

30.6. C_SignFinal 104
30.6.1.NOtes 104

31. Functions for verifying signaturesand MACs 105
311 CoVerifylInit. 105
312, C Verify. 105
31.3. C_VerifyRecover. 105
31.4. C_VerifyRecoverlnit 105
31.5.C_VerifyUpdate 105
315 NOteS . 106

31.6. C_VerifyFinal 106

316 Notes. ... 106

32. Dual-purpose cryptographic functions 107

32.1. C_DigestEncryptUpdate 107
32.2. C_DecryptDigestUpdate. 107
32.3. C_SignEncryptUpdate 107
3230 NOteS. . 107

32.4. C_DecryptVerifyUpdate 107
3240 NOteS ... 108

33. Key-management functions 109
33.1. C_GenerateKey 109
33.2. C_GenerateKeyPair 110
33.3. C WrapKey . . . 110
33.4. C_UnwrapKey 110
33.5. C_DeriveKey. 110

34. Random number functions (N
34.1.C_GenerateRandom M
34.2. C_SeedRandom M
3420 NOTES . .. (N

35. Parallel function management functions. L. 112
35.1. C_GetFunctionStatus 112
35 NOteS - 112

35.2. C_CancelFunction 112
3520 NoOtes . .. 112

36. Callback fUNCtioNS 113

Chapter 1. Introduction

1. Introduction

This guide is for application developers who are writing PKCS #11 applications.

For an introduction to the PKCS #11 user library, see nShield PKCS #11 library. You can find
information about the available utilities in the Utilities reference guide. For information
about the environment variables, see nShield PKCS #11 library environment variables.

Before using the nShield PKCS #11 libraries, we recommend that you read http://docs.oasis-
open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html.

The following diagram illustrates the way that an nShield PKCS #11 library works with the
nShield APIs.

nShield PKCS#11
library
PKCS8#11-compliant application
Functionality limited by

PECS#11 |
. 4 e
. .
."/.- \'u
NFKM library key
management functions
Custom C application
. Full functionality
__ II
C Generic Stub Java Generic Stub
L L v
Y
hardserver ‘
0 This guide does not address how the nShield PKCS #11 libraries map
PKCS #11 functions to nCore API calls within the library.

This guide describes the nShield PKCS #11 library supplied by Entrust Security to help devel
opers write applications that use nShield modules.

This toolkit, like the application plug-ins supplied by Entrust, uses the Security World para-

PKCS 11 Reference Guide for nShield Security 1/113
World v13.6.14

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/security-manual/key-management.html#_nshield_pkcs11_library
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html

Chapter 1. Introduction

digm for key storage. For an introduction to Security Worlds, see nShield Security World
v13.6.14 Management Guide.

1.1. Read this guide if...

Read this guide if you want to build an application that uses an nShield key-management
module to accelerate cryptographic operations and protect cryptographic keys through a
standard interface rather than the full nCore API.

This guide assumes that you are familiar with the concept of the Security World. It is
intended for experienced programmers and assumes that you are familiar with the following
documentation:

« The nCore Developer Tutorial, which describes how to write applications using an
nShield module.

« The nCore APl Documentation (supplied as HTML), which describes the nCore API.

1.2. Additional useful documentation

Refer to nShield Security World v13.6.14 Management Guide and nShield v13.6.14 HSM User
Guide for additional information about Security Worlds and nShield HSMs.

1.3. Security World Software default directories

The default locations for Security World Software and program data directories on English-
language systems are summarized in the following table:

Directory Name Environment Vari- Windows Server 2016 Linux
able
nShield Installation NFAST_HOME C:\Program Files\nCipher\nfast /opt/nfast/
Key Management NFAST_KMDATA C:\ProgramData\nCipher\Key Manage- /opt/nfast/kmdata/
Data ment Data

Dynamic Feature ~ NFAST_CERTDIR C:\ProgramData\nCipher\Feature Cer- /opt/nfast/femcerts/
Certificates tificates

Static Feature Cer C:\ProgramData\nCipher\Features /opt/nfast/kmdata/fea-
tificates tures/

Log Files NFAST_LOGDIR C:\ProgramData\nCipher\Log Files /opt/nfast/log/

PKCS 11 Reference Guide for nShield Security 2/113

World v13.6.14

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/api-ncore/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/api-ncore/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/api-ncore/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/api-ncore/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/api-ncore/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/api-ncore/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/api-ncore/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/intro.html

Chapter 1. Introduction

By default, the Windows %NFAST_KMDATA% directories are hidden directo-

ries. To see these directories and their contents, you must enable the
o display of hidden files and directories in the View settings of the Folder
Options.

Dynamic feature certificates must be stored in the directory stated in
the default directories table.

The directory shown for static feature certificates is an example loca-
o tion. You can store those certificates in any directory and provide the
appropriate path when using the Feature Enable Tool. However, you
must not store static feature certificates in the dynamic features certifi-
cates directory. For more information about feature certificates, see

Optional features.

The absolute paths to the Security World Software installation directory and program data
directories on Windows platforms are stored in the indicated nShield environment variables
at the time of installation. If you are unsure of the location of any of these directories, check
the path set in the environment variable.

The instructions in this guide refer to the locations of the software installation and program
data directories by their names (for example, Key Management Data) or:

- For Windows, nShield environment variable names enclosed in percent signs (for exam
ple, $NFAST_KMDATA%).

- For Linux, absolute paths (for example, /opt/nfast/kmdata/).
NFAST_KMDATA cannot be a symbolic link.
If the software has been installed into a non-default location:

- For Windows, ensure that the associated nShield environment variables are re-set with
the correct paths for your installation.

« For Linux, you must create a symbolic link from /opt/nfast/ to the directory where the
software is actually installed. For more information about creating symbolic links, see
your operating system’s documentation.

1.4. Utility help options

Unless noted, all the executable utilities provided in the bin subdirectory of your nShield
installation have the following standard help options:

PKCS 11 Reference Guide for nShield Security 3/113
World v13.6.14

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/features.html

Chapter 1. Introduction

-h|--help displays help for the utility
-v|--version displays the version number of the utility

-u|--usage displays a brief usage summary for the utility.

1.5. Further information

This guide forms one part of the information and support provided by Entrust.
The nCore APl Documentation is supplied as HTML files installed in the following locations:

« Windows:
° API reference for host: $NFAST_HOME%\document\ncore\html\index.html
° APl reference for SEE: $NFAST_HOME%\document\csddoc\html\index.html
+ Linux:
° API reference for host: /opt/nfast/document/ncore/html/index.html
° API reference for SEE: /opt/nfast/document/csddoc/html/index.html

The Java Generic Stub classes, nCipherKM JCA/JCE provider classes, and Java Key Manage
ment classes are supplied with HTML documentation in standard Javadoc format, which is
installed in the appropriate nfast\java or nfast/java directory when you install these
classes.

1.6. Security advisories

If Entrust becomes aware of a security issue affecting nShield HSMs, Entrust will publish a
security advisory to customers. The security advisory will describe the issue and provide rec
ommended actions. In some circumstances the advisory may recommend you upgrade the
nShield firmware and or image file. In this situation you will need to re-present a quorum of
administrator smart cards to the HSM to reload a Security World. Because of this, you
should consider the procedures and actions required to upgrade devices in the field when
deploying and maintaining your HSMs.

o The Remote Administration feature supports remote firmware upgrade
of nShield HSMs, and remote ACS card presentation.

We recommend that you monitor the Announcements & Security Notices section on
Entrust nShield, https://trustedcare.entrust.com/, where any announcement of nShield
Security Advisories will be made.

PKCS 11 Reference Guide for nShield Security 4/113
World v13.6.14

https://trustedcare.entrust.com/

Chapter 1. Introduction

1.7. Contacting Entrust nShield Support

To obtain support for your product, contact Entrust nShield Support,
https://trustedcare.entrust.com/.

PKCS 11 Reference Guide for nShield Security 5/113
World v13.6.14

https://trustedcare.entrust.com/

Chapter 2. nShield Architecture

2. nShield Architecture

This chapter provides a brief overview of the Security World Software architecture. The fol-
lowing diagram provides a visual representation of nShield architecture and the documenta
tion that relates to it.

e N a\ e a
nShield KSP for nShield PKCS#11 Java Key Management Jgi}gg‘: 'é’gp
MS CNG library Classes TELT ; -
CNG-compliant application. PKCS#11-compliant application. ‘Custom Java application. = " -c0||1_‘|p I'."’m.t ag% 'c?g%n
Functionality limited by MS CNG. Functionality limited by PkCS#11. Full functionality. T
A / A S A /

{ L [_J

J

' ™
nShield CSP for NFKM library key
MS CAPI management functions
CAPI-compliant application. Custom C application.
Functionality limited by MS CAPIL. Full functionality.
A s
C Generic Stub Java Generic Stub
4 ™
Shaded items are
documented in the hardserver
nShield API integrations
guides.
AN J/

2.1. Security World Software modules

nShield modules provide a secure environment to perform cryptographic functions. Key-
management modules are fitted with a smart card interface that enables keys to be stored
on removable tokens for extra security. nShield modules are available for PCI buses and also
as network-attached Ethernet modules (nShield Connect).

2.2. Security World Software server

The Security World Software server, often referred to as the hardserver, accepts requests
by means of an interprocess communication facility (for example, a domain socket on Linux
or named pipes or TCP/IP sockets on Windows).

The Security World Software server receives requests from applications and passes these

PKCS 11 Reference Guide for nShield Security 6/113
World v13.6.14

Chapter 2. nShield Architecture

to the nShield module(s). The module handles these requests and returns them to the
server. The server ensures that the results are returned to the correct calling program.

You only need a single Security World Software server running on your host computer. This
server can communicate with multiple applications and multiple nShield modules.

2.3. Stubs and interface libraries

An application can either handle its own cryptographic functions or it can use a crypto-
graphic library:

« If the application uses a cryptographic library that is already able to communicate with
the Security World Software server, then no further modification is necessary. The
application can automatically make use of the nShield module.

« If the application uses a cryptographic library that has not been modified to be able to
communicate with the Security World Software server, then either Entrust or the cryp-
tographic library supplier need to create adaption function(s) and compile them into
the cryptographic library. The application users then must relink their applications using
the updated cryptographic library.

If the application performs its own cryptographic functions, you must create adaption func
tion(s) that pass the cryptographic functions to the Security World Software server. You
must identify each cryptographic function within the application and change it to call the
nShield adaption function, which in turn calls the generic stub. If the cryptographic func-
tions are provided by means of a DLL or shared library, the library file can be changed. Other
wise, the application itself must be recompiled.

2.4. Using an interface library
Entrust supplies the following interface libraries:

- Microsoft Cryptography API: Next Generation (CNG)
« Microsoft CryptoAPI (CAPI)

« PKCS #11

+ nCipherKM JCA/JCE CSP

Third-party vendors may supply nShield-aware versions of their cryptographic libraries.

The functionality provided by these libraries is the intersection of the functionality provided
by the nCore API and the functionality provided by the standard for that library.

PKCS 11 Reference Guide for nShield Security 7/13
World v13.6.14

Chapter 2. nShield Architecture

Most standard libraries offer fewer key-management options than are available in the nCore
API. However, the nShield libraries do not include any extensions to their standards. If you
want to make use of features of the nCore API that are not offered in the standard, you
should convert your application to work directly with the generic stub.

On the other hand, many standard libraries include functions that are not supported on the
nShield module, such as support for IDEA or Skipjack. If you require a feature that is not sup
ported on the nShield module, contact Support because it may be possible to add the fea-
ture in a future release. However, in many cases, features are not present on the module for
licensing reasons, as opposed to technical reasons, and Entrust cannot offer them in the
interface library.

2.5. Writing a custom application

If you choose not to use one of the interface libraries, you must write a custom application.

This gives you access to all the features of the nCore API. For this purpose, Entrust provides
generic stub libraries for C and Java. If you want to use a language other than C orJava, you
must write your own wrapper functions in your chosen programming language that call the

C generic stub functions.

Entrust supplies several utility functions to help you write your application.

2.6. Acceleration-only or key management

You must also decide whether you want to use key management or whether you are writing
an acceleration-only application.

Acceleration-only applications are much simpler to write but do not offer any security bene
fits.

The Microsoft CryptoAPI, Java JCE, PKCS #11, as well as the application plug-ins, use the
Security World paradigm for key storage.

If you are writing a custom application, you have the option of using the Security World
mechanisms, in which case your users can use the command-line utilities supplied with the
module for many key-management operations. This means you do not have to write these
functions yourself.

The NFKM library gives you access to all the Security World functionality.

PKCS 11 Reference Guide for nShield Security 8/113
World v13.6.14

Chapter 3. PKCS #11 Developer libraries

3. PKCS #11 Developer libraries

The nShield PKCS #11 libraries, 1ibcknfast.so and libcknfast.a (nShield tools only) on
Linux, and cknfast.1ib and cknfast.d11 on Windows are provided so that you can integrate
your PKCS #11 applications with the nShield hardware security modules.

The nShield PKCS #11 libraries:

« Provide the PKCS #11 mechanisms listed in Mechanisms

+ Help you to identify potential security weaknesses, enabling you to create secure
PKCS #11 applications more easily.

3.1. Checking the installation of the nShield PKCS #11
library

After you have created a Security World, ensure that the nShield PKCS #11 library has been
successfully installed with ckcheckinst.

3.2. PKCS #11 security assurance mechanism

It is possible for an application to use the PKCS #11 APl in ways that can introduce potential
security weaknesses. For example, it is a requirement of the PKCS #11 standard that the
nShield PKCS #11 libraries are able to generate keys that are explicitly exportable in plain
text. An application could use this ability in error when a secure key would be more appropri
ate.

The nShield PKCS #11 libraries are provided with a configurable security assurance mecha-
nism (SAM). SAM helps prevent PKCS #11 applications from performing operations through
the PKCS #11 API that may compromise the security of cryptographic keys. Operations that
reveal questionable behavior by the application fail by default with an explanation of the
cause of failure.

If you decide that some operations that carry a higher security risk are acceptable to you,
then you can reconfigure the nShield PKCS #11 library to permit these operations by means
of the environment variable CKNFAST _OVERRIDE SECURITY_ASSURANCES. You must think care-
fully, however, before permitting operations that could compromise the security of crypto-

graphic keys.
It is your responsibility as a security developer to familiarize yourself
with the PKCS #11 standard and to ensure that all cryptographic opera-
tions used by your application are implemented in a secure manner.

PKCS 11 Reference Guide for nShield Security 9/113

World v13.6.14

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/ckcheckinst.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/ckcheckinst.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/ckcheckinst.html

Chapter 3. PKCS #11 Developer libraries

If no parameters are supplied to the environment variable, the nShield PKCS #11 library fails
and issues a warning, with an explanation, when the following operations are detected:

+ Short term session keys created as long term objects

+ Keys that can be exported as plain text are created

+ Keys are imported from external sources

« Wrapping keys are created or imported

« Unwrapping keys are created or imported

- Keys with weak algorithms (for example, DES) are created

+ Keys with short key length are created.

3.2.1. Key security

Questionable operations largely relate to the concept of a key being secure. A private or
secret key is considered insecure if there is some reason for believing that its value may be
available outside the HSM. Public keys are never considered insecure; by definition they are
intended to be public.

An explicitly insecure PKCS #11 key is one where CKA_SENSITIVE is set to false. If an applica-
tion uses a key that is insecure but CKA_SENSITIVE is not set to false, it is possible that the
application is using an inadequate concept of key security, and that the library disallows use
of that key by default. Use of insecure keys should, by default, be restricted to short-term
session keys, and applications should explicitly recognize the insecurity.

PKCS 11 Reference Guide for nShield Security 10/113
World v13.6.14

Chapter 4. PKCS #11 with load sharing mode

4. PKCS #11 with load sharing mode

The behavior of the nShield PKCS #11 library varies depending on which of load-sharing
mode, HSM Pool mode or neither or these is enabled. If you have enabled load-sharing
mode, the nShield PKCS #11 library creates one virtual slot for each OCS and, optionally,
also creates one slot for the HSM or HSMs. Softcards appear as additional virtual slots once
enabled. See also CKNFAST_CARDSET_HASH.

An additional virtual slot may be returned (with the label of accelerator), depending on the
value given to the variable CKNFAST_NO_ACCELERATOR_SLOTS (described in CKNFAST_NO_AC-
CELERATOR_SLOTS). Accelerator slots can:

+ Be used to support session objects
+ Be used to create module-protected keys

« Not be used to create private objects.

e ‘ Load-sharing mode must be enabled in PKCS #11 in order to use soft-
cards.

Whether or not load-sharing mode is enabled is determined by the state of the CKN-
FAST_LOADSHARING environment variable.

Load-sharing mode enables you to load a single PKCS #11 token onto several nShield HSMs
to improve performance. To enable successful load-sharing with an OCS protected key:

+ You must have an Operator Card from the OCS inserted into every slot from the same
1/N card set

« All the Operator Cards must have the same passphrase.

The PKCS #11 token is present until you remove the last card belonging to the OCS. When
you remove the token, the nShield PKCS #11 library closes any open sessions.

The nShield-specific API calls, C_LoginBegin, C_LoginNext, and C_LoginEnd do not function
in load-sharing mode. K/N support for card sets in load-sharing mode is only available if you
first use preload to load the logical token.

4.1. Logging in

If you call C_Login without a token present, it fails (as expected) unless you are using a per-
sistent token with preload or using only module-protected keys. Therefore, your application
should prompt users to insert tokens before logging in.

PKCS 11 Reference Guide for nShield Security 11/113
World v13.6.14

Chapter 4. PKCS #11 with load sharing mode

The nShield PKCS #11 library removes the nShield logical token when you call C_Logout,
whether or not there is a smart card in the reader.

If there are any cards from the OCS present when you call C_Logout, the PKCS #11 token
remains present but not logged-in until all cards in the set are removed. If there are no cards
present, the PKCS #11 token becomes not present.

If you remove a smart card that belongs to a logged-in token, the nShield PKCS #11 library
closes any open sessions and marks the token as being not present (unless the OCS is per-
sistent). Removing a card from a persistent OCS has no effect, and the PKCS #11 token
remains present until you log out.

The CKNFAST_NONREMOVABLE environment variable is only available for persistent tokens.
When the variable is set, the rules for recognizing new cards are overridden, and the only
way to invoke a new token is to call C_Finalize or C_Initialize.

4.2. Session objects

Session objects are loaded on all modules.

4.3. Module failure

If a subset of the modules fails, the nShield PKCS #11 library handles commands using the
remaining modules. If a module fails, the single cryptographic function that was running on
that module will fail, and the nShield PKCS #11 library will return a PKCS #11 error. Subse-
quent cryptographic commands will be run on other modules.

4.4. Compatibility

Before the implementation of load-sharing, the nShield PKCS #11 library puts the electronic
serial number in both the slotinfo.slotDescription and tokeninfo.serialNumber fields. If
you have enabled load-sharing, the tokeninfo.serialNumber field displays the hash of the
OcCs.

4.5. Restrictions on function calls in load-sharing mode

The following function calls are not supported in load-sharing mode:

- C_LoginBegin (nShield-specific call to support K/N card sets)

PKCS 11 Reference Guide for nShield Security 12/113
World v13.6.14

Chapter 4. PKCS #11 with load sharing mode
- C_LoginNext (nShield-specific call to support K/N card sets)
- C_LoginEnd (nShield-specific call to support K/N card sets).
The following function calls are supported in load-sharing mode only when using softcards:

« C_InitToken

« C_InitPIN
 C_SetPIN.
Touse C_InitToken, C_InitPIN, or C_SetPIN in load-sharing mode, you
0 must have created a softcard with the command ppmk -n before select-
ing the corresponding slot.
o The C_InitToken function is not supported for use in non-load-sharing
FIPS 140 Level 3 Security Worlds.
PKCS 11 Reference Guide for nShield Security 13/113

World v13.6.14

Chapter 5. PKCS #11 with HSM Pool mode

5. PKCS #11 with HSM Pool mode

If HSM Pool mode is enabled, the nShield PKCS #11 library exposes a single pool of HSMs
and a single virtual slot for a fixed token with the label accelerator. This accelerator slot can
be used to create module protected keys and to support session objects.

HSM Pool mode supports module protected keys but does not support token-protected
keys. If your application only uses module protected keys, you can use HSM Pool mode as
an alternative to using load-sharing mode. HSM Pool mode supports returning or adding a
hardware security module to the pool without restarting the system.

Whether or not HSM Pool mode is enabled is determined by the state of the CKN-
FAST_HSM_POOL environment variable.

In FIPS 140 Level 3 Security Worlds, keys cannot be created in HSM Pool mode, however
keys created outside HSM Pool mode can be used in HSM Pool mode.

5.1. Module failure

If a subset of the modules in the HSM pool fail, the nShield PKCS #11 library handles com-
mands using the remaining modules. When a module fails, any cryptographic functions that
were running on that module are restarted on one of the remaining modules. If all of the
modules in the HSM pool fail, the nShield PKCS #11 library will return a PKCS #11 error.

5.2. Module recovery

If a failed module recovers and remains part of the Security World, it is automatically
returned to the HSM Pool and the nShield PKCS #11 library can use it for new commands. If
a new module is added to the system that is accessible to the host running the PKCS #11
application, then once the Security World has been loaded onto this HSM, then it is auto-
matically added to the HSM Pool and the nShield PKCS #11 library can use it for new com-
mands.

5.3. Restrictions on function calls in HSM Pool mode

The following function calls are not supported in HSM Pool mode:

« C_LoginBegin
« C_LoginNext

PKCS 11 Reference Guide for nShield Security 14/113
World v13.6.14

Chapter 5. PKCS #11 with HSM Pool mode

« C_LoginEnd
« C_InitToken
« C_InitPIN

- C_SetPIN

PKCS 11 Reference Guide for nShield Security 15/113
World v13.6.14

Chapter 6. Generating and deleting NVRAM-stored keys with PKCS #11

6.

Generating and deleting NVRAM-stored

keys with PKCS #11

You can use the nShield PKCS #11 library to generate keys stored in nonvolatile memory (up
to a maximum of 12 keys) if you have set the CKNFAST_NVRAM_KEY_STORAGE environment vari-
able.

6.1. Generating NVRAM-stored keys

To generate NVRAM-stored keys with the nShield PKCS #11 library:

1.

Load (or reload) the ACS using the preload command-line utility. Open a command-

line window and give the command:

preload --admin=NV pause

. After loading the ACS, remove the Administrator Cards from the module.

. Ensure that the CKNFAST_NVRAM_KEY _STORAGE environment variable is set. If this variable

is not set, the keys generated are not stored in NVRAM.

. Open a second command-line window, and give the command:

preload --cardset-name=<name> <pkcs11app>

where <name> is the cardset name and <pkcs11app> is the name of your PKCS #11 appli-
cation.

. Generate the NVRAM-stored keys that you need (up to a maximum of 12 keys) as nor-

mal.

. Stop or close <pkcs11app>.

. Return to the command-line window you opened in step 1and terminate the preload

--admin=NV pause process.

Do not allow the preload --admin=NV pause process to run continu
ously. Run this process only when generating or deleting NVRAM-

o stored keys. As usual, remove the Administrator Cards when they
are not in use and store them safely.

8. Unset the CKNFAST_NVRAM_KEY_STORAGE environment variable.

. Restart <pkcs11app>.

PKCS 11 Reference Guide for nShield Security 16/113
World v13.6.14

Chapter 6. Generating and deleting NVRAM-stored keys with PKCS #11

You can use the newly generated NVRAM-stored keys in the same way as other PKCS
#11 keys. You can also generate any number of standard keys (not stored in NVRAM) in
the usual way.

6.2. Deleting NVRAM-stored keys
To delete NVRAM-stored keys with the nShield PKCS #11 library:

1. Load (or reload) the ACS using the preload command-line utility. Open a command-
line window and give the command:

preload --admin=NV pause

2. After loading the ACS, remove the Administrator Cards from the module. Ensure that
the CKNFAST_NVRAM_KEY_STORAGE environment variable is set.

If you attempt to delete NVRAM-stored keys without the CKN-
FAST_NVRAM_KEY_STORAGE environment variable set, only the key
0 blob stored on hard disk is deleted. The keys remain in NVRAM on
the module. Use the nvram-sw command-line utility to fully remove

the NVRAM-stored keys. For more information, see nvram-sw.

3. Open a second command-line window, and give the command:

preload --cardset-name=<name> -M <pkcs11app>

where <name> is the cardset name and <pkcs11app> is the name of the PKCS #11 applica
tion that you use to delete the keys.

4. Delete the NVRAM-stored keys as you would delete normal keys.
5. Stop or close <pkcs11app>.

6. Return to the command-line window you opened in step 1and terminate the preload
--admin=NV pause process.

Do not allow the preload --admin=NV pause to run continuously.
Run this process only when generating or deleting NVRAM-stored

o keys. As usual, remove the Administrator Cards when they are not
in use and store them safely.

7. Unset the CKNFAST _NVRAM_KEY_STORAGE environment variable.

PKCS 11 Reference Guide for nShield Security 17/113
World v13.6.14

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/nvram-sw.html

Chapter 7. PKCS #11 with key reloading

/. PKCS #11 with key reloading

The nShield PKCS #11 library is capable of reloading keys to nShield HSMs after a PKCS #11
application has started. The PKCS #11 library will attempt to reload the keys to all HSMs
from which keys have been unloaded after the application was started, for example, if the
HSM was cleared. This also means that if an application uses HSMs that became unusable
during runtime, the PKCS #11 library will re-add these HSMs into the group of HSMs in a sin
gle Security World when they become usable again. The PKCS #11 library will also attempt
to reload the keys on new HSMs that become usable after the application has started, for
example if you enroll a new HSM into the Security World. The application can then use the
HSM for key operations.

The default behavior without PKCS #11 key reloading is that when an HSM is removed from
the group of HSMs in a Security World, it is not re-added for PKCS #11 until the user's appli-
cation is restarted.

The CKNFAST_RELOAD_KEYS environment variable determines whether key reloading mode is
enabled.

Load-sharing mode must be enabled in PKCS #11 to use key reloading
mode. If load-sharing is not enabled, it is enabled automatically if CKN-
FAST_RELOAD_KEYS is enabled.

Key reloading is not supported for session keys.

/.1. Usage under preload

PKCS #11 key reloading only reloads keys. It must also operate under a preload session dur-
ing which preload is reloading tokens that protect the keys used by PKCS #11, in high avail-
ability mode. When the PKCS #11 application is using a token-protected key, preload should
first be run to reload the token while PKCS #11 is reloading the key. For information on run-
ning preload for PKCS #11 key reloading, see PKCS #11 with preload and Preload Utility.

PKCS #11 key reloading is also supported for module-protected keys,
but the PKCS #11 application must still be run under a preload applica-
tion which is reloading tokens for another key.

Either run the PKCS #11 application as a subprocess of preload, or in a separate command
window ensuring the preload file set for preload matches the one set for PKCS #11. See
PKCS #11 with preload and Preload Utility

The application will attempt to reload keys when supported functions are called, see Sup-

PKCS 11 Reference Guide for nShield Security 18/113
World v13.6.14

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/preload-utility.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/preload-utility.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/preload-utility.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/preload-utility.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/preload-utility.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/preload-utility.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/preload-utility.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/preload-utility.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/preload-utility.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/preload-utility.html

Chapter 7. PKCS #11 with key reloading

ported function calls.

7.1.1. Persistent preload files

The preload file persists on disk after the preload process has terminated. Therefore, a
PKCS #11 application in key reloading mode should not be run with an NFAST_NFKM_TOKENS-
FILE that points to a preload file from an old (non-running) preload process.

/.2. Supported function calls

Key reloading is attempted whenever a key is used for a cryptographic operation. For sign-
ing, verifying, encrypting, and decrypting, the functions are as follows:

« C_SignInit

- C_VerifyInit
« C_Encryptlnit
« C_Decryptlnit

On a call to any of these functions, the PKCS #11 library will do the following:

1. Checks if preload has reloaded any token objects on any HSMs since the last time one
of the above functions was called. This is done by checking if the preload file has been
modified. If not, there is nothing to reload.

2. If reload is required, reloads any keys that are protected by the newly-loaded tokens on
all usable HSMs in the group.

/.3. Retrying key reloads

PKCS #11 can fail to reload a key due to transient or genuine errors. An example for a tran-
sient error is when an HSM has not finished reinitializing in time for a key to be reloaded. An
example for a genuine error is when the key is invalid. In case of a failure, PKCS #11 will
attempt to reload the key every time one of the functions in Supported function calls is
called for a further 5 minutes before abandoning the key reload on that HSM.

/7.4. Adding new HSMs

With key reloading enabled using the CKNFAST_RELOAD_KEYS environment variable, the PKCS
#11 library can add new HSMs to its internal list of usable modules. HSMs are new if they
were not present when PKCS #11 applications were initialized. When key reloading is not

PKCS 11 Reference Guide for nShield Security 19/13
World v13.6.14

Chapter 7. PKCS #11 with key reloading

enabled, PKCS #11 applications must be restarted before the new HSMs can be used.

The PKCS #11 library supports a maximum of 32 HSMs. If you have already reached 32
HSMs and you add a new HSM, then the PKCS #11 library will not be able to add this mod-
ule. If an HSM is removed from the Security World or otherwise becomes unusable, it is still
counted towards this limit. The application must be restarted to remove the removed or
unusable HSM from the list.

PKCS 11 Reference Guide for nShield Security 20/113
World v13.6.14

Chapter 8. PKCS #11 without load-sharing or HSM Pool modes

8. PKCS #11 without load-sharing or HSM
Pool modes

The nShield PKCS #11 library makes each nShield module appear to your PKCS #11 applica-
tion as two or more PKCS #11 slots, unless you have set CKNFAST_NO_ACCELERATOR_S-
LOTS.

o The entry called accelerator cannot be used to create private objects.
It can be used to create module-protected keys.

The first slot represents the module itself. This token:

« Appears as a non-removable hardware token and has the flag CKF_REMOVABLE not set
- Has the flag CKF_LOGIN_REQUIRED not set (C_Login always fails on this flag).

Applications can ignore this slot, but you can use the slot to store public
o session objects or for functions that do not use objects (such as C_Gen-
erateRandom) even when the smart-card is not present.

The second slot represents the smart-card reader. This token:
- appears as a PKCS #11 slot, potentially containing a removable hardware token that has
the flag CKF_REMOVABLE set
« is marked as removed if the smart card is removed from the physical slot
+ has the flag CKF_LOGIN_REQUIRED

+ allows the creation of token objects.

o ‘ To use softcards with PKCS #11, load-sharing mode must be enabled.

A PKCS #11 token can support multiple concurrent sessions on multiple applications. How-
ever, by default, only one token may be logged in to a given slot at a given time (see K/N
support for PKCS #11). By default, when you insert a new card into a slot, the nShield PKCS
#11 library automatically logs out any token that had been logged in to the slot previously.

o The C_InitToken function is not supported for use in non-load-sharing
FIPS 140 Level 3 Security Worlds.

8.1. K/N support for PKCS #11

If you use the nShield PKCS #11 library without load-sharing mode or HSM Pool mode, you
can implement K/N card set support in two ways:

PKCS 11 Reference Guide for nShield Security 21/113
World v13.6.14

Chapter 8. PKCS #11 without load-sharing or HSM Pool modes

« By using the nShield-specific API calls, C_LoginBegin, C_LoginNext, and C_LoginEnd

+ By using the preload command-line utility to load the logical token first.

PKCS 11 Reference Guide for nShield Security 22/113
World v13.6.14

Chapter 9. PKCS #11 with preload

9. PKCS #11 with preload

You can use the preload command-line utility to preload K/N OCSs before actually using
PKCS #11 applications. The preload utility loads the logical token and then passes it to the
PKCS #11 utilities.

You must provide any required passphrase for the tokens when using preload to load the
card set. However, because the application is not aware that the card set has been pre-
loaded, the application operates normally when handling the login activity (including
prompting for a passphrase), but the PKCS #11 library will not actually check the supplied
passphrase. preload must be also used with the cksotool utility to perform operations that
require the PKCS #11 Security Officer role.

Normally, preload uses environment variables to pass information to the program using the
preloaded objects, including the PKCS #11 library. Therefore, if the application you are using
is one that clears its environment before the PKCS #11 library is loaded, you must set the
appropriate values in the cknfastrc file (see nShield PKCS #11 library environment vari-
ables). The current environment variables remain usable. The default setting for the CKN-
FAST_LOADSHARING environment variable changes from specifying load-sharing as disabled
to specifying load-sharing as enabled. Moreover, in load-sharing mode, the loaded card set
is used to set the environment variable CKNFAST_CARDSET_HASH so that only the loaded card
set is visible as a slot.

The NFAST_NFKM_TOKENSFILE environment variable must also be set in the cknfastrec file to
the location of the preload file (see nShield PKCS #11 library environment variables).

A logical token preloaded by preload for use with the nShield PKCS #11 library is the only
such token available to the application for the complete invocation of the library. You can
use more than one HSM with the same card set.

If the loaded card set is non-persistent, then a card must be left in each HSM on which the
set has been loaded during the start-up sequence. After a non-persistent card has been
removed, the token is not present even if the card is reinserted.

If load-sharing has been specifically switched off, you see multiple slots with the same
label.

PKCS 11 Reference Guide for nShield Security 23/113
World v13.6.14

Chapter 10. PKCS #11 Security Officer

10. PKCS #11 Security Officer

The PKCS #11 Security Officer is a role that is created and managed by the cksotool utility.
The utility creates a softcard and key, which are used to perform operations within the
nShield PKCS #11 library as the Security Officer. The idents of the generated softcard and
key are ncipher-pkcs11-so-softcard and ncipher-pkes11-so-key, respectively. They are
used during Security Officer operations to provide the cryptographic security.

ncipher-pkes11-so-softcard does not appear in the result of C_Get-
o SlotList and therefore cannot be used to create PKCS #11 keys, or
have its PIN changed using C_SetPIN.

To act as the Security Officer within the nShield PKCS #11 library, the Security Officer
token and key must be preloaded using the preload utility:

preload -s ncipher-pkes11-so-softcard pause

The PKCS #11 session must also be logged in as the user CKU_SO. preload is used so that vir-
tual-slots in load-sharing can be logged into using the usual PKCS #11 API. This allows Secu
rity Officer operations to be performed on keys protected by any token.

It is strongly advised that operations that require loading the PKCS #11 Security Officer
token are performed by a dedicated tool, and not integrated into a main application.

PKCS 11 Reference Guide for nShield Security 24/113
World v13.6.14

Chapter 11. nShield-specific PKCS #11 API extensions

11. nShield-specific PKCS #11 API extensions

nShield K/N card sets use nShield-specific API calls. These calls can be used by the applica-
tion in place of the standard C_Login to provide log-in to a card set with a K parameter
greater than 1. The API calls include three functions, C_LoginBegin, C_LoginNext and C_Logi-
nEnd.

o ‘ The login sequence must occur in the same session.

You cannot use the API calls in load-sharing mode. To use K/N card sets
e in load-sharing mode, use preload to load the logical token first. The API
calls also work in a non-load-sharing FIPS 140 Level 3 Security Worlds.

11.1. C_LoginBegin

Similar to C_Log1n, this function initiates the log-in process, ensures that the session is valid,
and ensures that the user is not in load-sharing mode.

The pulK and pulN return values provide the caller with the number of card requests
required. An example of the use of C_LoginBegin is shown here:

C_LoginBegin (CK_SESSION_HANDLE hSession, /* the session's handle */
CK_USER_TYPE userType, /* the user type */
CK_ULONG_PTR pulK, /* cards required to load logical token*/
CK_ULONG_PTR pulN /* Number of cards in set */)

11.2. C_LoginNext

C_LoginNext is called K times until the required number of cards (for the given card set)
have been presented. This function checks the Security World info to ensure that the card
has changed each time. It also checks for the correct passphrase before loading the card
share. pulShareslLeft allows the user application to assess the number of cards loaded to
the number of cards required.

CK_RV gives various values that allow the user to access the application state using standard
PKCS #11 return values (such as CKR_TOKEN _NOT_RECOGNIZED). These values reveal such infor
mation as whether the card is the same, whether the card is foreign or blank, and whether
the passphrase was incorrect.

An example of the use of C_LoginNext is shown here:

C_LoginNext (CK_SESSION_HANDLE hSession, /* the session's handle */
CK_USER_TYPE userType, /* the user type*/

PKCS 11 Reference Guide for nShield Security 25/113
World v13.6.14

Chapter 11. nShield-specific PKCS #11 API extensions

CK_CHAR_PTR pPin, /* the user's PIN*/
CK_ULONG ulPinLen, /* the length of the PIN */
CK_ULONG_PTR pulSharesLeft /* Number of shares still needed */)

11.3. C_LoginEnd

C_LoginEnd is called after all the shares are loaded. It constructs the logical token from the
presented shares and then loads the private objects protected by the card set that are avalil
able to it:

C_LoginEnd (CK_SESSION_HANDLE hSession, /* the session's handle */
CK_USER_TYPE userType /* the user type*/)

There must be no other calls between the functions, in that or any other
session on the slot. In particular, a call that updates the Security World

while using a card that has been removed at the time (for example,
o because a second card from the set is about to be inserted) returns
CKR_DEVICE_REMOVED in the same way that it would for a single card. All
sessions are then closed and the log-in process is aborted.

If other functions are accidentally called during the log-in cycle, then slot.loadcardset-
state is checked before updating the Security World. If the log-in process has not been
completed, other functions return CKR_FUNCTION_FAILED and allow you to continue with the
log-in process.

PKCS 11 Reference Guide for nShield Security 26/113
World v13.6.14

Chapter 12. Compiling and linking

12. Compiling and linking

The following options are available if you want to integrate the nShield PKCS #11 library
with your application. Depending on how your application integrates with PKCS #11
libraries, you can:

- statically link the nShield PKCS #11 library directly into your application
+ dynamically link the nShield PKCS #11 library into your application

« create a plug-in shared library that contains the nShield position-independent code
object files together with your own adaptation facilities.

You may freely supply your users with the compiled library files linked into your application
or into a plug-in library used for your application.

The nShield PKCS #11 library includes the PKCS #11 header files pkes11.h, pkes11t.h, and
pkcs11f.h from the RSA Data Security, Inc. Cryptoki Cryptographic Token Interface. Any
work based on this interface is bound by the following terms of RSA Data Security, Inc.
Licence, which states:

License is also granted to make and use derivative works provided that such works are iden
tified as derived from the RSA Data Security, Inc. Cryptoki Cryptographic Token Interface in

all material mentioning or referencing the derived work.

For more information about using the available libraries, see the Include
o Paths and Linking section in the nCore APl Documentation on the
Security World Software installation media.

12.1. Windows

All versions are built with Visual Studio 2022. Entrust supplies the following files:

« %NFAST_HOME%\bin\cknfast.d11 and %NFAST_HOME%\toolkits\pkcs11\cknfast.d1l: a
dynamically linked library

o ‘ Both files are identical.

« %NFAST_HOME%\c\ctd\1lib\cknfast.1ib: a stub for applications that link to cknfast.d11

« %NFAST_HOME%\c\ctd\1lib\libcknfast.1lib: a static library with position-independent
code

12.2. Linux

PKCS 11 Reference Guide for nShield Security 27/113
World v13.6.14

Chapter 12. Compiling and linking

Entrust supplies the following libraries:

« libcknfast.so, libcknfast.so.a, or libcknfast.so: a standard, dynamically linked,
shared library that can be used to create applications that must be dynamically linked
with the nShield libraries at run time. On platforms where thread safety requires pro-
grams to be compiled differently from non-threaded programs, these libraries are com-
piled thread-safe.

« libcknfast.a: a standard, non-shared library used to statically link an application.

« libcknfast_thrpic.a: a non-shared library, compiled as threadsafe position-indepen-
dent code.

On the Developer installation media, each library is provided with a corresponding set of
header files. All the header files for each version are very similar, but some header files (par-
ticularly those that contain information about compiler and configuration options) differ by

version.

These types of library are provided compiled with the following C compilers for Linux
1libc6.11:

Library Type Build Notes

/opt/nfast/c/ctd/gec/1ib This type of library is built with gcc 4.9.2 in 32-bit mode.
/opt/nfast/c/csd/gee/1ib This type of library is built with gcc 4.9.2 in 64-bit mode.

PKCS 11 Reference Guide for nShield Security 28/113

World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables

13. nShield PKCS #11 library environment
variables

The nShield PKCS #11 library uses the following environment variables:

« CKNFAST_ASSUME_SINGLE_PROCESS
« CKNFAST_ASSURANCE_LOG

« CKNFAST_CARDSET_HASH

« CKNFAST_CONCATENATIONKDF_X963_COMPLIANCE
« CKNFAST_DEBUG

« CKNFAST_DEBUGDIR

« CKNFAST_DEBUGFILE

« CKNFAST_DH_LSB

- CKNFAST_EDDSA_PUBKEY _FORMAT

« CKNFAST_FAKE_ACCELERATOR_LOGIN
« CKNFAST_HSM_POOL

« CKNFAST_JCE_COMPATIBILITY

« CKNFAST_LOADSHARING

« CKNFAST_LOAD_KEYS

+ CKNFAST_NO_ACCELERATOR_SLOTS

« CKNFAST_NO_SYMMETRIC

« CKNFAST_NO_UNWRAP

« CKNFAST_NONREMOVABLE

« CKNFAST_NVRAM_KEY_STORAGE

« CKNFAST_OVERRIDE_SECURITY_ASSURANCES
- CKNFAST_RELOAD_KEYS

« CKNFAST_SEED_MAC_ZERO

« CKNFAST_SESSION_THREADSAFE

« CKNFAST_SESSION_TO_TOKEN

+ CKNFAST_SHARE_SESSION_KEYS

« CKNFAST_TOKENS_PERSISTENT

» CKNFAST_USE_THREAD_UPCALLS

« CKNFAST_WRITE_PROTECTED

If you used the default values in the installation script, you should not need to change any

of these environment variables.

PKCS 11 Reference Guide for nShield Security
World v13.6.14

29/13

Chapter 13. nShield PKCS #11 library environment variables

You can set environment variables in the file cknfastrec.

Linux

This file must be in the /opt/nfast/ directory of the client.

Windows
If the NFAST_HOME environment variable is not set, or if environment variables are cleared
by your application, the file cknfastrc must be in the $NFAST_HOME% directory of the

client.

o ‘ The cknfastrec file should be saved without any suffix (such as . txt).

Each line of the file cknfastrc must be of the following form:

<variable>=<value>

o Variables set in the environment are used in preference to those set in
the resource file.

Changing the values of these variables after you start your application has no effect until

you restart the application.

If the description of a variable does not explicitly state what values you can set, the values

you set are normally 1or 0, Y or N.

For more information concerning Security World Software environment
variables that are not specific to PKCS #11 and which are used to config

o ure the behavior of your nShield installation, see the Security World Soft
ware installation instructions.

13.1. CKNFAST_ASSUME_SINGLE_PROCESS

By default, this variable is set to 1. This specifies that only token objects that are loaded at
the time C_Initialize is called are visible.

Setting this variable to @ means that token objects created in one process become visible in
another process when it calls C_FindObjects. Existing objects are also checked for modifica
tion on disc; if the key file has been modified, then the key is reloaded. Calling C_SetAttrib-
uteValues or C_GetAttributeValues also checks whether the object to be changed has

been modified in another process and reloads it to ensure the most recent copy is changed.

Setting the variable to 0 can slow the library down because of the additional checking

PKCS 11 Reference Guide for nShield Security 30/113
World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables

needed if a large number of keys are being changed and a large number of existing objects
must be reloaded.

13.2. CKNFAST_ASSURANCE_LOG

This variable is used to direct all warnings from the Security Assurance Mechanism to a spe
cific log file.

13.3. CKNFAST_CARDSET_HASH

This variable enables you to specify a specific card set to be used in load-sharing mode. If
this variable is set, only the virtual smart card slot that matches the specified hash is
present (plus the accelerator slot). The hash that you use to identify the card set in CKN-
FAST_CARDSET_HASH is the SHA-1 hash of the secret on the card. Use the nfkminfo com-
mand-line utility to identify this hash for the card set that you want to use: it is listed as
hk1tu. For more information about using nfkminfo, see nfkminfo.

13.4.
CKNFAST_CONCATENATIONKDF_X963_COMPLIANCE

Sets the correct use of ECDH derive with concatenate KDF using the ANSI X9.63 specifica-
tion as per the PKCS#11 standard.

6 ‘ The default is ANSI X9.63 to match that of the PKCS #11 Specification.
o ECDH derive with concatenate KDF SP800-56a can use the standard
PKCS #11 v3 CKD_SHA[x]_SP800_KDF values.

13.5. CKNFAST_DEBUG

This variable is set to enable PKCS #11 debugging. The values you can set are in the range 0
- 11. If you are using NFLOG_* for debugging, you must set CKNFAST_DEBUG to 1.

Value Description

0 None (default setting)

1 Fatal error

2 General error

PKCS 11 Reference Guide for nShield Security 31/113

World v13.6.14

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/nfkminfo.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/nfkminfo.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/nfkminfo.html

Chapter 13. nShield PKCS #11 library environment variables

Value Description

3 Fix-up error

4 Warnings

5 Application errors

6 Assumptions made by the nShield PKCS #11 library
7 API function calls

8 API return values

9 API function argument values

10 Details

1 Mutex locking detail

13.6. CKNFAST_DEBUGDIR

If this variable is set to the name of a writeable directory, log files are written to the speci-
fied directory. The name of each log file contains a process ID. This can make debugging
easier for applications that fork a lot of child processes.

13.7. CKNFAST_DEBUGEFILE

You can use this variable to write the output for CKNFAST_DEBUG (Path name > file name).

13.8. CKNFAST_DH_LSB

If this variable is set the least significant bytes of the result of DH/ECDH key agreement
using the CKM_DH_PKCS_DERIVE, CKM_X9_42_DH_DERIVE or CKM_ECDH1_DERIVE mechanisms are
taken. This is in line with the PKCS#11 specification. If this variable is not set the most signif
icant bytes will be used. The latter behavior is consistent with Security World software prior
tov12.81.

13.9. CKNFAST_EDDSA_PUBKEY_FORMAT

If applications require the CKA_EC_POINT output (C_GetAttributeValue) as an ASN.1 Bit
String, set this variable to bits, otherwise it will be supplied as an ASN.1 Octet String.

This only applies to EDDSA keys.

PKCS 11 Reference Guide for nShield Security 32/113
World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables

13.10. CKNFAST_FAKE_ACCELERATOR_LOGIN

If this variable is set, the nShield PKCS #11 library accepts a PIN for a module-protected
key, as required by Sun Java Enterprise System (JES), but then discards it. This means that
a Sun JES user requesting a certificate protected by a load-shared HSM can enter an arbi-
trary PIN and obtain the certificate.

CKNFAST_FAKE_ACCELERATOR slots allow the creation of objects with CKA_PRIVATE=TRUE in the
template even though the login is "fake" and the objects are not private.

+ Examining the attributes shows CKA_PRIVATE as FALSE.
« A search for the object will not find it if the search criteria includes CKA_PRIVATE=TRUE.

13.11. CKNFAST_HSM_POOL
HSM Pool mode is determined by the state of the CKNFAST_HSM_POOL environment variable.

Set the environment variable to 1, y or Y to enable HSM Pool mode for the PKCS #11 applica
tion, or set to O, n or N to explicitly disable HSM Pool mode for the PKCS #11 application.

HSM Pool mode takes precedence over load-sharing mode. HSM Pool mode only supports
module protected keys so do not use CKNFAST_NO_ACCELERATOR_SLOTS to disable the acceler
ator slot.

13.12. CKNFAST_JCE_COMPATIBILITY

This property is included to allow the saving of objects when using Java PKCS#11 providers.

It is possible, using C_CopyObject, to change a key’'s CKA_TOKEN value from CK_FALSE to
CK_TRUE. This requires the CKNFAST_JCE_COMPATIBILITY environment variable to be set to 1.
The original key’'s CKA_TOKEN value will remain unchanged.

13.13. CKNFAST_LOADSHARING

Load-sharing mode is determined by the state of the CKNFAST_LOADSHARING environment
variable.

To enable load-sharing mode, set the environment variable CKNFAST_LOADSHARING to a value
that starts with something other than 0, n, or N and ensure that the CKNFAST_HSM_POOL envi-
ronment variable is not set. The virtual slot behavior then operates.

PKCS 11 Reference Guide for nShield Security 33/13
World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables

To use softcards with PKCS #11, you must have CKNFAST_LOADSHARING
set to a nonzero value. When using pre-loaded softcards or other

o objects, the PKCS #11 library automatically sets CKNFAST_LOADSHARING=1
(load-sharing mode on) unless it has been explicitly set to 0 (load-shar-

ing mode off).

13.14. CKNFAST_NO_ACCELERATOR_SLOTS

If this variable is set, the nShield PKCS #11 library does not create the accelerator slot, and
thus the library only presents the smart card slots (real or virtual, depending on whether
load-sharing is in use).

Do not set this environment variable if you want to use the accelerator slot to create or load
module-protected keys.

0 Setting this environment variable has no effect on ckcheckinst because
ckcheckinst needs to list accelerator slots.

13.15. CKNFAST_NO_SYMMETRIC

If this variable is set, the nShield PKCS #11 library does not advertise any symmetric key
operations.

13.16. CKNFAST_NO_UNWRAP

If this variable is set, the nShield PKCS #11 library does not advertise the c_wrap and c_un-
wrap commands. You should set this variable if you are using Sun Java Enterprise System
(JES) or Netscape Certificate Management Server as it ensures that a standard SSL hand-
shake is carried out. If this variable is not set, Sun JES or Netscape Certificate Management
Server make extra calls, which reduces the speed of the library.

13.17. CKNFAST_NONREMOVABLE

When this environment variable is set, the state changes of the inserted card set are
ignored by the nShield PKCS #11 library.

Since protection by non-persistent cards is enforced by the HSM, not
0 the library, this variable does not make it possible to use keys after a
non-persistent card is removed, or after a timeout expires.

PKCS 11 Reference Guide for nShield Security 34/13
World v13.6.14

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/ckcheckinst.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/ckcheckinst.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/ckcheckinst.html

Chapter 13. nShield PKCS #11 library environment variables

13.18. CKNFAST_NVRAM_KEY_STORAGE

When this environment variable is set, the PKCS #11 library generates only keys in non-
volatile memory (NVRAM). You must also ensure this environment variable is set in order to
delete NVRAM-stored keys.

13.19. CKNFAST_OVERRIDE_SECURITY_ASSURANCES

This variable can be assigned one or more of the following parameters, with an associated
value where appropriate, to override the specified security assurances in key operations
where this is deemed acceptable:

- all

+ none

- tokenkeys

« longterm [=<days>]
- explicitness

- import

- wrapping_crypt

« unwrap_kek

. derive_kek

. derive_xor

- derive_concatenate
+ unwrap_rsa_aes_kwp
+ weak_<algorithm>

- shortkey_<algorithm>=<bitlength>

. silent.

Each parameter specified is separated by a semicolon. Using the command line, enter the
following to set the variable:

Linux

CKNFAST_OVERRIDE_SECURITY_ASSURANCES="<parameter1>;<parameter2>=<value3>"

Windows

set CKNFAST_OVERRIDE_SECURITY_ASSURANCES=<parameter1>;<parameter2>=<value3>

In the configuration file, enter the following to set the variable:

PKCS 11 Reference Guide for nShield Security 35/113
World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables
CKNFAST_OVERRIDE _SECURITY_ASSURANCES=<parameter1>;<parameter2>=<value3>

Unknown parameters generate a warning; see Diagnostic warnings about questionable oper
ations.

The meaning of these parameters is described in the rest of this section.

13.19.1. all

The all parameter overrides all security checks and has the same effect as supplying all the
other CKNFAST_OVERRIDE_SECURITY_ASSURANCES parameters except the none parameter.
Using the all parameter prevents the library from performing any of the security checks
and allows the library to perform potentially insecure operations. This parameter cannot be
used with any other parameters.

13.19.2. none

The none parameter does not override any of the security checks and has the same effect
as supplying no parameters. Using the none parameter allows the library to perform all secu-
rity checks and warn about potentially insecure operations without performing them. This
parameter cannot be used with any other parameters.

13.19.3. tokenkeys

The tokenkeys parameter permits applications to request that insecure keys are stored
long-term by the cryptographic hardware and library.

Some PKCS #11 applications create short-term session keys as long-term objects in the
cryptographic provider, for which strong protection by the HSM is not important. There-
fore, provided that you intend to create long-term keys, the need to set this token does not
always indicate a potential problem because the longterm keys restriction is triggered auto-
matically. If you set the tokenkeys parameter, ensure that your Quality Assurance process
tests all of your installation’s functionality at least 48 hours after the system was set up to
check that the key lifetimes are as expected.

When the tokenkeys parameter is set, the effect on the PKCS #11 library is to permit inse-
cure Token keys. By default, any attempts to create, generate, or unwrap insecure keys with
CKA_TOKEN=true fails with CKR_TEMPLATE _INCONSISTENT and a log message that explains the
insecurity. When tokenkeys is included as a parameter for CKNFAST_OVERRIDE_SECURITY_AS-
SURANCES, attempts to create, generate, or unwrap insecure keys with CKA_TOKEN=true are

PKCS 11 Reference Guide for nShield Security 36/113
World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables

allowed.

13.19.4. longterm[=days]

The longterm parameter permits an insecure key to be used for days after it was created.
Usually insecure keys may not be used more than 48 hours after their creation. If days is not
specified, there is no time limit.

o A need to set this variable usually means that some important keys that
should be protected by the HSM's security are not secure.

When the longterm parameter is set, the PKCS #11 API permits the use of the following func
tions with an insecure key up to the specified number of days after its creation:

- C_Signand C_SignUpdate
« C_Verifyand C_VerifyUpdate

C_Encrypt and C_EncryptUpdate
+ C_Decrypt and C_DecryptUpdate.

By default these functions fail with CKR_FUNCTION_FAILED, or CKR_KEY_FUNCTION_NOT_PERMIT-
TED, and a log message that explains the insecurity of these functions when used with an
insecure private or secret key more than 48 hours after the creation of the key as indicated
by time() on the host.

When the longterm parameter is set, the functions C_SignInit, C_VerifyInit, C_Encryp-
tInit, and C_DecryptInit check the CKA_CREATION_DATE against the current time.

13.19.5. explicitness

The explicitness parameter permits applications to create insecure keys without explicitly
recognizing that they are insecure. An insecure key is a key that is deemed sensitive, but
can be wrapped and extracted from the HSM by any untrusted key. A secure key must have
the CKA_WRAP_WITH_TRUSTED attribute.

A need to set the explicitness parameter does not necessarily indicate
o a problem, but does usually indicate that a review of the application’s
security policies and use of the PKCS #11 API should be carried out.

Unless the explicitness parameter is set, attempts to create, generate, or unwrap insecure
keys with CKA_SENSITIVE=true, or to set CKA_SENSITIVE=true on an existing key, fail by
default with CKR_TEMPLATE_INCONSISTENT and a log message explaining the insecurity. How-

PKCS 11 Reference Guide for nShield Security 37/113
World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables

ever, when the explicitness parameter is set, these operations are allowed.

13.19.6. import

The import parameter allows keys that are to be imported into the HSM's protection from
insecure external sources to be treated as secure, provided that the application requests
security for them. Usually, the library treats imported keys as insecure for the purposes of
checking the security policy of the application. Even though the imported copy may be
secure, insecure copies of the key may still exist on the host and elsewhere.

If you are migrating from software storage to hardware protection of keys, you must enable
the import parameter at the time of migration. You can disable import again after migrating
the keys.

Setting this variable at any other time indicates that the library regards
the key as secure, even though it is not always kept within a secure envi
ronment.

When the import parameter is set, the PKCS #11 API treats keys that are imported through
C_CreateObject or C_UnwrapKey as secure (provided there is no other reason to treat them
as insecure). By default, keys which are imported through C_CreateObject or C_UnwrapKey
without this option in effect are marked as being insecure. Only the setting of the parame-
ter at the time of import is relevant.

13.19.7. wrapping_crypt

The wrapping_crypt parameter allows you to create keys with insecure combinations of
wrap/unwrap and encrypt/decrypt operations.

By default, when wrapping_crypt is not supplied as a parameter for CKNFAST_OVERRIDE_SECU
RITY_ASSURANCES, trying to create a key with either CKA_UNWRAP=true or CKA_WRAP=true and
CKA_DECRYPT=true or CKA_ENCRYPT=true will fail with CKR_TEMPLATE_INCONSISTENT.

Combinations such as wrap+encrypt or unwrap+encrypt are prohibited because for some
mechanisms (e.g. counter mode), encrypt and decrypt are the same operation, so allowing
encrypt is functionally the same as allowing decrypt.

13.19.8. unwrap_kek

When a key is transferred into the HSM in encrypted form, the key is usually treated as inse
cure unless the key that was used for the decryption only allows the import and export of

PKCS 11 Reference Guide for nShield Security 38/113
World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables

keys and not the decryption of arbitrary messages. This behavior is necessary to prevent an
unauthorized application from simply decrypting the encrypted key instead of importing it.
However, because PKCS #11 wrapping mechanisms are insecure, all unwrapping keys have

CKA_DECRYPT=true.

By default, keys that are unwrapped with a key that has CKA_DECRYPT permission are consid-
ered insecure. When the unwrap_kek parameter is set, the PKCS #11 API considers keys that
are unwrapped with a key that also has CKA_DECRYPT permission as secure (provided there is
no other reason to treat them as insecure).

13.19.9. derive_kek

By default, keys that have been derived by using CKM_DES3_ECB_ENCRYPT_DATA with a key
that has CKA_ENCRYPT permission are considered insecure. However, when the derive_kek
parameter is set, the PKCS #11 API considers keys that are derived with a key that has
CKA_ENCRYPT permission as secure (provided that there is no other reason to treat them as
insecure).

13.19.10. derive_xor

Normally, you can only use only extractable keys with CKM_XOR_BASE_AND_DATA and, on unex-
tractable keys, only CKM_DES3_ECB_ENCRYPT_DATA is allowed by CKA_DERIVE. However, when
the derive_xor parameter is set, the PKCS #11 API also allows such functions with keys that
are not extractable and treats them as secure (provided that there is no other reason to
treat them as insecure).

13.19.11. derive_concatenate

Normally, you can only use session keys with CKM_CONCATENATE_BASE_AND_KEY for use with
the operation C_DeriveKey. However, when the derive_concatenate parameter is set, the
PKCS #11 API also allows such functions with keys that are long term (token) keys. The
PKCS #11 API treats these keys as secure, provided there is no other reason to treat them
as insecure. Even if the all parameter is set, if you do not include the CKA_ALLOWED_MECHA-
NISMS with CKM_CONCATENATE_BASE_AND_KEY, this C_DeriveKey operation will not be allowed.

13.19.12. unwrap_rsa_aes_kwp

The unwrap_rsa_aes_kwp parameter only applies to firmware version 13.3 or earlier. It is not
needed in later versions.

PKCS 11 Reference Guide for nShield Security 39/113
World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables

The C_UnwrapKey operation with CKM_RSA_AES_KEY_WRAP imports the temporary AES key with
an nCore API ACL that permits unwrapping of the wrapped target key by the temporary
AES key. When using the C_UnwrapKey operation with only a user supplied template (pTem-
plate) it is possible to create this ACL such that it permits a one-time unwrap of only the
wrapped target key. When the RSA unwrapping key has CKA_UNWRAP_TEMPLATE set it is neces
sary to construct the ACL when the RSA key is created in order to setup the partitioning
guarantees from the CKA_UNWRAP_TEMPLATE. The intended wrapped target keys are unknown
at this time, which means the ACL must permit a one-time unwrap of any key.

The Security Assurance Mechanism (SAM) considers this scenario insecure by default and
therefore the use of the C_UnwrapKey operation with CKM_RSA_AES_KEY_WRAP is disabled
when the RSA unwrapping key has CKA_UNWRAP_TEMPLATE set. When the unwrap_rsa_aes_kwp
parameter is set the SAM enables the C_UnwrapKey operation with CKM_RSA_AES_KEY_WRAP in
this scenario. The RSA unwrapping key must also explicitly allow the CKM_RSA_AES_KEY_WRAP
mechanism via CKA_ALLOWED_MECHANISMS in addition to setting the unwrap_rsa_aes_kwp (or
all) parameter; otherwise, the C_UnwrapKey operation will remain disabled when the RSA
unwrapping key has CKA_UNWRAP_TEMPLATE set.

13.19.13. weak_<algorithm>

The weak_<algorithm> parameter allows you to treat keys used with a weak algorithm as
secure. For example, DES is not secure, but setting the parameter weak_des means that
such keys are considered secure. You can apply the weak_<algorithm> parameter to all keys
that have a short fixed key length or whose algorithms have other security problems. As a
guide, weak algorithms are those whose work factor to break is less than approximately 80
bits.

13.19.14. shortkey_<algorithm=bitlength>

The shortkey_<algorithm=bitlength> parameter permits excessively short keys for the
specified <algorithm> to be treated as secure. The parameter <bitlength> specifies the min
imum length, in bits, that is to be considered secure. For example, RSA keys must usually be
at least 1024 bits long in order to be treated as secure, but shortkey_rsa=768 would allow
768-bit RSA keys to be treated as secure.

13.19.15. silent

The silent parameter turns off the warning output. Checks are still performed and still
return failures correctly according to the other variables that are set.

PKCS 11 Reference Guide for nShield Security 40/13
World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables

13.19.16. Diagnostic warnings about questionable operations

When the CKNFAST_OVERRIDE _SECURITY_ASSURANCES environment variable is set to a value
other than all, diagnostic messages are always generated for questionable operations.
Each message contains the following elements:

« The PKCS #11 label of the key, if available
« The PKCS #11 identifier of the key, if available
« The hash of the key

+ A summary of the problem.

If the problem is not that a questionable operation has been permitted because of a setting
in CKNFAST_OVERRIDE_SECURITY_ASSURANCES it could be that an operation has failed. In such a
case, the setting required to authorize the operation is noted.

By default, these messages are sent to stderr. On Windows platforms, they are also always
sent to the Event Viewer. If a file name has been specified in the CKNFAST_ASSURANCE_LOG

environment variable, diagnostic messages are also written to this file.

If CKNFAST_DEBUG is 1 or greater and a file is specified in CKNFAST_DEBUGFILE, the PCKS #11
library Security Assurance Mechanism log information is sent to the specified file.

If a file is specified in CKNFAST_ASSURANCES_LOG and no file is specified in
o CKNFAST_DEBUGFILE (or if CKNFAST_DEBUG is @), diagnostic messages are
sent to stderr as well as to the file specified in CKNFAST_ASSURANCES_LOG.

13.20. CKNFAST_SEED_MAC_ZERO

Set this variable to use zero padding for the Korean SEED MAC mechanisms (CK_SEED_MAC
and CKM_SEED _MAC_GENERAL). If this variable is not set, or is set to n, then the SEED MAC
mechanisms will use the default PKCS #5 padding scheme.

13.21. CKNFAST_SESSION_THREADSAFE

You must set this environment variable to yes if you are using the Sun PKCS #11 provider
when running nCipherKM JCA/JCE code.

13.22. CKNFAST_SESSION_TO_TOKEN

This environment variable controls whether session keys can be copied to token keys using

PKCS 11 Reference Guide for nShield Security 41/113
World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables

the nShield PKCS #11 library. If you generate persistent keys using a JCE PKCS #11 provider,
such as SunPKCS11 or IBMPKCS11Impl, set this variable.

If CKNFAST_SESSION_TO_TOKEN is set (the default), then C_CopyObject may be used to copy a
session key to a token key, that is, to convert a session key to token key.

« If CKNFAST_SESSION_TO_TOKEN is enabled, all keys are created with Key Generation Cer-
tificates.

« If CKNFAST_SESSION_TO_TOKEN is disabled, Session Keys are generated without certifi-
cates.

Unsetting this CKNFAST_SESSION_TO_TOKEN allows faster generation of session keys, but
disables the ability to convert a session key to a token key.

13.23. CKNFAST_SHARE_SESSION_KEYS

This variable can take a list of one or more semicolon (;) separated values to improve perfor
mance through loadsharing when session keys are used. See CKNFAST_LOADSHARING.

Loadsharing improves performance and adds resilience in the case of module failure. How-
ever, if the key is used only a few times, the overhead of sharing it may be greater than the
performance benefit. If a key will be used many times or if it has a long lifespan, sharing is

recommended.

- all (default)
* copy

- derive

- generate

- import

- none

- unwrap

If the origin of the session key matches a selected category, then the key is automatically
shared to all HSMs when it is created.

13.24. CKNFAST_TOKENS_PERSISTENT

This variable controls whether or not the Operator Cards that are created by your PKCS #11
application are persistent. If this variable is set when your application calls the PKCS #11
function that creates tokens, the Operator Card created is persistent.

PKCS 11 Reference Guide for nShield Security 42/113
World v13.6.14

Chapter 13. nShield PKCS #11 library environment variables

Use of the nShield PKCS #11 library to create tokens is deprecated,
o because it can only create 1/1 tokens in FIPS 140 Level 2 Secu-
rity Worlds. Use one of the command-line utilities to create OCSs.

13.25. CKNFAST_USE_THREAD_UPCALLS

If this variable is set and CKF_0S_LOCKING_OK is passed to C_Initialize, NFastApp_SetThread
Upcalls is called by means of nfast_usencthreads and only a single NFastApp_Connection is
used, shared between all threads.

If this variable is set and mutex callbacks are passed to C_Initialize but CKF_0S_LOCK-
ING_OK is not passed, C_Initialize fails with CKR_FUNCTION_FAILED. (NFastApp_SetThreadUp-
calls requires more callbacks than just the mutex ones that PKCS #11 supports.)

If neither mutex callbacks nor CKF_0S_LOCKING_OK is passed, this variable is ignored. Only a
single connection is used because the application must be single threaded in this case.

13.26. CKNFAST_LOAD_KEYS

This variable will load private objects at C_Login time, rather than at the first cryptographic
operation.

13.27. CKNFAST_WRITE_PROTECTED

Set this variable to make your OCS or softcard (token) write-protected. If a token is write-
protected, you cannot:

« Generate certificate, data, and key objects for that token.

« Modify attributes of an existing object.

o This environment variable does not prevent you from deleting an object
from your token.

13.28. CKNFAST_RELOAD_KEYS
Set this variable to enable PKCS #11 key reloading. See PKCS #11 with key reloading.

Key reloading requires load sharing-mode to operate, and enables it automatically if CKN-
FAST_LOADSHARING is not set.

PKCS 11 Reference Guide for nShield Security 43/13
World v13.6.14

Chapter 14. Objects

14. Objects

Token objects are not stored in the nShield module. Instead, they are stored in an
encrypted and integrity-protected form on the hard disk of the host computer. The key
used for this encryption is created by combining information stored on the smart card with
information stored in the nShield module and with the card passphrase.

Session keys are stored on the nShield module, while other session objects are stored in
host memory. Token objects on the host are created in the kmdata directory. In order to
access token objects, the user must have:

- the smart card
+ the passphrase for the smart card
+ an nShield module containing the module key used to create the token

« the host file containing the nShield key blob protecting the token object.

The nShield PKCS #11 library can be used to manipulate Data Objects, Certificate Objects,
and Key Objects.

The following table lists the protection for different types of PKCS #11 token objects:

Smart card Slot Accelerator Slot
Private Token Object Operator Card Set not supported
Public Token Object Security World Security World
Public key well known HSM key well known HSM key

Operator Card Set

The object is stored as an nShield key blob encrypted by the OCS key. You must log in to
this OCS before you can load this object.

security world

The object is stored as an nShield key blob encrypted by the Security World key. This
object can be loaded on to any HSM in the Security World. The nShield PKCS #11 library
only allows access if a card from this OCS is present.

well-known module key

Public keys are encrypted under a well-known HSM key. This encryption is for programming
convenience only and does not provide security. These keys can be loaded on any nShield
HSM.

PKCS 11 Reference Guide for nShield Security 44/113
World v13.6.14

Chapter 14. Objects

14.1. Certificate Objects and Data Objects
The nShield PKCS #11 library does not parse Certificate Objects or Data Objects.

The size of Data Objects is limited by what can be fitted into a single command (under
most circumstances, this limit is 8192 bytes).

14.2. Key Objects

The following restrictions apply to keys:

Key types Restrictions

RSA Modulus greater than or equal to 1024.

The nShield PKCS #11 library requires all of the attributes for an RSA key object to be
supplied, as listed in Table 26: "RSA Private Key Object Attributes" of PKCS #11 Crypto-
graphic Token Interface Standard version 2.40.

DSA Modulus greater than or equal to 1024 in multiples of 8 bits.

Diffie-Hellman Modulus greater than or equal to 1024.

14.3. Card passphrases

All passphrases are hashed using the SHA-1 hash mechanism and then combined with a
module key to produce the key used to encrypt data on the nShield physical or software
token. The passphrase supplied can be of any length.

o ‘ The ckinittoken program imposes a 512-byte limit on the passphrase.
0 C_GetTokenInfo reports _MaxPinLen as 256 because some applications
may have problems with a larger value.

When C_Login is called, the passphrase is used to load private objects protected by that
card set on to all modules with cards from that set. Public objects belonging to that set are
loaded on to all the modules. C_Log1in fails if any logical token fails to load. All cards in a card
set must have the same passphrase.

The functions C_SetPIN, C_InitPIN, and C_InitToken are supported in
load-sharing mode only when using softcards. To use these functions in

0 load-sharing mode, you must have created a softcard with the com-
mand ppmk -n before selecting the corresponding slot.

PKCS 11 Reference Guide for nShield Security 45/113
World v13.6.14

Chapter 14. Objects

o The C_InitToken function is not supported for use in non-load-sharing
FIPS 140 Level 3 Security Worlds.

PKCS 11 Reference Guide for nShield Security 46/113
World v13.6.14

Chapter 15. Mechanisms

15. Mechanisms

The following table lists the mechanisms currently supported by the nShield PKCS #11
library and the functions available to each one. Entrust also provides vendor-supplied mech
anisms, described in Vendor-defined mechanismes.

o Some mechanisms may be restricted from use in Security Worlds con-
forming to FIPS 140 Level 3.

Mechanism Encrypt & Sign & Ver SR &VR Digest Gen. Wrap & Derive
Decrypt ify Key/Key Unwrap Key
Pair
CKM_AES_CBC_ENCRYPT_- — — — — — — Y
DATA
CKM_AES_CBC_PAD Y — — — — Y —
CKM_AES_CBC Y — — _ _ v _
CKM_AES_CMAC_GENERAL — Y — — — — —
CKM_AES_CMAC — Y — — — — —
CKM_AES_CTR Y — — — — X —
CKM_AES_ECB_ENCRYPT_- — — — — — — Y
DATA
CKM_AES_ECB Y — — _ _ y' _
CKM_AES_GCM Y — — _ _ Ve _
CKM_AES_KEY_GEN — — — — Y — —
CKM_AES_KEY_WRAP — — — — — Y —
CKM_AES_KEY_WRAP_PAD* Y — —_ — — Y —
CKM_AES_KEY_WRAP_KwWP Yy — —_ — — % —
CKM_AES_MAC_GENERAL — Y — — — — —
CKM_AES_MAC — Y — — — — —
CKM_ARIA_CBC™® Y — — _ _ v o

CKM_ARTA_CBC_PAD™ Y — — — — — —

CKM_ARIA_ECB™ Y — — _ _ v o
CKM_ARTA_KEY_GEN™ — — — — Y — —
CKM_ARIA_MAC'® —_ Y — — — — _
PKCS 11 Reference Guide for nShield Security 47/113

World v13.6.14

Chapter 15. Mechanisms

Mechanism Encrypt & Sign &Ver SR &VR Digest Gen. Wrap & Derive
Decrypt ify Key/Key Unwrap Key
Pair
CKM_ARIA_MAC_GENERAL'® — Y — — — — —
CKM_CONCATE- — — — _ _ _ v?

NATE_BASE_AND_KEY

CKM_DES_CBC_ENCRYPT_- — — — — — — Y
DATA

CKM_DES_CBC_PAD Y — — _ _ v _
CKM_DES_CBC Y — — _ _ v _

CKM_DES_ECB_ENCRYPT_- — — — — — — Y
DATA

CKM_DES_ECB Y — — — _ v _
CKM_DES_KEY_GEN — — — — Y _ _
CKM_DES_MAC_GENERAL ~ — Y — — _ _ _
CKM_DES_MAC — Y — — _ _ _
CKM_DES2_KEY_GEN — — — — Y _ _

CKM_DES3_CBC_ENCRYPT_ — — — — — — Y
DATA

CKM_DES3_CBC_PAD Y — — — — % —
CKM_DES3_CBC Y — — — — v —

CKM_DES3_ECB_ENCRYPT_ — — — — — — Y
DATA

CKM_DES3_ECB v — — _ _ Y _
CKM_DES3_KEY_GEN — — — — v — —
CKM_DES3_MAC_GENERAL — v — — — — —
CKM_DES3_MAC — v — — _ — —
CKM_DH_PKCS_DERIVE ~ — — — — — — Y

CKM_DH_PKCS_KEY_PAIR_ — — — — Y — —
GEN

CKM_DSA_KEY_PAIR_GEN — — — — Y — —
CKM_DSA_PARAMETER_GEN — — — — Y — —

CKM_DSA_SHA1 — Y — — — — —

PKCS 11 Reference Guide for nShield Security 48/113
World v13.6.14

Chapter 15. Mechanisms

Mechanism Encrypt & Sign &Ver SR &VR Digest Gen. Wrap & Derive
Decrypt ify Key/Key Unwrap Key
Pair

CKM_DSA — Y4 — — — — —
CKM_EC_EDWARDS_KEY_- — — — — v — —
PAIR_GEN

CKM_EC_KEY_PAIR_GEN — — — — Y6 — —
CKM_EC_MONT- —_ — — — Y5 — —

GOMERY_KEY_PAIR_GEN

CKM_ECDH1_DERIVE — — — — — — i
CKM_ECDSA_SHA1 — Y — — — — —
CKM_ECDSA_SHA224 — Y — — — — —
CKM_ECDSA_SHA256 — Y — — — — —
CKM_ECDSA_SHA384 — Y — — — — —
CKM_ECDSA_SHA512 — Y — — — — —
CKM_ECDSA_SHA3_224 — Y — — — — —
CKM_ECDSA_SHA3_256 — Y — — — — —
CKM_ECDSA_SHA3_384 — Y — — — — —
CKM_ECDSA_SHA3_512 — Y — — — — —
CKM_EDDSA — A — — — — —
CKM_ECDSA — Y4 — — — — —
CKM_GENERIC_SE- — — — — Y — —

CRET_KEY_GEN

CKM_MD5_HMAC_GENERAL — Y — — — — —
CKM_MD5_HMAC — Y — — — — _
CKM_MD5 —_ — — Y — — —
CKM_NC_ECIES — — — _ _ e _
CKM_NC_MD5_HMAC_KEY_- — — — — Y — —
GEN

CKM_NC_MILENAGE — y41s — — — — —
CKM_NC_MILENAGE_AUTS — Ak — — — — —
CKM_NC_MILENAGE_RE- — Ak — — — — —
SYNC

PKCS 11 Reference Guide for nShield Security 49/113

World v13.6.14

Chapter 15. Mechanisms

Mechanism Encrypt & Sign &Ver SR &VR Digest Gen. Wrap & Derive
Decrypt ify Key/Key Unwrap Key
Pair
CKM_NC_MILENAGE_OPC — — — — — — %
CKM_NC_MILENA- — — — — % — —

GEOP_KEY_GEN

CKM_NC_MILENAGER- — —_ — — Y — —
C_KEY_GEN
CKM_NC_MILENAGESUB- — — — — Y — —

SCRIBER_KEY_GEN

CKM_NC_TUAK — Ak — — — — —
CKM_NC_TUAK_AUTS — Ak — — — — —
CKM_NC_TUAK_RESYNC — \ads — — — — —
CKM_NC_TUAK_TOPC — — — — — — %

CKM_NC_TUAKSUB- — — — — Y — —

SCRIBER_KEY_GEN

CKM_NC_TUAKTOP_KEY_- — — — — Y — —
GEN

CKM_PBE_MD5_DES_CBC ~ — — — — Y — —
CKM_RIPEMD160 — — — Y — — —
CKM_RSA_9796 — A Y4 — — — —
CKM_RSA_AES_KEY_WRAP — — — — — Y4 —

CKM_RSA_PKCS_KEY_- — —_ — — Y — —
PAIR_GEN

CKM_RSA_PKCS_OAEP Y — — — — Y —
CKM_RSA_PKCS_PSS™ Y Y — — — — —
CKM_RSA_PKCS & & Y* — — Y —
CKM_RSA_X_509 A \a y* — — X —

CKM_RSA_X9_31_KEY_- — — — — Y — —
PAIR_GEN

CKM_SHA_1_HMAC_GEN- — y'© — — — — —
ERAL

CKM_SHA_1_HMAC — y© — — — — —

CKM_SHA_1 — — — Y _ _ _

PKCS 11 Reference Guide for nShield Security 50/113
World v13.6.14

Chapter 15. Mechanisms

Mechanism Encrypt & Sign &Ver SR &VR Digest Gen. Wrap & Derive

Decrypt ify Key/Key Unwrap Key
Pair

CKM_SHAT_RSA_PKC- — Y — — — — —

S_pss™

CKM_SHAT_RSA_PKCS — Y — — — — —

CKM_SHA224 _HMAC_GEN- — A — — — — —

ERAL

CKM_SHA224 _HMAC — Y — — — — —

CKM_SHA224 RSA_PKC- — Y — — — — —

S_psSs™

CKM_SHA224 RSA_PKCS — Y — — — — —

CKM_SHA224 — — — Y — — —

CKM_SHA256_HMAC_GEN- — Y — — — — —

ERAL

CKM_SHA256 _HMAC —_ ' — — — — —

CKM_SHA256_RSA_PKC- — Y — — — — —

S_PSS"

CKM_SHA256_RSA_PKCS — Y — — — — —

CKM_SHA256 — — — Y — — —

CKM_SHA384_HMAC_GEN- — Y — — — — —

ERAL

CKM_SHA384 _HMAC — Y — — — — —

CKM_SHA384 _RSA_PKC- — Y — — — — —

S_pss”

CKM_SHA384_RSA_PKCS — Y — — — — —

CKM_SHA384 — — — Y — — —

CKM_SHA512_HMAC_GEN- — y'° — — — — —

ERAL

CKM_SHA512_HMAC — y'© — — — — —

CKM_SHA512_RSA_PKC- — Y — — — — —

S_PSS"

CKM_SHA512_RSA_PKCS — Y — — — — —

CKM_SHA512 — — — Y — — —

CKM_SHA3_224 — — — Y — — —

PKCS 11 Reference Guide for nShield Security 51/13

World v13.6.14

Chapter 15. Mechanisms

Mechanism

CKM_SHA3_224 RSA_PKC-
S_PSS"

CKM_SHA3_224_RSA_PKCS
CKM_SHA3_256

CKM_SHA3_256_RSA_PKC-
S_PSS™

CKM_SHA3_256_RSA_PKCS
CKM_SHA3_384

CKM_SHA3_384_RSA_PKC-
S_PSS"

CKM_SHA3_384_RSA_PKCS
CKM_SHA3_512

CKM_SHA3_512_RSA_PKC-
S_PSS"

CKM_SHA3_512_RSA_PKCS

CKM_SP800_108_COUN-
TER_KDF'®

CKM_XOR_BASE_AND_DATA

Encrypt &
Decrypt

Sign & Ver
ify

SR & VR

Digest

Gen.
Key/Key
Pair

Wrap &
Unwrap

Derive

Key

Y12

The nShield library supports some mechanisms that are defined in versions of the PKCS #11

standard later than 2.01, although the nShield library does not fully support versions of the
PKCS #11 standard later than 2.01.

In the table above:

« Empty cells indicate mechanisms that are not supported by the PKCS #11 standard.

« The entry Y indicates that a mechanism is supported by the nShield PKCS #11 library.

« The entry X indicates that a mechanism is not supported by the nShield PKCS #11

library.

In the table above, annotations with the following numbers indicate:

15.1. Footnote 1

Wrap secret keys only (private key wrapping must use CBC_PAD).

PKCS 11 Reference Guide for nShield Security

World v13.6.14

52/113

Chapter 15. Mechanisms

15.2. Footnote 2

CKM_AES_KEY_WRAP_PAD has been deprecated and replaced by CKM_AES_KEY_WRAP_KWP.

15.3. Footnote 3

Before you can create a key for use with the derive mechanism CKM_CONCATE-
NATE_BASE_AND_KEY, you must specify the CKA_ALLOWED_MECHANISMS attribute in the template
with the CKM_CONCATENATE_BASE_AND_KEY set. Specifying the CKA_ALLOWED_MECHANISMS in the
template enables the setting of the nCore level ACL, which enables the key in this derive
key operation. For more information about the CKA_ALLOWED_MECHANISMS attribute, see Attrib
utes.

15.4. Footnote 4

Single-part operations only.

15.5. Footnote 5

CKA_EC_PARANS is a DER-encoded PrintableString curve25519. This will be a byte array with
the following values:

CK_BYTE curve25519[] = { 0x13, 0x0a, 0x63, 0x75, 0x72, 0x76,
0x65, 0x32, 0x35, 0x35, 0x31, 0x39 };

15.6. Footnote 6

If no capabilities are specified in the template, for example the CKA_DERIVE, CKA_SIGN and
CKA_UNWRAP attributes are omitted, then the default capability is sign/verify.

Key generation does calculate its own curves but, as shown in the PKCS #11 standard, takes
the CKA_PARAMS, which contains the curve information (similar to that of a discrete logarithm
group in the generation of a DSA key pair). CKA_EC_PARANS is a Byte array which is DER-
encoded of an ANSI X9.62 Parameters value. It can take both named curves and custom
curves.

The following PKCS #11-specific flags describe which curves are supported:

« CKF_EC_P: prime curve supported

PKCS 11 Reference Guide for nShield Security 53/113
World v13.6.14

Chapter 15. Mechanisms

« CKF_EC_2M: binary curve supported
« CKF_EC_PARAMETERS: supplying your own custom parameters is supported
« CKF_EC_NAMECURVE: supplying a named curve is supported

« CKF_EC_UNCOMPRESS: supports uncompressed form only, compressed form not sup-
ported.

15.7. Footnote 7

The CKM_ECDH1_DERIVE mechanism is supported. However, the mechanism only takes a
CK_ECDH1T_DERIVE_PARANS struct in which CK_EC_KDF_TYPE can be one of the following:

« CKD_NULL

» CKD_SHAT_KDF, CKD_SHA1_KDF_SP800

» CKD_SHA224_KDF, CKD_SHA224_KDF_SP800

- CKD_SHA256_KDF, CKD_SHA256_KDF_SP800

- CKD_SHA384_KDF, CKD_SHA384_KDF_SP800

« CKD_SHA512_KDF, CKD_SHA512_KDF_SP800

- CKD_SHA3_224_KDF, CKD_SHA3_224_KDF_SP800
- CKD_SHA3_256_KDF, CKD_SHA3_256_KDF_SP800
- CKD_SHA3_384_KDF, CKD_SHA3_384_KDF_SP800
- CKD_SHA3_512_KDF, CKD_SHA3_512_KDF_SP800

For more information on CK_ECDH1_DERIVE PARAMS, see the PKCS #11 standard.

For the pPublicData* parameter, a raw octet string value (as defined in section A.5.2 of
ANSI X9.62) and DER-encoded ECPoint value (as defined in section E.6 of ANSI X9.62 or, in
the case of CKK_EC_MONTGOMERY, RFC 7748) are now accepted.

15.8. Footnote 8

Both the Ed25519 and Ed25519ph signature schemes are supported.

The Ed25519 scheme requires no CK_EDDSA_PARANS to be passed.

The Ed25519ph signature scheme requires CK_EDDSA_PARAMS to have the following set:

- phFlagto CK_TRUE
- ulContextDatalen to 0.

PKCS 11 Reference Guide for nShield Security 54/113
World v13.6.14

Chapter 15. Mechanisms

15.9. Footnote 9

Wrap secret keys only.

15.10. Footnote 10

This mechanism depends on the vendor-defined key generation mechanism
CKM_NC_SHA_1_HMAC_KEY_GEN, CKM_NC_SHA224 _HMAC_KEY_GEN, CKM_NC_SHA256_HMAC_KEY _GEN,
CKM_NC_SHA384 HMAC_KEY_GEN, or CKM_NC_SHA512_HMAC_KEY_GEN. For more information, see
Vendor-defined mechanisms.

15.11. Footnote 11

The hashAlg and the mgf that are specified by the CK_RSA_PKCS_PSS_PARAMS must have the
same SHA hash size. If they do not have the same hash size, then the signing or verify fails
with a return value of CKR_MECHANISM_PARAM_INVALID.

The sLen value is expected to be the length of the message hash. If this is not the case,
then the signing or verify again fails with a return value of CKR_MECHANISM_PARAM_INVALID.
The Security World Software implementation of RSA_PKCS_PSS salt lengths are as follows:

Mechanism Salt-length
SHA-1 160-bit
SHA-224 224-bit
SHA-256 256-bit
SHA-384 384-bit
SHA-512 512-bit
SHA3-224 224-bit
SHA3-256 256-bit
SHA3-384 384-bit
SHA3-512 512-bit

15.12. Footnote 12

The base key and the derived key are restricted to DES, DES3, CAST5 or Generic, though they
may be of different types.

PKCS 11 Reference Guide for nShield Security 55/113
World v13.6.14

Chapter 15. Mechanisms

15.13. Footnote 13

For wrap and unwrap with CKM_AES_GCM, the IV supplied in the CKM_GCM_PARAMS structure
must be 12 bytes. For wrap the IV must be all zeroes. This will be overwritten by the actual
value used when the wrap command has completed successfully. For unwrap the IV must
be the value returned by the corresponding wrap.

15.14. Footnote 14

In order to create an unwrapping key for use with the mechanism CKM_RSA_AES_KEY_WRAP
where CKA_UNWRAP_TEMPLATE is also set, you must:

+ Specify the CKA_ALLOWED_MECHANISMS attribute in the template with CKM_R-
SA_AES_KEY_WRAP set as an allowed mechanism.

- Override the Security Assurance Mechanisms (SAMs) to permit use of CKA_UNWRAP_TEM
PLATE with the mechanism CKM_RSA_AES_KEY_WRAP.

Keys with CKA_WRAP_WITH_TRUSTED set cannot be wrapped with the mechanism CKM_R-
SA_AES_KEY_WRAP. The C_WrapKey operation will return CKR_KEY_NOT_WRAPPABLE for such keys.

With firmware versions 13.4 or later, you do not need to override the
o Security Assurance Mechanisms. Keys with CKA_WRAP_WITH_TRUSTED can
be wrapped with the mechanism CKM_RSA_AES_KEY_WRAP.

For more information about the SAMs, see PKCS #11 security assurance mechanism. For
more information about the CKA_ALLOWED_MECHANISMS attribute, see Attributes.

15.15. Footnote 15

Sign only.

15.16. Footnote 16

Use of these mechanisms requires the KISAAlgorithms feature to be enabled.

15.17. Footnote 17

Wraps secret keys only.

PKCS 11 Reference Guide for nShield Security 56/113
World v13.6.14

Chapter 15. Mechanisms

15.18. Footnote 18
CKM_SP800_COUNTER_KDF restrictions:

« Supported in firmware versions v13.5 and later.

- The CK_SP800_108_BYTE_ARRAY field is limited to two repetitions, or three if one of them
is a single zero byte.

The PRF is restricted to SHA-224, SHA-256, SHA-384, SHA-512, or AES CMAC.
The ulWidthInbits for the counter and dkm formats must be 8, 16, or 32.

+ Only one key can be derived, so the ulAdditionalDerivedKeys must be 0.

PKCS 11 Reference Guide for nShield Security 57/113
World v13.6.14

Chapter 16. Vendor annotations on P11 mechanisms

16. Vendor annotations on P11 mechanisms

Vendor notes on PKCS #11 mechanisms to complement the specification.

16.1. CKM_RSA_PKCS_OAEP

The hashAlg and the mgf values specified by CK_RSA_PKCS_OAEP_PARAMS must have the same
SHA hash size. If they do not have the same hash size, then the encryption or decryption
fails with a return value of CKR_MECHANISM_PARAM_INVALID. The supported pairs of values are

as follows:

hashAlg mgf

CKM_SHA_1 CKG_MGF1_SHA1
CKM_SHA224 CKG_MGF1_SHA224
CKM_SHA256 CKG_MGF1_SHA256
CKM_SHA384 CKG_MGF1_SHA384
CKM_SHA512 CKG_MGF1_SHA512
CKM_SHA3_224 CKG_MGF1_SHA3_224
CKM_SHA3_256 CKG_MGF1_SHA3_256
CKM_SHA3_384 CKG_MGF1_SHA3_384
CKM_SHA3_512 CKG_MGF1_SHA3_512

For a hash length h and RSA modulus length k in bytes, the longest message that can be
encrypted is k-2h-2 bytes long.

16.2. CKM_RSA_PKCS_PSS and
CKM_SHA*_RSA_PKCS_PSS

The hashAlg and the mgf values specified by CK_RSA_PKCS_PSS_PARAMS must have the same
SHA hash size. If they do not have the same hash size, then the signing or verifying fails
with a return value of CKR_MECHANISM_PARAM_INVALID.

The sLen value is expected to be the length of the message hash in bytes. If this is not the
case, then the signing or verify again fails with a return value of CKR_MECHANISM_PARAM_IN-
VALID.

The supported sets of values for hashAlg, mgf and sLen are as follows:

PKCS 11 Reference Guide for nShield Security 58/113
World v13.6.14

Chapter 16. Vendor annotations on P11 mechanisms

hashAlg
CKM_SHA_1
CKM_SHA224
CKM_SHA256
CKM_SHA384
CKM_SHA512
CKM_SHA3_224
CKM_SHA3_256
CKM_SHA3_384

CKM_SHA3_512

mgf
CKG_MGF1_SHA1
CKG_MGF1_SHA224
CKG_MGF1_SHA256
CKG_MGF1_SHA384
CKG_MGF1_SHA512
CKG_MGF1_SHA3_224
CKG_MGF1_SHA3_256
CKG_MGF1_SHA3_384

CKG_MGF1_SHA3_512

sLen

20

28

32

48

64

28

32

48

64

To use a mechanism with SHA hash size n bits, the public modulus of the RSA key must be

at least 2n+2 bits long.

PKCS 11 Reference Guide for nShield Security

World v13.6.14

59/113

Chapter 17. Vendor-defined mechanisms

17. Vendor-defined mechanisms

The following vendor-defined mechanisms are also available. The numeric values of vendor-
defined key types and mechanisms can be found in the supplied pkcs1lextra.h header file.

Some mechanisms may be restricted from use in Security Worlds con-
o forming to FIPS 140 Level 3. See Cryptographic algorithms for more

information.

17.1. CKM_SEED_ECB_ENCRYPT_DATA and
CKM_SEED_CBC_ENCRYPT_DATA

This mechanism derives a secret key by encrypting plain data with the specified secret base
key. This mechanism takes as a parameter a CK_KEY_DERIVATION_STRING_DATA structure,
which specifies the length and value of the data to be encrypted by using the base key to
derive another key.

If no length or key type is provided in the template, the key produced by this mechanism is
a generic secret key. Its length is equal to the length of the data.

If a length, but no key type, is provided in the template, the key produced by this mecha-
nism is a generic secret key of the specified length.

If a key type, but no length, is provided in the template, the key type must have a well-
defined length. If the length is well defined, the key produced by this mechanism is of the
type specified in the template. If the length is not well defined, a CKR_TEMPLATE _INCOMPLETE
error is returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type, and CKR_TEMPLATE_INCONSISTENT is returned if it is not.

The key produced by the CKM_SEED_ECB_ENCRYPT_DATA or CKM_SEED_CBC_ENCRYPT_DATA mech-
anisms is of the specified type and length.

17.2. CKM_CAC_TK_DERIVATION

This mechanism uses C_GenerateKey to perform an Import operation using a Transport Key
Component.

The mechanism accepts a template that contains three Transport Key Components (TKCs)
with following attribute types:

PKCS 11 Reference Guide for nShield Security 60/113
World v13.6.14

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/crypto-algorithms.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/crypto-algorithms.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/crypto-algorithms.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/crypto-algorithms.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/crypto-algorithms.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/crypto-algorithms.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/crypto-algorithms.html

Chapter 17. Vendor-defined mechanisms

- CKA_TKC1
« CKA_TKC2
- CKA_TKC3.

These attributes are all in the CKA_VENDOR_DEFINED range.

Each TKC should be the same length as the key being created. TKCs used for DES, DES2, or
DES3 keys must have odd parity. The mechanism checks for odd parity and returns CKR_AT-
TRIBUTE_VALUE_INVALID if it is not found.

The new key is constructed by an XOR of the three TKC components on the module.

Although using C_GenerateKey creates a key with a known value rather than generating a
new one, it is used because C_CreateObject does not accept a mechanism parameter.

CKA_LOCAL, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE are set to FALSE, as they
would for a key imported with C_CreateObject. This reflects the fact that the key was not
generated locally.

An example of the use of CKM_CAC_TK_DERIVATION is shown here:

CK_OBJECT_CLASS class_secret = CKO_SECRET_KEY;

CK_KEY_TYPE key_type_des2 = CKK_DES2;

CK_MECHANISM mech = { CKM_CAC_TK_DERIVATION, NULL_PTR, @ };

CK_BYTE TKC1[16] = { ... };

CK_BYTE TKC2[16] = { ... };

CK_BYTE TKC3[16] = { ... };

CK_OBJECT_HANDLE kHey;

CK_ATTRIBUTE pTemplate[] = {
{ CKA_CLASS, &class_secret, sizeof(class_secret) },
{ CKA_KEY_TYPE, &key_type_des2, sizeof(key_type_des2) },
{ CKA_TKC1, TKC1, sizeof(TKC1) },
{ CKA_TKC2, TKC1, sizeof(TKC2) },
{ CKA_TKC3, TKC1, sizeof(TKC3) },
{ CKA_ENCRYPT, &true, sizeof(true) },

I
rv = C_GenerateKey(hSession, &mechanism, pTemplate,
(sizeof(pTemplate)/sizeof((pTemplate)[0])), &hKey);

17.3. CKM_SHA*_HMAC and CKM_SHA*_HMAC_GENERAL

This version of the library supports the following mechanisms:

« CKM_SHA_1_HMAC
« CKM_SHA_1_HMAC_GENERAL
« CKM_SHA224_HMAC

PKCS 11 Reference Guide for nShield Security 61/113
World v13.6.14

Chapter 17. Vendor-defined mechanisms

« CKM_SHA224_HMAC_GENERAL
« CKM_SHA256_HMAC
« CKM_SHA256_HMAC_GENERAL
« CKM_SHA384_HMAC
« CKM_SHA384 _HMAC_GENERAL
« CKM_SHA512_HMAC
« CKM_SHA512_HMAC_GENERAL

For security reasons, the Security World Software supports these mechanisms only with
their own specific key type. Thus, you can only use an HMAC key with the HMAC algorithm
and not with other algorithms.

The key types provided for use with SHA<n> HMAC mechanisms are:

« CKK_SHA_1_HMAC

« CKK_SHA224_HMAC
« CKK_SHA256_HMAC
« CKK_SHA384_HMAC
« CKK_SHA512_HMAC

To generate the key, use the appropriate key generation mechanism (which does not take
any mechanism parameters):

« CKM_NC_MD5_HMAC_KEY_GEN

« CKM_NC_SHA_1_HMAC_KEY_GEN
« CKM_NC_SHA224_HMAC_KEY_GEN
« CKM_NC_SHA256_HMAC_KEY_GEN
« CKM_NC_SHA384_HMAC_KEY_GEN
« CKM_NC_SHA512_HMAC_KEY_GEN

17.4. CKM_NC_ECKDF_HYPERLEDGER

This version of the library supports the vendor-defined CKM_NC_ECKDF_HYPERLEDGER mecha-
nism. This key derivation function is used in the user/client enrolment process of a hyper-
ledger system to generate transaction certificates by using the enrolment certificate as one
of the inputs to the key derivation.

The parameters for the mechanism are defined in the following structure:

typedef struct CK_ECKDF_HYPERLEDGERCLIENT_PARAMS {

PKCS 11 Reference Guide for nShield Security 62/113
World v13.6.14

Chapter 17. Vendor-defined mechanisms

CK_OBJECT_HANDLE hKeyDF_Key;
CK_MECHANISM_TYPE HMACMechType;
CK_MECHANISM_TYPE TCertEncMechType;
CK_ULONG ulEksize;
CK_BYTE_PTR pEncTCertData;
CK_ULONG ulEvsize;
CK_ULONG ulEndian;

} CK_ECKDF_HYPERLEDGERCLIENT_PARAMS

Where:

+ hKeyDF_key is KeyDF_Key

+ HMACMechType is Hmac

« TCertEncMechType is Decrypt_Mech
+ UlEksize is Eksize

« pEncTCertData is a pointer to encrypted data containing TCertIindex together with
padding and IV

- UlEvsize is Evsize

« UlEndian is Big_Endian

The function is then called as follows:

C_DeriveKey(
hSession,
&mechanism_hyperledger,
EnrollPriv_Key,
TCertPriv_Key_template,
NUM(TCertPriv_Key_template,
&TCertPriv_Key);

A Template_Key will be used to supply key attributes for the resulting derived key. The
derived key can then be used in the normal way.

Derived keys can be exported and used outside the HSM only if the template key was cre-
ated with attributes which allow export of its derived keys.

17.5. CKM_HAS160

This version of the library supports the vendor-defined CKM_HAS160 hash (digest) mecha-
nism for use with the CKM_KCDSA mechanism. For more information, see KISAAlgorithm mech
anisms.

CKM_HAS160 is a basic hashing algorithm. The hashing is done on the host machine. This algo
rithm can be used by means of the standard digest function calls of the PKCS #11 API.

PKCS 11 Reference Guide for nShield Security 63/113
World v13.6.14

Chapter 17. Vendor-defined mechanisms

17.6. CKM_PUBLIC_FROM_PRIVATE

CKM_PUBLIC_FROM_PRIVATE is a derive key mechanism that enables the creation of a corre-
sponding public key from a private key. The mechanism also fills in the public parts of the
private key, where this has not occurred.

CKM_PUBLIC_FROM_PRIVATE is an nShield specific nCore mechanism. The C_Derive function
takes the object handle of the private key and the public key attribute template. The cre-
ation of the key is based on the template but also checked against the attributes of the pri-
vate key to ensure the attributes are correct and match those of the corresponding key. If
an operation that is not allowed or is not set by the private key is detected, then CKR_TEM-
PLATE_INCONSISTANT is returned.

Before you can use this mechanism, the HSM must already contain the
o private key. You must use C_CreateObject, C_UnWrapKey, or C_Gener-
ateKeyPair to import or generate the private key.

If you use C_GenerateKeyPair, you always generate a public key at the
same time as the private key. Some applications delete public keys once
e a certificate is imported, but in the case of both C_GenerateKeyPair and
C_CreateObject you can use either the CKM_PUBLIC_FROM_PRIVATE mecha
nism or the C_GetAttributeValue to recreate a deleted public key.

17.7. CKM_NC_AES_CMAC

CKM_NC_AES_CMAC is based on the Mech_RijndaelCMAC nCore level mechanism, a message
authentication code operation that is used with both C_Sign and C_SignUpdate, and the cor-
responding C_Verify and C_VerifyUpdate functions.

In a similar way to other AES MAC mechanisms, CKM_NC_AES_CMAC takes a plaintext type of
any length of bytes, and returns a M_Mech_Generic128MAC_Cipher standard byte block.
CKM_NC_AES_CMAC is a standard FIPS 140 Level 3 approved mechanism, and is only usable
with CKK_AES key types.

CKM_NC_AES_CMAC has a CK_MAC_GENERAL_PARAMS which is the length of the MAC returned
(sometimes called a tag length). If this is not specified, the signing operation fails with a
return value of CKR_MECHANISM_PARAM_INVALID.

17.8. CKM_NC_AES_CMAC_KEY_DERIVATION and
CKM_NC_AES_CMAC_KEY_DERIVATION_SCPO3

PKCS 11 Reference Guide for nShield Security 64/113
World v13.6.14

Chapter 17. Vendor-defined mechanisms

This mechanism derives a secret key by validating parameters with the specified 128-bit,
192-bit, or 256-bit secret base AES key. This mechanism takes as a parameter a
CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS structure, which specifies the length and type of
the resulting derived key.

CKM_NC_AES_CMAC_KEY_DERIVATION_SCP@3 is a variant of CKM_NC_AES_CMAC_KEY_DERIVATION: it
reorders the arguments in the CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS according to pay-
ment specification SCPA3, but is otherwise identical.

The standard key attribute behavior with sensitive and extractable attributes is applied to
the resulting key as defined in PKCS #11 standard version 2.20 and later. The key type and
template declaration is based on the PKCS #11 standard key declaration for derive key
mechanisms.

If no length or key type is provided in the template, the key produced by this mechanism is
a generic secret key. Its length is equal to the length of the data.

If a length, but no key type, is provided in the template, the key produced by this mecha-
nism is a generic secret key of the specified length.

If a key type, but no length, is provided in the template, the key type must have a well-
defined length. If the length is well defined, the key produced by this mechanism is of the
type specified in the template. If the length is not well defined, a CKR_TEMPLATE_INCOMPLETE
error is returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type, and CKR_TEMPLATE_INCONSISTENT is returned if it is not.

The key produced by the CKM_NC_AES_CMAC_KEY_DERIVATION mechanism is of the specified
type and length. If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the par
ity bits of the key are set properly. If the requested type of key requires more bytes than are
available by concatenating the original key values, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

Attribute If the attributes for the original The attribute for the derived key
keys are... is...

CKA_SENSITIVE CK_TRUE for either one CK_TRUE

CKA_EXTRACTABLE CK_FALSE for either one CK_FALSE

CKA_ALWAYS_SENSITIVE CK_TRUE for both CK_TRUE

CKA_NEVER_EXTRACTABLE CK_TRUE for both CK_TRUE

PKCS 11 Reference Guide for nShield Security 65/113

World v13.6.14

Chapter 17. Vendor-defined mechanisms

17.9. CKLNC_AES_CMAC_KEY_DERIVATION_PARAMS

typedef struct CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS {
CK_ULONG ulContextlLen;
CK_BYTE_PTR pContext;
CK_ULONG ulLabelLen;
CK_BYTE_PTR pLabel;
} CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS;

The fields of the structure have the following meanings:

Argument Meaning
ulContextLen Context data: the length in bytes.
pContext Some data info context data (bytes to be CMAC'd).

ulContextLen must be zero if pContext is not provided.

Having pContext as NULL will result in the same predictable key each time not
additional data to add to the mix when carrying out the CMAC.

ulLabellLen The length in bytes of the other party EC public key

pLabel Key derivation label data: a pointer to the other label to identify new key. ullLa-
bellLen must be zero if the pLabel is not provided.

17.10. CKM_COMPOSITE_EMV_T_ARQC,
CKM_WATCHWORD_PIN1 and CKM_WATCHWORD_PIN2

These mechanisms allow the module to act as a SafeSign Cryptomodule (SSCM). To obtain
support for your product, visit https://trustedcare.entrust.com/.

17.11. CKM_NC_ECIES

This version of the library supports the vendor defined CKM_NC_ECIES mechanism. This mech
anism is used with C_WrapKey and C_UnwrapKey to wrap and unwrap symmetric keys using
the Elliptic Curve Integrated Encryption Scheme (ECIES).

The parameters for the mechanism are defined in the following structure:

typedef struct CK_NC_ECIES_PARAMS {
CK_MECHANISM_PTR <pAgreementMechanism>;
CK_MECHANISM_PTR <pSymmetricMechanism>;

CK_ULONG <ulSymmetricKeyBitLen>;
CK_MECHANISM_PTR <pMacMechanism>;
CK_ULONG <ulMacKeyBitLen>;

} CK_NC_ECIES_PARAMS;

PKCS 11 Reference Guide for nShield Security 66/113
World v13.6.14

https://trustedcare.entrust.com/

Chapter 17. Vendor-defined mechanisms

Where:

- <pAgreementMechanism> is the key agreement mechanism, which must be CKM_ECD-

H1_DERIVE or CKM_ECDH1_COFACTOR_DERIVE

« <pSymmetricMechanism> is the confidentiality mechanism, currently only CKM_X-

OR_BASE_AND_DATA is supported

- <ulSymmetricKeyBitLen> is the confidentiality key length (in bits) and must be a multi-
ple of 8. For CKM_XOR_BASE_AND_DATA the key length is irrelevant and can be set to zero.

« <pMacMechanism> is the integrity mechanism, currently only CKM_SHA<n>_HMAC_GENERAL is

supported and <n> can be _1, 224, 256, 384 or 512
- <ulMacKeyBitLen> is the integrity key length (in bits) and must be a multiple of 8

The following example shows how to use CKM_NC_ECIES to wrap a symmetric key:

/* session represents an existing open session */

CK_SESSION_HANDLE session;

/* symmetric_key and wrapping_key represent existing keys. The code to import or
* generate them is not shown here. Note wrapping_key must be a public EC key

* with CKA_WRAP set to true */
CK_OBJECT_HANDLE symmetric_key;
CK_OBJECT_HANDLE wrapping_key;

CK_ECDH1_DERIVE_PARAMS ecdh1_params = { CKD_SHA256_KDF };

CK_MECHANISM agreement_mech = {
CKM_ECDH1_DERIVE,
&ecdh1_params,
sizeof (CK_ECDHT_DERIVE_PARAMS)

I

CK_MECHANISM symmetric_mech = { CKM_XOR_BASE_AND_DATA };

CK_MAC_GENERAL_PARAMS mac_params = 16;
CK_MECHANISM mac_mech = {
CKM_SHA256_HMAC_GENERAL,
&mac_params,
sizeof (CK_MAC_GENERAL_PARAMS)
I
CK_NC_ECIES_PARAMS ecies_params = {
&agreement_mech,
&symmetric_mech,
0,
&mac_mech,
256
I
CK_MECHANISM ecies_mech = {
CKM_NC_ECIES,
&ecies_params,
sizeof (CK_NC_ECIES_PARAMS)
I

/* Typical convention is to call C_WrapKey with the pWrappedKey parameter set to
* NULL_PTR to determine the required size of the buffer - see Section 5.2 of
* the PKCS#11 Base Specification - but for brevity we allocate a 1KB buffer */

CK_BYTE wrapped_key[1000] = { 0 };
CK_ULONG wrapped_len = sizeof(wrapped_key);

CK_RV rv = C_WrapKey(session, &ecies_mech, wrapping_key, symmetric_key,
wrapped_key, &wrapped_len);

PKCS 11 Reference Guide for nShield Security
World v13.6.14

67/113

Chapter 17. Vendor-defined mechanisms

17.12. CKM_NC_MILENAGE_OPC

Derive CKK_NC_MILENAGEOPC key from CKK_NC_MILENAGEOP and CKK_NC_MILENAGESUBSCRIBER
keys for use in the 3GPP mechanisms defined in ETSI TS 135 206 s4.1.

A C_DeriveKey function call is made. The function takes the CKK_NC_MILENAGESUBSCRIBER
key handle as the base key and the CKK_NC_MILENAGEOP key handle as the mechanism para-

meter.

To generate the subscriber and OP keys, use the corresponding vendor-defined key genera
tion mechanisms (which do not take any mechanism parameters):

« CKM_NC_MILENAGESUBSCRIBER_KEY_GEN
« CKM_NC_MILENAGEOP_KEY_GEN

17.13. CKM_NC_MILENAGE, CKM_NC_MILENAGE_AUTS,
CKM_NC_MILENAGE_RESYNC

3GPP mechanisms for 5G mobile networks as defined by ETSI TS 135 206. Used with
C_SignInit and C_Sign function calls. The parameters for these mechanisms are defined in
the following structure:

typedef struct CK_MILENAGE_SIGN_PARAMS {
CK_ULONG ulMilenageFlags;

CK_ULONG ulEncKiLen; /* not used - must be @ */

CK_BYTE_PTR pEncKi; /* not used */

CK_ULONG ulEncOPcLen; /* not used - must be @ */

CK_BYTE_PTR pEncOPc; /* not used */

CK_OBJECT_HANDLE hSecondaryKey; /* CKK_NC_MILENAGE_OPC key handle */
CK_OBJECT_HANDLE hRCKey; /* optional CKK_NC_MILENAGE_RC key handle */
CK_BYTE sqn[6]; /* sequence number */

CK_BYTE amf[2]; /* authentication management field */

} CK_MILENAGE_SIGN_PARAMS;

ulMilenageFlags can consist of the following flags:

#define CKF_NC_MILENAGE _OPC 0x00000001 /* secondary key is OPC (not OP) */
#define CKF_NC_MILENAGE_OP_OBJECT 0x00000004 /* secondary key is supplied by object handle */
#define CKF_NC_MILENAGE_USER_DEFINED_RC 0x00000010 /* MilenageRC key is present (hRC) */

Both the CKF_NC_MILENAGE_OPC and CKF_NC_MILENAGE_OP_OBJECT flags must be present. The
nShield PKCS #11 library currently only supports passing the OPC key handle to the mecha-

nism.

If the CKF_NC_MILENAGE_USER_DEFINED_RC flag is set, hRCKey must point to a CKK_NC_MILE-
NAGE_RC key object handle.

PKCS 11 Reference Guide for nShield Security 68/113
World v13.6.14

Chapter 17. Vendor-defined mechanisms

17.13.1. CKM_NC_MILENAGE

Computes the MILENAGE f1/f2/f3/f4/f5 functions as defined in ETSI TS 135 206 s4.1 and
thus generates the Authentication Vector (AV) as defined in the ETSI Authentication and
Key Agreement (AKA) protocol. This single output vector is the concatenated values
RAND||XRES||CK]||IK|[|XOR(SQN,AK)||AMF||MAC.

The following example shows how to use CKM_NC_MILENAGE:

/* session represents an existing open session */
CK_SESSION_HANDLE session;

/* subscriber_key, opc_key and rc_key represent existing keys */
CK_OBJECT_HANDLE subscriber_key, opc_key, rc_key;

/* sqn, amf and rand represent existing byte arrays holding the sequence number,
* authentication management field and RAND challenge respectively

* rand is optional */

CK_BYTE sqn[6], amf[2], rand[16];

CK_MILENAGE_SIGN_PARAMS milenage_params;
milenage_params.ulMilenageFlags = CKF_NC_MILENAGE_OP_OBJECT | CKF_NC_MILENAGE_OPC;
milenage_params.hSecondaryKey = opc_key;
memcpy(&(milenage_params.sqn), sqn, 6);
memcpy(&(milenage_params.amf), amf, 2);

/* a user-defined RC key is optional */
milenage_params.ulMilenageFlags |= CKF_NC_MILENAGE_USER_DEFINED_RC;
milenage_params.hRCKey = rc_key;

CK_MECHANISM milenage_mech = {CKM_NC_MILENAGE, &milenage_params, sizeof(milenage_params)};

/* Typical convention is to call C_Sign with the pData parameter set to

* NULL to determine the required size of the buffer - see Section 5.2 of

* the PKCS#11 Base Specification - but for brevity we allocate a 72 byte buffer
* since CKM_NC_MILENAGE output length is constant. */

CK_RV rv;

CK_BYTE milenage_result[72] = {0};

CK_ULONG milenage_len = sizeof(milenage_result);

rv = C_SignInit(session, &milenage_mech, subscriber_key);

if (rv != CKR_OK) return rv;

rv = C_Sign(session, rand, 16, milenage_result, &milenage_len);
if (rv != CKR_OK) return rv;

The RAND value passed to C_Sign is optional and can be left as NULL. A user-defined RC
key is also optional and can be omitted by removing the CKF_NC_MILENAGE_USER_DEFINED_RC
flag and leaving hRCKey as NULL.

An RC key can be generated using CKM_NC_MILENAGERC_KEY_GEN or created using custom val
ues with C_CreateObject (see Object management functions for details). If no RC key is
supplied, the default values defined in ETSI TS 135 206 s4.1 will be used.

17.13.2. CKM_NC_MILENAGE_RESYNC

PKCS 11 Reference Guide for nShield Security 69/113
World v13.6.14

Chapter 17. Vendor-defined mechanisms

Performs part of the resynchronization procedure as described in the AKA protocol. This
computes the MILENAGE f1*/f5* functions as defined in ETSI TS 135 206 s4.1 and verifies
AUTS, that is, XOR(SQN_UE, AK) | | MAC-S. If successful, the mechanism returns the sequence
number SQN_UE.

The calls to C_SignlInit and C_Sign are the same as during authentication, except the sec-
ond argument passed to C_Sign is the concatenated vector RAND||AUTS instead of RAND.
The sqn value in the parameters structure for this mechanism is not required and will be
ignored.

17.13.3. CKM_NC_MILENAGE_AUTS (testing only)

This mechanism is only for testing the resynchronization operation. It computes the MILE-
NAGE f1*/f5* functions as defined in ETSI TS 135 206 s4.1 and returns RAND||AUTS
(required as an input to CKM_NC_MILENAGE _RESYNC).

The calls to C_SignlInit and C_Sign are the same as during authentication. The RAND value is
optional.

17.14. CKM_NC_TUAK_TOPC

Derive CKK_NC_TUAKTOPC key from CKK_NC_TUAKTOP and CKK_NC_TUAKSUBSCRIBER keys for use
in the 3GPP mechanisms defined in ETSI TS 135 231 s6.1.

A C_DeriveKey function call is made. The function takes the CKK_NC_TUAKSUBSCRIBER key han
dle as the base key and the following structure as the mechanism parameter:

typedef struct CK_NC_TUAK_DERIVE_PARAMS {

CK_OBJECT_HANDLE hTOPKey; /* CKK_NC_TUAK_TOP key handle */

CK_ULONG ulIterations; /* number of Keccak iterations (1 or 2) */
} CK_NC_TUAK_DERIVE_PARAMS;

To generate the subscriber and TOP keys, use the corresponding vendor-defined key gener
ation mechanisms (which do not take any mechanism parameters):

« CKM_NC_TUAKSUBSCRIBER_KEY_GEN
« CKM_NC_TUAKTOP_KEY_GEN

17.15. CKM_NC_TUAK, CKM_NC_TUAK_AUTS,
CKM_NC_TUAK_RESYNC

PKCS 11 Reference Guide for nShield Security 70/113
World v13.6.14

Chapter 17. Vendor-defined mechanisms

3GPP mechanisms for 5G mobile networks as defined by ETSI TS 135 231. Used with
C_SignInit and C_Sign function calls. The parameters for these mechanisms are defined in
the following structure:

typedef struct CK_TUAK_SIGN_PARAMS {

CK_ULONG ulTuakFlags;

CK_ULONG ulEncKilen; /* not used - must be @ */

CK_BYTE_PTR pEncKi; /* not used */

CK_ULONG ulEncTOPcLen; /* not used - must be @ */

CK_BYTE_PTR pEncTOPc; /* not used */

CK_ULONG ullterations; /* number of Keccak iterations (1 or 2) */
CK_OBJECT_HANDLE hSecondaryKey; /* existing CKK_NC_TUAK_TOPC key handle */
CK_ULONG ulReslLen; /* length of expected response (4, 8, 16 or 32 bytes) */
CK_ULONG ulMacALen; /* length of MAC (8, 16 or 32 bytes) */

CK_ULONG ulCkLen; /* length of crypto key CK (16 or 32 bytes) */
CK_ULONG ulIkLen; /* length of identity key IK (16 or 32 bytes) */
CK_BYTE sqn[6]; /* sequence number */

CK_BYTE amf[2]; /* authentication management field */

} CK_TUAK_SIGN_PARAMS;

The ulTuakFlags can consist of the following flags:

#define CKF_NC_TUAK_TOPC 0x00000001 /* secondary key is TOPC (not TOP) */
#define CKF_NC_TUAK_TOP_OBJECT 0x00000004 /* secondary key is supplied by object handle */

Both the CKF_NC_TUAK_TOPC and CKF_NC_TUAK_TOP_OBJECT flags must be present. The nShield
PKCS #11 library currently only supports passing the TOPC key handle to the mechanism.

17.15.1. CKM_NC_TUAK

Computes the TUAK f1/f2/f3/f4/f5 functions as defined in ETSI TS 135 231 s6.2/s6.4 and
thus generates the Authentication Vector (AV) as defined in the ETSI Authentication and
Key Agreement (AKA) protocol. This single output vector is the concatenated values
RAND||XRES]||CK]||IK||XOR(SQN,AK)||AMF||MAC.

The following example shows how to use CKM_NC_TUAK:

/* session represents an existing open session */
CK_SESSION_HANDLE session;

/* subscriber_key and topc_key represent existing keys */
CK_OBJECT_HANDLE subscriber_key, topc_key;

/* sqn, amf and rand represent existing byte arrays holding the sequence number,
* authentication management field and RAND challenge respectively

* rand is optional */
CK_BYTE sqn[6], amf[2], rand[16];

CK_TUAK_SIGN_PARAMS tuak_params;
tuak_params.ulTuakFlags = CKF_NC_TUAK_TOP_OBJECT | CKF_NC_TUAK_TOPC;
tuak_params.hSecondaryKey = topc_key;

tuak_params.ullterations = 1; // 1 or 2
tuak_params.ulReslLen = 32; // 4, 8, 16 or 32
PKCS 11 Reference Guide for nShield Security 71/113

World v13.6.14

Chapter 17. Vendor-defined mechanisms

tuak_params.ulMacALen = 32; // 8, 16 or 32
tuak_params.ulCkLen = 32; // 16 or 32
tuak_params.ulIlklLen = 32; // 16 or 32

memcpy (&(tuak_params.sgn), sqn, 6);
memcpy (&(tuak_params.amf), amf, 2);

CK_MECHANISM tuak_mech = {CKM_NC_TUAK, &tuak_params, sizeof(tuak_params)};

/* Typical convention is to call C_Sign with the pData parameter set to
* NULL to determine the required size of the buffer - see Section 5.2 of
* the PKCS#11 Base Specification - but for brevity we allocate a 1KB buffer */

CK_RV rv;

CK_BYTE tuak_result[1000] = {0};

CK_ULONG tuak_len = sizeof(tuak_result);

rv = C_SignInit(session, &tuak_mech, subscriber_key);
if (rv != CKR_OK) return rv;

rv = C_Sign(session, rand, 16, tuak_result, &tuak_len);
if (rv != CKR_OK) return rv;

The RAND value passed to C_Sign is optional and can be left as NULL.

17.15.2. CKM_NC_TUAK_RESYNC

Performs part of the resynchronization procedure as described in the AKA protocol. This
computes the TUAK f1*/f5* functions as defined in ETSI TS 135 231 s6.3/s6.5 and verifies
AUTS, that is, XOR(SQN_UE, AK) | [MAC-S. If successful, the mechanism returns the sequence
number SQN_UE.

The calls to C_SignInit and C_Sign are the same as during authentication, except the sec-
ond argument passed to C_Sign is the concatenated vector RAND||AUTS instead of RAND.
The sqgn value in the parameters structure for this mechanism is not required and will be
ignored.

17.15.3. CKM_NC_TUAK_AUTS (testing only)

This mechanism is only for testing the resynchronization operation. It computes the TUAK
f1*/f5* functions as defined in ETSI TS 135 231 s6.3/s6.5 and returns RAND||AUTS (required
as an input to CKM_NC_TUAK_RESYNC).

The calls to C_SignInit and C_Sign are the same as during authentication. The RAND value is
optional. Only the sgn, amf, ulMacALen and ulIterations parameters are required. The
remainder will be ignored.

PKCS 11 Reference Guide for nShield Security 72/113
World v13.6.14

Chapter 18. KISAAlgorithm mechanisms

18. KISAAlgorithm mechanisms

If you are using version 1.20 or greater and you have enabled the KISAAlgorithms feature,
you can use the following mechanisms through the standard PKCS #11 API calls.

18.1. KCDSA keys

The CKM_KCDSA mechanism is a plain general signing mechanism that allows you to use a
CKK_KCDSA key with any length of plain text or pre-hashed message. It can be used with the
standard single and multipart C_Sign and C_Verify update functions.

The CKM_KCDSA mechanism takes a CK_KCDSA_PARAMS structure that states which hashing
mechanism to use and whether or not the hashing has already been performed:

typedef struct CK_KCDSA_PARAMS {
CK_MECHANISM_PTR digestMechanism;
CK_BBOOL datalsHashed;

The following digest mechanisms are available for use with the digestMechanism:

« CKM_SHA_1
- CKM_HAS160
- CKM_RIPEMD160

The datalsHashed flag can be set to one of the following values:

1 when the message has been pre-hashed (pre-digested)

« 0 when the message is in plain text.

The CK_KCDSA_PARAMS structure is then passed in to the mechanism structure.

18.2. Pre-hashing

If you want to provide a pre-hashed message to the C_Sign() or C_Verify() functions using
the CKM_KCDSA mechanism, the hash must be the value of h(z||m) where:

+ his the hash function defined by the mechanism
+ zis the bottom 512 bits of the public key, with the most significant byte first

« mis the message that is to be signed or verified.

The hash consists of the bottom 512 bits of the public key (most significant byte first), with

PKCS 11 Reference Guide for nShield Security 73/113
World v13.6.14

Chapter 18. KISAAlgorithm mechanisms

the message added after this.

If the hash is not formatted as described when signing, then incorrect signatures are gener-
ated. If the hash is not formatted as described when verifying, then invalid signatures can
be accepted and valid signatures can be rejected.

18.3. CKM_KCDSA_SHA1, CKM_KCDSA_HAS160,
CKM_KCDSA_RIPEMD160

These older mechanisms sign and verify using a CKK_KCDSA key. They now work with the
C_Sign and C_Update functions, though they do not take the CK_KCDSA_PARANS structure or
pre-hashed messages. These mechanisms can be used for single or multipart signing and
are not restricted as to message size.

18.4. CKM_KCDSA_KEY_PAIR_GEN

This mechanism generates a CKK_KCDSA key pair similar to that of DSA. You can supply in the
template a discrete log group that consists of the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE
attributes. In addition, you must supply CKA_PRIME_BITS, with a value between 1024 and
2048, and CKA_SUBPRIME_BITS, which must have a value of 160. If you supply
CKA_PRIME_BITS and CKA_SUBPRIME_BITS without a discrete log group, the module generates
the group. CKR_TEMPLATE_INCOMPLETE is returned if CKA_PRIME_BITS and CKA_SUBPRIME_BITS
are not supplied.

CKA_PRIME_BITS must have the same length as the prime and CKA_SUBPRIME-BITS must have
the same length as the subprime if the discrete log group is also supplied. If either are differ
ent, PKCS #11 returns CKR_TEMPLATE _INCONSISTENT.

You can use the C_GenerateKeyPair function to generate a key pair. If you supply one or
more parts of the discrete log group in the template, the PKCS #11 library assumes that you
want to supply a specific discrete log group. CKR_TEMPLATE_INCOMPLETE is returned if not all
parts are supplied. If you want the module to calculate a discrete log group for you, ensure
that there are no discrete log group attributes present in the template.

A CKK_KCDSA private key has two value attributes, CKA_PUBLIC_VALUE and CKA_PRIVATE_VALUE.
This is in contrast to DSA keys, where the private key has only the attribute CKA_VALUE, the
private value. The public key in each case contains only the public value.

The standard key-pair attributes common to all key pairs apply. Their values are the same as
those for DSA pairs unless specified differently in this section.

PKCS 11 Reference Guide for nShield Security 74/113
World v13.6.14

Chapter 18. KISAAlgorithm mechanisms

18.5. CKM_KCDSA_PARAMETER_GEN

o For information about DOMAIN Objects, read the PKCS #11 specifica-
tion v2.11.

Use this mechanism to create a CKO_DOMAIN_PARAMETERS object. This is referred to as a KCD-
SAComm key in the nCore interface.

Use C_GenerateKey to generate a new discrete log group and initialization values. The initial-
ization values consist of a counter (CKA_COUNTER) and a hash (CKA_SEED) that is the same
length as CKA_PRIME_BITS, which must have a value of 160. The CKA_SEED must be the same
size as CKA_SUBPRIME_BITS. If this not the case, the PKCS #11 library returns CKR_DOMAIN_-
PARAMS_INVALID.

Optionally, you can supply the initialization values. If you supply the initialization values with
CKA_PRIME_BITS and CKA_SUBPRIME_BITS, you can reproduce a discrete log group generated
elsewhere. This allows you to verify that the discrete log group used in key pairs is correct.
If the initialization values are not present in the template, a new discrete log group and cor-
responding initialization values are generated. These initialization values can be used to
reproduce the discrete log group that has just been generated. The newly generated dis-
crete log group can then be used in a PKCS #11 template to generate a CKK_KCDSA key using
C_Generate_Key_Pair. DOMAIN keys can also be imported using the C_CreateObject call.

18.6. CKM_HAS160

CKM_HAS160 is a basic hashing algorithm. The hashing is done on the host machine. This algo
rithm can be used by means of the standard digest function calls of the PKCS #11 API.

18.7. SEED secret keys

18.7.1. CKM_SEED_KEY_GEN

This mechanism generates a 128-bit SEED key. The standard secret key attributes are
required, except that no length is required since this a fixed length key type similar to DES3.
Normal return values apply when generating a CKK_SEED type key.

18.7.2. CKM_SEED_ECB, CKM_SEED_CBC, CKM_SEED_CBC_PAD

These mechanisms are the standard mechanisms to be used when encrypting and decrypt-

PKCS 11 Reference Guide for nShield Security 75/113
World v13.6.14

Chapter 18. KISAAlgorithm mechanisms

ing or wrapping with a CKK_SEED key. A CKK_SEED key can be used to wrap or unwrap both
secret keys and private keys. A CKK_KCDSA key cannot be wrapped by any key type.

The CKM_SEED_ECB mechanism wraps only secret keys of exact multiples of the CKK_SEED
block size (16) in ECB mode. The CKM_SEED_CBC_PAD key wraps the same keys in CBC mode.

The CKM_SEED_CBC_PAD key wraps keys of variable block size. It is the only mechanism avail-
able to wrap private keys.

A CKK_SEED key can be used to encrypt and decrypt with both single and multipart methods
using the standard PKCS #11 API. The plain text size for multipart cryptographic function
must be a multiple of the block size.

18.7.3. CKM_SEED_MAC, CKM_SEED_MAC_GENERAL

These mechanisms perform both signing and verification. They can be used with both sin-
gle and multipart signing or verification using the standard PKCS #11 APIl. Message size
does not matter for either single or multipart signing and verification.

PKCS 11 Reference Guide for nShield Security 76/113
World v13.6.14

Chapter 19. Attributes

19. Attributes

The following sections describe how PKCS #11 attributes map to the Access Control List
(ACL) given to the key by the nCore API. nCore APl ACLs are described in the nCore API
Documentation (supplied as HTML).

19.1. CKA_SENSITIVE

In a FIPS 140 Level 2 world, CKA_SENSITIVE=FALSE creates a key with an ACL that includes
ExportAsPlain. Keys are exported using DeriveMech_EncryptMarshalled even in a FIPS 140
Level 2 world. The presence of the ExportAsPlain permission makes the status of the key
clear when a FIPS 140 Level 2 ACL is viewed using GetACL.

CKA_SENSITIVE=FALSE always creates a key with an ACL that includes DeriveKey with
DeriveRole_BaseKey and DeriveMech_EncryptMarshalled.

See also CKA_UNWRAP_TEMPLATE.

19.2. CKA_PRIVATE

If CKA_PRIVATE is set to TRUE, keys are protected by the logical token of the OCS. If it is set
to FALSE, public keys are protected by a well-known module key, and other keys and objects
are protected by the Security World module key.

You must set CKA_PRIVATE to:

+ FALSE for public keys

+ TRUE for non-extractable keys on card slots.

19.3. CKA_EXTRACTABLE

CKA_EXTRACTABLE creates a key with an ACL including DeriveKey permissions listed in the fol
lowing table:

PKCS 11 Reference Guide for nShield Security 77/113
World v13.6.14

Chapter 19. Attributes

Key Type Role Mechanism

Secret key DeriveRole_BaseKey DeriveMech_AESKeyWrap
DeriveMech_RawEncrypt
DeriveMech_RawEncryptZeroPad

DeriveMech_ECIESKeyWrap

Private key DeriveRole_BaseKey DeriveMech_PKCS8Encrypt

19.4. CKA_LENCRYPT, CKA_DECRYPT, CKA_SIGN,
CKA_VERIFY

These attributes create a key with ACL including Encrypt, Decrypt, Sign, or Verify permis-

sion.

19.5. CKA_WRAP, CKA_LUNWRAP

CKA_WRAP creates a key with an ACL including the DeriveKey permissions listed in the follow

ing table:
Key Type Role Mechanism
Secret key DeriveRole_WrapKey DeriveMech_PKCS8Encrypt
Secret key (AES only) DeriveRole_WrapKey DeriveMech_AESKeyWrap
Secret key, public key (RSA only) DeriveRole_WrapKey DeriveMech_RawEncrypt
DeriveMech_RawEncryptZeroPad
Public key (elliptic curve only) DeriveRole_WrapKey DeriveMech_ECIESKeyWrap

CKA_UNWRAP creates a key with an ACL including the DeriveKey permissions listed in the fol-

lowing table:
Key Type Role Mechanism
Secret key DeriveRole_WrapKey DeriveMech_PKCS8Decrypt
DeriveMech_PKCS8DecryptEx
Secret key (AES only) DeriveRole_WrapKey DeriveMech_AESKeyUnwrap
PKCS 11 Reference Guide for nShield Security 78/113

World v13.6.14

Chapter 19. Attributes

Key Type Role Mechanism
Secret key, public key (RSA only) DeriveRole_WrapKey DeriveMech_RawDecrypt

DeriveMech_RawDecryptZeroPad

Public key (elliptic curve only) DeriveRole_WrapKey DeriveMech_ECIESKeyUnwrap

19.6. CKA_WRAP_TEMPLATE, CKA_LUNWRAP_TEMPLATE

CKA_WRAP_TEMPLATE and CKA_UNWRAP_TEMPLATE guard against non-compliance of keys by
specifying an attribute template.

The CKA_WRAP_TEMPLATE attribute applies to wrapping keys and specifies the attribute tem-
plate to match against any of the keys wrapped by the wrapping key. Keys which do not
match the attribute template will not be wrapped.

The CKA_UNWRAP_TEMPLATE attribute applies to wrapping keys and specifies the attribute tem
plate to apply to any of the keys which are unwrapped by the wrapping key. Keys will not be
unwrapped if there is attribute conflict between the CKA_UNWRAP_TEMPLATE and any user sup
plied template (pTemplate).

Nested occurrences of CKA_WRAP_TEMPLATE or CKA_UNWRAP_TEMPLATE are not supported.

If CKA_MODIFIABLE or CKA_SENSITIVE are defined within the CKA_UNWRAP_TEMPLATE, the behav-
ior is as follows:

CKA_MODIFIABLE (TRUE)

PKCS #11 Attribute Unwrap Template C_Unwrap pTem- Attribute Value Allowed

Types Attribute plate Attribute Comparison

All supported Defined Defined Equal Yes
Defined Defined Not Equal Yes
Undefined Defined N/A Yes
Defined Undefined N/A Yes

CKA_MODIFIABLE (FALSE)

PKCS 11 Reference Guide for nShield Security 79/113
World v13.6.14

Chapter 19. Attributes

PKCS #11 Attribute
Types

All supported

Unwrap Template
Attribute

Defined
Defined
Undefined

Defined

CKA_SENSITIVE (TRUE)

PKCS #11 Attribute Types C_Unwrap pTemplate

CKA_SENSITIVE

CKA_EXTRACTABLE

Attribute

Defined

Defined

CKA_SENSITIVE (FALSE)

PKCS #11 Attribute Types C_Unwrap pTemplate

CKA_SENSITIVE

CKA_EXTRACTABLE

Attribute

Defined

Defined

C_Unwrap pTem-
plate Attribute

Defined
Defined
Defined

Undefined

Attribute Value
Comparison

Equal
Not Equal
N/A

N/A

C_Unwrap pTemplate

Attribute Value

FALSE

FALSE

C_Unwrap pTemplate

Attribute Value

TRUE

FALSE

TRUE

FALSE

Allowed

Yes

No

Yes

Yes

Allowed

No

No

For security reasons, Entrust recommends that you include CKA_SENSI-
TIVE=TRUE in the template. This is because the restrictions imposed by
CKA_UNWRAP_TEMPLATE are enforced at the module level. Keys with
CKA_SENSITIVE=FALSE have low security, especially if CKA_EX-
TRACTABLE=TRUE.

Allowed

Yes

Yes

Yes

Yes

See also CKA_ALLOWED_MECHANISMS for more information about mechanism-specific restric-
tions applying to the use of CKA_UNWRAP_TEMPLATE.

19.7. CKA_SIGN_RECOVER

C_SignRecover checks CKA_SIGN_RECOVER but is otherwise identical to C_Sign. Setting
CKA_SIGN_RECOVER creates a key with an ACL that includes Sign permission.

PKCS 11 Reference Guide for nShield Security

World v13.6.14

80/113

Chapter 19. Attributes

19.8. CKA_VERIFY_RECOVER

Setting CKA_VERIFY_RECOVER creates a public key with an ACL including Encrypt permission.

19.9. CKA_DERIVE

For Diffie-Hellman private keys, CKA_DERIVE creates a key with Decrypt permissions.

For secret keys, CKA_DERIVE creates a key with an ACL that includes DeriveRole_BaseKey
with one of DeriveMech_DESsplitXOR, DeriveMech_DES2splitXOR, DeriveMech_DES3splitXOR,
DeriveMech_RandsplitXOR, or DeriveMech_CASTsplitXOR as appropriate if the key is
extractable, because this permission would effectively allow the key to be extracted. The
ACL includes DeriveMech_RawEncrypt whether or not the key is extractable.

19.10. CKA_ALLOWED_MECHANISMS

CKA_ALLOWED_MECHANISMS is available as a full attribute array for all key types. The number of
mechanisms in the array is the ulValuelLen component of the attribute divided by the size
of CK_MECHANISM_TYPE.

The CKA_ALLOWED_MECHANISMS attribute is set when generating, creating and unwrapping
keys.

CKA_ALLOWED_MECHANISMS is an optional attribute and does not have to be set, except when
the key is intended for use with one of the mechanisms described below. However, if
CKA_ALLOWED_MECHANISMS is set, then the attribute is checked to see if the mechanism you
want to use is in the list of allowed mechanisms. If the mechanism is not present, then an
error occurs and a value of CKR_MECHANISM_INVALID is returned.

19.10.1. CKM_CONCATENATE_BASE_AND_KEY

You must set CKA_ALLOWED_MECHANISMS with the CKM_CONCATENATE_BASE_AND_KEY mechanism
when generating or creating both of the keys that are used in the C_DeriveKey operation
with the CKM_CONCATENATE_BASE_AND_KEY mechanism. If CKA_ALLOWED_MECHANISMS is not set
at creation time then the correct ConcatenateBytes ACL is not set for the keys.

When CKM_CONCATENATE_BASE_AND_KEY is used with C_DeriveKey, CKA_ALLOWED_MECHANISMS is
checked. If CKM_CONCATENATE_BASE_AND_KEY is not present, then an error occurs and a value
of CKR_MECHANISM_INVALID is returned.

PKCS 11 Reference Guide for nShield Security 81/113
World v13.6.14

Chapter 19. Attributes

19.10.2. CKM_RSA_AES_KEY_WRAP

You must set CKA_ALLOWED_MECHANISMS with the CKM_RSA_AES _KEY_WRAP mechanism when
generating or creating RSA keys that also have CKA_UNWRAP_TEMPLATE set on the private half
if they are to be used in the C_UnwrapKey operation with the CKM_RSA_AES_KEY_WRAP mecha-
nism.

When CKM_RSA_AES_KEY_WRAP is used with C_UnwrapKey, CKA_ALLOWED_MECHANISMS is checked.
If CKM_RSA_AES_KEY_WRAP is not present but the unwrapping key has CKA_UNWRAP_TEMPLATE,
then an error occurs and a value of CKR_MECHANISM_INVALID is returned.

RSA private keys that have CKA_ALLOWED_MECHANISMS set with the CKM_RSA_AES_KEY_WRAP
mechanism cannot be copied if they also have both the following attributes set:

« CKA_TOKEN with a value of CK_TRUE
- CKA_UNWRAP_TEMPLATE

The C_CopyObject operation returns CKR_ACTION_PROHIBITED for such keys.

19.11. CKA_MODIFIABLE

CKA_MODIFIABLE only restricts access through the PKCS #11 API: all PKCS #11 keys have
ACLs that include the ReduceACL permission.

See also CKA_UNWRAP_TEMPLATE.

19.12. CKA_TOKEN

Token objects are saved as key blobs. Session objects only ever exist on the module.

19.13. CKA_START_DATE, CKA_LEND_DATE

These attributes are ignored, and the PKCS #11 standard states that these attributes do not
restrict key usage.

19.14. CKA_TRUSTED and CKA_WRAP_WITH_TRUSTED

CKA_TRUSTED and CKA_WRAP_WITH_TRUSTED guard against a key being wrapped and removed
from the HSM by an untrusted wrapping key. A key with a CKA_WRAP_WITH_TRUSTED attribute
can only be wrapped by a wrapping key with a CKA_TRUSTED attribute. A trusted key can only

PKCS 11 Reference Guide for nShield Security 82/113
World v13.6.14

Chapter 19. Attributes

be given a CKA_TRUSTED attribute by the PKCS #11 Security officer.

The CKA_WRAP_WITH_TRUSTED attribute gives a key an ACL whose DeriveRole_BaseKey exists
in a group protected by a certifier. The ACL therefore requires a certificate generated by
the PKCS #11 Security Officer to be able to wrap the key.

The CKA_TRUSTED attribute stores on a wrapping key a certificate signed by the PKCS #11
Security Officer. This certificate can then be used to authenticate a wrapping operation.

CKA_TRUSTED can only be set if the session is logged in as CKU_S0, and the Security Officer’s
token and key has been preloaded. If not, the operation will return CKR_USER_NOT_LOGGED_IN.

CKA_WRAP_WITH_TRUSTED does not require the Security Officer token and key to be pre-
loaded, or to be logged in as CKU_SO, but it does require that the role exists. If the role does
not exist, the operation returns CKR_USER_NOT_LOGGED_IN. When attributes have been set,
the PKCS #11 Security Officer is not needed for C_WrapKey to perform a trusted key wrap-

ping.

If the PKCS #11 Security Officer is deleted, keys with existing
CKA_TRUSTED or CKA_WRAP_WITH_TRUSTED attributes continue to be valid. If
o the PKCS #11 Security Officer is recreated, any new keys that are given
the CKA_TRUSTED attribute will not be trusted by existing keys with
CKA_WRAP_WITH_TRUSTED, and vice versa.

A CKO_CERTIFICATE object can also be given a CKA_TRUSTED attribute, and also requires the
PKCS #11 Security Officer to do so. This includes using ckcerttool with the -T option,
which sets CKA_TRUSTED to true.

19.15. CKA_COPYABLE and CKA_DESTROYABLE

The CKA_COPYABLE and CKA_DESTROYABLE attributes indicate whether an object can be copied
using C_CopyObject or destroyed using C_DestroyObject. If the corresponding function is
attempted when the attribute is set to false, the function returns CKR_ACTION_PROHIBITED.

CKA_COPYABLE and CKA_DESTROYABLE can be applied to objects through all interfaces that sup
port setting attributes:

C_GenerateKey and C_GenerateKeyPair
C_CreateObject
C_SetAttributeValue

« C_CopyObject

Existing and new objects have both attributes set to true by default. When changing an

PKCS 11 Reference Guide for nShield Security 83/113
World v13.6.14

Chapter 19. Attributes

attribute, CKA_COPYABLE cannot be changed from false to true.

19.16. RSA key values

CKA_PRIVATE_EXPONENT is not used when importing an RSA private key using C_Create0Ob-
ject. However, it must be in the template, since the PKCS #11 standard requires it. All the
other values are required.

The nCore API allows use of a default public exponent, but the PKCS #11 standard requires
CKA_PUBLIC_EXPONENT.

Except for very small keys, the nShield default is 65537, which as a PKCS #11 big integer is
CK_BYTEpublic_exponent[] ={ 1, 0, 1 };

19.17. DSA key values

If CKA_PRIME is 1024 bits or less, then the KeyType_DSAPrivate_GenParams_flags_Strict flag
is used, because it enforces a 1024 bit limit.

The implementation allows larger values of CKA_PRIME, but in those cases the KeyType_D-
SAPrivate_GenParams_flags_Strict flag is not used.

19.18. Vendor specific error codes

Security World Software defines the following vendor specific error codes:
CKR_FIPS_TOKEN_NOT_PRESENT

This error code indicates that an Operator Card is required even though the card slot is not

in use.
CKR_FIPS_MECHANISM_INVALID

This error code indicates that the current mechanism is not allowed in FIPS 140 Level 3

mode.
CKR_FIPS_FUNCTION_NOT_SUPPORTED

This error code indicates that the function is not supported in FIPS 140 Level 3 mode
(although it is supported in FIPS 140 Level 2 mode).

PKCS 11 Reference Guide for nShield Security 84/113
World v13.6.14

Chapter 20. Utilities

20. Utilities

This section describes command-line utilities Entrust provides as aids to developers.

20.1. ckdes3gen

ckdes3gen.exe [p|--pin-for-testing=<passphrase>] | [n|-nopin]

This utility is an example of Triple DES key generation using the nShield PKCS #11 library.
The utility generates the DES3 key as a private object that can be used both to encrypt and
decrypt.

By default, the utility prompts for a passphrase. You can supply a passphrase on the com-
mand line with the --pin-for-testing option, or suppress the passphrase request with the
--nopin option. The passphrase is displayed in the clear on the command line, so this option
is appropriate only for testing.

20.2. ckinfo

ckinfo.exe [r|--repeat-count=<COUNT>]

This utility displays C_GetInfo, C_GetSlotInfo and C_GetTokenInfo results. You can specify a
number of repetitions of the command with --repeat-count=<COUNT>. The default is 1.

20.3. cklist

cklist.exe [-p|--pin-for-testing=<passphrase>] [-n|-nopin]

This utility lists some details of objects on all slots. It lists public and private objects if
invoked with a passphrase argument and public objects only if invoked without a
passphrase argument.

It does not output any potentially sensitive attributes, even if the object has CKA_SENSITIVE
set to FALSE.

By default, the utility prompts for a passphrase. You can supply a passphrase on the com-
mand line with the --pin-for-testing option, or suppress the passphrase request with the
--nopin option. The passphrase is displayed in the clear on the command line, so this option
is appropriate only for testing.

PKCS 11 Reference Guide for nShield Security 85/113
World v13.6.14

Chapter 20. Utilities

20.4. ckmechinfo

ckmechinfo.exe

The utility displays C_GetMechanismInfo results for each mechanism returned by C_GetMecha
nismList.

20.5. ckrsagen

ckrsagen.exe [-p|--pin-for-testing=<passphrase>] | [-n|-nopin]

The ckrsagen utility is an example of RSA key pair generation using the nShield PKCS #11
library. This is intended as a programmer’s example only and not for general use. Use the key
generation routines within your PKCS #11 application.

By default, the utility prompts for a passphrase. You can supply a passphrase on the com-
mand line with the --pin-for-testing option, or suppress the passphrase request with the
--nopin option. The passphrase is displayed in the clear on the command line, so this option
is appropriate only for testing.

20.6. cksotool

cksotool.exe [-h] [--version] [-m MODULE] [-c | -p | -i | --delete]

The cksotool utility can be used to create and manage the PKCS #11 Security Officer (SO).
The SO consists of a token and an RSA key, and is necessary to be able to perform any oper
ations that require a Security Officer as defined by the PKCS #11 specification. The utility
can be used to view the current state of the SO using the -i or --info option, which pro-
vides details of the existence and validity of the underlying token and key.

The key and softcard created by cksotool is for Entrust internal use inside the PKCS #11
library. It is not to be used directly in an application.

PKCS 11 Reference Guide for nShield Security 86/113
World v13.6.14

Chapter 21. Functions

21. Functions

The following sections list the PKCS #11 functions supported by the nShield PKCS #11
library. For a list of supported mechanisms, see Mechanisms.

o Certain functions are included in PKCS #11 version 2.40 for compatibil-
ity with earlier versions only.

21.1. Choosing functions

Some PKCS #11 applications enable you to choose which functions you want to perform on
the PKCS #11 token and which functions you want to perform in your application.

The following paragraphs in this section describe the functions that an nShield HSM can
provide.

21.1.1. Generating random numbers and keys

The nShield HSM includes a hardware random number generator. A hardware random num-
ber generator provides greater security than the pseudo-random number generators pro-
vided by host computers. Therefore, always use the nShield HSM to generate random num-
bers and keys.

21.1.2. Digital signatures

The nShield PKCS #11 library can use the nShield HSM to sign and verify messages using
the following algorithms:

- DSA

+ RSA

« DES3_MAC

« AES

- ECDSA (if the appropriate feature is enabled)

An nShield hardware security module is specifically optimized for public key algorithms, and
therefore it will provide significant acceleration for DSA, RSA and ECDSA signature genera-
tion and verification. You should always choose to perform asymmetric signature genera-
tion and verification with an nShield HSM.

PKCS 11 Reference Guide for nShield Security 87/113
World v13.6.14

Chapter 21. Functions

21.1.3. Asymmetric encryption

The nShield PKCS #11 library can use an nShield HSM to perform asymmetric encryption
and decryption with the RSA algorithm.

The nShield HSM is specifically optimized for asymmetric algorithms, so you should always
choose to perform asymmetric operations with the nShield HSM.

21.1.4. Symmetric encryption

The nShield PKCS #11 library can use the nShield HSM to perform symmetric encryption
with the following algorithms:

- DES
- Triple DES
- AES

Because of limitations on throughput, these operations can be slower on the nShield HSM
than on the host computer. However, although the nShield HSM may be slower than the
host under a light load, you may find that under a heavy load the advantage gained from
off-loading the symmetric cryptography (which frees the host CPU for other tasks) means
that you achieve better overall performance.

21.1.5. Message digest

The nShield PKCS #11 library can perform message digest operations with MD5, SHA-1,
SHA-224, SHA-256, SHA-384, and SHA-512 algorithms. However, for reasons of through-
put, the library performs these operations on the host computer.

21.1.6. Mechanisms

The mechanisms currently supported by the nShield PKCS #11 library, including some ven-
dor-supplied mechanisms, are listed in Mechanisms.

21.1.7. Key wrapping

The nShield PKCS #11 library can use an nShield HSM to wrap (encrypt) a private or secret
key, or to unwrap (decrypt) a wrapped key.

PKCS 11 Reference Guide for nShield Security 88/113
World v13.6.14

Chapter 22. General purpose functions

22. General purpose functions

The following functions perform as described in the PKCS #11 specification:

22.1. C_Finalize

Function Supported in Security
World

C_Finalize tbc

22.1.1. Notes

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

The CKNFAST_NONREMOVABLE environment variable is only available for persistent tokens.

When the variable is set, the rules for recognizing new cards are overridden, and the only

way to invoke a new tokenis to call C_Finalize or C_Initialize.

22.2. C_GetInfo

Function Supported in Security
World
C _GetInfo tbc

22.3. C_GetFunctionList

Function Supported in Security
World
C_GetFunctionList tbc

22.4. C_Initialize

Function Supported in Security
World

C_Initialize Yes

22.4.1. Notes

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

89/113

Chapter 22. General purpose functions

The CKNFAST_NONREMOVABLE environment variable is only available for persistent tokens.
When the variable is set, the rules for recognizing new cards are overridden, and the only
way to invoke a new token is to call C_Finalize or C_Initialize.

If your application uses multiple threads, you must supply such functions as CreateMutex
(as stated in the PKCS #11 specification) in the CK_C_INITIALIZE_ARGS argument.

PKCS 11 Reference Guide for nShield Security 90/113
World v13.6.14

Chapter 23. Slot and token management functions

23. Slot and token management functions

The following functions perform as described in the PKCS #11 specification:

23.1. C_GetSlotInfo

Function Supported in Security
World
C_GetSlotInfo thc

23.2. C_GetTokenInfo

Function Supported in Security
World
C_GetTokenInfo tbc

23.3. C_GetMechanismList

Function Supported in Security
World
C_GetMechanismList tbc

23.4. C_GetMechanismlInfo

Function Supported in Security
World
C_GetMechanismInfo tbc

23.5. C_GetSlotList

Function Supported in Security
World
C_GetSlotList thc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

91/113

Chapter 23. Slot and token management functions

23.5.1. Notes

This function returns an array of PKCS #11 slots. Within each module, the slots are in the
order:

1. module(s)
2. smart card reader(s)

3. software tokens, if present.
Each module is listed in ascending order by nShield ModuleID.

C_GetSlotList returns an array of handles. You cannot make any assumptions about the val
ues of these handles. In particular, these handles are not equivalent to the slot numbers
returned by the nCore APl command GetSlotList.

23.6. C_InitToken

Function Supported in Security Performs as in PKCS #11 PKCS #11 spec version
World spec

C_InitToken tbc Without modifications 2.40

23.6.1. Notes

C_InitToken sets the card passphrase to the same value as the current token’s passphrase
and sets the CKF_USER_PIN_INITIALIZED flag.

This function is supported in load-sharing mode only when using softcards. To use C_InitTo
ken in load-sharing mode, you must have created a softcard with the command ppmk -n
before selecting the corresponding slot.

The C_InitToken function is not supported for use in non-load-sharing FIPS 140 Level 3

Security Worlds.
23.7. C_InitPIN
Function Supported in Security Performs as in PKCS #11 PKCS #11 spec version
World spec
C_InitPin the Without modifications 2.40
PKCS 11 Reference Guide for nShield Security 92/113

World v13.6.14

Chapter 23. Slot and token management functions

23.7.1. Notes

There is usually no need to call C_InitPIN, because C_InitToken sets the card passphrase.

Because the nShield PKCS #11 library can only maintain a single passphrase, C_InitPIN has
the effect of changing the current token'’s passphrase.

This function is supported in load-sharing mode only when using softcards. To use C_Init-
PIN in load-sharing mode, you must have created a softcard with the command ppmk -n
before selecting the corresponding slot.

23.8. C_SetPIN

Function Supported in Security Performs as in PKCS #11 PKCS #11 spec version
World spec

C_SetPin tbc Without modifications 2.40

23.8.1. Notes

The card passphrase may be any value.

Because the nShield PKCS #11 library can only maintain a single passphrase, C_SetPIN has
the effect of changing the current token's passphrase or, if called in a Security Officer ses-
sion, the card passphrase.

This function is supported in load-sharing mode only when using softcards. To use C_SetPIN
in load-sharing mode, you must have created a Softcard with the command ppmk -n before
selecting the corresponding slot.

PKCS 11 Reference Guide for nShield Security 93/113
World v13.6.14

Chapter 24. Standard session management functions

24. Standard session management functions

These functions perform as described in the PKCS #11 specification:

24.1. C_OpenSession

Function Supported in Security
World
C_OpenSession tbc

24.2. C_CloseSession

Function Supported in Security
World
C_CloseSession tbc

24 .3. C_CloseAllSessions

Function Supported in Security
World
C_CloseAllSessions tbc

24.4. C_GetOperationState

Function Supported in Security
World
(_GetOperationState tbc

24.5. C_SetOperationState

Function Supported in Security
World
C_SetOperationState tbc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

94/113

Chapter 24. Standard session management functions

24.6. C_Login

Function Supported in Security
World
C_Login thc

24.7. C_Logout

Function Supported in Security
World
C_Logout tbc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

95/113

Chapter 25. nShield session management functions

25. nShield session management functions

The following are nShield-specific calls for K/N card set support:

25.1. C_LoginBegin

Function Supported in Security
World
C_LoginBegin tbc

25.2. C_LoginNext

Function Supported in Security
World
C_LoginNext tbc

25.3. C_LoginEnd

Function Supported in Security
World
C_LoginEnd tbc

25.4. C_GetSessionInfo

Function Supported in Security
World
(_GetSessionInfo tbc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

25.5. nShield session management function notes

ulDeviceError returns the numeric value of the last status, other than Status_O0K, returned

by the module. This value is never cleared. Status values are enumerated in the header file

messages-args-en.h on the nShield Developer’s installation media. For descriptions of

nShield status codes, see the nCore APl Documentation (supplied as HTML).

PKCS 11 Reference Guide for nShield Security
World v13.6.14

96/113

Chapter 26. Object management functions

26. Object management functions

These functions perform as described in the PKCS #11 specification:

26.1. C_CreateObject

Function Supported in Security Performs as in PKCS #11 PKCS #11 spec version
World spec
C_CreateObject tbc Without modifications 2.40

26.1.1. CKK_NC_MILENAGERC

The MILENAGE mechanisms support providing a custom set of values for constants c1-c5
and r1-r5 as defined by ETSI TS 135 206 s4.1. A CKK_NC_MILENAGERC object must be cre-
ated to store these custom values.

The key template passed to C_CreateObject in this case is a standard one for secret keys
with either of the two following ways of providing the ¢ and r values as attributes:

CK_BYTE cr_values[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c1 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c2 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c3 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c4 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c5 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 /* r1, r2, r3, r4, r5 */

}

CK_ATTRIBUTE rc_templatel[] = {
/* default secret key attributes */
{CKA_VALUE, &cr_values, sizeof(cr_values)}
}

CK_BYTE c1[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}

CK_BYTE c2[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}

CK_BYTE c3[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

PKCS 11 Reference Guide for nShield Security 97/113
World v13.6.14

Chapter 26. Object management functions

}

CK_BYTE c4[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}

CK_BYTE c5[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}

CKBYTE r1=0,r2=0, r3=0,r4=20, r5=20;

CK_ATTRIBUTE rc_template2[] = {

/* default secret key attributes */

{CKA_NC_MILENAGE_C1, &c1, sizeof(c1)},
{CKA_NC_MILENAGE_C2, &c2, sizeof(c2)},
{CKA_NC_MILENAGE_C3, &c3, sizeof(c3)},
{CKA_NC_MILENAGE_C4, &c4, sizeof(c4)},
{CKA_NC_MILENAGE_C5, &c5, sizeof(c5)},
{CKA_NC_MILENAGE_R1, &r1, sizeof(r1)},
{CKA_NC_MILENAGE_R2, &r2, sizeof(r2)},
{CKA_NC_MILENAGE_R3, &r3, sizeof(r3)},
{CKA_NC_MILENAGE_R4, &r4, sizeof(r4)},
{CKA_NC_MILENAGE_R5, &r5, sizeof(r5)},

26.2. C_CopyObject

Function Supported in Security
World
C_CopyObject tbc

26.3. C_DestroyObject

Function Supported in Security
World
C_DestroyObject tbc

26.4. C_GetObjectSize

Function Supported in Security
World
C_GetObjectSize tbc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

98/113

Chapter 26. Object management functions

26.5. C_GetAttributeValue

Function Supported in Security
World
C_GetAttributeValue tbc

26.6. C_SetAttributeValue

Function Supported in Security
World
C_SetAttributeValue tbc

26.7. C_FindObjectsInit

Function Supported in Security
World
C_FindObjectsInit tbc

26.8. C_FindObjects

Function Supported in Security
World
C_FindObjects tbc

26.9. C_FindObjectsFinal

Function Supported in Security
World
C_FindObjectsFinal tbc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

99/113

Chapter 27. Encryption functions

27. Encryption functions

These functions perform as described in the PKCS #11 specification:

27.1. C_Encryptinit

Function Supported in Security
World
C_EncryptInit tbc

27.2. C_Encrypt

Function Supported in Security
World
C_Encrypt tbc

27.3. C_EncryptUpdate

Function Supported in Security
World
C_EncryptUpdate tbc

27.4. C_EncryptFinal

Function Supported in Security
World
C_EncryptFinal tbc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

100/113

Chapter 28. Decryption functions

28. Decryption functions

These functions perform as described in the PKCS #11 specification:

28.1. C_Decryptinit

Function Supported in Security
World
C_DecryptInit tbc

28.2. C_Decrypt

Function Supported in Security
World
C_Decrypt tbc

28.3. C_DecryptUpdate

Function Supported in Security
World
C_DecryptUpdate tbc

28.4. C_DecryptFinal

Function Supported in Security
World
C_DecryptFinal tbc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

101/113

Chapter 29. Message digesting functions

29. Message digesting functions

The following functions are performed on the host computer:

29.1. C_DigestInit

Function Supported in Security
World
C_DigestInit thc

29.2. C_Digest

Function Supported in Security
World
C_Digest tbc

29.3. C_DigestUpdate

Function Supported in Security
World
C_DigestUpdate tbc

29.4. C_DigestFinal

Function Supported in Security
World
C_DigestFinal tbc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

102/113

Chapter 30. Signing and MACing functions

30. Signing and MACing functions

The following functions perform as described in the PKCS #11 specification:

30.1. C_Signinit

Function Supported in Security
World
C_SignInit tbc

30.2. C_Sign

Function Supported in Security
World
C_Sign tbc

30.3. C_SignRecoverlnit

Function Supported in Security
World
C_SignRecoverInit tbc

30.4. C_SignRecover

Function Supported in Security
World
C_SignRecover tbc

30.5. C_SignUpdate

Function Supported in Security
World
C_SignUpdate tbc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

103/113

Chapter 30. Signing and MACing functions

30.5.1. Notes

This function is supported for:

« CKM_SHAT_RSA_PKCS
- CKM_MD5_RSA_PKCS

30.6. C_SignFinal

Function Supported in Security
World

C_SignFinal tbc

30.6.1. Notes

This function is supported for:

« CKM_SHAT_RSA_PKCS
- CKM_MD5_RSA_PKCS

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

104/113

Chapter 31. Functions for verifying signatures and MACs

31. Functions for verifying signatures and

MACs

The following functions perform as described in the PKCS #11 specification:

31.1. C_Verifylnit

Function Supported in Security
World
C_VerifyInit tbc

31.2. C_Verify

Function Supported in Security
World
C_Verify tbc

31.3. C_VerifyRecover

Function Supported in Security
World
C_VerifyRecover tbc

31.4. C_VerifyRecoverlnit

Function Supported in Security
World
C_VerifyRecoverInit tbe

31.5. C_VerifyUpdate

Function Supported in Security
World
C_VerifyUpdate tbc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

105/113

Chapter 31. Functions for verifying signatures and MACs

31.5.1. Notes

This function is supported for:

« CKM_SHAT_RSA_PKCS
- CKM_MD5_RSA_PKCS

31.6. C_VerifyFinal

Function Supported in Security
World

C_VerifyFinal tbc

31.6.1. Notes

This function is supported for:

« CKM_SHAT_RSA_PKCS
- CKM_MD5_RSA_PKCS

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

106/113

Chapter 32. Dual-purpose cryptographic functions

32. Dual-purpose cryptographic functions

The following functions perform as described in the PKCS #11 specification:

32.1. C_DigestEncryptUpdate

Function Supported in Security Performs as in PKCS #11
World spec
C_DigestEncryptUpdate tbe Without modifications

32.2. C_DecryptDigestUpdate

Function Supported in Security Performs as in PKCS #11
World spec
C_DecryptDigestUpdate tbc Without modifications

32.3. C_SignEncryptUpdate

Function Supported in Security Performs as in PKCS #11

World spec
C_SignEncryptUpdate tbc Without modifications
32.3.1. Notes

This function is supported for:

« CKM_SHAT_RSA_PKCS
- CKM_MD5_RSA_PKCS

32.4. C_DecryptVerifyUpdate

Function Supported in Security Performs as in PKCS #11
World spec
C_DecryptVerifyUpdate tbe Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

107/113

Chapter 32. Dual-purpose cryptographic functions

32.4.1. Notes
This function is supported for:

« CKM_SHAT_RSA_PKCS
- CKM_MD5_RSA_PKCS

PKCS 11 Reference Guide for nShield Security
World v13.6.14

108/113

Chapter 33. Key-management functions

33. Key-management functions

You can use the CKNFAST _OVERRIDE _SECURITY_ASSURANCES environment
o variable to modify the way that some functions, including key-manage-
ment functions, are used.

In Security World v13.3.2 and later, you can set the CKNFAST_LOADSHARING environment vari-
able to enable load sharing for the work allocation for key-management functions:

« When CKNFAST_LOADSHARING is not set, the first available module is selected.

« When CKNFAST_LOADSHARING is set, the work is shared between the available modules
using a round-robin approach.

Module selection incurs additional overhead. Therefore, if the case load is light, load sharing
might result in a small performance degradation. Most affected operations involve key cre-
ation, which includes loading the keys on all modules when loadsharing is in use. For this rea
son, while there is an increase in throughput, it is not expected to be linear.

The vendor-defined boolean attribute CKA_NC_VALUE_ONLY is available for the C_DeriveKey
function. It can only be used to derive a secret key with the following attribute settings:

« CKA_SENSITIVE set to FALSE
« CKA_TOKEN set to FALSE
« CKA_EXTRACTABLE set to TRUE

When CKA_NC_VALUE_ONLY is set to TRUE, it signals that the application intends only to
extract the value of the derived key, via C_GetAttributeValue. The derived key will not be
loadshared and is not guaranteed to be usable for other operations. If the derived key into
which the key has been loaded becomes unavailable, the key will not be usable at all.

CKA_NC_VALUE_ONLY is defined in pkcs11extra.h in the nShield implementation of cryp-
toki.h.

CKA_NC_VALUE_ONLY provides a performance benefit even in the absence of loadsharing.
However, its main benefit is in removing much of the loadsharing overhead and therefore in
improving scalability.

33.1. C_GenerateKey

PKCS 11 Reference Guide for nShield Security 109/113
World v13.6.14

Chapter 33. Key-management functions

Function Supported in Security
World
C_GenerateKey tbc

33.2. C_GenerateKeyPair

Function Supported in Security
World
C_GenerateKeyPair tbc

33.3. C_WrapKey

Function Supported in Security
World
C_WrapKey tbc

33.4. C_UnwrapKey

Function Supported in Security
World
C_UnwrapKey tbc

33.5. C_DeriveKey

Function Supported in Security
World
C_DeriveKey tbc

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

110/113

Chapter 34. Random number functions

34. Random number functions

The nShield module has an onboard, hardware random number generator to handle random

number functions. Because it has an onboard random number generator, the nShield mod-

ule does not use seed values.

34.1. C_GenerateRandom

Function Supported in Security
World
C_GenerateRandom tbc

34.2. C_SeedRandom

Function Supported in Security
World

C_SeedRandom tbc

34.2.1. Notes

The C_SeedRandom function returns CKR_RANDOM_SEED_NOT_SUPPORTED.

Performs as in PKCS #11
spec

Without modifications

Performs as in PKCS #11
spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 Reference Guide for nShield Security
World v13.6.14

111/113

Chapter 35. Parallel function management functions

35. Parallel function management functions

35.1. C_GetFunctionStatus

Function Supported in Security Performs as in PKCS #11 PKCS #11 spec version
World spec

C_GetFunctionStatus thbc Without modifications 2.40

35.1.1. Notes

This function is supported in the approved fashion by returning the PKCS #11 status CKR_-
FUNCTION_NOT_PARALLEL.

35.2. C_CancelFunction

Function Supported in Security Performs as in PKCS #11 PKCS #11 spec version
World spec

C_CancelFunction thbc Without modifications 2.40

35.2.1. Notes

This function is supported in the approved fashion by returning the PKCS #11 status CKR_-
FUNCTION_NOT_PARALLEL.

PKCS 11 Reference Guide for nShield Security 12/113
World v13.6.14

Chapter 36. Callback functions

36. Callback functions

There are no vendor-defined callback functions. Surrender callback functions are never
called.

PKCS 11 Reference Guide for nShield Security 13/113
World v13.6.14

	nShield Security World: PKCS 11 Reference Guide for nShield Security World v13.6.14
	Table of Contents
	1. Introduction
	1.1. Read this guide if…​
	1.2. Additional useful documentation
	1.3. Security World Software default directories
	1.4. Utility help options
	1.5. Further information
	1.6. Security advisories
	1.7. Contacting Entrust nShield Support

	2. nShield Architecture
	2.1. Security World Software modules
	2.2. Security World Software server
	2.3. Stubs and interface libraries
	2.4. Using an interface library
	2.5. Writing a custom application
	2.6. Acceleration-only or key management

	3. PKCS #11 Developer libraries
	3.1. Checking the installation of the nShield PKCS #11 library
	3.2. PKCS #11 security assurance mechanism
	3.2.1. Key security

	4. PKCS #11 with load sharing mode
	4.1. Logging in
	4.2. Session objects
	4.3. Module failure
	4.4. Compatibility
	4.5. Restrictions on function calls in load-sharing mode

	5. PKCS #11 with HSM Pool mode
	5.1. Module failure
	5.2. Module recovery
	5.3. Restrictions on function calls in HSM Pool mode

	6. Generating and deleting NVRAM-stored keys with PKCS #11
	6.1. Generating NVRAM-stored keys
	6.2. Deleting NVRAM-stored keys

	7. PKCS #11 with key reloading
	7.1. Usage under preload
	7.1.1. Persistent preload files

	7.2. Supported function calls
	7.3. Retrying key reloads
	7.4. Adding new HSMs

	8. PKCS #11 without load-sharing or HSM Pool modes
	8.1. K/N support for PKCS #11

	9. PKCS #11 with preload
	10. PKCS #11 Security Officer
	11. nShield-specific PKCS #11 API extensions
	11.1. C_LoginBegin
	11.2. C_LoginNext
	11.3. C_LoginEnd

	12. Compiling and linking
	12.1. Windows
	12.2. Linux

	13. nShield PKCS #11 library environment variables
	13.1. CKNFAST_ASSUME_SINGLE_PROCESS
	13.2. CKNFAST_ASSURANCE_LOG
	13.3. CKNFAST_CARDSET_HASH
	13.4. CKNFAST_CONCATENATIONKDF_X963_COMPLIANCE
	13.5. CKNFAST_DEBUG
	13.6. CKNFAST_DEBUGDIR
	13.7. CKNFAST_DEBUGFILE
	13.8. CKNFAST_DH_LSB
	13.9. CKNFAST_EDDSA_PUBKEY_FORMAT
	13.10. CKNFAST_FAKE_ACCELERATOR_LOGIN
	13.11. CKNFAST_HSM_POOL
	13.12. CKNFAST_JCE_COMPATIBILITY
	13.13. CKNFAST_LOADSHARING
	13.14. CKNFAST_NO_ACCELERATOR_SLOTS
	13.15. CKNFAST_NO_SYMMETRIC
	13.16. CKNFAST_NO_UNWRAP
	13.17. CKNFAST_NONREMOVABLE
	13.18. CKNFAST_NVRAM_KEY_STORAGE
	13.19. CKNFAST_OVERRIDE_SECURITY_ASSURANCES
	13.19.1. all
	13.19.2. none
	13.19.3. tokenkeys
	13.19.4. longterm[=days]
	13.19.5. explicitness
	13.19.6. import
	13.19.7. wrapping_crypt
	13.19.8. unwrap_kek
	13.19.9. derive_kek
	13.19.10. derive_xor
	13.19.11. derive_concatenate
	13.19.12. unwrap_rsa_aes_kwp
	13.19.13. weak_<algorithm>
	13.19.14. shortkey_<algorithm=bitlength>
	13.19.15. silent
	13.19.16. Diagnostic warnings about questionable operations

	13.20. CKNFAST_SEED_MAC_ZERO
	13.21. CKNFAST_SESSION_THREADSAFE
	13.22. CKNFAST_SESSION_TO_TOKEN
	13.23. CKNFAST_SHARE_SESSION_KEYS
	13.24. CKNFAST_TOKENS_PERSISTENT
	13.25. CKNFAST_USE_THREAD_UPCALLS
	13.26. CKNFAST_LOAD_KEYS
	13.27. CKNFAST_WRITE_PROTECTED
	13.28. CKNFAST_RELOAD_KEYS

	14. Objects
	14.1. Certificate Objects and Data Objects
	14.2. Key Objects
	14.3. Card passphrases

	15. Mechanisms
	15.1. Footnote 1
	15.2. Footnote 2
	15.3. Footnote 3
	15.4. Footnote 4
	15.5. Footnote 5
	15.6. Footnote 6
	15.7. Footnote 7
	15.8. Footnote 8
	15.9. Footnote 9
	15.10. Footnote 10
	15.11. Footnote 11
	15.12. Footnote 12
	15.13. Footnote 13
	15.14. Footnote 14
	15.15. Footnote 15
	15.16. Footnote 16
	15.17. Footnote 17
	15.18. Footnote 18

	16. Vendor annotations on P11 mechanisms
	16.1. CKM_RSA_PKCS_OAEP
	16.2. CKM_RSA_PKCS_PSS and CKM_SHA*_RSA_PKCS_PSS

	17. Vendor-defined mechanisms
	17.1. CKM_SEED_ECB_ENCRYPT_DATA and CKM_SEED_CBC_ENCRYPT_DATA
	17.2. CKM_CAC_TK_DERIVATION
	17.3. CKM_SHA*_HMAC and CKM_SHA*_HMAC_GENERAL
	17.4. CKM_NC_ECKDF_HYPERLEDGER
	17.5. CKM_HAS160
	17.6. CKM_PUBLIC_FROM_PRIVATE
	17.7. CKM_NC_AES_CMAC
	17.8. CKM_NC_AES_CMAC_KEY_DERIVATION and CKM_NC_AES_CMAC_KEY_DERIVATION_SCP03
	17.9. CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS
	17.10. CKM_COMPOSITE_EMV_T_ARQC, CKM_WATCHWORD_PIN1 and CKM_WATCHWORD_PIN2
	17.11. CKM_NC_ECIES
	17.12. CKM_NC_MILENAGE_OPC
	17.13. CKM_NC_MILENAGE, CKM_NC_MILENAGE_AUTS, CKM_NC_MILENAGE_RESYNC
	17.13.1. CKM_NC_MILENAGE
	17.13.2. CKM_NC_MILENAGE_RESYNC
	17.13.3. CKM_NC_MILENAGE_AUTS (testing only)

	17.14. CKM_NC_TUAK_TOPC
	17.15. CKM_NC_TUAK, CKM_NC_TUAK_AUTS, CKM_NC_TUAK_RESYNC
	17.15.1. CKM_NC_TUAK
	17.15.2. CKM_NC_TUAK_RESYNC
	17.15.3. CKM_NC_TUAK_AUTS (testing only)

	18. KISAAlgorithm mechanisms
	18.1. KCDSA keys
	18.2. Pre-hashing
	18.3. CKM_KCDSA_SHA1, CKM_KCDSA_HAS160, CKM_KCDSA_RIPEMD160
	18.4. CKM_KCDSA_KEY_PAIR_GEN
	18.5. CKM_KCDSA_PARAMETER_GEN
	18.6. CKM_HAS160
	18.7. SEED secret keys
	18.7.1. CKM_SEED_KEY_GEN
	18.7.2. CKM_SEED_ECB, CKM_SEED_CBC, CKM_SEED_CBC_PAD
	18.7.3. CKM_SEED_MAC, CKM_SEED_MAC_GENERAL

	19. Attributes
	19.1. CKA_SENSITIVE
	19.2. CKA_PRIVATE
	19.3. CKA_EXTRACTABLE
	19.4. CKA_ENCRYPT, CKA_DECRYPT, CKA_SIGN, CKA_VERIFY
	19.5. CKA_WRAP, CKA_UNWRAP
	19.6. CKA_WRAP_TEMPLATE, CKA_UNWRAP_TEMPLATE
	19.7. CKA_SIGN_RECOVER
	19.8. CKA_VERIFY_RECOVER
	19.9. CKA_DERIVE
	19.10. CKA_ALLOWED_MECHANISMS
	19.10.1. CKM_CONCATENATE_BASE_AND_KEY
	19.10.2. CKM_RSA_AES_KEY_WRAP

	19.11. CKA_MODIFIABLE
	19.12. CKA_TOKEN
	19.13. CKA_START_DATE, CKA_END_DATE
	19.14. CKA_TRUSTED and CKA_WRAP_WITH_TRUSTED
	19.15. CKA_COPYABLE and CKA_DESTROYABLE
	19.16. RSA key values
	19.17. DSA key values
	19.18. Vendor specific error codes

	20. Utilities
	20.1. ckdes3gen
	20.2. ckinfo
	20.3. cklist
	20.4. ckmechinfo
	20.5. ckrsagen
	20.6. cksotool

	21. Functions
	21.1. Choosing functions
	21.1.1. Generating random numbers and keys
	21.1.2. Digital signatures
	21.1.3. Asymmetric encryption
	21.1.4. Symmetric encryption
	21.1.5. Message digest
	21.1.6. Mechanisms
	21.1.7. Key wrapping

	22. General purpose functions
	22.1. C_Finalize
	22.1.1. Notes

	22.2. C_GetInfo
	22.3. C_GetFunctionList
	22.4. C_Initialize
	22.4.1. Notes

	23. Slot and token management functions
	23.1. C_GetSlotInfo
	23.2. C_GetTokenInfo
	23.3. C_GetMechanismList
	23.4. C_GetMechanismInfo
	23.5. C_GetSlotList
	23.5.1. Notes

	23.6. C_InitToken
	23.6.1. Notes

	23.7. C_InitPIN
	23.7.1. Notes

	23.8. C_SetPIN
	23.8.1. Notes

	24. Standard session management functions
	24.1. C_OpenSession
	24.2. C_CloseSession
	24.3. C_CloseAllSessions
	24.4. C_GetOperationState
	24.5. C_SetOperationState
	24.6. C_Login
	24.7. C_Logout

	25. nShield session management functions
	25.1. C_LoginBegin
	25.2. C_LoginNext
	25.3. C_LoginEnd
	25.4. C_GetSessionInfo
	25.5. nShield session management function notes

	26. Object management functions
	26.1. C_CreateObject
	26.1.1. CKK_NC_MILENAGERC

	26.2. C_CopyObject
	26.3. C_DestroyObject
	26.4. C_GetObjectSize
	26.5. C_GetAttributeValue
	26.6. C_SetAttributeValue
	26.7. C_FindObjectsInit
	26.8. C_FindObjects
	26.9. C_FindObjectsFinal

	27. Encryption functions
	27.1. C_EncryptInit
	27.2. C_Encrypt
	27.3. C_EncryptUpdate
	27.4. C_EncryptFinal

	28. Decryption functions
	28.1. C_DecryptInit
	28.2. C_Decrypt
	28.3. C_DecryptUpdate
	28.4. C_DecryptFinal

	29. Message digesting functions
	29.1. C_DigestInit
	29.2. C_Digest
	29.3. C_DigestUpdate
	29.4. C_DigestFinal

	30. Signing and MACing functions
	30.1. C_SignInit
	30.2. C_Sign
	30.3. C_SignRecoverInit
	30.4. C_SignRecover
	30.5. C_SignUpdate
	30.5.1. Notes

	30.6. C_SignFinal
	30.6.1. Notes

	31. Functions for verifying signatures and MACs
	31.1. C_VerifyInit
	31.2. C_Verify
	31.3. C_VerifyRecover
	31.4. C_VerifyRecoverInit
	31.5. C_VerifyUpdate
	31.5.1. Notes

	31.6. C_VerifyFinal
	31.6.1. Notes

	32. Dual-purpose cryptographic functions
	32.1. C_DigestEncryptUpdate
	32.2. C_DecryptDigestUpdate
	32.3. C_SignEncryptUpdate
	32.3.1. Notes

	32.4. C_DecryptVerifyUpdate
	32.4.1. Notes

	33. Key-management functions
	33.1. C_GenerateKey
	33.2. C_GenerateKeyPair
	33.3. C_WrapKey
	33.4. C_UnwrapKey
	33.5. C_DeriveKey

	34. Random number functions
	34.1. C_GenerateRandom
	34.2. C_SeedRandom
	34.2.1. Notes

	35. Parallel function management functions
	35.1. C_GetFunctionStatus
	35.1.1. Notes

	35.2. C_CancelFunction
	35.2.1. Notes

	36. Callback functions

