©

ENTRUST

nShield Security World
nCore v13.6.14 Developer
Tutorial

28 November 2025

© 2025 Entrust Corporation. All rights reserved.

Table of Contents

1. Read thisguide if 2
2. Further information 3
3.Security @dVISOMES 4
3.1. Contacting Entrust nShield Support ... 4

4. nCore architecture 5
4.1. Programming environment architecture. 5
42.Generatinga key. 5
43. Loading akey.o 6
4.4 Transactingacommand. 7
S.Ctutorial . .. 9
B OVEIVIEW . .o 9
5.1.1. nCore API functionality used in this tutorial 10

5.1.2. Variables used in this tutorial 1

5.2. Before connecting to the hardserver. 12
521 Declaringacallcontext 12

5.2.2. Declaring memory allocationupcalls 12

5.2.3. Declaring threadingupcalls 13

5.2.4. Initializing the nFast applicationhandle. 13

5.3. Connecting to the hardserver 14
5.3.1. Getting Security World information 14

5.3.2. Setting up the authorization mechanism 14

5.4. Generatinga symmetric Key. 16
5.4.1. Obtaining authorization and selectingamodule. 17

5.4.2. Preparing the key-generation command and ACL 18

5.4.3. Freeing memory. 21

5.5. Generating anasymmetrickey 22
5.5.1. Obtaining authorization and selectingamodule 24

5.5.2. Preparing the key-generation commandand ACL 25

55.3. Freeing memory 29
5.6.USINg @akey. 30
5.6 Findingakey. 30
56.2.Loadingakey 31
5.7.Encrypting afile 32
5.8. Cleaning Up rE€SOUICES e e 35
G.Javatutorial. 36
B.1. OVEIVIEW . . . 36

6.1.1. Creatingasoftcard 37

6.1.2. nCore classes used in this tutorial 37

6.1.3. Variables used in this tutorial 38

6.2. Before connecting to the hardserver 39
6.3. Connecting to the hardserver 39
6.4.Generatinga Key 40
6.4.1. Methods used in generate_key() 43

B.5. USINg @ KeY. . .. 44
6.6.Signing afile 44
6.7. Cleaning UP rESOUICES\ e 47
7.Python 3 tutorial ... 48
70 PrereqUISItes. 48
7.2. Set up the environment for nfpython. 48
7.3. Create and configure the virtualenv 49
7.4. nfpython connectionsand commands. 50
7.5. Worked nfpython example for hash, sign,and verify 51
8. Java eXamPles . . . 56
8.1. Extract and compile the Javaexamples 56
8.2. Java key management example utilities. 56
8.2.1. AppKeyGenjava 57
8.2.2. GenerateExportjava 57
8.2.3. KMJavaFloodTest java 57
824 . NFKMInfojava. 57
8.2.5.NVRamRTCULtiljava. 57
8.2.6.SimpleCryptjava. 57
8.2.7.SlotPollerjava. 57
8.3. Java JCE/CSP example utilities 58
8.3.1. AsymmetricEncryptionExample.java 58
8.3.2. DKLECDHKAExamplejava. 58
8.3.3.ECDHExamplejava 58
8.3.4. ECIESExamplejava 58
8.3.5. EdDSAExamplejava. 59
8.3.6. JCEChanTestjava 59
8.3.7.JCEFloodTest.java 59
8.3.8. JCESigTestjava 59
8.3.9. KeyLoadTimer.java. 59
8.3.10. KeyStorageExamplejava. ... 60
8.3.11. NCipherLibrarylnteropExamplejava. 60
8.3.12. SignaturesExamplejava 60

8.3.13. SsIClientExamplejava. 60

8.3.14. SsIServerExample.java 60

8.3.15. SymmetricEncryptionExamplejava 60
8.3.16. SignatureTest.java. 61
8.4. Java generic stub examples 61
8.4.1.BlobInfojava 61
8.4.2.Channeljava 61
8.4.3.CheckMod.java 61
8.4.4.CrypTestjava. 62
8.4.5.DesKat.java. 62
8.4.6. DKTestjava. 62
8.4.7. EasyConnectionjava. 62
848 . ENQUINY.Java 62
8.4.9. FloodTestjava. 62
8.4.10. GenCertjava 62

84 M. InitUnit.java. 63
8.4.12. NFENUM.java 63
8.4.13. ReportVersionjava. 63
8.4.14. ScoreKeeper.java 63
8.4.15.SigTestjava 63

9. Key structures. 65
9.1. Mechanisms . .. 65
0L MeCh ANy 66
0.2. Key TYPeS . 67
9.2 1. Random 70
9.2.2. ArcFour ... 71
9.2.3. Blowfish 71
0.2.4. CAST 72
9.2.5. CAST256 . . .o 72
0.2.6. DES 73
0.2.7. DES2 75
9.2.8.Triple DES 76
9.2.9.Rijndael. 77
9.2.10. SEED . . 78
0211, Serpent 79
0.2.12. TWOTiSh . . 79
9.2.13. Diffie-Hellmanand ElGamal 80
0,214, DS A 83
9.2.15. Elliptic Curve ECDH and ECDSA 87

9.2.16. KCDSA i 89

0,217, RS A 94

9.2.18. DeriveKey 98
9.3. Hash functions 105
0.3 1 SHA-T L 105
0.3 2. TG 105
9.3.3. SHA-224 106
9.3.4. SHA-256 . . . 106
O.3.5. SHA-384 . 106
0.3.6. SHA-512. 107
0.3, 7. MDD . 107
0.3.8. M. 108
9.39.RIPEMD 160 108
9.310. HAST60 . . oo 108

9.4. HMAC signatures. 109
0.0 ACLS . 110
9.6. Use limits 113
0.7, ACTiONS . 116
0.8, ACtiON LYPeS 17
9.8.1. OpPermMiSSIONS 17
9.8.2. MakeBIob 118
9.8.3. MakeArchiveBlob 120
0.8 4. NSO . .. 121
9.8.5. NVRAM 122
9.8.6. ReadShare 123
9.8.7.SendShare. 123
9.8.8. FileCopY ... 124
9.8.9. UserAction 124
9.8.10. DeriveKey and DeriveKeyEX 124
9.8.11. Using DeriveKey —anexample 126
9.9. Certificates. 135
9.9.1. Using a certificate to authorize anaction................................. 136
9.9.2. Generating a certificate to authorize another operation.............. 137

10. NFKM Functions 140
10.1. Debugging NFKM functions. 140
10.2. FUNCHIONS . 140
10.2.1. NFKM_Changepp. . . . oo 140
10.2.2. NFKM_checkconsistency 141
10.2.3. NFKM_checkpp 141

10.2.4. NFKM_cmd_generaterandom. i 142

10.2.5. NFKM_cmd_destroy 142

10.2.6. NFKM_cmd_loadblob 142
10.2.7. NFKM_cmd_getkeyplain. 143
10.2.8. NFKM_erasecard. 143
10.2.9. NFKM_erasemodule. 143
10.2.10. NFKM_hashpp 144
10.2.11 NFKMLinitworld_* 144
10.2.12. NFKM_loadadminkeys_* 147
10.2.13. NFKM_loadcardset_* 152
10.2.14. NFKM_loadworld_*. 154
10.2.15. NFKM_makecardset_*. 156
10.2.16. NFKM_newkey _* 160
10.2.17. NFKM_operatorcard_changepp....................... 165
10.2.18. NFKM_operatorcard_checkpp, 166
10.2.19. NFKM_recordkey. 166
10.2.20. NFKML_recordkeys 166
10.2.21. NFKM_replaceacs_* 167

1. OpenSSLwith NFKM Engine. 171
ML QUICKUSAge .« ..o 171
11.2. Testing with a self-signed certificate 171
11.3. Common ProblemsS 172
11.3.1. invalid engine "nfkm" 172
11.3.2. unable to load server certificate private key file. 172
12.nCore APl commands. 173
12.1. Basic commands 173
1200 . ClearUnit . ..o 174
121.2. ClearUnitEx 175
1213 MOAEXD . .o 176
1204 ModEXPCIt. . . 176
12.2. Key-management commands 177
12.2.1. ChangeSharePIN 177
12.2.2.ChannelOpen 178
12.2.3. ChannelUpdate. 181
12.2.4. DeCrypt . 182
12.2.5. DeriveKey. 183
12.2.6. DeStrOY . . 185
12.2.7. Duplicate 186
12.2.8. ENCrypt. . 187

12.2.0. EXpPOrt 188

12.2.10. FirmwareAuthenticate 188

12210 FormatToken 188
12.2.12. GenerateKey and GenerateKeyPair 189
12.2.13. GeneratelLogicalToken. 195
12.214. GetChallenge 196
12.215. GetKML. . 196
12.2.16. GetTicket 197
12,207 . Hash. . 199
12.2.18. ImpathKXBegin. 200
12.2.19. ImpathKXFinish 202
12.2.20. ImpathReceive 203
12221 ImpathSend 203
12.2.22. InitialiseUnit. 204
12.223. LoadBlob. 205
12.2.24. LoadLogicalToken 206
12.2.25. MakeBlob 207
12.2.26. MergeKeyIDs 210
12.2.27.ReadShare 21
12.2.28. RedeemTicket 213
12.2.29. RemoveKM . 214
12.2.30. RSAImmedSignDecrypt. 214
12.2.31. RSAlmmedVerifyEncrypt 215
12.2.32. SetACL 216
12.2.33. SetKM . .o 218
12.2.34. SetNSOPerms 218
12.2.35. SetRTC . 221
12.2.36. SIgN. . 222
12.2.37.SignModuleState 223
12.2.38. StaticFeatureEnable 225
12.2.39. UpdateMergedKey. 226
12.2.40. Verify 227
12.2.41. WriteShare 228
12.3. Commands used by the generic stubonly 229
1231 ExistingClient 229
12.3.2. NewClient. 230

13. Transaction IDs. 232
130 Introduction .. 232
13.2. Limitations 232

13.3. Unicode NOtes 233

13.4. Setting Transaction IDs 233

13.4.1.nCore C (Generic Stub) 233
13.4.2. SEElib (CodeSafe CSEE) 234
13.4.3. nCore Python (nfpython) 234
13.4.4.nCore Java(nfjava) 234
13.4.5. Higher-level APIs 235
13.5. Transaction ID logging 235
13.5.1.Clientdebug logs 235

13.5.2.nCoreaudit 10gs 236

Chapter Preface

This guide describes how to write applications using the nCore API, the native application
programming interface for nShield modules. It also describes various programming libraries
and utility functions that Entrust supplies.

Read this guide in conjunction with the nCore APl documentation located in:

« Windows: $NFAST_HOME%\document\ncore\htm1\index.html (C) and
%NFAST_HOME%\java\docs\index.html (Java)

« Linux: /opt/nfast/document/ncore/html/index.html (C) and
/opt/nfast/java/docs/index.html (Java).

nCore v13.6.14 Developer Tutorial 1/237

Chapter 1. Read this guide if ...

1. Read this guide if ...

Read this guide if you are an application developer who is writing cryptographic applica-
tions using the nCore API.

If you are writing an application using a standard API, such as Java JCE/JCA, MS CAPI,
CAPI NG or PKCS #11, use the appropriate nShield API guide.

The nCore Developer Tutorial:

+ explains the nCore programming architecture
+ presents a tutorial on using the nCore APl in C

 presents a tutorial on using the nCore APl in Java

nCore v13.6.14 Developer Tutorial 2/237

Chapter 2. Further information

2. Further information

This guide forms one part of the information and support provided by Entrust.
The nCore APl Documentation is supplied as HTML files installed in the following locations:

+ Windows:
° API reference for host: $NFAST_HOME%\document\ncore\html\index.html
° APl reference for SEE: $NFAST_HOME%\document\csddoc\html\index.html
+ Linux:
° API reference for host: /opt/nfast/document/ncore/html/index.html
° API reference for SEE: /opt/nfast/document/csddoc/html/index.html

The Java Generic Stub classes, nCipherKM JCA/JCE provider classes, and Java Key Manage
ment classes are supplied with HTML documentation in standard Javadoc format, which is
installed in the appropriate nfast\java or nfast/java directory when you install these
classes.

nCore v13.6.14 Developer Tutorial 3/237

Chapter 3. Security advisories

3. Security advisories

If Entrust becomes aware of a security issue affecting nShield HSMs, Entrust will publish a
security advisory to customers. The security advisory will describe the issue and provide rec
ommended actions. In some circumstances the advisory may recommend you upgrade the
nShield firmware and or image file. In this situation you will need to re-present a quorum of
administrator smart cards to the HSM to reload a Security World. As such, deployment and
maintenance of your HSMs should consider the procedures and actions required to
upgrade devices in the field.

e The Remote Administration feature supports remote firmware upgrade
of nShield HSMs, and remote ACS card presentation.

We recommend that you monitor the Announcements & Security Notices section on
Entrust nShield, https://trustedcare.entrust.com/, where any announcement of nShield
Security Advisories will be made.

3.1. Contacting Entrust nShield Support

To obtain support for your product, contact Entrust nShield Support,

https://trustedcare.entrust.com/.

nCore v13.6.14 Developer Tutorial 4/237

https://trustedcare.entrust.com/
https://trustedcare.entrust.com/

Chapter 4. nCore architecture

4. nCore architecture

This section describes the interaction between your application and an nShield module that
occurs when performing the following cryptographic tasks:

+ generating a key
+ loading a key

+ transacting a command on a module

4.1. Programming environment architecture

The following diagram illustrates typical architecture in which one would use the nCore API:

Client

/
/— Cryptographic aprp]ir:alion-\ Hard disk J
)

/_ hardserver

i Module 1 *-.I [".'Il."n:lulE n

)

In the typical programming environment architecture diagram:

+ Client: The computer on which your cryptographic application runs.

+ hardserver: An intermediary between applications and module. The hardserver is
responsible for routing commands to modules, and returning the reply from the module
to the calling application.

+ Module: The hardware that performs cryptographic tasks.

4.2. Generating a key

Keys generated using the nCore API are generally stored in encrypted form on the hard disk
of the computer running the cryptographic application. The key blob that contains the
encrypted key information is generated by a module when an application uses the module
to generate a key.

nCore v13.6.14 Developer Tutorial 5/237

Chapter 4. nCore architecture

The following diagram illustrates the interaction between your cryptographic application
and the Security World that occurs during the key-generation process:

4 Client N\
,/_ Cryptographic application Hard disk
i Raves T::khlﬂhm J - Key hiab \
/ hardserver
¥
Forwards the Fetums key blob o
reqquest 1o an requesting
appropriate module appl ication
(/ Module \

T

Ghereraties sl
mirypls reguesbed
key

Retlums key bloh 1o
hardserver

&

Creates key blob

\- /

A key blob can only be decrypted by a module that has a record of the key that was used to

encrypt the information in the key blob. A key blob contains key information and an Access
Control List (ACL) which defines who can use the key and what operations the key can be
used for.

4.3. Loading a key

Because key information is encrypted in a key blob, the key itself cannot be used to per-
form a cryptographic operation until it is decrypted. To use a key, you first need to load the
encrypted key blob into a module. The key blob is decrypted using a key stored on the mod
ule, and a handle or object reference to the key is returned to your application.

In most cases it is necessary to provide authentication in the form of a smart card and/or a
passphrase before using a key. The user interaction that prompts for authentication to be
provided is handled by the nCore API.

The following diagram illustrates the key loading process:

nCore v13.6.14 Developer Tutorial 6/237

Chapter 4. nCore architecture

4 Client N

r’/- Cryptographic application -\\

Oibinin sutharization
10 band the key / Hard disk '-.

b4

S ke Il 1
hardserver
Use key handle
. f / -
(/ hardserver \\
¥
Route key blob to Foute key handle to
apprapriate module callimg applicoiion
F 1
/ Module \
¥
Decrypl key Blok -
i s ey ¥ Rolum koy handle

4.4. Transacting a command

After an application has loaded a key, it can instruct a module to use the key to perform
cryptographic operations such as encryption, decryption, signing and verification. The fol-
lowing diagram illustrates the process of transacting a command.

nCore v13.6.14 Developer Tutorial 7/237

Chapter 4. nCore architecture

o

/ Cryptographic application \\
Prepane comirnand .
i kaey Rl Foceve result
i 1
/ hardserver \\
¥
Ronite cornmard oo Foute result 1o
appropriate module calling applicatson
F Y
,/’_ Module —‘\,
¥
Lookup key
¥
Turl.‘:sl:;::::mm | Retum result

Y,

C tutorial explains how to write a C application that:

- creates a connection to the hardserver

+ generates a key

+ loads a key onto a module

« transacts a command with the module to use the key to encrypt a file. Java tutorial

explains how to write a similar Java application which signs a file.

nCore v13.6.14 Developer Tutorial

8/237

Chapter 5. C tutorial

5. C tutorial

5.1. Overview

This overview section provides a description of how to achieve two fundamental nCore API
programming tasks: connecting to the hardserver and transacting a command. These two
tasks are common to almost all cryptographic applications. The rest of this chapter works
through a simple example of a basic cryptographic application.

All applications that require nCore functionality first need to create a connection to a hard-
server running on an nShield module. The following diagram illustrates the steps required to
create a connection to a hardserver running on Entrust hardware:

Drefine call conbext structhure
NFast_Call_Context

T

Define memony allocation upcalls
NFast_Malloc_Lpcalls

T

Drefine thread handing upcalls
NFast_MewThreadUpcalls

T

Initlalize the application hande
NFast_Application
Passing upcall structures

L

Connect o the hardserver using
NFastApp_Connect

When connected to the hardserver, an application can send an M_Command to a module. The
module processes the command and then returns the results along with any relevant error
and status codes. The following diagram illustrates the process of transacting a crypto-
graphic operation with the module:

nCore v13.6.14 Developer Tutorial 9/237

Chapter 5. C tutorial

/ Client "

Populate
M _Compnand

Al

Transact

T

Wait until reply is
received

Check M_ St
code amd use
M Reply

I module Y

Perform operation

¥

Papulate M_Sestus

siruciane

¥

Popalate and Return
M_Reply stnucture

N —_

The M_Reply structure contains the results of the operation and an M_Status message that

indicates the outcome of the operation. If a problem was encountered, the M_Status value
gives an indication of what went wrong. The M_Reply contains the results of the command,
for example, a key handle or the bytes of an encrypted file.

5.1.1. nCore API functionality used in this tutorial

This tutorial uses the following libraries from the nCore API. You may find it useful to famil-
iarize yourself with these libraries by reading the APl documentation, which is located at
<nfast_dir>/document/ncore/html/index.html.

- nfkm.h

This library provides Security World functionality, for example, card-loading libraries,
key-generation, and key-loading.

- nfinttypes.h

This library is a utility library that provides standard integer types.
- nffile.h

This library is a utility library that provides file manipulation functionality.
« simplebignum.h

This library is a utility implementation of bignum functionality.

nCore v13.6.14 Developer Tutorial 10/237

Chapter 5. C tutorial

« ncthread-upcalls.h

This library is a thread-handling library.
- rqcard-applic.h

This library is a card-loading library.
. rqcard-fips.h

This library is a card-loading library for use in a FIPS 140 Level 3 (Federal Information
Processing Standards) environment.

5.1.2. Variables used in this tutorial

The following table lists and describes the variables used in this tutorial. Throughout this
tutorial you may wish to refer to this table. You may also find it useful to consult the API
documentation of the listed types.

Variable Name Variable Type Description

re M_Status Status code returned by operations

worldinfo NFKM_WorldInfo Information about a Security World

app NFast_AppHandle The application handle

app_init_args NFastAppInitArgs Used to initialize the application

conn NFastApp_Connection The connection to a hardserver

moduleinfo NFKM_ModuleInfo Contains information about the module being used

keyident NFKM_KeyIdent The name of the key

keyinfo NFKM_Key Information about the key

keyid M_KeyID The key loaded into the module

1tid M_KeyID The card set loaded into the module

keytype M_KeyType The cryptographic key type, for example, KeyType-
_DSA

mech M_Mech The encryption mechanism used, for example,
Mech_DSA

sigbytes M_ByteBlock The marshaled signature

iv M_IV The initialization vector

command M_Command The command sent to module

nCore v13.6.14 Developer Tutorial 11/237

Chapter 5. C tutorial

Variable Name Variable Type Description

reply M_Reply The reply returned by the module

idch M_KeyID The ID of the channel used for streaming

rqcard RQCard The card-loader handle

rqcard_fips RQCard_FIPS The card-loader handle used in a FIPS 140 Level 3 envi
ronment

5.2. Before connecting to the hardserver

The nCore API provides mechanisms that allow you to control how threading, memory allo-
cation, and numbers larger than the available C data types are handled, through an upcall
mechanism. Specifying these upcalls is optional. Also optional is the call context structure,
which can contain any contextual information that your application might require to keep
track of. If you define your own upcalls and call context they must be supplied as argu-
ments when initializing a handle to the hardserver.

5.2.1. Declaring a call context

Many nCore functions take a call context argument, cctx or ctx, which is passed on to
upcalls. The call context structure can be used for any purpose required by an application.
For example, the call context could identify an application thread.

The following code shows an example declaration of a call context structure:

struct NFast_Call_Context {
int notused;

I

5.2.2. Declaring memory allocation upcalls

By default the nCore APl manages memory by using the standard C library functions mal-
loc, realloc, and free. To customize memory management, define a collection of memory
allocation upcalls and pass this collection when initializing the application handle. For exam-
ple, a heavily threaded application may allocate memory per thread, and have separate appli
cation handles per thread, to avoid contention. In this code example the memory allocation
upcalls re-direct back to the default memory application functions. The call context cctx
and the transaction context tctx can contain any context information required by your
application.

nCore v13.6.14 Developer Tutorial 12/237

Chapter 5. C tutorial

const NFast_MallocUpcalls mallocupcalls = {
local_malloc,
local_realloc,
local_free
g
static void *local_malloc(size_t nbytes,
struct NFast_Call_Context *cctx,
struct NFast_Transaction_Context *tctx) {
return malloc(nbytes);
}
static void *local_realloc(void *ptr,
size_t nbytes,
struct NFast_Call_Context *cctx,
struct NFast_Transaction_Context *tctx) {
return realloc(ptr, nbytes);
}
static void local_free(void *ptr,
struct NFast_Call_Context *cctx,
struct NFast_Transaction_Context *tctx) {
free(ptr);
}

5.2.3. Declaring threading upcalls

ncthread_upcalls provides a mechanism to specify how threads are implemented on the
target platform. If an application needs to use a non-native thread model then the applica-
tion can either:

« fillinan nf_thread_upcalls structure with suitable upcalls and optionally write a transla
tion function x1late_cctx_to_ncthread()

« or fillinan NFast_ThreadUpcalls structure, and use NFAPP_IF_THREAD in the code exam-
ple below instead of NFAPP_IF_NEWTHREAD.

const NFast_NewThreadUpcalls newthreadupcalls = {
&ncthread_upcalls,
xlate_cctx_to_ncthread
}
static void xlate_cctx_to_ncthread(NFast_AppHandle app,
struct NFast_Call_Context *cc,
struct nf_lock_cctx **1lcc_r) {
*lee_r = 0;

}

5.2.4. Initializing the nFast application handle

The hardserver application handle is the main access point to nCore functionality. The fol-
lowing code specifies the application initialization arguments and initializes the application
handle. The flags sent to the application initialization function in the following code exam-
ple are:

nCore v13.6.14 Developer Tutorial 13/237

Chapter 5. C tutorial

« NFAPP_IF_MALLOC indicates that an application is setting its own memory allocation
upcalls

« NFAPP_IF_BIGNUM is necessary for any bignum operations to work. The following code
example uses simplebignum upcalls

+ One of NFAPP_IF_NEWTHREAD or NFAST_IF_THREAD is required in threaded applications.
This code example does not perform any multi-threaded operations but the setting are
included anyway for the purposes of the example.

memset(&app_init_args, 0, sizeof app_init_args);

app_init_args.flags = NFAPP_IF_MALLOC|NFAPP_IF_BIGNUM|NFAPP_IF_NEWTHREAD;
app_init_args.mallocupcalls = &mallocupcalls;

app_init_args.bignumupcalls = &sbn_upcalls;
app_init_args.newthreadupcalls = &newthreadupcalls;

rc = NFastApp_InitEx(&app, &app_init_args, cctx);

5.3. Connecting to the hardserver

Now that application handle is initialized, create a connection to the hardserver, as shown
in the following code example. The NFastApp_Connect() automatically determines whether
to use pipes, local sockets, or TCP sockets, as appropriate.

rc = NFastApp_Connect(app, &conn, 0, cctx);

if(re) {
NFast_Perror("error calling NFastApp_Connect", rc);
goto cleanup;

}

5.3.1. Getting Security World information

The following code reads in the Security World information that is associated with the appli
cation handle. An application handle will only ever be associated with a single Security
World, which consists of one or more modules.

rc = NFKM_getinfo(app, &worldinfo, cctx);

if(re) {
NFast_Perror("error calling NFKM_getinfo", rc);
goto cleanup;

}

5.3.2. Setting up the authorization mechanism

The nCore API supports three types of key protection:

nCore v13.6.14 Developer Tutorial 14/237

Chapter 5. C tutorial

« module protection
+ passphrase protection

- card set protection.

The following three code examples demonstrate how to set up an application to use card
set protection.

5.3.2.1. Initializing the card-loading libraries

The following code initializes the card-loading libraries, which are used later in the example.
Card-loading libraries are bound to a single connection and to a single Security World.

rc = RQCard_init(&rqcard, app, conn, worldinfo, cctx);
if(re) {

NFast_Perror("error calling RQCard_init", rc);

goto cleanup;

}

rqcard_initialized = 1;

5.3.2.2. Obtaining additional FIPS authorization

FIPS 140 Level 3 mode requires authorization for key-generation, which can be obtained
from either an Operator Card or an Administrator Card. The following code initializes the
FIPS 140 Level 3 code library, which seeks FIPS 140 Level 3 authorization when this is
required:

rc = RQCard_fips_init(&rqcard, &rqcard_fips);

if(re) {
NFast_Perror("error calling RQCard_fips_init", rc);
goto cleanup;

}

rqcard_fips_initialized = 1;

5.3.2.3. Selecting a user interface

The following code selects the default user interface for the platform on which the example
is running. The user interface will be displayed to the user when authorization is required to
perform an operation.

rc = RQCard_ui_default(&rqcard);

if(re) {
NFast_Perror("error calling RQCard_ui_default", rc);
goto cleanup;

}

nCore v13.6.14 Developer Tutorial 15/237

Chapter 5. C tutorial

5.4. Generating a symmetric key

This section describes the key-generation process in detail. The process of generating a
symmetric key differs slightly from the process of generating an asymmetric key, so each is
described in a separate section. There is some repetition in the two sections.

This section does not explain how to use softcards to protect keys. Soft
cards can be listed with NFKM_1istsoftcards() and loaded with NFK-

0 M_loadsoftcard(). For more information about using softcards, see the
information about nfkm.h in the nCore APl documentation.

The following diagram illustrates the key-generation process:

Determine if key is
cardsa, imodiale, oF
passphrase protected

b4

Crrdset
. probected?

Vi
L

Pramg the user to
imsert the mutharizing

code in the cand
loaader
N
¥
- 'ﬁ.umorizmnouth
X valid? - . i = Dol gemerale ey
vid
b J
Wriie k
® Find usable module * Crizate ACL L Gienerate key wf N TIE key blob and > Friae piyimory

cerlilicate o disk

The code in this section makes use of the following variables:

Variable Name Variable Type Description

acl_params NFKM_MakeACL_Params Used to construct ACLs
blob_params NFKM_MakeBlobs_Params Used when making blobs
keyinfo NFKM_Key Information about a key
moduleinfo NFKM_ModuleInfo The module to use

nCore v13.6.14 Developer Tutorial 16/237

Chapter 5. C tutorial

Variable Name Variable Type Description

mc M_ModuleCert A certificate from a module
fips14@authhandle NFKM_FIPS140AuthHandle FIPS authorization

1tid M_KeyID A loaded card set

cardset NFKM_CardSet Information about a card set
moduleid M_ModuleID The ID of a module

cardhash NFKM_CardSetIdent A hash of a card set

re M_Status A command return code
command M_Command A command structure

reply M_Reply A command reply

5.4.1. Obtaining authorization and selecting a module

Keys are generated on a specific module and protected by some form of authorization.
When a key is generated the type of authorization that is required to use the key is defined,
as well as the purposes for which the key is allowed to be used, for example, only for encryp
tion and decryption, or only for signing and verification.

5.4.1.1. Using card set protection

The following code prompts the user to provide a card to protect the key that will be gener
ated. The card set hash populates cardhash when the card-loader completes.

rc = RQCard_logic_ocs_anyone(rqcard, &cardhash,
"Insert a card set to protect the new key");
if(re) {
NFast_Perror("error calling RQCard_logic_ocs_anyone", rc);
goto cleanup;

}

5.4.1.2. Selecting a Security World module

Now that authorization has been obtained, prompt the user to select a module in the Secu-
rity World on which to generate the key. Alternatively you could use the RQCard_whichmod-
ule_specific() function to dictate which module will be used, or the NFKM_getusablemod-
ule() function to use the first available module.

The module ID and a key ID for the desired card set on that module are assigned to the mod-
uleid and 1tid variables when the card-loader completes.

nCore v13.6.14 Developer Tutorial 17/237

Chapter 5. C tutorial

rc = RQCard_whichmodule_anyone(rqcard, &moduleid, <id);
if(re) {
NFast_Perror("error calling RQCard_whichmodule_anyone", rc);
goto cleanup;

}

rc = rqcard->uf->eventloop(rqcard);

if(re) {
NFast_Perror("error running card loader", rc);
goto cleanup;

}

The moduleid, id, and 1tid variables are now populated. Next, populate the moduleinfo vari-
able for the chosen module, and create a card set handle.

for(n = 0; n < worldinfo->n_modules; ++n)
if(worldinfo->modules[n]->module == moduleid)
break;
assert(n < worldinfo->n_modules);
moduleinfo = worldinfo->modules[n];

rc = NFKM_findcardset(app, &cardhash, &cardset, cctx);
if(re) {
NFast_Perror("error calling NFKM_findcardset", rc);
goto cleanup;

}

Up to now in this example the application has performed actions com-
o mon to generating either a symmetric key or an asymmetric key. The
process from here on differs depending on which key type is generated.

5.4.2. Preparing the key-generation command and ACL

Start by setting up some command parameters based on the information we have already
gathered.

command.cmd = Cmd_GenerateKeyPair;
command.args.generatekey.params.type = keytype;
command.args.generatekey.flags = Cmd_GenerateKey_Args_flags_Certify;
command.args.generatekey.module = moduleinfo->module;

Keys are stored with an ACL, which defines which entities can perform operations with the
key. The next step is to populate the acl_params variable with the information needed to cre
ate the ACL that will be stored in the key blob along with the key we generate. In this exam-
ple the application sets the acl_params. f flags parameter to enable key recovery and spec-
ify the type of key protection to use. There are three options:

- card set protection

« module protection

nCore v13.6.14 Developer Tutorial 18/237

Chapter 5. C tutorial

« passphrase protection.

This following code demonstrates how to indicate that a key should be protected by a card
set. In this case, the card set is the one selected earlier by the user in Selecting a Security
World module.

acl_params.f = NFKM_NKF_RecoveryEnabled|protection;
acl_params.cs = cardset;

The make ACL blob flags (acl_params.f) parameter must be same as the make blob flags
parameter (blob_params.f), so is set accordingly.

blob_params.f = acl_params.f;

The next step is to define in the ACL for which operations the key is allowed to be used. In
this example, the application specifies that the key can be used to sign, verify, encrypt, or
decrypt.

acl_params.op_base = (NFKM_DEFOPPERMS_SIGN
| NFKM_DEFOPPERMS_VERIFY
| NFKM_DEFOPPERMS_ENCRYPT
| NFKM_DEFOPPERMS_DECRYPT);

The application is now ready to generate the ACL:

rc = NFKM_newkey_makeaclx(app, conn, worldinfo, &acl_params,
&command.args.generatekey.acl, cctx);

The following code sets up further generate key command parameters. The parameters that
are required differ according to key type. For example, if an application is generating a Rijn-
dael key, you need to specify the length of the key required, in bytes:

command.args.generatekey.params.params.random.lenbytes = 128/8;

Generating a key in a FIPS140 Level 3 environment requires that an application obtains
authorization (in this case, card set authorization) before attempting to generate a key. It is
possible that the card loader has already obtained the necessary authorization from a prior
card-loading operation. In this case, the following call will retrieve this authorization:

rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fipsi4@authhandle,
0);

If this call returns Status_RQCardMustContinue, an application must explicitly attempt to

nCore v13.6.14 Developer Tutorial 19/237

Chapter 5. C tutorial

obtain the correct authorization as follows:

rc = RQCard_fips_logic(rqcard);

if(re) {
NFast_Perror("error calling RQCard_fips_logic", rc);
goto cleanup;

}
rc = RQCard_whichmodule_specific(rqcard, moduleinfo->module, 0);
if(re) {

NFast_Perror("error calling RQCard_whichmodule_anyone", rc);
goto cleanup;

}
rc = rqcard->uf->eventloop(rqcard);
if(re) {

NFast_Perror("error running card loader", rc);
goto cleanup;

}
rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fipsi4@authhandle,

0);

Now that the application has obtained the necessary FIPS 140 Level 3 authorization (or can
celled the operation if the correct authorization could not be obtained), it can use the autho
rization to authorize the creation of the key.

rc = NFKM_newkey_makeauth(app, worldinfo, &command.flags, &command.certs,
fips140authhandle, cctx);
if(re) {
NFast_Perror("error calling NFKM_newkey_makeauth", rc);
goto cleanup;

}

With or without FIPS authorization, the application has now obtained all the information nec
essary to transact a key-generation operation, so is now ready to send the key-generation
command to the selected module. The reply is checked using the reply checking utility func
tion mentioned at the beginning of the chapter.

rc = NFastApp_Transact(conn, cctx, &command, &reply, 0);
rc = check_reply(rc, &reply, "error generating new key");
if(rc)

goto cleanup;

The application has now generated a new key, but as yet the key exists only in the module’s
memory. Next, construct an NFKM_Key key information structure (keyinfo) and then save it
to disk.

keyinfo->v = 8;

keyinfo->appname = keyident.appname;
keyinfo->ident = keyident.ident;
time(&keyinfo->gentime);

nCore v13.6.14 Developer Tutorial 20/237

Chapter 5. C tutorial

The next step is to populate the parameters of the blob_params structure, which contains
the information that is to be written to the key blob. The following code also checks that a
key-generation certificate was included in the reply. The NFKM_MakeBlobsParams flags blob_-
params.f must be the same as the flags passed to NFKM_newkey_makeaclx() when the appli-
cation created the private ACL.

me = 0;

blob_params.kpriv = reply.reply.generatekey.key;

if(reply.reply.generatekey.flags & Cmd_GenerateKey_Reply_flags_cert_present)
mc = reply.reply.generatekey.cert;

if(cardset) {

blob_params.lt = 1tid;
blob_params.cs = cardset;

}

blob_params.fips = fipsl14@authhandle;

The parameters required for the NFKM_newkey_makeblobsx() are now populated, and the
application is ready to create the key blob. As this is a symmetric key type the application
need only save a private key blob.

rc = NFKM_newkey_makeblobsx(app, conn, worldinfo, &blob_params, keyinfo, cctx);
if(re) {
NFast_Perror("error calling NFKM_newkey_makeblobsx", rc);
goto cleanup;
}
if(me) {
rc = NFKM_newkey_writecert(app, conn, moduleinfo, blob_params.kpriv, mc,
keyinfo, cctx);
if(re) {
NFast_Perror("error calling NFKM_newkey writecert", rc);
goto cleanup;
}
}

The keyinfo structure is now ready to be saved to disk.

rc = NFKM_recordkey(app, keyinfo, cctx);

if(re) {
NFast_Perror("error calling NFKM_recordkey", rc);
goto cleanup;

}
rc = Status_0K;

5.4.3. Freeing memory

The final part of the key-generation process is the important step of unloading the key infor
mation in the module.

NFastApp_FreeACL(app, cctx, @, &command.args.generatekey.acl);
NFKM_cmd_destroy(app, conn, @, reply.reply.generatekey.key,

nCore v13.6.14 Developer Tutorial 21/237

Chapter 5. C tutorial

"generatekey.key", cctx);
if(1tid) NFKM_cmd_destroy(app, conn, @, 1tid, "ltid", cctx);

If you are running your application in FIPS 140 Level 3 mode, NFKM_newkey_makeauth() cre-
ates a certificate list, which also needs to be freed:

if(command.flags & Command_flags_certs_present)
NFastApp_Free_CertificatelList(app, cctx, @, command.certs);

NFastApp_Free_Reply(app, cctx, @, &reply);
keyinfo->appname = 0;

keyinfo->ident = 0;

NFKM_freekey(app, keyinfo, cctx);
NFKM_freecardset(app, cardset, cctx);

This concludes the explanation of symmetric key-generation. The next section describes
the process of generating asymmetric keys.

5.5. Generating an asymmetric key

This section describes the asymmetric key-generation process in detail. The process of gen
erating a symmetric key differs slightly from the process of generating an asymmetric key,
so each is described in a separate section. There is some repetition in the two sections.

This section does not explain how to use softcards to protect keys. Soft
cards can be listed with NFKM_1istsoftcards() and loaded with NFK-

e M_Tloadsoftcard(). See the nCore APl documentation of nfkm.h for more
information about using softcards.

The following diagram illustrates the key-generation process:

nCore v13.6.14 Developer Tutorial 22/237

Chapter 5. C tutorial

Dretermine if key is
cardser. mesdule, af
passphrase protected

X

Cardser ™
. prodecked?

-, __/
“

¥R

¥

Prompt the user 1o
insert the authonzing
wode fm the card
Inader

n

X

.-':ﬁ.ullmza.tlw.;‘n_) » Do not "

S walid@ o " Lenerdte key
b
¥

Create AL for ’)
Cietera W
B Fiisd usable msodule | = public and privane A | s L | B Fiiak fiimory

s and privabe key certificale o disk

The following diagram illustrates how the programming environment architecture stores
generated asymmetric keys. See nCore architecture for more information about the pro-
gramming environment architecture.

/ Client \
(/_Cnrplugxaphic app]in::a'liun\ /— Hard disk —\

Yo can expan the pulslic key | |
in umemerypled form mio your L 4 L
application i _,-".
Private key '
bak

A P N—)
4 Module N

Privae key _j Publlic key

Alternately, you can load &
public kiy m the same way in |
which vou would load a private
key

nCore v13.6.14 Developer Tutorial 23/237

Chapter 5. C tutorial

The code in this section makes use of the following variables:

Variable Name
acl_params
blob_params
keyinfo
moduleinfo

mc
fips14@authhandle
1tid

cardset
moduleid
cardhash

re

command

reply

Variable Type
NFKM_MakeACL _Params
NFKM_MakeBlobs_Params
NFKM_Key
NFKM_ModuleInfo
M_ModuleCert
NFKM_FIPS140AuthHandle
M_KeyID

NFKM_CardSet
M_ModuleID
NFKM_CardSetIdent
M_Status

M_Command

M_Reply

Description

Used to construct ACLs
Used when making blobs
Information about a key
The module to use

A certificate from a module
FIPS authorization

A loaded card set
Information about a card set
The ID of a module

A hash of a card set

A command return code

A command structure

A command reply

5.5.1. Obtaining authorization and selecting a module

Keys are generated on a specific module and protected by some form of authorization.

When a key is generated the type of authorization that is required to use the key is defined,

as well as the purposes for which the key is allowed to be used, for example, only for encryp

tion and decryption, or only for signing and verification.

5.5.1.1. Using card set protection

Proper authorization is required to generate a key. This example handles card set authoriza-

tion. The following code prompts the user to provide a card to protect the key that is to be

generated. The card set hash populates cardhash when the card-loader completes.

rc = RQCard_logic_ocs_anyone(rqcard, &cardhash,

if(re) {

NFast_Perror("error calling RQCard_logic_ocs_anyone", rc);

goto cleanup;

}

"Insert a cardset to protect the new key");

nCore v13.6.14 Developer Tutorial

24/237

Chapter 5. C tutorial

5.5.1.2. Selecting a Security World module

Now that authorization has been obtained, prompt the user to select a module in the Secu-
rity World on which to generate the key. Alternatively you could use the RQCard_whichmod-
ule_specific() function to dictate which module to use or the NFKM_getusablemodule()
function to use the first available module.

The module ID and a key ID for the desired card set on that module are assigned to the mod-
uleid and 1tid variables when the card-loader completes.

rc = RQCard_whichmodule_anyone(rqcard, &moduleid, <id);
if(re) {
NFast_Perror("error calling RQCard_whichmodule_anyone", rc);
goto cleanup;

}

rc = rqcard->uf->eventloop(rqcard);

if(re) {
NFast_Perror("error running card loader", rc);
goto cleanup;

}

The moduleid, id and 1tid are now populated. The next step is to populate the moduleinfo
variable for the chosen module, and create a card set handle.

for(n = 0; n < worldinfo->n_modules; ++n)
if(worldinfo->modules[n]->module == moduleid)
break;
assert(n < worldinfo->n_modules);
moduleinfo = worldinfo->modules[n];

rc = NFKM_findcardset(app, &cardhash, &cardset, cctx);
if(re) {
NFast_Perror("error calling NFKM_findcardset", rc);
goto cleanup;

}

Up to now in this example the application has performed actions com-
0 mon to generating either a symmetric key or an asymmetric key. The
process from here on differs depending on which key type is generated.

5.5.2. Preparing the key-generation command and ACL

Start by setting up some command parameters based on the information we have already
gathered.

command.cmd = Cmd_GenerateKeyPair;

command.args.generatekeypair.params.type = keytype;
command.args.generatekeypair.flags = Cmd_GenerateKeyPair_Args_flags_Certify;
command.args.generatekeypair.module = moduleinfo->module;

nCore v13.6.14 Developer Tutorial 25/237

Chapter 5. C tutorial

Keys are stored with an ACL which defines which entities can perform operations with the
key. The next step is to populate the acl_params variable with the information needed to cre
ate the ACL that is stored in the key blob along with the key we generate. The application
sets the acl_params. f flags parameter to enable key recovery, and specify the type of key
protection to use. There are three options:

« card set protection
« module protection

+ passphrase protection.

This following code demonstrates how to indicate that a key should be protected by a card
set. In this case the card set is the one selected earlier by the user in Selecting a Security
World module.

acl_params.f = NFKM_NKF_RecoveryEnabled|protection;
acl_params.cs = cardset;

The make ACL blob flags (ac1_params. f) must be same as the make blob flags (blob_-
params.f), so it is set accordingly.

blob_params.f = acl_params.f;

The next step is to define in the ACL which operations the key is allowed to be used for.
Firstly the application defines the allowed uses for the private key ACL. The is_signing_on-
ly_keytype() function is not an nCore function:

if(is_signing_only_keytype(keytype))
acl_params.op_base = NFKM_DEFOPPERMS_SIGN;
else if(is_encryption_only_keytype(keytype))
acl_params.op_base = NFKM_DEFOPPERMS_DECRYPT;
else
acl_params.op_base = (NFKM_DEFOPPERMS_SIGN
| NFKM_DEFOPPERMS_DECRYPT);

The application is now ready to generate the private key ACL:

rc = NFKM_newkey_makeaclx(app, conn, worldinfo, &acl_params,
&command.args.generatekeypair.aclpriv, cctx);

For asymmetric keys the application also defines a public key ACL.

acl_params.f = NFKM_NKF_PublicKey;

if(is_signing_only_keytype(keytype))
acl_params.op_base = NFKM_DEFOPPERMS_VERIFY;

else if(is_encryption_only_keytype(keytype))
acl_params.op_base = NFKM_DEFOPPERMS_ENCRYPT;

nCore v13.6.14 Developer Tutorial 26/237

Chapter 5. C tutorial

else
acl_params.op_base = (NFKM_DEFOPPERMS_VERIFY
|NFKM_DEFOPPERMS_ENCRYPT);

The public key ACL is created in the same manner as the private key ACL:

rc = NFKM_newkey_makeaclx(app, conn, worldinfo, &acl_params,
&command.args.generatekeypair.aclpub, cctx);

The following code sets up further key generation command parameters. The parameters
that are required differ according to key type. For example, an application might use the fol
lowing code when generating a 1024 bit DSA key using strict key verification. For details of
the parameters required for the types of key you want to generate, see the relevant nCore
APl documentation.

command.args.generatekeypair.params.params.dsaprivate.flags =
KeyType_DSAPrivate_GenParams_flags_Strict;
command.args.generatekeypair.params.params.dsaprivate.lenbits = 1024;

Generating a key in a FIPS 140 Level 3 environment requires that an application obtains
authorization (in this case, card set authorization) before attempting to generate a key. It is
possible that the card loader has already obtained the necessary authorization from a prior
card-loading operation. In this case, the following call retrieves this authorization:

rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fipsi4@authhandle,
0);

If this call returns Status_RQCardMustContinue, an application must explicitly attempt to
obtain the correct authorization as follows:

rc = RQCard_fips_logic(rqcard);

if(re) {
NFast_Perror("error calling RQCard_fips_logic", rc);
goto cleanup;

}
rc = RQCard_whichmodule_specific(rqcard, moduleinfo->module, 0);
if(re) {

NFast_Perror("error calling RQCard_whichmodule_anyone", rc);
goto cleanup;

}
rc = rqcard->uf->eventloop(rqcard);
if(re) {

NFast_Perror("error running card loader", rc);
goto cleanup;
}
rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fipsl4@authhandle,
0);

Now that the application has obtained the necessary FIPS 140 Level 3 authorization (or can

nCore v13.6.14 Developer Tutorial 27/237

Chapter 5. C tutorial

celled the operation if the correct authorization could not be obtained), it can use the autho
rization to authorize the creation of the key.

rc = NFKM_newkey_makeauth(app, worldinfo, &command.flags, &command.certs,
fips140authhandle, cctx);
if(re) {
NFast_Perror("error calling NFKM_newkey_makeauth", rc);
goto cleanup;

}

With or without FIPS authorization, the application has now obtained all the information nec
essary to transact a key-generation operation, so is now ready to send the key-generation
command to the selected module. The reply is checked using the reply checking utility func
tion mentioned at the beginning of the chapter.

rc = NFastApp_Transact(conn, cctx, &command, &reply, 0);
rc = check_reply(rc, &reply, "error generating new key");
if(re)

goto cleanup;

The application has now generated a new key, but as yet the key exists only in the module’s
memory. Next, construct an NFKM_Key key information structure (keyinfo) and then save it
to disk.

keyinfo->v = 8;

keyinfo->appname = keyident.appname;
keyinfo->ident = keyident.ident;
time(&keyinfo->gentime);

The next step is to populate the parameters of the blob_params structure, which contains
the information that will be written to the key blob. The following code also checks that a
key-generation certificate was included in the reply. The NFKM_MakeBlobsParams flags blob_-
params.f must be the same as the flags passed to NFKM_newkey_makeaclx() when the appli-
cation created the private ACL.

me = 0;
blob_params.kpriv = reply.reply.generatekeypair.keypriv;
blob_params.kpub = reply.reply.generatekeypair.keypub;
if(reply.reply.generatekeypair.flags & Cmd_GenerateKeyPair_Reply_flags_certpriv_present)
mc = reply.reply.generatekeypair.certpriv;
if(cardset) {
blob_params.lt = 1tid;
blob_params.cs = cardset;
}
blob_params.fips = fipsl14@authhandle;

The parameters required for the NFKM_newkey_makeblobsx() are now populated and the
application can now create the key blob.

nCore v13.6.14 Developer Tutorial 28/237

Chapter 5. C tutorial

rc = NFKM_newkey_makeblobsx(app, conn, worldinfo, &blob_params, keyinfo, cctx);
if(re) {
NFast_Perror("error calling NFKM_newkey_makeblobsx", rc);
goto cleanup;
}
if(me) {
rc = NFKM_newkey_writecert(app, conn, moduleinfo, blob_params.kpriv, mc,
keyinfo, cctx);
if(re) {
NFast_Perror("error calling NFKM_newkey_writecert", rc);
goto cleanup;
}
}

The keyinfo structure is now ready to be saved to disk.

rc = NFKM_recordkey(app, keyinfo, cctx);

if(re) {
NFast_Perror("error calling NFKM_recordkey", rc);
goto cleanup;

}

rc = Status_0K;

5.5.3. Freeing memory

The final part of the key-generation process is the important step of freeing the memory
used by the application, so that no key information remains in memory, which would make

the key vulnerable to attackers.

NFastApp_FreeACL(app, cctx, @, &command.args.generatekeypair.aclpriv);

NFastApp_FreeACL(app, cctx, @, &command.args.generatekeypair.aclpub);

NFKM_cmd_destroy(app, conn, @, reply.reply.generatekeypair.keypriv,
"generatekeypair.keypriv", cctx);

NFKM_cmd_destroy(app, conn, @, reply.reply.generatekeypair.keypub,
"generatekeypair.keypub", cctx);

if(1tid) NFKM_cmd_destroy(app, conn, @, 1tid, "ltid", cctx);

If you are running your application in FIPS 140 Level 3 mode, NFKM_newkey_makeauth() will
have created a certificate list, which also needs to be freed:

if(command.flags & Command_flags_certs_present)
NFastApp_Free_CertificateList(app, cctx, @, command.certs);

NFastApp_Free_Reply(app, cctx, @, &reply);
keyinfo->appname = 0;

keyinfo->ident = 0;

NFKM_freekey(app, keyinfo, cctx);
NFKM_freecardset(app, cardset, cctx);

This concludes the explanation of asymmetric key-generation.

nCore v13.6.14 Developer Tutorial 29/237

Chapter 5. C tutorial

5.6. Using a key

Once a key has been generated on a module the encrypted key information, or key blob, is
stored on the hard disk of the application that requested it. For your application to use a
key, you first need to pass the information contained in the key blob to the hardserver,
which will use a module to decrypt the key and return a key handle to your application.

The following diagram illustrates the process of loading a key:
I Application Y

Locaie the key blah
using
MEFM_findkey

b

Cibsinin necessary
aulsarizalon

b

Sedect & module o

liaad the kew anbo
I Module %

Pass an
M_ByieBlock |
painter fo the key
blob i the neadule

Laad key

Ulse the M_KeviD -
pointer to the key m | < t 1 Retum key handle
the moduls .

5.6.1. Finding a key

To load a key, first locate the key blob. A key is identified by the name of the application
that created it and the key identifier. The following code tries to find an existing key blob of
the requested type. If a key of this type cannot be found, the code generates a new key.

The following code uses a function called generate_key() to generate a key if a key cannot

be found.

rc = NFKM_findkey(app, keyident, &keyinfo, cctx);
if(re) {
NFast_Perror("error calling NFKM_findkey", rc);
goto cleanup;
}
if(!keyinfo) {
rc = generate_key(app, conn, worldinfo, &rqcard, &rqcard_fips, opt_protect,
keyident, keytype, cctx);

nCore v13.6.14 Developer Tutorial 30/237

Chapter 5. C tutorial

if(re)
goto cleanup;
rc = NFKM_findkey(app, keyident, &keyinfo, cctx);
if(re) {
NFast_Perror("error calling NFKM_findkey", rc);
goto cleanup;
}
if(keyinfo == 0) {
fprintf(stderr,
"NFKM_findkey could not find key even after generating it.\n");
rc = -1;
goto cleanup;
}
}

5.6.2. Loading a key

Before a key can be loaded into a module, an application must obtain the appropriate autho
rization. In this example the authorization required comes from a card in a card set, so the
application must first initialize the card-loading libraries:

if(keyinfo->flags & Key_flags_ProtectionCardSet) {
M_ModuleID moduleid;
int n;
rc = RQCard_logic_ocs_specific(&rqcard, &keyinfo->cardset,
"Load cardset");
if(re) {
NFast_Perror("error calling RQCard_logic_ocs_specific", rc);
goto cleanup;
}
}

A Security World often contains multiple modules, many of which may have the key that is
needed to decrypt the key blob an application wants to load. For this example the user is
prompted to choose a module that contains the necessary key, and then prompted to pro-
vide the card that authorizes the use of the key:

rc = RQCard_whichmodule_anyone(&rqcard, &moduleid, <id);
if(re) {
NFast_Perror("error calling RQCard_whichmodule_anyone", rc);
goto cleanup;

}
rc = rqcard.uf->eventloop(&rqcard);
if(re) {

NFast_Perror("error running card loader", rc);
goto cleanup;

}

It is also possible for an application to ask the Security World to nominate a usable module
by using the NFKM_getusablemodule() function:

rc = NFKM_getusablemodule(worldinfo, @, &moduleinfo);
if(re) {

nCore v13.6.14 Developer Tutorial 31/237

Chapter 5. C tutorial

NFast_Perror("error calling NFKM_getusablemodule", rc);
goto cleanup;

}

Now that the user has selected a module, an application can populate the moduleinfo vari-
able, which is later used as a parameter to the NFKM_cmd_loadblob() function.

for(n = 0; n < worldinfo->n_modules; ++n)
if(worldinfo->modules[n]->module == moduleid)
break;
assert(n < worldinfo->n_modules);
moduleinfo = worldinfo->modules[n];

The application has now gathered all the information it needs to load the key onto a module
using the NFKM_cmd_loadblob() function. The next step is to prepare a pointer to the key
that will be loaded into the module. The following code loads the public key blob. An applica
tion can load the private key blob in similar fashion using &keyinfo->privblob.

const M_ByteBlock *blobptr;
blobptr = &keyinfo->pubblob;

The following code attempts to load the key blob. NFKM_cmd_loadblob() fills in the com-
mand structure and handles the reply. Assuming that the command executes successfully,
you will now have a handle on the key loaded onto the selected module.

o It is possible to construct an M_Command structure by using Cmd_Load-
Blob() directly instead.

rc = NFKM_cmd_loadblob(app,
conn,
moduleinfo->module,
blobptr,
1tid,
&keyid,
"loading key blob",
cetx);
if(re) {
NFast_Perror("error calling NFKM_cmd_loadblob", rc);
goto cleanup;

}

5.7. Encrypting a file

This section demonstrates how to encrypt the contents of a text file by using a secure chan
nel. For the sake of simplicity, this example has no error handling.

First, generate an appropriate initialization vector:

nCore v13.6.14 Developer Tutorial 32/237

Chapter 5. C tutorial

iv.mech = Mech_RijndaelmCBCi128pPKCS5;
for (i=0; i<sizeof iv->generic128.iv.bytes; i++)
iv.iv->generic128.iv.bytes[i]=(unsigned char)((i*19) A iv.mech);

Next, open a channel to use to encrypt the file. The mechanism that the channel uses to
encrypt the file is specified when the channel is opened:

M_Command channel_open_command;

M_Reply channel_open_reply;

M_Status channel_open_rc;

channel_open_command.cmd = Cmd_ChannelOpen;
channel_open_command.args.channelopen.type = ChannelType_Any;
channel_open_command.args.channelopen.mode = ChannelMode_Encrypt;
channel_open_command.args.channelopen.mech = mech;

Some M_Command arguments are optional. In this example, the application specifies both the
key to be used to encrypt the file and the initialization vector and indicates which optional
arguments have been specified by setting the appropriate flags:

channel_open_command.args.channelopen.flags |= Cmd_ChannelOpen_Args_flags_key_present;
channel_open_command.args.channelopen.key = &keyid;
channel_open_command.args.channelopen.flags |= Cmd_ChannelOpen_Args_flags_given_iv_present;
channel_open_command.args.channelopen.given_iv = iv;

To open the channel, transact the M_Command in the usual way and then set the channel ID
pointer idch:

channel_open_rc = NFastApp_Transact(conn, cctx, &channel_open_command, &channel_open_reply, 0);
idch = channel_open_reply.reply.channelopen.idch;

The next step is to load the input file (the file to be encrypted) into a file stream (input-
stream) and prepare the output file stream (outputstream) to which the encrypted file is
going to be written.

inputstream = fopen("file_in.txt", "rb");
outputstream = fopen("file_out.txt", "wb");

Now that the application has opened the channel and prepared the input and output
streams, start to prepare an M_Command to process the inputstream through the channel.

M_Command channel_process_stream_command;
M_Reply channel_process_stream_reply;
M_Status channel_process_stream_rc;

int eof = 0;

unsigned char buffer[6144];

size_t bytes_read;

nCore v13.6.14 Developer Tutorial 33/237

Chapter 5. C tutorial

Next, read the bytes of the inputstreaminto a char buffer, updating the channel on each

read.

do {
bytes_read = fread(buffer, 1, sizeof buffer, inputstream);
if(ferror(inputstream)) {
fprintf(stderr, "error reading from %s: %s\n",
input_path, strerror(errno));
re = =1g
goto cleanup;

}

if(feof(inputstream))
eof = 1;

command.cmd = Cmd_ChannelUpdate;
if(eof)

command.args.channelupdate.flags |= Cmd_ChannelUpdate_Args_flags_final;
command.args.channelupdate.idch = idch;
command.args.channelupdate.input.ptr = buffer;
command.args.channelupdate.input.len = (M_Word)bytes_read;

rc = NFastApp_Transact(conn, cctx, &command, &reply, 0);
rc = check_reply(rc, @, "Cmd_ChannelUpdate");
if(rc)

goto cleanup;

if(reply.reply.channelupdate.output.len) {
if(outputstream) {
fwrite(reply.reply.channelupdate.output.ptr,
1, reply.reply.channelupdate.output.len,
outputstream);
/* Check for a write error */
if(ferror(outputstream)) {
fprintf(stderr, "error writing to %s: %s\n",
output_path, strerror(errno));
rc = -1;
NFastApp_Free_Reply(app, cctx, @, &reply);
goto cleanup;
}
}
if(outputdstr) {
if(nf_dstr_putm(outputdstr, reply.reply.channelupdate.output.ptr,
reply.reply.channelupdate.output.len)) {
fprintf(stderr, "error writing to dstr: %s\n", strerror(errno));
rc = -1;
goto cleanup;
}
}
}

NFastApp_Free_Reply(app, cctx, @, &reply);
memset(&reply, 0, sizeof reply);
} while(!eof);

If the file was successfully encrypted, save the file to disk:

if(channel_process_stream_reply.reply.channelupdate.output.len) {
if(outputstream) {
fwrite(channel_process_stream_reply.reply.channelupdate.output.ptr,
1, channel_process_stream_reply.reply.channelupdate.output.len,
outputstream);
writefile(ciphertext_path,

nCore v13.6.14 Developer Tutorial

34/237

Chapter 5. C tutorial

reply->reply.encrypt.cipher.data.generic128.cipher.ptr,
reply->reply.encrypt.cipher.data.generic128.cipher.len);

The final step is to free memory and close the outputstream.

NFastApp_Free_Reply(app, cctx, @, &reply);
memset(&reply, 0, sizeof reply);
fclose(outputstream);

5.8. Cleaning up resources

Memory leaks and objects left in memory constitute a security risk. The following code

removes all sensitive information from memory and cleanly shuts down the connection to

the hardserver.

free(sigbytes.ptr);

if(keyid) NFKM_cmd_destroy(app, conn, @, keyid, "keyid", cctx);
if(idch) NFKM_cmd_destroy(app, conn, @, idch, "idch", cctx);
NFastApp_Free_Reply(app, cctx, @, &reply);
if(rqcard_fips_initialized) RQCard_fips_free(&rqcard, &rqcard_fips);
if(rqcard_initialized) RQCard_destroy(&rqcard);
NFKM_freekey(app, keyinfo, cctx);

NFKM_freeinfo(app, &worldinfo, cctx);

if(conn) NFastApp_Disconnect(conn, cctx);

NFastApp_Finish(app, cctx);

if(inputstream) fclose(inputstream);

if(outputstream) fclose(outputstream);

nCore v13.6.14 Developer Tutorial

35/237

Chapter 6. Java tutorial

6. Java tutorial

6.1. Overview

This overview section provides a description of how to achieve two fundamental nCore API
programming tasks: connecting to the hardserver and transacting a command. These two
tasks are common to almost all cryptographic applications. The rest of this chapter works
through a simple example of a basic cryptographic application.

All applications that require nCore functionality will first need to create a connection to a
hardserver running on a nShield module. The following diagram illustrates the steps required

to create a connection to a hardserver running on Entrust hardware:

Define calibacks class

T

Instantiate callbacks class and
Security World class

Create new EasyConnection object

Once connected to the hardserver, an application can send an M_Command to a module. The
module processes the command and then returns the results along with any relevant error
and status codes. The following diagram illustrates the process of transacting a crypto-
graphic operation with a module:

nCore v13.6.14 Developer Tutorial 36/237

Chapter 6. Java tutorial

/ Client "

Popalate M_Cmd
Siruchir
¢ module Y
¥
Transact t | - Perform operation
h ¥
Wait until reply is Papulate M_Sestus
received siruciure
¥
Check M_ St
code amd use P‘;]:;L:.brl mld m:m
M Reply _Reply sinicture

N —_

The M_Reply structure contains the results of the operation and an M_Status message that
indicates the outcome of the operation. If a problem is encountered, the M_Status value
gives an indication of what went wrong. The M_Reply contains the results of the command,
for example, a key handle or the bytes of an encrypted file.

6.1.1. Creating a softcard

This tutorial demonstrates how to protect a key using a softcard. Use the command line util
ity ppmk to create a softcard in a manner similar to the following:

In a terminal window, type:

ppmk --new --non-recoverable WorkedExampleSoftcard

ppmk prompts you to provide a passphrase. Type a passphrase and press Enter.

ppmk prompts you to confirm the passphrase you have entered. Type the passphrase again
to confirm it, and press Enter.

6.1.2. nCore classes used in this tutorial

This tutorial describes some of the functionality in the following nCore classes. You may
find it useful to familiarize yourself with these classes by reading the APl documentation,
which can be found at <nfast_dir>/java/docs/index.html.

nCore v13.6.14 Developer Tutorial 37/237

Chapter 6. Java tutorial

com.ncipher.km.nfkm.*
Security World classes.
- com.ncipher.km.marshall.*
Marshals Security World objects.
- com.ncipher.jutils.*
Various utility classes provided by Entrust.
- com.ncipher.nfast.*
More utility classes.
- com.ncipher.nfast.marshall.*

Classes which represent nCore commands and related data structures, and which can
be used to marshal and unmarshal them from the nShield byte stream format for trans-
mission.

- com.ncipher.nfast.connect.utils.*

Connection and Channel utility classes. The code in this chapter also uses two connec-
tion utility classes, Channel and EasyConnection. The source code for these examples
can be found at <nfast_dir>/java/examples/connutils.

6.1.3. Variables used in this tutorial

The following table lists and describes the variables used in this tutorial. You may also find it
useful to view the APl documentation of these classes.

Variable name Variable type Variable description

kid M_KeyID Public key ID

c EasyConnection Connection to the hardserver

web WorldCallbacks Callback object which defines how user interaction is
handled

world SecurityWorld Security World object

appname String Application name

ident String Key identity

type String Key type

nCore v13.6.14 Developer Tutorial 38/237

Chapter 6. Java tutorial

Variable name Variable type Variable description

size int Key size in bytes

chanmech int Cryptographic mechanism used by the secure channel
chanop int Secure channel ID

iv M_TIV Initialization vector

ch Channel Secure channel object

softcard SoftCard Softcard object

6.2. Before connecting to the hardserver

The WorldCallbacks class defines how the hardserver interacts with the user when obtain-
ing authorization to create or use a key. The WorldCallbacks class extends the DefaultCall-
Back class to customize how the user will be prompted to enter a softcard passphrase. An
instance of this class is used as a parameter when instantiating a SecurityWorld object. If
you do not pass an instance of a similar class the behavior defined in the DefaultCallBack
class is used.

class WorldCallbacks extends DefaultCallBack {
public SoftCard configured_softcard = null;
public String reqPPCallBack(String RegPPAction) throws NFException {
try {
return Passphrase.readPassphrase("Enter softcard passphrase: ");
} catch(IOException e) {
throw new NFException(e.toString());
}
}

// Callback to choose a softcard
public SoftCard getSoftCardCallback() throws NFException {
return configured_softcard;
IH
}

Before connecting to the hardserver, instantiate a WorldCallBacks object and a Security-
World object as follows:

WorldCallbacks web = new WorldCallbacks();

SecurityWorld world = new SecurityWorld(null, wcb,
null,
true);

6.3. Connecting to the hardserver

nCore v13.6.14 Developer Tutorial 39/237

Chapter 6. Java tutorial

The following code creates the connection to the hardserver using the EasyConnection util-
ity class constructor to wrap an NFConnection object:

¢ = new EasyConnection(world.getConnection());

6.4. Generating a key

The first step is to specify the parameters of a key that can be used to sign a file. In this
case we choose to generate a DSA key. We specify the key-generation parameters as fol-
lows:

appname = "simple";

ident = "worked-example-sign";
type = "DSA";

size = 1024;

chanmech = M_Mech.SHA1THash;
sigmech = M_Mech.DSA;

iv = new M_IV();

chanop = M_ChannelMode.Sign;

Before attempting to generate a key, use the getKey() method of the SecurityWorld class
to check if a key with the given appname and ident already exists. The getKey() method
returns null if it cannot find the specified key.

Key k = world.getKey(appname, ident);

If getKey() returns null this example attempts to generate a key. If no softcard has been
named to protect this key, the key is protected using module protection.

if(k == null) {
if(softcard_name != "") {

k = generate_key(wcb, world, type, size,
NFKM_Key_flags.f_ProtectionPassPhrase,
softcard_name,
appname, ident);

} else {

k = generate_key(wcb, world, type, size,
NFKM_Key_flags.f_ProtectionModule,
null,
appname, ident);

generate_key() is a utility function written specifically for this example. generate_key()
uses an AppKeyGenerator object which is obtained by calling the getAppKeyGenerator ()
method of the SecurityWorld object.

The AppKeyGenerator class requires a AppKeyGenProperty[] array which contains the parame

nCore v13.6.14 Developer Tutorial 40/237

Chapter 6. Java tutorial

ters that specify the key you want to generate. If a key cannot be generated using the spec
ified parameters, AppKeyGenerator throws an nfkmInvalidPropValuesException. You can call
the check() method to test whether the AppKeyGenProperty[] contains valid values. The
properties themselves differ according to your Security World configuration.

The generate_key method uses two utility functions written specifically for this tutorial, set
StringProperty() and setMenuProperty(), which are used to set the AppKeyGenProperty[]
array. The following diagram illustrates the process of generating a key:

Deternuine if key is
cardsel, module o
passphirase proteched

b4

7 Pasphnase

s
T

Prompt the wser i
sipply the
pasiphrase

nix
X

'a'u:::il;ﬁ“m T ¥ D mol generale kiy

Gienerate public o Wit ke blob and

Fiid usable modube | ® public ey oertificate to dsk

L Frie memory

o ‘ This tutorial does not cover details of ACL generation.

The parameters of the generate_key() function are:

Parameter name Parameter Type Parameter description

web WorldCallbacks Callback class that defines user interaction behavior.

world SecurityWorld Contains information about the Security World you are
using.

type String The type of key, for example, AES, RSA, DSA.

len int The length of the key you want to generate, in bits.

nCore v13.6.14 Developer Tutorial 41/237

Chapter 6. Java tutorial

Parameter name Parameter Type Parameter description

protection int The type of key protection to be used. This can be any
of the flags defined in NFKM_Key_flags

prot_name String The name of the softcard / module / card that is used
to protect the key you want to generate.

appname String The name of the application that is requesting that a
key is generated. The key name is formed by a combi-
nation of the appname and the ident.

ident String An arbitrary string that becomes part of the key name.
The key name is formed by a combination of the app-
name and the ident.

The first step is to obtain an AppKeyGenerator object from the SecurityWorld object:

AppKeyGenerator akg = world.getAppKeyGenerator(appname);

Next, as a safety measure we check that all the required key properties are supported by
this AppKeyGenerator object. In this example, the most likely reason that required key proper
ties are not supported is that no softcard which can be used to protect the key to be gener
ated exists in the Security World:

String[] properties = new String[] {
"ident",
"type",
"size",
"protect”
I
for (int i = @; i < properties.length; i++) {
if (akg.getProperty(properties[i]) == null) {
System.out.println("Property " + properties[i] + " does not exist." +
"Does your security world contain a usable softcard?");
System.exit(0);
}
}

If all properties exist, populate the AppKeyGenProperty[] using the setStringProperty() and
setMenuProperty() functions. The protect property is set, dependent on how the key is to
be protected. This example expects the key to be softcard protected. Failing that the exam-
ple defaults to module protection. Card set protection is not supported in this example.

setStringProperty(akg, "ident", ident);
setMenuProperty(akg, "type", type);
setStringProperty(akg, "size", Integer.toString(len));
switch(protection) {
case NFKM_Key_flags.f_ProtectionModule:
setMenuProperty(akg, "protect”, "module");
break;
case NFKM_Key_flags.f_ProtectionPassPhrase:

nCore v13.6.14 Developer Tutorial 42/237

Chapter 6. Java tutorial

setMenuProperty(akg, "protect", "softcard");
SoftCard cards[] = world.getSoftCards();
web.configured_softcard = null;
for(int n = @; n < cards.length; ++n) {
if(cards[n].getName().equals(prot_name)) {
web.configured_softcard = cards[n];
}
if(web.configured_softcard == null) {
throw new NoSuchSoftCard(prot_name);
break;
}
}
}

Before calling the generate() function of the AppKeyGenerator class to generate the key, it
is good practice to check that the values assigned to the properties are valid. If the proper-
ties are valid, call the generate() function, which returns a reference to the newly created
key:

InvalidPropValue badprops[] = akg.check();
if(badprops.length > @) {
throw new BadKeyGenProperties(badprops);

}
return akg.generate(getUsableModule(world), null);

Finally, call the cancel() method to destroy key information that is resident in memory.

akg.cancel();

6.4.1. Methods used in generate_key()

The getUsableModule() method was written for the purposes of this example and simply
cycles through all the modules in the Security World until it finds one that is suitable:

public static Module getUsableModule(SecurityWorld world)
throws NFException {
Module modules[] = world.getModules();
for(int m = @; m < modules.length; ++m)
if(modules[m].isUsable())
return modules[m];
throw new NoUsableModules();
}

To select a specific module, use the getModule() function of the SecurityWorld class. The
getModule() function is overloaded to accept either a module number or a module Elec-
tronic Serial Number (ESN) as a parameter.

The setStringProperty() method was written for the purposes of this example and sets a
string property.

nCore v13.6.14 Developer Tutorial 43/237

Chapter 6. Java tutorial

public static void setStringProperty(AppKeyGenerator akg,
String propname,
String propvalue)
throws NFException {
PropValueString pvs = (PropValueString)akg.getProperty(propname).getValue();
pvs.value = propvalue;

}

The setMenuProperty() method was written for the purposes of this example and sets a
menu property.

public static void setMenuProperty(AppKeyGenerator akg,
String propname,
String propvalue)
throws NFException {
PropValueMenu pvm = (PropValueMenu)akg.getProperty(propname).getValue();
MenuOption options[] = pvm.getOptions();
for(int i = @; i < options.length; ++i)
if(options[i].getName().equals(propvalue)) {
pvm.value = 1i;
return;
}
}
throw new InvalidMenuItem(propvalue);

}

6.5. Using a key

Before using a key the key must be loaded onto a module. In this example we expect the
key being loaded to be softcard protected, or failing that, module protected.

Module module = getUsableModule(world);
SoftCard softcard = k.getSoftCard();
if(softcard != null) {
softcard.load(module, wcb);
kid = k.load(softcard, module);
} else {
kid = k.load(module);
}

6.6. Signing a file

Now that the key is loaded onto the module, open a secure channel to use to sign a text
file.

Channel ch = c.openChannel(chanop, kid, chanmech, iv, true, true);

The openChannel() method of the EasyConnection class returns a subclassed Channel
object. For this example, the openChannel() function transacts an M_Cmd.ChannelOpen com-

nCore v13.6.14 Developer Tutorial 44/237

Chapter 6. Java tutorial

mand and uses the M_Cmd_Reply_ChannelOpen object returned in the reply to instantiate and
then return a Channel.Sign object.

M_Cmd_Args_ChannelOpen args = new M_Cmd_Args_ChannelOpen(
new M_ModuleID(@), M_ChannelType.Simple, @, how, mech);
if ('keyless) {
args.set_key(key);
}

if (!generatelV) {
args.set_given_iv(given_iv);
}
M_Reply rep = transactChecked(new M_Command(M_Cmd.ChannelOpen, 0,args));
M_Cmd_Reply_ChannelOpen corep = (M_Cmd_Reply_ChannelOpen) rep.reply;
if (@ != (corep.flags & corep.flags_new_iv)) {
given_iv.mech = corep.new_iv.mech;
given_iv.iv = corep.new_iv.iv;
}

return new Channel.Sign(mech, key, corep.new_iv, corep.idch, this);

Channel.Sign extends the abstract Channel class. The update() function reads the specified
byte[] into the channel. The updateFinal() method reads the specified byte array into the
channel, but should only be called when reading the final byte[] array that you want to
process through the channel.

public static class Sign extends Channel {
public Sign(long mech, M_KeyID keyID, M_IV iv, M_KeyID channellID, EasyConnection parent) {
super (M_ChannelMode.Sign, mech, keyID, iv,channelID, parent);

}

public void update(byte[] input) throws MarshallTypeError,
CommandTooBig,
ClientException,
ConnectionClosed,

StatusNotOK {
super.update(input, false, false);

}

public byte[] updateFinal(byte[] input) throws MarshallTypeError,
CommandTooB1ig,
ClientException,
ConnectionClosed,

StatusNotOK {
return super.update(input, true, false);
}
}

Now that the signing channel is open, open the input file to be signed, and a FileOutput-
Stream for the signature.

FileInputStream input = null;
FileOutputStream output = null;
input = new FileInputStream(plaintext_path);

Finally, use the channel to read in the input file bytes:

byte inputbytes[] = new byte[4096];

nCore v13.6.14 Developer Tutorial 45/237

Chapter 6. Java tutorial

int len = input.read(inputbytes);
while(len != -1) {
byte outputbytes[] = ch.update(arrayTruncate(inputbytes, len),
false,
false);
if(output != null)
output.write(outputbytes);
len = input.read(inputbytes);

}
}
byte outputbytes[] = ch.update(new byte[0],
true,
false);

The arrayTruncate() function was written specifically for this example, and ensures that
the byte[] used to update the channel is consistently chunked.

static byte[] arrayTruncate(byte[] in, int len) {
byte out[] = new byte[len];
for(int i = 0; i < len; ++i)
out[i] = in[i];
return out;

}

Next, create the hash and plaintext objects.

hash = new M_Hash(outputbytes);
plaintext = new M_PlainText(M_PlainTextType.Hash,
new M_PlainTextType_Data_Hash(hash));

Transact an M_Cmd.Sign operation to sign the hashed plaintext:

cmd = new M_Command(M_Cmd.Sign,

0,

new M_Cmd_Args_Sign(@,
kid,
sigmech,
plaintext));

try {
reply = c.transactChecked(cmd);
} catch (StatusNotOK sno) {
System.exit(0);
}

If the M_Cmd.S1ign operation succeeded, marshal the signature to a stream of bytes, and
saves the bytes as a signature file:

signature = ((M_Cmd_Reply_Sign)reply.reply).sig;
MarshallContext mec = new MarshallContext();
signature.marshall(mc);

output = new FileOutputStream(signature_path);
output.write(mec.getBytes());

if(output != null) output.close();

nCore v13.6.14 Developer Tutorial 46/237

Chapter 6. Java tutorial

6./. Cleaning up resources

Finally, unload the keys in the module memory.

if(kid != null) c.destroy(kid);
if(pubkid != null) c.destroy(pubkid);

nCore v13.6.14 Developer Tutorial 47/237

Chapter 7. Python 3 tutorial

/. Python 3 tutorial

7.1. Prerequisites

Operating systems
+ Linux on x86_64
« Windows on x86_64

nShield software

+ Security World 13.6 or later.

User permissions

+ A user permitted to connect to the local hardserver and read the Security World key
management data (kmdata) files.

Supported Python version
+ Python 3.11

/.2. Set up the environment for nfpython

To use nShield Python 3 support with another version of Python 3, con-
0 tact Entrust Support. Other Python versions are not covered by this
guide.

The recommended way of developing and deploying an nShield Python 3 application is
using the Python virtualenv created from the nShield Python 3 containing the packages
your project requires.

Before you begin, install the optional "CipherTools" (Windows) or "ctd" (Linux) component
as this contains the Python wheel files you require.

Entrust recommends the following directory layout:

[application
O venv
O mypackage
O _init__py
(3 code.py
B tests
() test_mypackage.py

nCore v13.6.14 Developer Tutorial 48/237

https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment

Chapter 7. Python 3 tutorial

) script.py
) setup.py

/.3. Create and configure the virtualenv

You do not need administrator access to create a virtualenv. When launching production
applications, you must use the virtualenv that was created for them.

1. Start a command-line shell.
2. Change to the directory where you want to store your application files.

3. Run:
Linux

/opt/nfast/python3/bin/python3 -m venv venv

Windows

c:\Program Files\nCipher\nfast\python3\python --copies -m venv venv

4. Install all required Python packages into the virtualenv, for example:
Linux

. venv/bin/activate
pip install /opt/nfast/python3/additional-packages/nfpython*.whl

Windows (PowerShell)

venv\Scripts\activate.ps
pip install c:\Program Files\nCipher\nfast\python3\additional-packages\nfpython*.whl

Entrust recommendeds that you use a requirements. txt file or
0 setup.py/setup.cfg to define your dependencies, including the
nfpython package.

To run your application:

- If your application uses setup.py entrypoint scripts, execute them directly.

« If you do not use entrypoints, you will need create your own scripts:

0 These examples assume that your program is called application.py
and your virtualenv is in the venv directory.

nCore v13.6.14 Developer Tutorial 49/237

https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html
https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html
https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html

Chapter 7. Python 3 tutorial

Linux - application.sh

#!/bin/sh

HERE=$(dirname $(readlink -f $0))
. ${HERE}/venv/bin/activate
python3 ${HERE}/application.py

Windows - application.ps1

$PSScriptRoot\venv\Scripts\activate.psl
python $PSScriptRoot\application.py

/.4. nfpython connections and commands
Send nCore commands to the hardserver or attached HSMs:

1. Import the nShield python module.

import nfpython

2. Set up a connection

conn = nfpython.connection()

3. Construct an nCore command:

¢ = nfpython.Command()
c.cmd = "NewEnquiry"
c.args.module = 1
c.args.version = 1

The easiest way to define a new command to send is to create a Command() object, set
the attributes starting with the cmd name, then set the args attributes as required.

4. Send the command, wait for the reply, and then print it:

reply = conn.transact(c)
print(reply.reply.data.one)

This command prints a reply similar to the following output.

EnquiryDatalne.releasemajor= 13
.releaseminor= 6
.releasepatch= 5
.checkintimehigh= 0
.checkintimelow= 1620223158
.flags= Hardware|HasTokens|SupportsCommandState

nCore v13.6.14 Developer Tutorial 50/237

Chapter 7. Python 3 tutorial

.speedindex= 14200

.recommendedming= 9

.recommendedmaxq= 152

.hardwareserial= ABCD-8287-C172
.softwaredetails= 13.6.5-120-344e176921

If the command results in a reply with a status value other than 0K, the transact() connec-

tion method raises an NFStatusError exception.

To suppress the exception and obtain the original reply regardless of status, use the

ignorestatus=True keyword argument:

import nfpython

conn = nfpython.connection()

¢ = nfpython.Command()

c.cmd = "NewEnquiry"

c.args.module = 1000

reply = conn.transact(c, ignorestatus=True)
print(reply)

This prints:

Reply.cmd= ErrorReturn
.status= InvalidModule
.flags= 0x0

7.5. Worked nfpython example for hash, sign, and verify
nShield Security World software includes several Python 3 example files.
The default location for these files is:

« Linux: /opt/nfast/python3/examples
« Windows: C:\Program Files\nCipher\nfast\python3\examples

The files hashing.py, keys.py and signing.py make up a sample application that signs data
using a previously generated RSA key. The application performs the following steps: load
keys, digest data, and perform a sign and verify operation using an attached HSM.

1. Generate a module-protected RSA key:

Linux

/opt/nfast/bin/generatekey -b simple protect=module type=RSA size=2048 ident=signer

Windows

c:\Program Files\nCipher\nfast\bin\generatekey -b simple protect=module type=RSA size=2048 ident=signer

nCore v13.6.14 Developer Tutorial 51/237

Chapter 7. Python 3 tutorial

2. Find and load the keys
Finding saved keys requires the nfpython and nfkm modules.

To load an existing key, you need to know the appname and ident of the saved key, and
you need the nfpython connection.

import nfpython
import nfkm

appname = "simple"
ident = "signer"
module = 1

conn = nfpython.connection(needworldinfo=True)
appident = nfkm.KeyIdent(appname=appname, ident=ident)
keydata = nfkm.findkey(conn, appident)

load the private key from keydata.privblob
or public key from keydata.pubblob

cmd = nfpython.Command(cmd="LoadBlob")
cmd.args.blob = keydata.privblob
cmd.args.module = module

load the blob and get a Key ID
rep = conn.transact(cmd)
keyid = rep.reply.idka

3. Process the data.

For large amounts of data, nShield software provides channels to perform crypto opera

tions in an incremental stream.

This example uses the ChannelOpen and ChannelUpdate commands to compute a
SHA256 hash with the HSM.

Entrust typically recommends a ChannelUpdate size of around 8000 bytes. However,
you might find that larger or smaller sizes give better results depending on network
conditions or HSM speed ratings.

message = b"hello world" * 10240
chunksize = 8000

conn = nfpython.connection(needworldinfo=True)
¢ = nfpython.Command()

c.cmd = "ChannelOpen"

c.args.type = "simple"

c.args.mode = "sign"

c.args.mech = "SHA256Hash"

rep = conn.transact(c)
channel = rep.reply.idch

¢ = nfpython.Command()

c.cmd = "ChannelUpdate"

split the message up into small chunks and transmit each in sequence

for chunk in (message[i:i+chunksize] for i in range(@, len(message), chunksize)):

nCore v13.6.14 Developer Tutorial 52/237

Chapter 7. Python 3 tutorial

c.args.idch = channel

c.args.input = nfpython.ByteBlock(chunk, fromraw=True)

conn.transact(c)

obtain the hash value by setting the final flag
c.args.input = nfpython.ByteBlock()

c.args.flags |= "final"

rep = conn.transact(c)

digest = rep.reply.output

4. Sign the digest using the loaded private key:

compute the hash (either using nfpython or hashlib)

digest = digest_message(conn, message)

perform a signature

plain = nfpython.Hash32(digest)
¢ = nfpython.Command()

c.cmd = "Sign"

c.args.mech = "RSAhSHA256pPKCST"
c.args.key = privkey
c.args.plain.type = "Hash32"
c.args.plain.data.data = plain

rep = conn.transact(c)
signature = rep.reply.sig

5. Verify the signature.

Verification requires a public key, the signature plaintext, and the signature data.

o If the signature is invalid, transact(cmd) raises an NFStatusError
exception with its status attribute set to "VerifyFailed".

digest = nfpython.Hash32(hashbytes)

¢ = nfpython.Command()

c.cmd = "Verify"

c.args.key = pubkey
c.args.plain.type = "Hash32"
c.args.plain.data.data = digest
c.args.sig = signature

conn.transact(c)

The full example would use the following code:

keys.py

import nfpython
import nfkm

def load_key(conn, appname: str, ident: str, module=@, private=True) -> nfpython.KeyID:

nun

Load a key given an appname and ident
:param conn:

nCore v13.6.14 Developer Tutorial

53/237

Chapter 7. Python 3 tutorial

:param appname: Key appname, eg "simple"
:param ident: Key ident

:param module: module to load the key on (default @ = any)

:param private: load the private blob if true
rreturn: the loaded key

nun

appident = nfkm.KeyIdent(appname=appname, ident=ident)

keydata = nfkm.findkey(conn, appident)

cmd = nfpython.Command(cmd="LoadBlob")
if private:

cmd.args.blob = keydata.privblob
else:

cmd.args.blob = keydata.pubblob
cmd.args.module = module

rep = conn.transact(cmd)
keyid = rep.reply.idka
return keyid

hashing.py

import nfpython

def digest_message(conn, message: bytes, module=@, mech="Sha256Hash", chunksize=8000) -> bytes:

nun

Hash a binary string using the HSM and ChannelUpdate commands

:param conn:
:param message: binary message to hash.

:param module: HSM to sign with (default @ = any)

:param mech: hash mechanism name
:param chunksize: digest block size

creturn:

¢ = nfpython.Command()
c.cmd = "ChannelOpen"
c.args.type = "simple"
c.args.mode = "sign"
c.args.mech = mech
c.args.module = module

rep = conn.transact(c)
channel = rep.reply.idch

¢ = nfpython.Command()
c.cmd = "ChannelUpdate"

split the message up into small chunks and transmit each in sequence
for chunk in (message[i:i+chunksize] for i in range(@, len(message), chunksize)):

c.args.idch = channel

c.args.input = nfpython.ByteBlock(chunk, fromraw=True)

conn.transact(c)

obtain the hash value by setting the final flag

c.args.input = nfpython.ByteBlock()
c.args.flags |= "final"

rep = conn.transact(c)

digest = rep.reply.output

return digest

signing.py

#!/usr/bin/env python3

nCore v13.6.14 Developer Tutorial

54/237

Chapter 7. Python 3 tutorial

import nfpython
from keys import load_key
from hashing import digest_message

def sign_message(conn, privkey: nfpython.KeyID, message: bytes) -> (nfpython.Hash32, nfpython.CipherText):

def

def

if

__name__ == "__main__

nun

Hash and sign a binary string using the HSM and a loaded RSA private key
:param conn:

:param privkey: KeyID of loaded key

:param message: bytes to sign

rreturn: the digest hash and signature

digest = digest_message(conn, message)

plain = nfpython.Hash32(digest)

¢ = nfpython.Command()

c.cmd = "Sign"

c.args.mech = "RSAhSHA256pPKCS1"
c.args.key = privkey
c.args.plain.type = "Hash32"
c.args.plain.data.data = plain
rep = conn.transact(c)

signature = rep.reply.sig

return plain, signature

verify_signature(conn, pubkey: nfpython.KeyID, digest, signature) -> bool:
Verify a signature using the HSM and a loaded public key
:param conn:

:param pubkey:

:param digest:

rparam signature:

rreturn:

cmd = nfpython.Command()

cmd.cmd = "Verify"

cmd.args.key = pubkey

cmd.args.plain.type = "Hash32"

cmd.args.plain.data.data = digest

cmd.args.sig = signature

conn.transact(cmd)

run():

conn = nfpython.connection(needworldinfo=True)

privkey = load_key(conn, appname="simple", ident="signer")

pubkey = load_key(conn, appname="simple", ident="signer", private=False)

message_bytes = b"hello world" * 1024

print(f"Hash and Sign {len(message_bytes)} bytes..")

digest, signature = sign_message(conn, privkey, message_bytes)
print("Verifying..")

verify_signature(conn, pubkey, digest, signature)
print("Done.")

n n,

run()

nCore v13.6.14 Developer Tutorial

55/237

Chapter 8. Java examples

8. Java examples

The example programs and source code described in this section are supplied on your
Developer installation media. Several of the utilities are not designed to be executed
directly but are used by other programs. For more information on these examples, see the
in-line comments in the example source code and the Javadocs installed in your nfast direc
tory.

8.1. Extract and compile the Java examples

The Java example files are in subdirectories of the $NFAST_HOME%\ java\examples (Windows)
or /opt/nfast/java/examples (Linux) directory.

1. Extract the example files:
jar xf <path-to-examples-jar-file>

The JCE-related examples extract into the com/ncipher/provider/examples subtree.

2. Compile the examples:

a. If using Java 8 or earlier (using "--class-path or -cp")

javac -cp <fully-qualified-path-to-JCE-provider-jar-file> *.java

For example:

javac -cp /opt/nfast/java/classes/nCipherkM.jar *.java
javac -cp /opt/nfast/java/classes/nCipherkM.jar com/ncipher/provider/examples/*.java

b. If using Java 9 or later (using "--module-path or -p")

javac -p <fully-qualified-path-to-JCE-provider-jar-file> --add-modules ALL-MODULE-PATH *.java

For example:

javac -p /opt/nfast/java/classes --add-modules ALL-MODULE-PATH *.java
javac -p /opt/nfast/java/classes --add-modules ALL-MODULE-PATH com/ncipher/provider/examples/*.java

8.2. Java key management example utilities

nCore v13.6.14 Developer Tutorial 56/237

Chapter 8. Java examples

8.2.1. AppKeyGen.java

This example utility demonstrates application key generation and import.

8.2.2. GenerateExport.java

This example utility generates an RSA Key and optionally exports the public key out of a
module as plain text.

It demonstrates the creation of an OCS.

8.2.3. KMJavaFloodTest.java
This example utility demonstrates the use of the mergeKeyIDs method in the Key class.

This method merges all the loaded private keyids into a single keyid that can be used in
nCore API calls when load-sharing is required.

8.2.4. NFKMInfo.java
Displays information about the Security World.

This example Java utility is analogous to its C version except that NFKMInfo. java does not
return information on world/module generation.

8.2.5. NVRamRTCUtil.java

This is an example program to demonstrate interacting with the NVRAM and RTC. The pro-
gram allows you to list all files in NVRAM, delete a file in NVRAM, delete all the files in
NVRAM, display the current time in the RTC and to set the RTC to the system clock.

8.2.6. SimpleCrypt.java

This is a simple example that graphically encrypts and decrypts data with a Triple-DES
(DES3) key from the Security World. Cipher Block Chaining mode (CBC) and initialization
vectors are selected randomly. This information is prefixed to the cipher text.

SimpleCrypt.java only works with module protected Triple-DES (DES3) keys.

8.2.7. SlotPoller.java

nCore v13.6.14 Developer Tutorial 57/237

Chapter 8. Java examples

This example utility polls all the available slots.

You can determine whether the state of the slot has changed by calling getIC() on the slot.
This method is more efficient than using update(). The module serial number, slot number,
and insertion count are displayed when a card is inserted or removed.

8.3. Java JCE/CSP example utilities

8.3.1. AsymmetricEncryptionExample.java

This example generates an RSA key pair and an X509 public key specification. It performs
encryption and decryption of random plain text.

8.3.2. DK_LECDHKAExample.java

This example utility demonstrates:

+ Creation of two ECDH key pairs.
« Key agreement using ECDHWITHSHATKDF between two parties.

« Encryption/Decryption using the shared secret key.

8.3.3. ECDHExample.java

This example utility demonstrates:

+ Creation of an ECDH key.
- ECDH key agreement.

+ Encryption / decryption of a message using AES.

8.3.4. ECIESExample java

This example utility demonstrates:

« Creation of an ECDH key pair by the receiver.

+ Key wrapping by the sender using the agreed ECIES parameters and the public half of
receiver's ECDH key pair.

+ Key unwrapping by the receiver using the agreed ECIES parameters.

« Encryption/Decryption using the shared secret key.

nCore v13.6.14 Developer Tutorial 58/237

Chapter 8. Java examples

8.3.5. EdDSAExample.java

This example utility demonstrates how to generate and store key for use in Ed25519 and
Ed25519ph operations.

The example generates an Ed25519 key pair, creates a KeyStore and stores both halves of
the key pair.

o ‘ This example may require sudo permissions on Linux machines.

8.3.6. JCEChanTest.java

This example measures the data rate achieved by different symmetric encryption and
decryption operations. You can use optional program arguments to change the cipher, key,
data, and provider parameters.

8.3.7. JCEFloodTest.java

This example utility does performance testing for RSA, DSA, ECDSA and Ed25519 private
key operations.

It demonstrates:

« RSA/DSA/ECDSA/Ed25519 Key Pair generation.
RSA/DSA/ECDSA/EdDSA signing.

+ RSA encryption/decryption.
+ Use of the kmjava classes to load a key to use with the nCipherKM JCE provider.

+ Load-balancing using kmjava and KeyStore-loaded keys.

8.3.8. JCESigTest.java

This example measures the data rate achieved by many threads simultaneously performing
signing and verifying operations. You can use optional program arguments to change the
thread, key, data, provider, and sampling parameters.

8.3.9. KeyLoadTimer.java

This example measures the time taken to get many keys from an nCipher.sworld key store.
It also demonstrates how to create, load and store key stores, as well as how to set and get
key entries.

nCore v13.6.14 Developer Tutorial 59/237

Chapter 8. Java examples

o ‘ This example may require sudo permissions on Linux machines.

8.3.10. KeyStorageExample.java

This example creates a new KeyStore containing an AES key. It performs load-balanced
encryption and decryption of random plain text using a KeyStore loaded key.

o ‘ This example may require sudo permissions on Linux machines.

8.3.11. NCipherLibrarylnteropExample.java

This example loads an existing AES key from the Security World across all usable modules
and performs load-balanced encryption and decryption of random plain text.

8.3.12. SignaturesExample.java

This example generates RSA, DSA, ECDSA and Ed25519 key pairs. For the associated mech-
anism of each key type, it performs signing and verification of random plain text.

8.3.13. SsIClientExample.java

Before building this example, the user will need to edit Ss1ClientExample.java to insert an
appropriate https web site address in the two relevant places. When run, this example con-
nects to the user-specified secure web site over an encrypted SSL connection and dumps
the index page to the console.

Before running this example, you must run PrepareSs1Examples.java. For more information,
see Java JCE/CSP example utilities

8.3.14. SsIServerExample java

This example creates a simple SSL Web server instance on the local host that can be
accessed with a Web browser.

Before running this example, you must run PrepareSs1Examples.java. For more information,
see Java JCE/CSP example utilities

8.3.15. SymmetricEncryptionExample.java

nCore v13.6.14 Developer Tutorial 60/237

Chapter 8. Java examples

This example generates symmetric keys and uses them to perform encryption and decryp-
tion of random plain text with different cipher modes and padding types.

8.3.16. SignatureTest.java
This example utility demonstrates:

- generation of an RSA/DSA/ECDSA Key Pair
- export of the PublicKey using X509 encoding

+ signing some random data

decoding the PublicKey

- verification of the signature.

o This example requires the Bouncy (Castle security provider to be loaded
and configured to run properly.

8.4. Java generic stub examples

The example utilities described in this section are directly analogous to
their namesake C example utilities supplied with the nShield C generic
stub. The Java incarnations are shipped as source code only.

8.4.1. BloblInfo.java

This example utility displays information in a blob. It demonstrates how to determine infor-
mation about the contents of a blob.

BlobInfo.java is analogous to the C Generic Stub call NFast_ExamineBlob.

8.4.2. Channel.java

This example utility is a function-based wrapper to symmetric bulk-encryption channels for
use by EasyConnection.java.

8.4.3. CheckMod.java

This example utility checks modulo-exponentiation operations against a test file.

nCore v13.6.14 Developer Tutorial 61/237

Chapter 8. Java examples

8.4.4. CrypTest.java
This example utility is a test program for some module algorithms. It demonstrates:

- the use of EasyConnection

« symmetric cryptography and channels.

8.4.5. DesKat.java

This example utility is for DES known answer tests.

It demonstrates simple nCore key management usage.

8.4.6. DKTest.java

This example utility provides a simple demonstration of the use of DeriveKey.

8.4.7. EasyConnection.java

This example utility is a function-based interface to a subset of nCore.

8.4.8. Enquiry.java
This example utility displays enquiry information.
It demonstrates:

+ simple nCore usage

- the enquiry command.

8.4.9. FloodTest.java
This example utility does performance testing for modexp code.
It demonstrates:

+ simple bignum usage

- asynchronous command processing (NFastApp_Wait and NFastApp_Query).

8.4.10. GenCert.java

nCore v13.6.14 Developer Tutorial 62/237

Chapter 8. Java examples

This example utility generates a certificate.

It demonstrates the use of the BuildCmdCert class.

8.4.11. InitUnit.java

This example utility initializes a module with a dummy HKNSO (like the C initunit utility).

8.4.12. NFEnum java

This example utility is a helper class used by SigTest. It is an example extension to jnfopt
for looking up an nCore Enumeration class. It cannot be invoked by itself.

8.4.13. ReportVersion.java

This example utility reports the embedded version information from the current nfjava com
ponent. ReportVersion. java outputs the version of the nfjava library found on the class
path.

These examples are not intended to be invoked directly. They are called by other programs.
The following two utilities, EasyConnection and Channel, form a Java analog of the nCore
simple command functions as shipped to C developers in Tibexamples.a. You can compare
and contrast this example with the C example simplecmd.h.

You cannot invoke EasyConnection and Channel directly; CrypTest invokes them. For more
information, see the Javadoc documentation.

8.4.14. ScoreKeeper.java

This example utility is shared code used by SigTest and FloodTest and cannot be invoked
on its own. It has helper classes for output reporting by SigTest and FloodTest.

8.4.15. SigTest java
This example utility does signature performance testing.
It demonstrates asynchronous command processing (NFastApp_Wait and NFastApp_Query).

Java is not a high-performance language. On slow host systems or sys-
o tems with multiple modules, it is very common to be limited by the CPU
of the host machine. As a result, this example often does not show the

nCore v13.6.14 Developer Tutorial 63/237

Chapter 8. Java examples

true performance capabilities of the module. If you want to test module
performance, as distinct from application performance, use the C ver-
sion of SigTest instead.

nCore v13.6.14 Developer Tutorial 64/237

Chapter 9. Key structures

9. Key structures

This chapter describes the data structures used by the nShield module to represent keys
and their ACLs. It includes information about:

« mechanisms which are the combination of algorithm, padding, and mode that are used
to transform plain text into cipher text or cipher text into plain text.

« plain texts which are the messages being processed. This chapter lists the plain text
formats that are supported by the nShield module.

+ keys which are the secret and public values used in an algorithm. The section of this
chapter about keys describes:

° the format for each key type
° the mechanisms supported for that key type
° the parameters required to generate a key or key pair of this type.

« hash functions which return a fixed-length string from arbitrary-length input. Hash
functions can be used to identify a document without revealing its contents.

« Access Control Lists (ACLs) which describe the actions that can be performed with
a specific key. This chapter describes the format of an ACL.

- certificates which are used to authorize actions on keys.

9.1. Mechanisms

A mechanism is a combination of padding, algorithm, mode, and so forth, which, together
with a key, transforms a plaintext into a ciphertext (or a ciphertext into a plaintext).

‘Raw’
plaintext

o
—> (\—P
Plaintext Padding Algorithm Ciphertext
<« «— [
M T A
Key

Each mechanism has a single ciphertext format represented by M_CipherText, a tagged
union type for which the tag is an M_Mech. A mechanism may accept or generate various dif-
ferent plain text formats. The details of the padding and other processing may vary depend
ing on the plain text format supplied or requested.

Mechanisms with similar forms share the same member name in this union. For example, the

nCore v13.6.14 Developer Tutorial 65/237

Chapter 9. Key structures

64-bit block ciphers all use Mech_Generic64 .

union M_Mech__Cipher {
M_Mech_SHA384Hash_Cipher sha384hash;
M_Mech_DSA_Cipher dsa;
M_Mech_SHA256Hash_Cipher sha256hash;
M_Mech_DLIESe3DEShSHA1_Cipher dliese3deshshal;
M_Mech_TigerHash_Cipher tigerhash;
M_Mech_DHKeyExchange_Cipher dhkeyexchange;
M_Mech_HAS160Hash_Cipher has160hash;
M_Mech_ECDHKeyExchange_Cipher ecdhkeyexchange;
M_Mech_RSApPKCS1_Cipher rsappkesi;
M_Mech_Imech_Cipher imech;
M_Mech_ArcFourpNONE_Cipher arcfourpnone;
M_Mech_Generic256MAC_Cipher generic256mac;
M_Mech_ElGamal_Cipher elgamal;
M_Mech_RSApPKCS1pPKCS11_Cipher rsappkcsippkesi;
M_Mech_BlobCrypt_Cipher blobcrypt;
M_Mech_Generic128_Cipher generic128;
M_Mech_Generic192MAC_Cipher generic192mac;
M_Mech_ECDSA_Cipher ecdsa;
M_Mech_Generic64_Cipher generic64;
M_Mech_SHA512Hash_Cipher sha512hash;
M_Mech_SHA224Hash_Cipher sha224hash;
M_Mech_Generic256_Cipher generic256;
M_Mech_Generic192_Cipher generic192;
M_Mech_KCDSAHAS160_Cipher kcdsahas160;
M_Mech_Generic64MAC_Cipher generic64mac;
M_Mech_GenericGCM128_Cipher genericgem128;
M_Mech_RIPEMD16@0Hash_Cipher ripemd16@hash;
M_Mech_Generic128MAC_Cipher generic128mac;
M_Mech_MD5Hash_Cipher md5hash;
M_Mech_SHA1THash_Cipher shalhash;

i

If you require the enum or #define value for a mechanism, refer to the nCore APl documen-
tation. See nShield Security World: nCore v13.6.14 Developer Tutorial for the APl documen-
tation locations.

9.1.1. Mech_Any

Instead of explicitly specifying a mechanism, you can let the module select the mechanism
by specifying Mech_Any. The nShield module selects the mechanism as follows:

« for decryption or signature verification, the module uses the mechanism that is defined
in the cipher text

« for encryption or signature generation, the module selects an appropriate mechanism
based on the key type and the operation as listed in the following table.

nCore v13.6.14 Developer Tutorial 66/237

Chapter 9. Key structures

Key Type

RSAPublic

RSAPrivate

DHPublic

DSAPrivate

ECDSAPrivate

DES (not available in
FIPS 140 Level 3
operational mode)

DES2
DES3
CAST
CAST256
ArcFour
Rijndael
Blowfish
Twofish

Serpent

Encryption mechanism

Mech_RSApPKCS10AEP, Mech_RSApPKC-
ST0AEPhSHA224, Mech_RSApPKC-
STOAEPhSHA256, Mech_RSApPKCST0AEPhSHA384
or Mech_RSApPKCST0AEPhSHA512 chosen
based on size of key.

Mech_E1Gamal

Mech_DESmCBC1i64pPKCS5

Mech_DES2mCBC1i64pPKCS5
Mech_DES3mCBC1i64pPKCS5
Mech_CASTmCBC1i64pPKCS5
Mech_CAST256mCBCi128pPKCS5
Mech_ArcFourpNone
Mech_RijndaelmCBCi128pPKCS5
Mech_BlowfishmCBCi64pPKCS5
Mech_TwofishmCBCi128pPKCS5

Mech_SerpentmCBCi128pPKCS5

9.2. Key Types

Signing mechanism

Mech_RSAhSHATpPSS, Mech_RSAhSHA224pPSS,
Mech_RSAhSHA256pPSS, Mech_RSAhSHA384pPSS
or Mech_RSAhSHA512pPSS chosen based on
size of key.

Mech_DSA, Mech_DSAhSHA224, Mech_D-
SAhSHA256, Mech_DSAhSHA384, or Mech_D-
SAhSHA512 chosen based on size of key.

Mech_ECDSA, Mech_ECDSAhSHA224, Mech_ECD-
SAhSHA256, Mech_ECDSAhSHA384, or Mech_ECD
SAhSHA512 chosen based on size of key.

Mech_DESmCBCMACi0pPKCS5

Mech_DES2mCBCMACi@pPKCS5
Mech_DES3mCBCMACi0pPKCS5
Mech_CASTmCBCMACi@pPKCS5

Mech_CAST256mCBCMACi@pPKCS5

Mech_RijndaelmCBCMACi0pPKCS5
Mech_BlowfishmCBCMACi@pPKCS5
Mech_TwofishmCBCMACi0pPKCS5

Mech_SerpentmCBCMACi0pPKCS5

The following sections list the keys types for the different algorithms and mechanisms that

are supported by the module. The table below shows which mechanisms are supported by

which key types.

nCore v13.6.14 Developer Tutorial

67/237

Chapter 9. Key structures

Key type
ArcFour

Blowfish

CBC MAC
ECB

CAST

CBC

CBC MAC
ECB
Cast256
CBC

CBC MAC
ECB

DES

CBC

CBC MAC
ECB

DES2

CBC

CBC MAC
ECB
Triple DES
CBC

CBC MAC
ECB

SEED

CBC

CBC MAC

ECB

Block size

N/A

64

64

128

64

64

64

128

Encrypt

Y

Decrypt

Y

Sign

Verify

nCore v13.6.14 Developer Tutorial

Chapter 9. Key structures

Key type Block size Encrypt Decrypt Sign Verify
Serpent 128

CBC Y Y - _
CBC MAC - - Y Y
ECB Y Y - -
Rijndael 128

CBC Y Y - -
CBC MAC - - Y Y
ECB Y Y - _
GCM Y Y - -
Twofish 128

CBC Y Y - -
CBC MAC - - Y Y
ECB Y Y - -
Diffie-Hellman N/A

Key Exchange - Y - -
ElGamal Y Y - -
DSA N/A - - Y Y
ECDSA N/A - - Y Y
ECDH N/A

Key Exchange - Y - -
KCDSA - - Y Y
RSA N/A - - Y Y
HMAC N/A

HMACMD?2 - - Y Y
HMACMD5 - - Y Y
HMACSHA-1 - - Y Y
HMACRIPEMD160 - - Y Y
HMACSHA224 - - Y Y
HMACSHA256 - - Y Y

nCore v13.6.14 Developer Tutorial 69/237

Chapter 9. Key structures

Key type Block size Encrypt Decrypt Sign Verify
HMACSHA384 - - Y Y
HMACSHA512 - - Y Y
HMACSHA3b224 - - Y Y
HMACSHA3b256 - - Y Y
HMACSHA3b384 - - Y Y
HMACSHA3b512 - - Y Y
HMACTiger - - Y Y
Random N/A

Template N/A - - - _
Wrapped N/A - - - _

For each key type, the tables below list:

- the data that is stored in the key (separately for public and private halves of key pairs)

- the parameters required to generate the key (or key pair):

typedef struct {

M_KeyType type;

union M_KeyType__Data data;
} M_PlainText ;

typedef struct {

M_KeyType type;

union M_KeyType__GenParams params;
} M_KeyGenParams;

Key types with similar forms for key data or generation parameters share the same member
name in these unions. For example, keys whose data is a single block of random bytes
(CAST, ArcFour, Random, HMACMD2, HMACMDS5, HMACRIPEMD160, and Wrapped) all use
the Random members of these unions.

9.2.1. Random

9.2.1.1. Key data

typedef struct {
M_ByteBlock k data
} M_KeyType_Random_Data;

nCore v13.6.14 Developer Tutorial 70/237

Chapter 9. Key structures

9.2.1.2. Key generation parameters

typedef struct {
M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

9.2.1.3. Notes

The FIPS 46-3 validation requires DES keys to have valid parity bits for which bit O of each
byte is set to give odd parity. If you attempt to import a Triple DES key that does not have
the parity set correctly, the module returns Status_InvalidData.

9.2.2. ArcFour

This key type is a symmetric algorithm that is compatible with Ron Rivest's RC4 cipher. It
uses the key data M_KeyType_Random_Data.

9.2.2.1. Key data

struct M_Mech_ArcFourpNONE_Cipher {
M_ByteBlock cipher; 192-bit key
Bs

9.2.2.2. Key generation parameters

typedef struct {
M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

9.2.2.3. Mechanisms

+ Mech_ArcFourpNONE
The cipher text is a byte block. This mechanism has no IV.

9.2.3. Blowfish

Blowfish uses the key data M_KeyType_Random_Data. The key data length must be at least
one byte. The maximum permitted key data length is 56 bytes. Recommended key lengths
are 16, 24, 32 and 56 bytes.

nCore v13.6.14 Developer Tutorial 71/237

Chapter 9. Key structures

9.2.3.1. Key data

typedef struct {
M_ByteBlock k; data
} M_KeyType_Random_Data;

9.2.3.2. Key generation parameters

typedef struct {
M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

9.2.3.3. Mechanisms

+ Mech_BlowfishmECBpNONE: ECB
« Mech_BlowfishmCBCpNONE: CBC
« Mech_BlowfishmCBCi64PKCS5: CBC

« Mech_BlowfishmCBCMACi64PKCS5: CBC MAC
This mechanism is deprecated and may be withdrawn in future firmware.

« Mech_BlowfishmECBpPKCS5: ECB
« Mech_BlowfishmCBCMACi@PKCS5: CBC MAC

9.2.4. CAST

This key type uses the key data M_KeyType_Random_Data, with a key length from 5 to 16
bytes as specified in RFC2144.,

9.2.4.1. Mechanisms

+ Mech_CASTmCBC1i64pPKCS5: CBC

+ Mech_CASTmCBCMAC1i64pPKCS5
This mechanism is deprecated and may be withdrawn in future firmware.

« Mech_CASTmECBpPKCS5: ECB
+ Mech_CASTmCBCMACi0@pPKCS5: CBC MAC

The cipher text and initialization vectors are the same as for the equivalent DES mecha-
nisms.

9.2.5. CAST256

nCore v13.6.14 Developer Tutorial 72/237

Chapter 9. Key structures

This uses the same key generation parameters and data as KeyType_Random, and allows key
lengths of 16, 20, 24, 28 or 32 bytes as specified in RFC2612.

9.2.5.1. Mechanisms

» Mech_CAST256mCBC1128pPKCS5: CBC with PKCS #5 padding
Mech_CAST256mECBpPKCS5: ECB with PKCS #5 padding
Mech_CAST256mCBCpNONE: CBC with no padding
Mech_CAST256mECBpNONE: ECB with no padding

Mech_CAST256mCBCMAC1128pPKCS5
This mechanism is deprecated and may be withdrawn in future versions.

Mech_CAST256mCBCMAC10pPKCS5: CBC MAC

9.2.6. DES

The implementation of DES that is used in the nShield module has been validated by NIST
as conforming to FIPS 46-2 and FIPS 81, certificate number 24.

9.2.6.1. Key data

typedef struct {
M_DESKey k; 64 bit key
} M_KeyType_DES_Data;

typedef union {
unsigned char bytes[8];
M_Word words[2];

} M_DESKey;

56 bits plus 8 parity bits

9.2.6.2. Key generation parameters

typedef struct {
M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

9.2.6.3. Notes

The FIPS 46-2 validation requires DES keys to have valid parity bits for which bit O of each

nCore v13.6.14 Developer Tutorial 73/237

Chapter 9. Key structures

byte is set to give odd parity. If you attempt to import a DES key that does not have the par
ity set correctly, the module will return Status_InvalidData.

9.2.6.4. Mechanisms

+ Mech_DESmCBCpNONE: CBC no padding
« Mech_DESmCBCi64pPK(CS5: CBC with PKCS5 padding

« Mech_DESmCBCMACi64pPKCS5
This mechanism is deprecated and may be withdrawn in future versions.

+ Mech_DESmECBpNONE: ECB no padding

« Mech_DESmECBpPKCS5: ECB with PKCS5 padding

+ Mech_DESmCBCMACi0pPKCS5: CBC MAC with PKCS5 padding
« Mech_DESmCBCMACi@pNONE: CBC MAC with no padding

PKCS5 padding is 1to 8 bytes, valued 1to 8

9.2.6.5.CBC

9.2.6.5.1. Cipher text

typedef struct {
M_ByteBlock cipher;
} M_Mech_Generic64_Cipher;

9.26.5.2. IV

typedef struct {
M_Block64 iv;
} M_Mech_Generic64_IV;

9.2.6.6. CBC MAC

9.2.6.6.1. Cipher text

typedef struct {
M_Block64 mac;
} M_Mech_Generic64MAC_Cipher;

The DESmCBCMAC10pPKCS5 mechanism uses an IV of all zero bytes. This replaces the DESmCBC-
MAC164pPKCS5 mechanism, which required the IV to be passed in. This mechanism is depre-

nCore v13.6.14 Developer Tutorial 74/237

Chapter 9. Key structures

cated: if an attacker is able to manipulate this data he is able to forge a message. For this
reason, if you use -i64 mechanisms you must ensure the IV data is fixed.

9.2.7. DES2

The implementation of DES used in the nShield module has been validated by NIST as con-
forming to FIPS 46-3 certificate numbers 24 and 173.

9.2.7.1. Key data

typedef struct {
M_DES2Key k; 128 bit key
} M_KeyType_DES2_Data;

typedef union {
unsigned char bytes[16];
M_Word words[4];

} M_DESKey;

112 bit plus 16 parity bits.

9.2.7.2. Key generation parameters

There are no key generation parameters.

9.2.7.3. Notes

The FIPS 46-2 validation requires DES2 keys to have valid parity bits for which bit O of each
byte is set to give odd parity. If you attempt to import a DES2 key that does not have the
parity set correctly, the module will return Status_InvalidData.

9.2.7.4. Mechanisms

+ Mech_DES2mCBCpNONE: CBC no padding
« Mech_DES2mCBC1i64pPKCS5: CBC with PKCS5 padding

« Mech_DES2mCBCMAC1i64pPKCS5
This mechanism is deprecated and may be withdrawn in future versions.

Mech_DES2mECBpNONE: ECB no padding
Mech_DES2mECBpPKCS5: ECB with PKCS5 padding

nCore v13.6.14 Developer Tutorial 75/237

Chapter 9. Key structures

+ Mech_DES2mCBCMACi@pPKCS5: CBCMAC with PKCS5 padding
« Mech_DES2mCBCMACi@pNONE: CBC MAC with no padding

9.2.7.5.CBC

9.2.7.5.1. Cipher text

typedef struct {
M_ByteBlock cipher;
} M_Mech_Generic64_Cipher;

9.2752.IV

typedef struct {
M_Block64 iv;
} M_Mech_Generic64_IV;

9.2.8. Triple DES

The implementation of DES used in the module has been validated by NIST as conforming
to FIPS 46-3 certificate numbers 24 and 173.

9.2.8.1. Key data

typedef struct {
M_DES3Key k 192 bit key
} M_KeyType_DES3_Data;

typedef union {
unsigned char bytes[24];
M_Word words[6];

} M_DES3Key;

The key is 3 x(56+8) bits. nShield performs Triple DES as encrypt, decrypt, and encrypt
(using separate keys for each stage).

9.2.8.2. Key generation parameters

There are no key generation parameters.

nCore v13.6.14 Developer Tutorial 76/237

Chapter 9. Key structures

9.2.8.3. Mechanisms

« Mech_DES3mCBCi64pPKCS5: CBC with PKCS #5 padding

« Mech_DES3mCBCMACi64pPKCS5
This mechanism is deprecated and may be withdrawn in future versions.

+ Mech_DES3mCBCpNONE: CBC with no padding

« Mech_DES3mECBpNONE: ECB with no padding

« Mech_DES3mECBpPKCS5: ECB with PKCS #5 padding

+ Mech_DES3mCBCMACi0pPKCS5: CBCMAC with PKCS #5 padding
+ Mech_DES3mCBCMACi@pNONE: CBC MAC with no padding

The cipher text and initialization vectors are the same as for the equivalent DES mecha-
nisms.

nShield uses outer CBC.

9.2.9. Rijndael

Rijndael is now FIPS approved as the AES. The implementation has been validated by NIST
as conforming to FIPS 197, certificate number 15.

This key type uses the key data M_KeyType_Random_Data.

9.2.9.1. Mechanisms

« Mech_RijndaelmCBCpNONE: CBC
+ Mech_RijndaelmCBCi128pPKCS5: CBC with PKCS5 padding

« Mech_RijndaelmCBCMACi128pPKCS5
This mechanism is deprecated and may be withdrawn in future versions.

« Mech_RijndaelmECBpNONE: ECB

« Mech_RijndaelmECBpPK(CS5: ECB with PKCS5 padding

« Mech_RijndaelmCBCMACi128pPKCS5: CBC MAC with PKCS5 padding
+ Mech_RijndaelmCBCMACi128pNone: CBC MAC with no padding

+ Mech_RijndaelmGCM: GCM

These mechanisms use the Generic128 cipher text and initialization vectors, except Mech_Ri
jndaelmGCM which uses GenericGCM128.

9.2.9.2. Key generation

nCore v13.6.14 Developer Tutorial 77/237

Chapter 9. Key structures

Rijndael keys use the same key generation parameters and data format as the Random key
type. They must be either 128, 192, or 256 bits (that is, 16, 24 or 32 bytes long).

9.2.10. SEED

The SEED algorithm was developed by KISA (Korea Information Security Agency) and a
group of experts. SEED is a Korean national industrial association standard (TTA KO-
12.0004, 1999) and was set as a Korean Information Communication Standard (KICS) in the
year 2000. This standard is promoted by the Korean Ministry of Information and Communi-
cation.

SEED has been optimized for the security systems most widely used in Korea, in particular
the S-boxes and configurations associated with current computing technology.

If you wish to use the SEED algorithm, you must order and enable it as part of the nShield
KISAAlgorithms feature.

9.2.10.1. Key data

typedef struct {
M_ByteBlock k; fixed-length 128-bit key
} M_KeyType_SEED;

9.2.10.2. Key generation parameters

typedef struct {
M_Word lenbytes; must be 16 bytes
} M_KeyType_SEED_GenParams;

9.2.10.3. Mechanisms

+ Mech_SEEDmECBpNONE: ECB with no padding
Mech_SEEDmECBpPKCS5: ECB with PKCS #5 padding
Mech_SEEDmCBCpNONE: CBC with no padding
Mech_SEEDmCBC1128pPKCS5: CBC with PKCS #5 padding

« Mech_SEEDmCBCMACi128pPKCS5
This mechanism is deprecated and may be withdrawn in future versions.

Mech_SEEDmCBCMACi0pPKCS5: CBCMAC

nCore v13.6.14 Developer Tutorial 78/237

Chapter 9. Key structures

9.2.11. Serpent

Serpent uses the key data M_KeyType_Random_Data. The maximum permitted key data length
is 32 bytes. Recommended key lengths are 16, 24 and 32 bytes.

A change was made to the interpretation of the Serpent algorithm specification regarding
byte ordering, which occurred between versions 2.12.x and earlier, and 2.18.x and later, of
module firmware. Thus, later versions of firmware are incompatible with earlier versions
when using Serpent mechanisms.

9.2.11.1. Key data

typedef struct {
M_ByteBlock k; data
} M_KeyType_Random_Data;

9.2.11.2. Key generation parameters

typedef struct {
M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

9.2.11.3. Mechanisms

« Mech_SerpentmECBpNONE: ECB with no padding
« Mech_SerpentmCBCpNONE: CBC with no padding
« Mech_SerpentmCBCi128PKCS5: CBC with PKCS #5 padding

« Mech_SerpentmCBCMAC1i128PKCS5
This mechanism is deprecated and may be withdrawn in future versions.

+ Mech_SerpentmECBpPKCS5: ECB with PKCS #5 padding
« Mech_SerpentmCBCMACi0PKCS5: CBCMAC

9.2.12. Twofish

Twofish uses the key data M_KeyType_Random_Data. The maximum permitted key data length
is 32 bytes. Recommended key lengths are 16, 24 and 32 bytes.

9.2.12.1. Key data

typedef struct {

nCore v13.6.14 Developer Tutorial 79/237

Chapter 9. Key structures

M_ByteBlock k data
} M_KeyType_Random_Data;

9.2.12.2. Key generation parameters

typedef struct {
M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

9.2.12.3. Mechanisms

« Mech_TwofishmECBpNONE: ECB with no padding
« Mech_TwofishmCBCpNONE: CBC with no padding
« Mech_TwofishmCBCi128PKCS5: CBC with PKCS #5 padding

« Mech_TwofishmCBCMACi128PKCS5
This mechanism is deprecated and may be withdrawn in future versions.

« Mech_TwofishmECBpPKCS5: ECB with PKCS #5 padding
« Mech_TwofishmCBCMACi@PKCS5: CBCMAC

9.2.13. Diffie-Hellman and ElGamal

Diffie-Hellman key exchange shares a common key type with EIGamal encryption and
decryption.

9.2.13.1. Private key

typedef struct {
M_DiscretelLogGroup dlg;
M_Bignum x;

} M_KeyType_DHPrivate_Data

M_DiscretelLogGroup is a discrete log group that may be shared between users.

9.2.13.2. Public key

typedef struct {
M_DiscretelLogGroup dlg;
M_Bignum gx;

} M_KeyType_DHPublic_Data

M_DiscretelogGroup is a discrete log group that may be shared between users.

nCore v13.6.14 Developer Tutorial 80/237

Chapter 9. Key structures

9.2.13.3. Key generation parameters

typedef struct {
M_Word flags;
M_Word plength;
M_Word xlength;
M_DiscretelLogGroup *dlg;
} M_KeyType_DHPrivate_GenParams;

+ The following flags are defined:

° KeyType_DHPrivate_GenParams_flags_dlg_present (If this is set, the specified Dis-
cretelogGroup will be used.)

° KeyType_DHPrivate_GenParams_flags_SafePrimes (If this is set, the module will gen
erate the key, so that the key validation code can verify that the key has known

good sub-group.)
> KeyType_DHPrivate_GenParams_flags__allflags

- plength is key size in bits up to a maximum of 4096.

The present implementation uses the DSA/FIPS algorithm for generating G and P para-
meters, such that P must be a multiple of 64 bits in length and at least 512 bits long.

- xlength is the length in bits of private key X . DSA specifies 160 bits.

There is no upper limit on the length of P. (P - 1) will have one prime factor of at least
160 bits, which is required in order to make Pohlig-Hellman discrete logs unworkable.
The length of the private exponent X can be specified separately.

« M_DiscretelogGroup is a discrete log group that may be shared between users.

typedef struct {

M_Bignum p prime

M_Bignum g generator mod P
} M_DiscretelogGroup;

DSA considers an exponent of 160 bits to be sufficient for security. An attempt to
make the length of X greater than the length of P will have no effect.

9.2.13.4. Mechanisms

+ Mech_DHKeyExchange

« Mech_ElGamal

+ Mech_DLIESe3DEShSHA1
« Mech_DLIESeAEShSHA1

nCore v13.6.14 Developer Tutorial 81/237

Chapter 9. Key structures

9.2.13.4.1. Diffie-Hellman

There is only one cryptographic operation, Decrypt, which is supported with the mechanism
DHKeyExchange and the key type DHPrivate. A Diffie-Hellman key exchange goes as follows:

1. Alice generates a DH key pair and exports her public key.

2. Bob generates a DH key pair by using Alice’s G and P values and by setting the d1g_pre-
sent bit in the flags to GenerateKeyPair. He then exports his public key.

3. Alice takes Bob's public key and passes it as a ciphertext to Decrypt using her private
key. This returns, in bignum format:

(G*)*B = G(X 4 X) mod P

4. Bob takes Alice’s public key and passes it to Decrypt using his private key. This returns,
in bignum format:

(G*B)* = G(XpX4) = G(X 4 Xp)mod P
This result is the same as that which Alice derived.

5. The session key can then be derived from this multi-precision number.

9.2.13.4.2. ElGamal

At present, EIGamal encryption only takes nShield bignums as the plain text input and the
output format.

9.2.13.4.3. DLIES

The DLIESe3DEShSHAT and DLIESeAEShSHAT mechanisms implement the DLIES encryption
and decryption primitive as described in IEEE P1363A (Draft 11, December 16 2002), with
the following options:

« DLSVDP-DH as the secret value derivation primitive
- KDF2 key derivation function, using SHA-1 as the underlying hash function

« Triple-DES-CBC-IVO with 24-byte keys (Mech_DLIESe3DEShSHA1) or AES256-CBC-1VO
with 16-byte keys (Mech_DLIESeAEShSHAT) as the symmetric encryption scheme

MAC1 based on SHA-1 as the message authentication scheme, with 160-bit output
length and 160-bit key length

The Asymmetric Encryption Scheme (DHAES) mode is not used.

9.2.13.5. Cipher text

nCore v13.6.14 Developer Tutorial 82/237

Chapter 9. Key structures
9.2.13.5.1. Diffie-Hellman

typedef struct {
M_Bignum gx;
} M_Mech_DHKeyExchange_Cipher;

9.2.13.5.2. EIGamal

typedef struct {
M_Bignum a [gk mod p]
M_Bignum b M * (gxk) mod p
} M_Mech_ElGamal_Cipher;

where k is a random integer 1 < k < (p—1)

ElGamal signature creation and verification are not currently implemented.

9.2.14. DSA

DSA enables users to share Discrete Log parameters, with each user having their own public
and private key. DSA has 'communities’, which are sets of keys that share a common DSAD1is
cretelogGroup but that have different (x, y) pairs. These are represented by the key type
DSAComm, which consists of a DSADiscretelLogGroup set of values together with the initializa-
tion values (seed, h, and counter) from which the DSADiscretelogGroup values were derived
(as specified by the FIPS DSA specification).

A DSAComm key can be generated once, and then the DSADiscretelogGroup from this DSAComm
generation can be used in subsequent DSAPrivate generations.

DSAComm key generation also allows seed values to be checked as follows:

1. When generating a DSAComm key, set the iv_present flag bit, and pass in the seed,
counter, and h values.

2. GenerateKey will follow the FIPS algorithm to generate a p, g, and g set, together with
the associated h and counter values.

3. You can now export the resulting DSAComm key and check that p, q, g, h, and counter are
what you were expecting.

4. GenerateKey will return Status_InvalidData if the given seed cannot be used to pro-
duce a valid p, q, or g value.

The implementation of DSA that is used in modules has been validated by NIST as conform
ing to FIPS 186, certificate number 11.

nCore v13.6.14 Developer Tutorial 83/237

Chapter 9. Key structures

9.2.14.1. DSA keys

9.2.14.1.1. DSA common key

typedef struct {
M_DSAInitValues iv;
M_DSADiscretelogGroup dlg;
} M_KeyType_DSAComm_Data;

9.2.14.1.2. DSA private key

typedef struct {
M_DSADiscretelogGroup dlg;
M_Bignum x;

} M_KeyType_DSAPublic_Data;

9.2.14.1.3. DSA public key

typedef struct {
M_DSADiscretelogGroup dlg;
M_Bignum y;

} M_KeyType_DSAPrivate_Data;

M_DSAInitValues:

typedef struct {
M_Hash seed seed
M_Word counter counter
M_Word h h

} M_DSAInitValues;

These are the initialization values, which can be used to check that the discrete logarithm

parameters have been generated correctly.

M_DSADiscretelogGroup:

typedef struct {
M_Bignum p
M_Bignum q
M_Bignum g

} M_DSADiscretelogGroup;

where

+ pisa 512-bit to 1024-bit prime number;
+ qis a 160-bit prime factor of p—1;

nCore v13.6.14 Developer Tutorial

84/237

Chapter 9. Key structures

- gish®™9 whereh < p—Tand h'® "% mod p > 1.
+ This is the discrete logarithm group. These values may be shared between users.

+ A 160-bit number < q.

g‘mod p (a p-bit number).

9.2.14.2. DSA common generation parameters

typedef struct {
M_Word flags;
M_Word lenbits;
M_DSAInitValues *iv;

} M_KeyType_DSAComm_GenParams;

The following flags are defined:

+ KeyType_DSAComm_GenParams_flags_iv_present
+ KeyType_DSAComm_GenParams_flags__allflags

lenbits is the length in bits

M_DSAInitValues:

typedef struct {
M_Hash seed seed
M_Word counter counter
M_Word h h

} M_DSAInitValues;

These are the initialization values, which can be used to check that the discrete logarithm
parameters have been generated correctly.

9.2.14.3. DSA private key generation parameters

typedef struct {
M_Word flags;
M_Word lenbits;
M_DSADiscretelLogGroup *dlg;

} M_KeyType_DSAPrivate_GenParams;

The following flags are defined:

- KeyType_DSAPrivate_GenParams_flags_dlg_present (If this flag is set, GenerateKey will
use the specified DSADiscretelogGroup.)

- KeyType_DSAPrivate_GenParams_flags_Strict (If this flag is set, the generated key is

nCore v13.6.14 Developer Tutorial 85/237

Chapter 9. Key structures

subjected to extra consistency tests at the expense of efficiency. There is normally no
need to set this flag, unless you are supplying p, q, and g values and need to check
them, or unless you require strict compliance with the FIPS 140 Level 3 standard. Set-
ting the Strict flag limits the maximum key size to 1024 bits. Otherwise, there is no
maximum limit on key size.)

+ KeyType_DSAPrivate_GenParams_flags__allflags

M_DSADiscretelogGroup is the discrete logarithm group. These values may be shared
between users.

typedef struct {
M_Bignum p;
M_Bignum q;
M_Bignum g;

} M_DSADiscretelogGroup;

where:

+ pisa 512-bit to 1024-bit prime number;
+ qis a 160-bit prime factor of p—1;

. gish® ™% where h < p—1and h® ™ mod p > 1.

9.2.14.4. Cipher text

typedef struct {
M_Bignum r;
M_Bignum s;

} M_Mech_DSA_Cipher;

risg“mod p mod g

sisk "(H(m)+xr)) mod g

9.2.14.5. Plain text

Because DSA is defined to sign a SHA-1 hash directly, it has no separate raw plain text for-
mat. Instead, the format Hash is used to indicate that the plain text which has been provided
is the SHA-1 hash.

Mech Unhashed plain text Hash used for bytes
type plaintext

Mech_DSA Hash

Mech_DSAhSHA224 Hash28 SHA-224

nCore v13.6.14 Developer Tutorial 86/237

Chapter 9. Key structures

Mech Unhashed plain text Hash used for bytes
type plaintext
Mech_DSAhSHA256 Hash32 SHA-256
Mech_DSAhSHA384 Hash48 SHA-384
Mech_DSAhSHA512 Hash64 SHA-512
Mech_DSAhRIPEMD160 Hash RIPEMD-160

If the plain text format is Bytes, then the mechanism will hash the plain text itself before
signing.

9.2.14.6. Mechanisms

- Mech_DSA
Mech_DSAhSHA224

« Mech_DSAhSHA256

« Mech_DSAhSHA384
Mech_DSAhSHA512

« Mech_DSAhRIPEMD160

9.2.15. Elliptic Curve ECDH and ECDSA

The module supports key exchange, ECDH, and signature mechanisms.

The module supports a wide range of curves, including all the curves listed in FIPS 186-2
and some curves from X9.62. It also allows a user to specify a custom curve.

The implementation of ECDSA over curves recommended for US Government use has been
validated by NIST, as conforming to FIPS 186-2, certificate 2.

When you create a key, you must create it as either an ECDSA key or an ECDH key. How-
ever, both keys use the same underlying structure. This ensures keys are used for the cor-
rect purpose and prevents inadvertent use of a signing key for key exchange, or an
exchange key for signing message.

9.2.15.1. Elliptic Curve keys

9.2.15.1.1. Private keys

nCore v13.6.14 Developer Tutorial 87/237

Chapter 9. Key structures

struct M_KeyType_ECPrivate_Data {
M_E1lipticCurve curve;
M_Bignum d;

g

. curve is the curve used.

- dis aninteger up to the order of the group.

9.2.15.1.2. Public keys

struct M_KeyType_ECPublic_Data {
M_EllipticCurve curve;
M_ECPoint Q;

I

. curve is the curve used.

+ Qis a point on the curve.

9.2.15.2. Key generation parameters

struct M_KeyType_ECPrivate_GenParams {
M_E1lipticCurve curve;

15

. curve is the curve used.

9.2.15.3. Cipher text - ECDH

struct M_Mech_ECDHKeyExchange_Cipher {
M_ECPoint gd;
F

« gd is the public point provided in the public key supplied in the key exchange.

9.2.15.4. Cipher text - ECDSA

struct M_Mech_ECDSA_Cipher {
M_Bignum r;
M_Bignum s;

i

risx,;mod n

nCore v13.6.14 Developer Tutorial

88/237

Chapter 9. Key structures

siss = k(e + dr) mod n.

9.2.15.5. Plain text - ECDH

Mech ECDHKeyExchange can return plaintext as:

« M_ECPoint the canonical form;

- M_Bignum the x coordinate of the point;

« M_Byteblock in uncompressed octet string representation.

9.2.15.6. Plain text - ECDSA

ECDSA can accept plain text as either hash or bytes.

Mech

Mech_ECDSA

Mech_ECDSAhSHA224
Mech_ECDSAhSHA256
Mech_ECDSAhSHA384
Mech_ECDSAhSHA512

Mech_ECDSAhRIPEMD160

9.2.15.7. Mechanisms

« Mech_ECDSA

« Mech_ECDH
Mech_ECDSAhSHA224
Mech_ECDSAhSHA256
Mech_ECDSAhSHA384
Mech_ECDSAhSHA512
Mech_ECDSAhRIPEMD160

Neither Mech_ECDSA nor Mech_ECDH handle normal representations.

9.2.16. KCDSA

Unhashed plain text
type

Hash

Hash28
Hash32
Hash48
Hash64

Hash

Hash used for bytes
plaintext

SHA-224
SHA-256
SHA-384
SHA-512

RIPEMD-160

nCore v13.6.14 Developer Tutorial

89/237

Chapter 9. Key structures

KCDSA is a Korean algorithm that has been standardized by the Korean government as
KCS221. The compliance of nShield’s implementation compliance to this standard has not

been independently verified.

If you wish to use the KCDSA algorithm, you must order and enable it as part of the KISAAT-
gorithms feature. If you are outside Korea, contact for information about obtaining the
appropriate export licence.

KCDSA enables users to share Discrete Log parameters, with each user having their own
public and private key. KCDSA has communities, which are sets of keys that share a com-
mon KCDSADiscretelogGroup but that have different (x, y) pairs. These are represented by
the key type KCDSAComm, which consists of a KCDSADiscretelLogGroup set of values together
with the initialization values (seed and counter) from which the KCDSADiscretelLogGroup val-
ues were derived (as specified by the KCDSA specification).

A KCDSAComm key can be generated once, and then the KCDSADiscretelLogGroup from this KCD
SAComm generation can be used in subsequent KCDSAPrivate generations.

KCDSAComm key generation also allows seed values to be checked as follows:

1. When generating a KCDSAComm key, set the iv_present flag bit, and pass in the seed and
counter values.

2. GenerateKey will follow the KCDSA algorithm to generate a p, g, and g set.

3. You can now export the resulting KCDSAComm key and check that p, g, and g are what you
were expecting.

4. GenerateKey will return Status_InvalidData if the given seed and counter cannot be
used to produce a valid p, g, or g value.

9.2.16.1. KCDSA keys

9.2.16.1.1. KCDSA common key

typedef struct {
M_KCDSAInitValues iv;
M_KCDSADiscretelLogGroup dlg;
} M_KeyType_KCDSAComm_Data;

M_KCDSAInitValues

typedef struct {
M_ByteBlock seed; seed
M_Word counter counter

} M_KCDSAInitValues;

nCore v13.6.14 Developer Tutorial 90/237

Chapter 9. Key structures

These are the initialization values, which can be used to check that the discrete logarithm
parameters have been generated correctly.

M_KCDSADiscretelLogGroup is the discrete logarithm group. These values may be shared
between users.

typedef struct {
M_Bignum p;
M_Bignum q;
M_Bignum g;
} M_KCDSADiscretelogGroup;

where:

+ pisa1024-bit to 2048-bit prime number which is a multiple of 256 bits long;
+ @ is always 160 bits long;

. gish® "% whereh < p—Tand h‘®"® mod p > 1.

9.2.16.1.2. KCDSA private key

typedef struct {
M_KCDSADiscretelLogGroup dlg;
M_Bignum y;
M_Bignum x;

} M_KeyType_KCDSAPublic_Data;

M_KCDSADiscretelLogGroup is the discrete logarithm group. These values may be shared
between users.

typedef struct {
M_Bignum p;
M_Bignum q;
M_Bignum g;
} M_KCDSADiscretelogGroup;

where:

+ pisa1024-bit to 2048-bit prime number which is a multiple of 256 bits long;
+ @ is always 160 bits long;

. gish® ™% whereh < p—Tand h‘®"® mod p > 1.

« X is an arbitrary number where 0 < x < q.

. yis g ™ 9 mod p (a number less than p).

9.2.16.1.3. KCDSA public key

nCore v13.6.14 Developer Tutorial 91/237

Chapter 9. Key structures

typedef struct {
M_KCDSADiscretelLogGroup dlg;
M_Bignum vy;

} M_KeyType_KCDSAPrivate_Data;

M_KCDSAD1iscretelogGroup is the discrete logarithm group. These values may be shared

between users.

typedef struct {
M_Bignum p;
M_Bignum q;
M_Bignum g;
} M_KCDSADiscretelLogGroup;

where:

+ pisa1024-bit to 2048-bit prime number which is a multiple of 256 bits long;
+ qis always 160 bits long; ;
- gish®™9 whereh < p—Tand h'® "% mod p > 1.

(1/x mod q)

- yisg mod p (a number less than p).

9.2.16.2. Key generation parameters

9.2.16.2.1. KCDSA common generation parameters

typedef struct {
M_Word flags;
M_Word plen;
M_Word qlen;
M_KCDSAInitValues *iv;
} M_KeyType_KCDSAComm_GenParams;

+ The following flags are defined:
> KeyType_KCDSAComm_GenParams_flags_iv_present
° KeyType_KCDSAComm_GenParams_flags__allflags
« plenis the length of p in bits, a multiple of 256 where 1024 < plen < 2048.

« glenis the length of q in bits, a multiple of 32 where 160 < gqlen <256. This value must

currently be 160.

M_KCDSAInitValues

typedef struct {
M_ByteBlock seed; seed
M_Word counter counter

} M_KCDSAInitValues;

nCore v13.6.14 Developer Tutorial

92/237

Chapter 9. Key structures

These are the initialization values, which can be used to check that the discrete logarithm
parameters have been generated correctly.

KCDSA private key generation parameters

typedef struct {
M_Word flags;
M_Word plen;
M_Word glen;
M_KCDSADiscretelLogGroup *dlg;
} M_KeyType_KCDSAPrivate_GenParams;

« The following flags are defined:

° KeyType_KCDSAPrivate_GenParams_flags_dlg_present (If this flag is set, Gener-
ateKey will use the specified KCDSADiscretelogGroup.)

> KeyType_KCDSAPrivate_GenParams_flags__allflags

plen is the length of p in bits.

glen is the length of q in bits.

« M_KCDSADiscretelLogGroup is the discrete logarithm group. These values may be shared

between users.

typedef struct {
M_Bignum p;
M_Bignum q;
M_Bignum g;
} M_KCDSADiscretelogGroup;

where:

+ pisa1024-bit to 2048-bit prime number which is a multiple of 256 bits long;
+ qis always 160 bits long; ;

. gish® "% whereh < p—Tand h'‘®"® mod p > 1.

9.2.16.3. Cipher text

typedef struct {
M_ByteBlock r;
M_Bignum s;

} M_Mech_KCDSA_Cipher;

. rish(g‘mod p).
- sisx(k - (ré@h (z||m))) mod q

The symbol @ represents a bit-wise XOR operation. The symbol || represents concatenation

nCore v13.6.14 Developer Tutorial 93/237

Chapter 9. Key structures

of Byteblocks

9.2.16.4. Plain text

See Key Types for a list of plain text formats.

KCDSA hashes the message mas h(z||m), where z is derived from the public key. For short

messages, m may be supplied directly as PlainTextType_Bytes. For longer messages, the

hash h(z|

9.2.16.5. Mechanisms

+ Mech_KCDSAHAS160
+ Mech_KCDSASHA1

« Mech_KCDSARIPEMD160

« Mech_KCDSASHA224
« Mech_KCDSASHA256

9.2.17. RSA

9.2.17.1. Public key

typedef struct {
M_Bignum e Exponent
M_Bignum n Modulus
} M_KeyType_RSAPublic_Data;

m) may be computed externally and supplied as PlainTextType_Hash.

RSA public keys contain exponent and modulus only. The exponent is usually simple, reduc-

ing the complexity of the modular exponentiation. RSA keys generated by an nShield mod-

ule have the public exponent 0x10001 by default.

9.2.17.2. Private key

typedef struct {
M_Bignum p
M_Bignum q
M_Bignum dmp1
M_Bignum dmq1
M_Bignum iqmp
M_Bignum e
} M_KeyType_RSAPrivate_Data;

nCore v13.6.14 Developer Tutorial

94/237

Chapter 9. Key structures

« dmp1isD MODp -
« dmg1is D MODq -1
- iqmp is Q" 'MODs

RSA private keys, for which the exponent is usually large, contain additional information
that enables the modular exponentiation to be optimized by using the Chinese Remainder
Theorem.

9.2.17.3. Generation parameters

Generation parameters
typedef struct {
M_Word flags;
M_Word lenbits;
M_Bignum *given_e;
M_Word *nchecks;
} M_KeyType_RSAPrivate_GenParams;

 The following flags are defined:

> KeyType_RSAPrivate_GenParams_flags_given_e_present

If this flag is set, the user can specify which public exponent is to be used. If this
flag is not set, the public exponent will be set to 0x10001 or, for very short keys,
0x11.

> KeyType_RSAPrivate_GenParams_flags_nchecks_present

If this flag is set, the user can specify the number of Rabin-Miller checks that are

to be done on the primes. The default for this number varies with key size to give a
2—100

probability of error.
> KeyType_RSAPrivate_GenParams_flags_UseStrongPrimes

Setting this flag requests key generation in accordance with ANSI X9.31 require-
ments. Specifically:

® the key length must be at least 1024 bits, and a multiple of 256 bits

® primes p and q are 'strong' - that is p+1, p-1, g+1 and q-1 each have at least one
prime factor >2'®°

® primes p and q each pass 8 iterations of the Rabin-Miller test followed by the
Lucas test

® pand q differ somewhere in their most significant 100 bits.

° KeyType_RSAPrivate_GenParams_flags__allflags

nCore v13.6.14 Developer Tutorial 95/237

Chapter 9. Key structures

« *given_e specifies the public exponent to be used. This must be an odd value greater
than 1and less than half the requested key length.

« *nchecks specifies the number of Rabin-Miller checks to be performed.

9.2.17.4. Mechanisms
For RSAPublic and RSAPrivate keys, the following mechanisms are provided:

« Mech_RSApPK(CS1= (see RSA mechanisms note 1)

« Mech_RSAhSHATpPK(CS1= (see RSA mechanisms note 2)
« Mech_RSAhRIPEMD16@pPK(CS1= (see RSA mechanisms note 2)
« Mech_RSApPKCS10AEP= (see RSA mechanisms note 3)
« Mech_RSApPKCS10AEPhSHA224

+ Mech_RSApPKCS10AEPhSHA256

« Mech_RSApPKCST0AEPhSHA384

« Mech_RSApPKCS10AEPhSHA512

» Mech_RSAhSHA1pPSS

» Mech_RSAhRIPEMD16@pPSS

« Mech_RSAhSHA224pPSS

« Mech_RSAhSHA256pPSS

« Mech_RSAhSHA384pPSS

« Mech_RSAhSHA512pPSS

9.2.17.4.1. RSA mechanisms note 1

This mechanism has the following behavior:

« Encrypt
° accepts plain text of the type Bignum or Bytes
° for plaintext type Bytes pads and encrypts the message according to PKCS #1
° for plaintext type Bignum encrypts the input directly
° returns a cipher text of the type M_Mech_RSApPKCS1_Cipher
« Decrypt
° accepts cipher text of the appropriate type M_Mech_RSApPKCS1_Cipher
° decrypts the message and strips the padding
° returns plain text in format Bytes

- Sign

nCore v13.6.14 Developer Tutorial 96/237

Chapter 9. Key structures

° accepts plain text of the type Bignum or Bytes
° for plaintext type Bytes pads and encrypts the message according to PKCS #1
° for plaintext type Bignum signs the input directly
° returns a cipher text of the type M_Mech_RSApPKCS1_Cipher
- Verify
° accepts plain text of the type Bignum or Bytes

° accepts cipher text of the type M_Mech_RSApPKCS1_Cipher, which is decrypted and
compared to the appropriate hash of the plain text.

This mechanism does not hash the message before signing it.

You should use the Hash command in order to produce a hash to pass to the Sign or Verify
command. For PKCS #1 compatible signatures, the ObjectID that identifies the hash algo-
rithm should be placed before the hash value itself to form a plain text of the type Bytes.
Alternatively, you can use RSAhMD5pPKCST and similar mechanisms that hash the plaintext
first.

Although the RSApPKCST mechanism will accept a hash plain text for signature or verifica-
tion, this operation will not result in a valid PKCS #1 signature.

9.2.17.4.2. RSA mechanisms note 2
These mechanisms will Sign and Verify only. They have the following behavior:

+ Sign accepts plain text of the type Bignum, Bytes or appropriate hash.
° for Bignum no padding is performed

° for Bytes, Sign hashes this plain text with the selected hash function, adds the cor
rect ObjectID, pads the result using PKCS #1 padding.

° the hash must be the correct size for the hash mechanism specified: adds the cor-
rect ObjectID, pads the hash using PKCS #1 padding, the resulting padded string is
then encrypted.

- Verify accepts plain text of type Bytes and cipher text of the type M_Mech_RSApPKCS1_-
Cipher, which is decrypted, has its padding stripped, and is then compared to the plain
text.

You must make sure that the message fits into a single command block. If the message
is too large to fit into a single block, the server will use channel commands to pass the
command, which will fail because channel commands do not support RSA. If you are
not certain that the data will fit into a single command block, use separate Hash and
Sign commands.

nCore v13.6.14 Developer Tutorial 97/237

Chapter 9. Key structures

9.2.17.4.3. RSA mechanisms note 3

This mechanism performs encryption and decryption with OAEP padding. It implements the
RSAES-OAEP-ENCRYPT and RSAES-0AEP-DECRYPT primitives as given in PKCS #1v2.0, using
SHA-1 as the Hash option and MGF1-with-SHA1 as the MGF function.

This is similar in concept to, but in practice totally incompatible with, the OAEP as used in
SET.

The input to the Encrypt function must be a Bytes type plain text with a length from 0 to
(modulus length in bytes minus 42) bytes inclusive.

Thus, a 512-bit modulus (of 64 bytes) will be able to encode up to 22 bytes of information.

This quantity is insufficient to make a direct blob. You must use at least a 528-bit modulus
to make a direct blob.

Unlike the SET OAEP mechanism, PKCS #1 OAEP preserves the length of the plain text
block.

RSAES-OAEP defines an encoding parameters string, p. This string is a byte block that is
used as extra padding. In order to pass encoding parameters to the Encrypt command, set
the given_iv_present flag, and enter the encoding parameters as the IV. In order to pass
encoding parameters to the Decrypt command, set the IV in the iv member of the cipher
parameter. The IV is in the form of a byte block p, the length of which may be O.

9.2.17.5. Cipher text - PKCS #11 padding

typedef struct {
M_Bignum m;
} M_Mech_RSApPKCS1_Cipher;

9.2.17.6. Cipher text - OAEP padding

typedef struct {
M_Bignum m;
} M_Mech_RSApSETOAEP_Cipher;

9.2.18. DeriveKey

9.2.18.1. DKTemplate

A DKTemplate is a template key whose key data contains a marshalled ACL and application

nCore v13.6.14 Developer Tutorial 98/237

Chapter 9. Key structures

data. DKTemplate keys cannot be created with GenerateKey because this would produce a
random ACL. You must Import the key.

typedef struct {
M_ByteBlock appdata;
M_ByteBlock nested_acl;

} M_KeyType_DKTemplate_Data;

- appdata specifies application data for the new key.

- nested_acl is the marshalled ACL for the new key. Use the function NFastApp_Marsha-
1ACL() in order to produce an ACL in the correct format.

9.2.18.2. Wrapped

A wrapped key contains encrypted key data as a byte block. A wrapped key has the same
structure as a random key, but is a separate type.

You can generate a wrapped key by generating two random numbers and XORing them
together to create a key. If you randomly generate both halves of a DES or a triple DES key,
you must use one of the mechanisms that sets the parity of the resultant key: Derive-
Mech_DESjoinXORsetParity or DeriveMech_DES3joinXORsetParity.

Alternatively, you can marshal keys, as described in Mechanismes.

9.2.18.3. Generation parameters

typedef struct {
M_Word flags;
M_Word length;
} M_KeyType_Wrapped_GenParams;

-+ No flags are defined.
- length specifies the length in bytes:
° 8 bytes for a wrapped DES key
° 24 bytes for a wrapped Triple DES key

9.2.18.4. Derive Key Mechanisms

- DeriveMech_DESsplitXOR (see DeriveKey mechanisms note 1).
« DeriveMech_DESjoinXOR (see DeriveKey mechanisms note 2)

« DeriveMech_DES2splitXOR (see DeriveKey mechanisms note 1).

nCore v13.6.14 Developer Tutorial 99/237

Chapter 9. Key structures

- DeriveMech_DES2j0inXOR (see DeriveKey mechanisms note 2)

« DeriveMech_DES3splitXOR (see DeriveKey mechanisms note 1).

- DeriveMech_DES3joinXOR (see DeriveKey mechanisms note 2)

- DeriveMech_DESjoinXORsetParity (see DeriveKey mechanisms note 2)
- DeriveMech_DES2joinXORsetParity (see DeriveKey mechanisms note 2)
- DeriveMech_DES3joinXORsetParity (see DeriveKey mechanisms note 2)
- DeriveMech_RandsplitXOR (see DeriveKey mechanisms note 1).

- DeriveMech_RandjoinXOR (see DeriveKey mechanisms note 2)

« DeriveMech_CASTsplitXOR (see DeriveKey mechanisms note 1).

- DeriveMech_CASTjoinXOR (see DeriveKey mechanisms note 2)

- DeriveMech_EncryptMarshalled (see DeriveKey mechanisms note 3)

- DeriveMech_DecryptMarshalled (see DeriveKey mechanisms note 3)

« DeriveMech_PKCS8Encrypt (see DeriveKey mechanisms note 4)

- DeriveMech_PK(CS8Decrypt (see DeriveKey mechanisms note 4)

- DeriveMech_RawEncrypt (see DeriveKey mechanisms note 5)

- DeriveMech_RawDecrypt (see DeriveKey mechanisms note 5)

- DeriveMech_AESsplitXOR (see DeriveKey mechanisms note 1).

- DeriveMech_AESjoinXOR (see DeriveKey mechanisms note 2)

« DeriveMech_Any

« DeriveMech_PublicFromPrivate (see DeriveKey mechanisms note 6)

« DeriveMech_ECCMQV

« DeriveMech_ConcatenateBytes

- DeriveMech_ConcatenationkDF

+ DeriveMech_NISTKDFmCTRpRijndaelCMACr32

« DeriveMech_RawEncryptZeroPad

« DeriveMech_RawDecryptZeroPad

« DeriveMech_AESKeyWrap

« DeriveMech_AESKeyUnwrap

- DeriveMech_ECKA

« DeriveMech_ECIESKeyWrap (see DeriveKey mechanisms note 7)

- DeriveMech_ECIESKeyUnwrap (see DeriveKey mechanisms note 8)

9.2.18.4.1. DeriveKey mechanisms note 1

These mechanisms take a base key of the specified type and a wrapping key of type Random

nCore v13.6.14 Developer Tutorial 100/237

Chapter 9. Key structures

to produce an output key of type Wrapped.

9.2.18.4.2. DeriveKey mechanisms note 2

These mechanisms take a base key of type Wrapped and a wrapping key of type Random to
produce an output key of the specified type.

9.2.18.4.3. DeriveKey mechanisms note 3

The EncryptMarshalled and DecryptMarshalled mechanisms are provided to allow export of
keys from a module in FIPS 140 Level 3 mode and import into a module in the same mode.

The EncryptMarshalled mechanism takes a template key, a base key of any marshallable
type, and a wrapping key of any type capable of encrypting, and does the following:

1. Marshals an M_PlainText structure that represents the base key to produce a byte
string.

2. Turns the byte string into Bytes plaintext, and encrypts it with the wrapping key to pro-
duce ciphertext.

3. Marshals the ciphertext into a further byte string.

4. Creates a key of the type Wrapped that has the ACL given in the template key and con-

tains the byte string from step c as data. That is, the wrapped data is a marshalled
ciphertext which is an encryption of the marshalled key data.

All marshalling is done in module-internal format (little-endian arrays of little-endian
words).

Template and Wrapped keys can be imported into the module even in FIPS 140 Level 3 mode.
The import must be authorized by a certificate signed by the nShield Security Officer's key

KNSO-

The DecryptMarshalled mechanism performs the complementary operation: it unmarshals
and decrypts a ciphertext represented as a Wrapped key, then unmarshals the resulting plain
text to recover the M_PlainText structure for the output key.

An example of importing keys using the DecryptMarshalled mechanism:

1. Generate an RSA key pair Kpub, Kpriv. Kpub must have export-as-plain permissions.
Kpriv must have a DeriveKey action group that specifies a role of WrapKey and a mecha
nism of DecryptMarshalled. Export Kpub.

2. Marshall the key Ki to be imported. Pad the result according to PKCS #1 and encrypt it
with Kpub (for example, using the ModExp command).

nCore v13.6.14 Developer Tutorial 101/237

Chapter 9. Key structures

3. Marshal the ciphertext: write Mech_RSApPKCS1 as an M_Word (02 00 00 00), the length
of the bignum, then the bytes in little-endian order. Import the resulting byteblock as a
key Kw of type Wrapped.

4. Create a template key Kt that contains the desired ACL for the key to be imported, and
import it.

5. Use DeriveKey with Kt as the template, the Kw as the base key, and Kpriv as the wrap-
per key.

The resulting key is Ki imported with the correct ACL.

9.2.18.4.4. DeriveKey mechanisms note 4

The PKCS8Encrypt and PKCS8Decrypt mechanisms are provided to allow private key data for
asymmetric algorithms to be imported and exported.

This mechanism is not intended for secure transport of key data
between nShield modules. It has a number of security weaknesses, not
o least poor protection of key integrity. It is provided only as an aid to
interoperating with other systems when more secure methods are not

available.

The PKCS8Encrypt and PKCS8Decrypt mechanisms have the following structure:

struct M_DeriveMech_PKCS8Encrypt_DKParams {
M_IV iv;

Is

struct M_DeriveMech_PKCS8Decrypt_DKParams {
M_IV dv;

Is

The PKCS8Encrypt mechanism takes a Base key of type RSAPrivate, DSAPrivate, ECDSAPri-
vate, ECDHPrivate or DHPrivate, and a Wrap key of any symmetric type capable of encrypt-
ing byte streams. The private key data is BER-encoded according to PKCS #8. (This process
is also described in the PKCS #11 specification under Wrapping/unwrapping private keys.)
The resulting byte block is encrypted, using the given v, which includes a mechanism. The
data of the ciphertext is converted into a key of type Wrapped.

The PKCS8Decrypt mechanism performs the opposite process: it takes a Wrapped key type as
the Base key and a symmetric key as the Wrapping key. The data is decrypted using the
given iv and mechanism, and then BER-decodes to give a RSAPrivate, DSAPrivate, ECDSAPri
vate or DHPrivate output key.

The following errors may indicate mechanism-specific problems:

nCore v13.6.14 Developer Tutorial 102/237

Chapter 9. Key structures

« TypeMismatch: The ciphertext type for the given mechanism is not a simple byteblock,
and so cannot be converted to or from a Wrapped key type.

- NotYetImplemented: During encoding, this error indicates that the Base key is not of a
type for which BER-encoding is supported. During decoding, this error indicates that
an element has been encountered which is not used for the supported key types (for
example, a negative integer value). This may indicate the data has been corrupted.

« UnknownParameter: During decoding, this error indicates that a key type other than
those supported, or an unknown 'version' integer, has been encountered.

« Malformed: The BER-decoding has been unsuccessful, probably due to corrupted data,
for example, because the data is too short, or because an illegal byte value has been
encountered).

9.2.18.4.5. DeriveKey mechanisms note 5

The RawEncrypt and RawDecrypt mechanisms are provided to allow raw key data to be
encrypted and decrypted using any key that accepts a cipher text as Bytes. Alternatively,
for RawEncrypt only, a signing or hashing mechanism can be provided instead of an encrypt
one. In these cases, the raw key data is signed or hashed instead.

This mechanism is not intended for secure transport of key data
between nShield modules. It has a number of security weaknesses, not
o least poor protection of key integrity. It is provided only as an aid to
interoperating with other systems when more secure methods are not
available.

These mechanisms have the following structure:

struct M_DeriveMech_RawEncrypt_DKParams {
M_IV iv;

B

struct M_DeriveMech_RawDecrypt_DKParams {
M_IV iv;
M_KeyType dst_type;

B

The RawEncrypt mechanism processes the key as follows:

1. It extracts the key data of the Base key as a byte block.

2. If an encryption mechanism is specified in the IV, the key data is encrypted using the
Wrapping key, IV and the mechanism specified in the IV, which must be a valid mecha-
nism for the given Wrapping Key. Mechanisms that do not perform padding cannot
encrypt plain texts which are not multiples of the block length. For example, DESmECBp-
NONE can encrypt only base keys that are a multiple of 8 bytes in length.

nCore v13.6.14 Developer Tutorial 103/237

Chapter 9. Key structures

If a signing mechanism is specified in the IV, the key data is signed using the Wrapping
key, IV and the mechanism specified in the IV, which must be a valid mechanism for
the given Wrapping Key.

If a hashing mechanism is specified in the IV, the key data is hashed using the Wrap-
ping key (if the mechanism requires one), IV and the mechanism specified in the IV,
which must be a valid mechanism for the given Wrapping Key. HMAC mechanisms
require a wrapping key and others do not. For more information see HMAC signatures.

3. The resulting ciphertext, signature or hash is converted directly into a Wrapped key. No
mechanism, IV, or base key type information is saved with the Wrapped data. This data
must be transported separately.

RawDecrypt performs the reverse process.The type of the key to be created, and the IV to
be used when decrypting, are passed in the dst_type and iv fields, respectively.

The following errors have specific meanings:

- TypeMismatch: The chosen Base key type is not a DES or simple ByteBlock key type (for
example, an RSAPrivate key), so it cannot be converted to or from a byte block plain-
text. Alternatively, the specified mechanism in the IV does not use a byte block for its
ciphertext (for example, it uses ciphertexts containing Bignums) so the ciphertext can-
not be converted to or from Wrapped key data.

« InvalidData: The data cannot be made into a key of the given type. For example, the
decrypted data was too short or too long for the given destination key type, or the des
tination key type was a DES, DES2 or DES3 key and the decrypted data had parity
errors. You can force the parity to be set correctly, by using RawDecrypt to produce a
key of type Wrapped, and importing a Random key of the right length with all bytes
zero. Then use the DESjoinXORsetParity mechanisms on these two keys to produce a
DES key with correct parity bits.

9.2.18.4.6. DeriveKey mechanisms note 6

DeriveMech_PublicFromPrivate constructs the corresponding public key given one private
key of any type. The following is a non-exhaustive list of common error returns specific to
this key derivation mechanism:

- TypeMismatch: given key is not a private key.

« InvalidParameter: more than one key supplied.

9.2.18.4.7. DeriveKey mechanisms note 7

The DeriveMech_ECIESKeyWrap mechanism takes a base key of the specified symmetric type

nCore v13.6.14 Developer Tutorial 104/237

Chapter 9. Key structures

and a wrapping key of type ECDHPublic to produce an output key of type Wrapped.

9.2.18.4.8. DeriveKey mechanisms note 8

The DeriveMech_ECIESKeyUnwrap mechanism takes a base key of type ciphertext and a
wrapping key of type ECDHPrivate to produce an output key of type keytype.

9.3. Hash functions
Hash functions take an input of arbitrary length and return an output of fixed length.

The Hash function supports the RIPEMD-160, SHA-1, SHA-256, SHA-384, SHA-512, Tiger,
MD2, and MD5 mechanisms.

All the hashes that the module uses internally employ the SHA-1 algorithm.

9.3.1. SHA-1
SHA-1is a hash function that has been approved by NIST. SHA-1 returns a 20-byte result.

The implementation of SHA-1, SHA-256, SHA-384 and SHA-512 in the nShield module has
been validated by NIST as conforming to FIPS 18-2, certificate 255.

9.3.1.1. Mechanism

Mech_SHATHash

9.3.1.2. Reply

typedef struct {
M_Hash20 h;
} M_Mech_SHATHash_Cipher;

9.3.2. Tiger

Tiger is a hash function designed by Ross Anderson and Eli Biham. It is designed to be effi-
cient on 64-bit processors and to be no slower than MD5 on 32-bit processors.

9.3.2.1. Mechanism

nCore v13.6.14 Developer Tutorial 105/237

Chapter 9. Key structures

Mech_TigerHash

9.3.2.2. Reply

typedef struct {
M_Hash24 h;
} M_Mech_TigerHash_Cipher;

9.3.3. SHA-224

SHA-224 is a member of the SHA-2 hash function family that yields a 28-byte result.

9.3.3.1. Mechanism

Mech_SHA224

9.3.3.2. Reply

typedef struct {
M_Hash28 h;
} M_Mech_SHA224Hash_Cipher;

9.3.4. SHA-256

SHA-256 is a member of the SHA-2 hash function family that yields a 32-byte result.

9.3.4.1. Mechanism

Mech_SHA256

9.3.4.2. Reply

typedef struct {
M_Hash32 h;
} M_Mech_SHA256Hash_Cipher;

9.3.5. SHA-384

nCore v13.6.14 Developer Tutorial 106/237

Chapter 9. Key structures

SHA-384 is a member of the SHA-2 hash function family that yields a 48-byte result.

9.3.5.1. Mechanism

Mech_SHA384Hash

9.3.5.2. Reply

typedef struct {
M_Hash48 h;
} M_Mech_SHA384Hash_Cipher;

9.3.6. SHA-512

SHA-512 is a member of the SHA-2 hash function family that yields a 64-byte result.

9.3.6.1. Mechanism

Mech_SHA512Hash

9.3.6.2. Reply

typedef struct {
M_Hash64 h;
} M_Mech_SHA512Hash_Cipher;

9.3.7.MD2

MD?2 is a hash function that was designed by Ron Rivest. MD2 returns a 16-byte hash.

9.3.7.1. Mechanism

Mech_MD2Hash

9.3.7.2. Reply

typedef struct {
M_Hash16 h;

nCore v13.6.14 Developer Tutorial 107/237

Chapter 9. Key structures

} M_Mech_MD2Hash_Cipher;

9.3.8. MD5

MD5 is a hash function that was designed by Ron Rivest. MD5 returns a 16-byte hash.

9.3.8.1. Mechanism

Mech_MD5Hash

9.3.8.2. Reply

typedef struct {
M_Hash16 h;
} M_Mech_MD5Hash_Cipher;

9.3.9. RIPEMD 160

RIPEMD 160 is a hash function that was developed as part of the European Union’s RIPE
project. RIPEMD 160 returns a 20-byte hash.

9.3.9.1. Mechanism

Mech_RIPEMD160Hash

9.3.9.2. Reply

typedef struct {
M_Hash20 h;
} M_Mech_RIPEMD16@Hash_Cipher;

9.3.10. HAS160

HAS160 is a hash function designed for use with the KCDSA algorithm. (See KCDSA.)
HAS160 returns a 20-byte hash.

If you wish to use the HAS160 hash function, you must order and enable it as part of the
KISAAlgorithms feature.

nCore v13.6.14 Developer Tutorial 108/237

Chapter 9. Key structures

9.3.10.1. Mechanism

Mech_HAS160Hash

9.3.10.2. Reply

typedef struct {
M_Hash20 h;

} M_Mech_HAS16@Hash_Cipher;

9.4. HMAC signatures

The sign and verify commands can create and verify MACs that have been created with

the HMAC procedure and any supported hashing algorithm.

See RFC2104 for a description of HMAC.

The nShield implementations of HMAC SHA-1, HMAC SHA-224, HMAC SHA-256, HMAC
SHA-384 and HMAC SHA-512 have been validated by NIST as conforming to FIPS 198, cer-

tificate 3.

The following key types are defined:

+ KeyType_HMACMD2
+ KeyType_HMACMD5
+ KeyType_HMACSHA1

- KeyType_HMACRIPEMD160

+ KeyType_HMACSHA224

+ KeyType_HMACSHA256

+ KeyType_HMACSHA384

+ KeyType_HMACSHA512

- KeyType_HMACSHA3b224
+ KeyType_HMACSHA3b256
+ KeyType_HMACSHA3b384
+ KeyType_HMACSHA3b512
+ KeyType_HMACTiger

They use the key type Random for their data and key generation parameters.

All these key types contain random data that is stored in byte blocks of variable length.

nCore v13.6.14 Developer Tutorial

109/237

Chapter 9. Key structures

The following mechanisms are defined:

« Mech_HMACMD?2

« Mech_HMACMD5

+ Mech_HMACSHA1

+ Mech_HMACRIPEMD160
+ Mech_HMACSHA224

+ Mech_HMACSHA256

+ Mech_HMACSHA384

+ Mech_HMACSHA512

+ Mech_HMACSHA3b224
+ Mech_HMACSHA3b256
+ Mech_HMACSHA3b384
» Mech_HMACSHA3b512
+ Mech_HMACTiger

9.5. ACLs

An ACL is a list of actions that are permitted for this object. An ACL consists of a list of per-
mission groups.

Each permission group is a list of actions combined with an optional set of limits, either
numerical limits or time limits, and optionally the hash of the key needed to authorize these
actions.

By creating multiple permission groups with different use limits and certifiers you cre-
ate an ACL:

typedef struct {
int n_groups
M_PermissionGroup *groups;
} M_ACL;

+ n_groups is the number of groups.

« *groups This is a list of permission groups. Each permission group consists of the fol-
lowing items:

° optionally, the key hash of a key that must be used to certify all operations within
this permission group. The given key must be used to produce a certificate that
accompanies the request. This certificate can also be required to be fresh. If no
key hash is given, this is a public permission group and defines operations available

nCore v13.6.14 Developer Tutorial 110/237

Chapter 9. Key structures

without a certificate.

O or more use limits for this permission group. If a permission group has use lim-
its, operations permitted by this group are only allowed if the use limits have not
been exhausted. If a permission group has no use limits, these actions are always
permitted.

Each use limit specifies either an identifier for a counter or a time limit. If a permis-
sion group specifies both a counter and a time limit, the action will fail if either
limit is exhausted. Performing any of the actions listed as action elements for this
permission group decreases the count of the specified counter by 1 for each
action.

one or more action elements. These specify the operations to which the use limits
apply.

typedef struct {
M_Word flags;
int n_limits;
M_UseLimit *limits;
int n_actions;
M_Action *actions;
M_KeyHash *certifier;
M_KeyHashAndMech *certmech;
M_ASCIIString *moduleserial;
} M_PermissionGroup;

« The following flags are defined:

o

PermissionGroup_flags_certmech_present Set this flag if actions in this group
must be certified with a key that matches the given hash and mechanism.

PermissionGroup_flags_certifier_present Set this flag if actions in this group
must be certified with a key that matches the given hash. If none of flags Permis-
sionGroup_flags_certifier_present, PermissionGroup_flags_certmech_present,
or PermissionGroup_flags_NSOCertified have been set, then this is a public per-
mission group, and actions can be performed without a certificate.

The PermissionGroup_flags_certifier_present flag is included for backwards
compatibility only. If you are creating a new ACL, use PermissionGroup_flags_cert
mech_present.

PermissionGroup_flags_FreshCerts Set this flag if the certificate must be freshly
produced. If this flag is not set, certificates may be reused indefinitely.

PermissionGroup_flags_LogKeyUsage Set this flag if Sign, Verify, Encrypt or
Decrypt (and corresponding Cmd_Channe10pen) actions in this group should be
logged by the nShield Audit Logging capability.

nCore v13.6.14 Developer Tutorial 111/237

Chapter 9. Key structures

If Audit Logging is not enabled for the module attempting to use a key with Permis
sionGroup_flags_LogKeyUsage set the module returns Status_InvalidACL.

> PermissionGroup_flags_moduleserial_present Set this flag if the actions in this
group can only be performed on a specific module, whose serial number matches

the given serial number.

> PermissionGroup_flags_NSOCertified Set this flag if the actions in this group
must be certified by the Security Officer's key Kyso, whatever that is set to for this
module at this time.

If you set more than one of PermissionGroup_flags_certifier_present, Permission-
Group_flags_certmech_present, or PermissionGroup_flags_NSOCertified, the module
returns Status_InvalidACL.

- n_limits is the number of limits.

*1imits is a list of use limits, defined below.

- If more than one set of use limits is defined:

° if the use limits are in the same permissions group, all counters and time limits
must be valid, and all referenced counters are decreased by 1

° if the use limits are in different permission groups, the module uses the first per-
mission group that permits the action.

- n_actions is the number of actions.

« *actions is the list of actions to which the use limits apply.

*certifier is either the hash of the key that is required to authorize the use of this
ACL entry or a NULL pointer indicating that no further authorization is required.

The certifier field is included for backwards compatibility only. You are encouraged
to use the certmech field. The certifier field may be removed in future releases.

*certmech: M_KeyHashAndMech has the following structure:

typedef struct {
M_KeyHash hash;
M_PlainText mech;
} M_KeyHashAndMech;

« hash is the hash of the key that is required to authorize the use of this ACL entry or a
NULL pointer, indicating that no further authorization is required.

- mech is the mechanism that is to be used to sign the certificate. You can specify
Mech_Any, in which case the ACL will behave exactly as if you had used the certifier
field.

Signingkey certificates do not check the mechanism.

nCore v13.6.14 Developer Tutorial 112/237

Chapter 9. Key structures

- *moduleserial is the serial number of the module on which the actions in this permis-
sion group must be performed. This must be the exact string returned by the NewEn-
quiry command for the module.

9.6. Use limits

Use limits
typedef struct {

M_UseLim type;

union M_Uselim__Details details;
} M_UselLimit;

The following Uselim types are defined:

« UselLim_Global
UseLim_AuthOld

« UseLim_Time

- UseLim_NonVolatile

. UselLim_Auth

The details depend on the action type:

union M_UselLim__Details {
M_UseLim_Global_Details global;
M_UseLim_Time_Details time;
M_UseLim_NonVolatile_Details nonvolatile;
M_UseLim_Auth_Details auth;

B

A global use limit has the following structure:

typedef struct {
M_LimitID id;
M_Word max;

} M_UselLim_Global_Details;

+ 1d is a unique 20-byte identifier for the counter for this use limit. When a counter is cre
ated, it is set to 0. Any time a user performs an action that requires a use limit, the mod
ule compares the value of the counter to the limit in the ACL. If the counter value is
less than the limit, the action is permitted and the counter’s value is increased by 1. Oth
erwise, the action is prohibited.

Global and per-authorization counters are stored separately on the module. Therefore,
a global use limit may have the same hash as a per-authorization use limit, and these
hashes will refer to separate counters.

nCore v13.6.14 Developer Tutorial 113/237

Chapter 9. Key structures

Global counters are stored separately for each key, and per-authorization counters are
stored separately for each logical token.

This means that the two matching LimitID s will only refer to the same counter if
either:

° they are both in Global use limits in the same ACL
° they are both in Auth use limits for keys loaded using the same logical token.

+ max is the absolute maximum number of times that the actions specified in this permis-
sion group can be performed. Global limit counters are created when a key object is
imported, generated or derived using the DeriveKey command. They are destroyed
when that object is destroyed. They are never reset.

When a key is duplicated (using the Duplicate command), or loaded with the LoadBlob
command, all permission groups containing Global use limits are removed from its ACL.
This is to ensure that actions subject to Global use limits can only be performed when
the key was originally imported, generated or derived.

A time limit has the following structure:

typedef struct {
M_Word seconds;
} M_UseLim_Time Details;

- seconds is a per authorization limit that sets the length of time, in seconds, during
which the actions specified in this permission group can be performed before the key
needs to be reauthorized. Time limits only apply to keys protected by a logical token.
The time is taken from the point at which the token was recreated.

If you specify more than one time limit within an ACL, the shortest time limit will apply.
If you specify a time limit and a use count limit, both must be valid in order for an
action to be authorized.

If you apply a time limit to a key that is not loaded from a logical token protected blob,
all permission groups with time limits will be unavailable and attempting to use these
limits will return Status_AccessDenied.

nonvolatile limits are only available on nShield modules. The use limit is stored in a NVRAM
file. A non-volatile limit has the following structure:

struct M_UseLim_NonVolatile_Details {
M_UseLim_NonVolatile_Details_flags flags;
M_FileID file;
M_NVMemRange range;
M_Word maxlo;
M_Word maxhi;

nCore v13.6.14 Developer Tutorial 114/237

Chapter 9. Key structures

I

M_Word prefetch;

No flags are defined.

fileis the fileld of the NVRAM file containing the use limit.

range is the memory range within the file for this limit.

maxlo and maxhi are the values for the limit stored as two 32-bit words.

prefetch: In order to reduce the number of NVRAM write cycles, you can specify a
number of limits to prefetch. The module will update the limit by this number and decre
ment an in-memory counter for each use. When the counter reaches zero the NVRAM
value will again update the NVRAM.

A per-authorization use limit (auth) has the following structure:

typedef struct {

M_LimitID id;
M_Word max;

} M_Uselim_Auth_Details;

+ id is a unique 20-byte identifier for the counter for this use limit. When a counter is cre

ated, it is set to 0. Any time a user performs an action that requires a use limit, the mod
ule compares the value of the counter to the limit in the ACL. If the counter value is
less than the limit, the action is permitted and the counter’s value is increased by 1. Oth
erwise, the action is prohibited.

Global and per-authorization counters are stored separately on the module. Therefore,
a global use limit may have the same hash as a per-authorization use limit, and these
hashes will refer to separate counters.

Global counters are stored separately for each key, and per-authorization counters are
stored separately for each logical token.

This means that the two matching LimitIDs will only refer to the same counter if either:

° they are both in Global use limits in the same ACL
° they are both in Auth use limits for keys loaded using the same logical token.

max is the number of times that the actions specified in this permission group can be
performed before the logical token needs to be reauthorized.

Per-authorization limit counters are created when a key is loaded from a token blob,
unless a counter with the same LimitID already exists for this token (in which case, the
existing counter is used). This can mean that all the per-authorization use limits for a
key have been exhausted already when it is loaded. In such a case, you must reload the

nCore v13.6.14 Developer Tutorial 115/237

Chapter 9. Key structures

logical token.

Keys that have been loaded from blobs under different tokens have separate counters
even if they have the same LimitID.

Firmware versions 2.12.0 or later contain logic to prevent an attacker loading the same
logical token twice and thereby gaining two separate sets of counters. It works as fol-

lows:

Every time a smart card is inserted, all the logical token shares on it are marked avail-
able. When a share is loaded for use in a logical token, it is marked used, unless the Read
Share command sets the UseLimitsUnwanted flag.

If any share is loaded - locally or remotely - when it is already marked used, the logical
token is marked UseLimitsUnavailable. No per-authorization use limits are allowed for
any keys loaded using this second logical token. This ensures only one set of use limits
counters can be created for each physical insertion of a token.

The mechanism for controlling per-authorization limits changed in firmware 2.12.0 to
prevent a possible attack which may have resulted in the limit being circumvented. On
new firmware ACLs using UseLim_Auth and UseLimAuth_01d both use the new mecha-
nism. However, the nfkmverify program will note use of the old style limit as this will
use the old behavior on old firmware.

Although it is possible to load a logical token on several modules, using remote slots,
only one copy of the logical token can be allocated the per-authorization use limits.

9.7. Actions

typedef struct {

M_Act type;
union M_Act__Details details;

} M_Action;

type must be one of the actions listed below:

Act_NoAction=

Act_OpPermissions= - see OpPermissions
Act_MakeBlob= - see MakeBlob
Act_MakeArchiveBlob= - see MakeArchiveBlob
Act_NSOPermissions= - see NSO

Act_DeriveKey= - see DeriveKey and DeriveKeyEx

nCore v13.6.14 Developer Tutorial 116/237

Chapter 9. Key structures

« Act_DeriveKeyEx= - see DeriveKey and DeriveKeyEx
+ Act_NVMemOpPerms= - see NVRAM

« Act_FeatureEnable= - see NVRAM

« Act_NVMemUseLimit=

- Act_SendShare= - see SendShare

« Act_ReadShare= - see ReadShare

« Act _StaticFeatureEnable=

« Act_UserAction= - see UserAction

« Act_FileCopy= - see FileCopy

details depend on the chosen action type:

union M_Act_ Details {
M_Act_FeatureEnable_Details featureenable;
M_Act_DeriveKey_Details derivekey;
M_Act_DeriveKeyEx_Details derivekeyex;
M_Act_SendShare_Details sendshare;
M_Act_NVMemUseLimit_Details nvmemuselimit;
M_Act_NVMemOpPerms_Details nvmemopperms;
M_Act_StaticFeatureEnable_Details staticfeatureenable;
M_Act_NSOPermissions_Details nsopermissions;
M_Act_OpPermissions_Details oppermissions;
M_Act_FileCopy_Details filecopy;
M_Act_MakeArchiveBlob_Details makearchiveblob;
M_Act_MakeBlob_Details makeblob;
M_Act_UserAction_Details useraction;
M_Act_ReadShare_Details readshare;

iy

9.8. Action types

9.8.1. OpPermissions

typedef struct {
M_Word perms;
} M_Act_OpPermissions_Details;

The following flags (perms) are defined:

« Act_OpPermissions_Details_perms_DuplicateHandle: Setting this flag grants permis-
sion to create a copy of the key with the same ACL. Duplicating a key does not enable
you to perform any further actions, because both copies use the same use counters.

« Act_OpPermissions_Details_perms_UseAsCertificate: Setting this flag allows use of
the KeyID to authorize a command that requires a certificate.

nCore v13.6.14 Developer Tutorial 17/237

Chapter 9. Key structures

« Act_OpPermissions_Details_perms_ExportAsPlain
« Act_OpPermissions_Details_perms_GetAppData

« Act_OpPermissions_Details_perms_SetAppData

« Act_OpPermissions_Details_perms_ReduceACL

« Act_OpPermissions_Details_perms_ExpandACL

« Act_OpPermissions_Details_perms_Encrypt

« Act_OpPermissions_Details_perms_Decrypt

« Act_OpPermissions_Details_perms_Verify

« Act_OpPermissions_Details_perms_UseAsBlobKey: Setting this flag allows use of this
key either in the MakeBlob command to encrypt a key blob or in the LoadBlob command
to decrypt a key from a blob.

« Act_OpPermissions_Details_perms_UseAsKM: Only DES3 keys can be used for module
keys, Ku.

+ Act_OpPermissions_Details_perms_UseAsLoaderKey: When this flag is set, an encryp-
tion key is only permitted to perform decryption when loading an SEE machine or SEE
World onto the module.

« Act_OpPermissions_Details_perms_Sign
« Act_OpPermissions_Details_perms_GetACL
« Act_OpPermissions_Details_perms_SignModuleCert

« Act_OpPermissions_Details_perms__allflags

9.8.2. MakeBlob

This action type allows the creation of module key, or token, key blobs with the given key
(see also MakeArchiveBlob).

typedef struct {
M_Word flags;
M_KMHash *kmhash;
M_TokenHash *kthash;
M_TokenParams *ktparams;
M_MakeBlobFilePerms *blobfile;
} M_Act_MakeBlob_Details;

« The following flags are defined:
° Act_MakeBlob_Details_flags_AllowKmOnly

If this flag is set, you can create blobs directly under a module key or under a logi-
cal token. If this flag is not set, you must use a logical token.

nCore v13.6.14 Developer Tutorial 118/237

Chapter 9.

Key structures

Act_MakeBlob_Details_flags_AllowNonKm@

If this flag is set, you can create blobs for this key using module keys, or logical
tokens based on module keys, except for the internally generated Kyo. If this flag is
not set, you must use Ky, or logical tokens based on Kye.

Act_MakeBlob_Details_flags_kmhash_present

Set this flag in order to restrict the blobs that can be made with this key to blobs
that use the module key whose hash is specified or to logical tokens that are
based on this module key. If this flag is not set, any module key may be used. If
this hash is not Ky, you must set the A11owNonKM@ flag.

Act_MakeBlob_Details_flags_kthash_present

Set this flag in order to restrict the blobs that can be made with this key to blobs
that use the token whose hash is specified. If this flag is not set, any token may be
used. If this token is not based on Ky, you must set the A11owNonKM@ flag.

Act_MakeBlob_Details_flags_ktparams_present

Set this flag in order to restrict the blobs that can be made with this key to blobs
that use a token with either the given parameters or with more restrictive ones. If
this flag is not set, any token can be used.

Act_MakeBlob_Details_flags_AllowNullKmToken

If this flag is set, the user can create token blobs for this key with a token pro-
tected by the null module key.

Act_MakeBlob_Details_flags_blobfile_present

If this flag is set the blob will be stored in the NVRAM or smart card file specified -
it will not be returned to the host.

Act_MakeBlob_Details_flags__allflags

The key blob must meet the requirements of all the flags.

+ *kmhash - see Act_MakeBlob_Details_flags_kmhash_present above.
+ *kthash - see Act_MakeBlob_Details_flags_kthash_present above.

+ *ktparams - see Act_MakeBlob_Details_flags_ktparams_present above.
- *blobfile

The following structure specifies the NVRAM or smart card files to which you want to

restrict writing the blob.

nCore v13.6.14 Developer Tutorial 119/237

Chapter 9. Key structures

struct M_MakeBlobFilePerms {
M_MakeBlobFilePerms_flags flags;
M_PhysToken *devs;
M_KeyHash *aclhash;

b5

° The following flags are defined:

® lMakeBlobFilePerms_flags_devs_present

If set, the blob may only be stored in the storage devices specified by the
M_FileDeviceFlags word.

® MakeBlobFilePerms_flags_aclhash_present
Set this flag if the structure contains a M_KeyHash.

° *devs is the device on which to store the blob.
° *aclhash is the hash of a Template Key defining the ACL to use for the file storing
the key. The key must be provided when making the blob.
If you want to restrict the making of blobs to a set of module keys, or to a set of
tokens, then you must include a MakeBlob entry for each module or token hash.

9.8.3. MakeArchiveBlob

This action type allows the creation of direct and indirect archive key blobs with the given
key.

typedef struct {
M_Word flags;
M_PlainText mech;
M_KMHash *kahash;
M_MakeBlobFilePerms *blobfile;
} M_Act_MakeArchiveBlob_Details;

 The following flags are defined:

° Act_MakeArchiveBlob_Details_flags_kahash_present

If this flag is set, you can make an archive key blob for this key with the key whose
hash is specified. If this flag is not set, any archive key may be used.

o Including an Act_MakeArchiveBlob entry without kahash_pre-
sent in an open permission group creates a security loophole.

> Act_MakeArchiveBlob_Details_flags_blobfile_present

If this flag is set the blob will be stored in the NVRAM or smart card file specified -

nCore v13.6.14 Developer Tutorial 120/237

Chapter 9. Key structures

it will not be returned to the host.
- mech

For making direct archive blobs, this must be Mech_DES3mCBC164pPKCS5 or Mech_Any; for
indirect blobs this specifies the mechanism which must be used to encrypt the session
key. If set to Mech_Any, any mechanism appropriate for the type of the archiving key is
allowed. See Mechanisms.

+ *kahash is the key hash.
+ *blobfile — see MakeBlob

9.8.4.NSO

This action type is used only in certificates that approve critical functions that have been
defined in the SetkKNSO command. It should not be used in an ACL for a key.

typedef struct {
M_NSOPerms perms;
} M_Act_NSOPermissions_Details;

M_NSOPerms has the following structure:

typedef struct {
M_Word ops;
} M_NSOPerms;

The following flags (ops) are defined. These are identical to those used in the SetNSOPerms
command.

« NSOPerms_ops_LoadLogicalToken
« NSOPerms_ops_ReadFile

« NSOPerms_ops_WriteShare

« NSOPerms_ops_WriteFile

+ NSOPerms_ops_EraseShare

« NSOPerms_ops_EraseFile

« NSOPerms_ops_FormatToken

« NSOPerms_ops_SetKM

+ NSOPerms_ops_RemoveKM

« NSOPerms_ops_GenerateLogToken

« NSOPerms_ops_ChangeSharePIN

nCore v13.6.14 Developer Tutorial 121/237

Chapter 9. Key structures

« NSOPerms_ops_OriginateKey
« NSOPerms_ops_NVMemAlloc

+ NSOPerms_ops_NVMemFree

« NSOPerms_ops_GetRTC

« NSOPerms_ops_SetRTC

« NSOPerms_ops_DebugSEEWor1d
« NSOPerms_ops_SendShare

« NSOPerms_ops_ForeignTokenOpen

« NSOPerms_ops__allflags

9.8.5. NVRAM

This action type allows operations to be performed upon files that have been stored in the

nonvolatile memory or on a smart card or soft token.

struct M_Act_NVMemOpPerms_Details {
M_Act_NVMemOpPerms_Details_perms perms;
M_NVMemRange *subrange;
M_NVMemRange *exactrange;
M_Word *incdeclimit;

- The following operations (perms) are defined.

o

o

o

Act_NVMemOpPerms_Details_perms_Read
Act_NVMemOpPerms_Details_perms_Write
Act_NVMemOpPerms_Details_perms_Incr
Act_NVMemOpPerms_Details_perms_Decr
Act_NVMemOpPerms_Details_perms_BitSet
Act_NVMemOpPerms_Details_perms_BitClear
Act_NVMemOpPerms_Details_perms_Free
Act_NVMemOpPerms_Details_perms_subrange_present
Act_NVMemOpPerms_Details_perms_exactrange_present
Act_NVMemOpPerms_Details_perms_incdeclimit_present
Act_NVMemOpPerms_Details_perms_GetACL
Act_NVMemOpPerms_Details_perms_LoadBlob

This permission allows the contents to be used as a blob by the Loadblob com-
mand.

nCore v13.6.14 Developer Tutorial 122/237

Chapter 9. Key structures
> Act_NVMemOpPerms_Details_perms_Resize
- *subrange

This specifies the subrange to which this operation can be applied; the operation can
apply to any part of the specified range in the ACL.

. *exactrange

This is a subrange to which this operation can be applied only if the range exactly
matches the specified range in the ACL.

- *incdeclimit

This is the maximum amount that this range can be increased or decreased in one oper
ation.

9.8.6. ReadShare

This action type enables a logical token share to be read normally using the ReadShare com-

mand.

typedef struct {
M_ReadShareDetails rsd;
} M_Act_ReadShare_Details;

typedef struct {
M_ReadShareDetails_flags flags; No flags are defined
} M_ReadShareDetails;

9.8.7. SendShare

This action type enables a logical token share to be read remotely and sent over an impath.

typedef struct {
M_Act_SendShare_Details_flags flags;
M_RemoteModule *rm;
M_ReadShareDetails *rsd;

} M_Act_SendShare_Details;

+ The following flags are currently defined:

> Act_SendShare_Details_flags_rm_present
This flag is set if the action contains a RemoteModule structure.

> Act_SendShare_Details_flags_rsd_present

nCore v13.6.14 Developer Tutorial 123/237

Chapter 9. Key structures

This flag is set if the action contains a ReadShareDetails structure.
< *rm

The impath over which the share data is to be sent must match this RemoteModule struc
ture.

« *rsd — see ReadShare

9.8.8. FileCopy

This action permits files stored on a smart card, soft token or in NVRAM to be copied to
another location. The action specifies which location the file can be copied to and from.

struct M_Act_FileCopy_Details {
M_Act_FileCopy_Details_flags flags;
M_PhysToken to;
M_PhysToken from;

b

The following flag is defined: Act_FileCopy_Details_flags_ChangeName.

If set the new file may have a different FilelID from the original file.

9.8.9. UserAction

This action does not permit any operations. Instead it can be checked by the CheckUserAc-
tion command. This enables applications to make use of all modules ACI checking features
- including use limits, time limits, certifiers and so on - to restrict actions in their own code.

struct M_Act_UserAction_Details {
M_UserActionInfo allow;

+

9.8.10. DeriveKey and DeriveKeyEx

These action types enable the key to be used in the DeriveKey command. They allow the
key to be used in a single specific role. If you want to create a key that can be used in more
than one role, you must include a separate action entry for each role. If the
Cmd_DeriveKey_Args_flags_WorldHashMech flag has been set in the DeriveKey command,
then the DeriveKeyEx action should be used.

typedef struct {
M_Word flags;

nCore v13.6.14 Developer Tutorial 124/237

Chapter 9. Key structures

M_DeriveRole role;

M_DeriveMech mech;

int n_otherkeys;

M_KeyRoleID *otherkeys;

M_DKMechParams *params;
} M_Act_DeriveKey_Details;

typedef struct {
M_Act_DeriveKeyEx_Details_flags flags;
M_DeriveRole role;
M_DeriveMech mech;
int n_otherkeys;
M_vec_KeyRoleIDEx otherkeys;
M_DKMechParams *params;

} M_Act_DeriveKeyEx_Details;

+ The following flags are defined:
° Act_DeriveKey_Details_flags_params_present
° Act_DeriveKeyEx_Details_flags_params_present
+ role can be one of the following:
° DeriveRole_TemplateKey (template)
° DeriveRole_BaseKey (base key)
° DeriveRole_WrapKey (wrapping key)
+ mech — see Mechanisms.
« n_otherkeys - the number of keys in the otherkeys table

« *otherkeys

The following keys can be used in the other roles of the DeriveKey command:

typedef struct {
M_DeriveRole role;
M_KeyHash hash;

} M_KeyRoleID;

typedef struct {
M_DeriveRole role;
M_KeyHashEx hash;
} M_KeyRoleIDEx;

° role

You can define keys for any or all of the roles. You can specify one or more keys
for each role. If you do not specify a key for a particular role, then any key can be
used in that role.

° hash is either SHA-1 or a stronger hash determined by the

nCore v13.6.14 Developer Tutorial 125/237

Chapter 9. Key structures

Cmd_DeriveKey_Args_flags_WorldHashMech, which can be obtained via the GetKey-
InfoEx command.

« *params

The mechanism parameters to use for the DeriveKey operation.

struct M_DKMechParams {

M_DeriveMech mech;

union M_DeriveMech__DKParams params;

b5

- mech

The mechanism to use. The module will not permit you to set a M_DKMechParams with a

mechanism that is different to that previously defined in the ACL. If you attempt this

the module returns Status_InvalidACL.

- params

The derive key mechanism parameters— see Derive Key Mechanisms.

The module applies the following rules to determine which derive key operations are

permitted:

o

If any of the requested or allowed DeriveMech values mismatch, the operation is
never allowed.

If the allowed DKMechParams are not present, any requested parameters are
allowed.
If the mechanism has an empty DKParams, the operation is allowed

For other mechanisms, this comparison is not at present defined. The module will
return NotYetImplemented for attempts to set, in a key's ACL, DKMechParams with
mechanisms for which this is the case.

9.8.11. Using DeriveKey — an example

The following example shows how to use the DeriveKey command to split a DES key into

two random halves and then recombine these halves to recreate the original key. The follow

ing diagram illustrates this process:

nCore v13.6.14 Developer Tutorial 126/237

Chapter 9. Key structures

Template key 1 Base key Wrapping key
oo !(.-" ™ I
. | appdata | - ~, g ™,
| appdata | = \H.pp appdata | | appdata |
. i S I~ 7 \ '
|

Template key 2

Wrapped key

———» Mechanism

[_' appda‘ta/: -

. .\-.
| appdata)

L — —

[; appdata:j

1

DesSplitXOR

Recreated base key

—» -

Mechanism
DesJoinXOR

DES Key«

. appdata |
- v,

First, import the two template keys. A template key contains an ACL and an Appdata file
that can be applied to the results of the DeriveKey operation. By importing these elements
first, their key hashes can be determined, and these hashes can be referenced in the ACLs
for the remaining keys. This ensures that the two derived keys will have the correct ACL.

Next, create the wrapping key. Determine its hash and then that of the base key. After all

the input keys have been have created, use the DeriveKey command to combine the base

key and the wrapping key.

Finally, unwrap the wrapped key. Check that the new DES key has the same hash, and there
fore the same data, as the original. Also check that the new DES key has correctly inherited

the ACL and application data from the template key.

1. Use the Import command with the following parameters to import a template key for
an ACL that allows the use of DeriveKey with this key as the base key, any mechanism,

and any other keys:

nCore v13.6.14 Developer Tutorial

127/237

Chapter 9. Key structures

module 1

type DKTemplate

appdata 02020202

nested_acl 01000000 00000000 00000000 02000000 01000000 6c200000 05000000

00000000 01000000 00000000 OOOOO000

ACL

n_groups 1

groups| 0]

flags 0x0
n_limits 0
n_actions 1

actions|[0]

type DeriveKey
flags 0x0

role TemplateKey
mech Any
n_otherkeys 0

appdata 0

Create the nested_ac1 by using the NFastApp_MarshalACL() command.

Such use of the Import command will return

idka= IDKA 0010

2. Get this key's hash by using the GetKeyInfo command with the following parameters:

flags; 0x0
key; IDKA 0010

This command returns

type; DKTemplate
hash; HKA 0010

3. Use the Import command with the following parameters to import a template key for

nCore v13.6.14 Developer Tutorial 128/237

Chapter 9. Key structures

an ACL that contains oppermissions as follows:

° ExportAsPlain GetAppData Encrypt Decrypt Verify Sign GetACL

module
type
appdata
nested_acl
ACL
n_groups
groups| O]
flags
n_limits
n_actions
actions|[0]
type

flags

role

mech
n_otherkeys

appdata

Such use of the Import command will return:

DKTemplate

01010101

01000000 00000000 OOOOOO00 01000000 01000000 8¢330000

0x0

DeriveKey
0x0
TemplateKey
Any

0

0

key IDKA 0011

In order to create a nested_acl in C, use the NFastApp_MarshalACL() command.

In order to create a nested ACL in Java, use the marshall() method from the

M_ACL class.

The following Java fragment demonstrates the use of this method:

M_ACL acl;

MarshallContext tempMctx;

M_ByteBlock bb;

M_KeyType_Data_Template data;

acl = yourACL;

nCore v13.6.14 Developer Tutorial

129/237

Chapter 9. Key structures

tempMctx = new MarshallContext();

acl.marshall(tempMctx);

bb = new M_ByteBlock (tempMctx.getBytes());
data = new M_KeyType_Data_Template();

data.nested_acl = bb;

key IDKA 0011

This command returns:

type DKTemplate
hash HKA 0011

5. Make a wrapping key by using the GenerateKey command:

° When wrapping, insist on using template HKA 0010

° When unwrapping, insist on using template HKA 0011.

flags
module
type
lenbytes
ACL
n_groups
groups| O]
flags
n_limits
n_actions
actions[O]
type

perms

actions| 1]

type

0x0

Random

8

0x0

OpPermissions

DuplicateHandle
ExportAsPlain
ReduceACL
GetACL

DeriveKey

4. Get this key's hash by using the GetKeyInfo command with the following parameters:

nCore v13.6.14 Developer Tutorial

130/237

Chapter 9. Key structures

Such use of the GenerateKey command returns:

key

6. Get this key’s hash by using the GetKeyInfo command:

key

This command returns:

type
hash

flags

role

mech
n_otherkeys
role

hash
actions| 2]
type

flags

role

mech
n_otherkeys
role

hash

IDKA 0012

IDKA 0012

Random
HKA 0012

0x0
WrapKey
DESsplitXOR
1
TemplateKey

HKA 0010

DeriveKey
0x0
WrapKey
DESjoinXOR
1
TemplateKey

HKA 0011

7. Use the GenerateKey command with the following parameters to generate a DES key

that can only be wrapped using:

° The DESsplitXOR mechanism
° HKA 0012 as the wrapping key

module

type

DES

nCore v13.6.14 Developer Tutorial

131/237

Chapter 9. Key structures

n_groups 1

groups| 0]

flags 0x0

n_limits 0

n_actions 2

actions[0]

type OpPermissions

perms ReduceACL
GetACL

actions[1]

type DeriveKey

flags 0x0

role BaseKey

mech DESsplitXOR

n_otherkeys 1

role WrapKey

hash HKA 0012

This returns:
key IDKA 0013
8. Get this key’s hash by using the GetKeyInfo command with the following parameters:

key IDKA 0013

This command returns:

type DES
hash HKA 0013

9. The DES key can now be combined with the random key to produce a second random
key by using the DeriveKey command with the following parameters:

flags 0x0

nCore v13.6.14 Developer Tutorial 132/237

Chapter 9. Key structures

mech DESsplitXOR
n_keys 3

keysl O] IDKA 0010
keysl 1] IDKA 0013
keys[2] IDKA 0012

This command returns:

key IDKA 0014

At this point, this process has produced:

> A DES key IDKA 0013
° Two random keys: IDKA 0012 and IDKA 0014

The two random keys can be combined to recreate the key data in the DES key. This
can be demonstrated by combining the keys that use the DeriveKey command and

then using the GetKeylInfo to check that the hash of the new key matches the hash of
the DES key that was determined in Step 8.

10. Use the DeriveKey command with the following parameters to combine the keys:

flags 0x0

mech DESjoinXOR
n_keys 3

keys| O] IDKA 0011
keys| 1] IDKA 0014
keysl 2] IDKA 0012

This command returns:

key IDKA 0015

This is a new KeyID because this is a new instance of the key. This instance of the key
has taken its appdata and ACL from the template key that was created earlier: IDKA 0011

11. Get the hash of this new key by using the GetKeyInfo command with the following para
meters:

nCore v13.6.14 Developer Tutorial 133/237

Chapter 9. Key structures

12.

13.

key IDKA 0015

This command returns:

type DES
hash HKA 0013

This is the same hash as before, which proves that the key has been combined cor-
rectly

Check that the new key has inherited the application data from the template key by
using the GetAppData command with the following parameters:

key IDKA 0015

This command returns:

appdata 01010101

This is the application data that was provided by the template key.

Check that the new key has inherited the ACL from the nested ACL in the template key
by using the GetACL command with the following parameters:

key IDKA 0015

This command returns

acl.n_groups 1

groups| 0]

flags none 0x00000000
n_limits 0

n_actions 1

actions| O]

type OpPermissions

nCore v13.6.14 Developer Tutorial 134/237

Chapter 9. Key structures

perms ExportAsPlain

GetAppData
Encrypt
Decrypt
Verify
Sign
GetACL

9.9. Certificates

The nShield module uses certificates to enable a given user to authorize another user to per
form an action.

A certificate is a signed message. The key that is used to sign the certificate must match
the key hash in the ACL it is authorizing. The message can contain an ACL; this ACL can be
used to restrict the operation to be approved by the certificate, or it can be used to require
a further certificate.

Certificates can be either fresh or reusable.

A fresh certificate includes a challenge value. This is a random number that was generated
previously by the module with the GetChallenge command.

The module remembers a maximum of 126 challenges. These challenges automatically
expire after 30 seconds or on redemption. Expired challenges are removed from the mod-

ules memory.

If the module memory contains more than 40 challenges, it delays the issuance of new chal
lenges. This means that with 40 or fewer challenges outstanding, it issues new challenges
instantly. With more than 40 challenges outstanding, you get a successful response after a
two-second delay. If the module memory is full, it fails after a delay of four seconds unless
an existing outstanding challenge expires or is redeemed during the delay period. In this situ
ation, if an outstanding challenge expires or is redeemed during the delay, you get a suc-
cessful response. These delays apply to each (md_GetChallenge independently.

When a user presents a fresh certificate, the module deletes the matching challenge from
the list. If the same certificate is presented a second time, it will be rejected.

The list of challenges is cleared whenever the unit is reset.
Therefore, a fresh certificate:

+ can only be used once
« must be used on the module that generated the challenge

« may become invalid if left too long before it is used

nCore v13.6.14 Developer Tutorial 135/237

Chapter 9. Key structures

If you submit a certificate containing a challenge that is not on the module’s list of current
challenges, the server returns the status Status_UnknownChallenge.

A reusable certificate does not contain a challenge and can be used as often as is required.
It can also be used on any module.

An ACL can specify that the required certificate must be fresh. If you present a reusable cer
tificate when the ACL requires a fresh certificate, the certificate will be rejected.

If you possess the required key, you can always create a fresh certificate. However, this
requires a certain amount of processing, both on the module and on the host. In order to
prevent unnecessary load, you can authorize a command by presenting a certificate that
contains the required key's KeyID. In order for this certificate to be valid, you must have
loaded the key yourself. You cannot pass the KeyID to another user. In order to authorize
another user, you must create a properly signed certificate.

Code executing in the SEE can be signed by one or more keys by using the signature tools
provided with the CodeSafe Developer Kit. By presenting a certificate of the type CertType
_SEECert, code signed in this way can perform any operation for which the signing key has
permission.

9.9.1. Using a certificate to authorize an action

If you are given a certificate, you must include it with the command it authorizes, after all
the arguments for that command.

For situations in which you are presenting a single certificate:

+ it must not require further authorization

+ the hash of the key that signed the certificate must match the hash that is specified in
the ACL

For situations in which you need to present a chain of certificates, the first certificate must
not require any further authorization. For every certificate in the chain, the module checks
to see that the hash of the signing key matches the hash given in the certifier field of the
ACL that is included in the next certificate or, if this is the last certificate in the chain, the
certifier field of the ACL for the key being authorized. The ACL in each certificate in the
chain must permit the operation to be performed.

If a certificate, or any certificate in a certificate chain, does not authorize the requested
action, the module will return the status Status_AccessDenied.

nCore v13.6.14 Developer Tutorial 136/237

Chapter 9. Key structures

9.9.2. Generating a certificate to authorize another operation

It is the responsibility of the cryptographic application to build certificates. This process is
assisted by the NFast_BuildCmdCert() function that is provided in the generic stub library.

9.9.2.1. Structure

typedef struct {

M_KeyHash keyhash;

M_CertType type;

union M_CertType__CertBody body;
} M_Certificate;

- keyhash is the hash of the key that is used to sign the certificate. This hash must match
the hash that is specified in the key's ACL or in the previous certificate in the chain.

« The following type values are defined:
> CertType_Invalid
> CertType_SigningKey
> CertType_SingleCert
> CertType_SEECert
- The certificate body (body) has one of the following formats:
union M_CertType__CertBody {
M_CertType_SigningKey_CertBody signingkey;

M_CertType_SingleCert_CertBody singlecert;
i

« A signingkey has the following body:

typedef struct {
M_KeyID key;
} M_CertType_SigningKey_CertBody;

« Where:

° key is the KeyID of the key that must be loaded in order to authorize this com-
mand. The key must have the following properties:
° the hash of the key must match the hash that was given in the ACL
° the key must have UseAsCertificate permission set in its ACL in an open group.
- Asinglecert certificate has the following body:
typedef struct {
M_PlainText pubkeydata;

M_CipherText signature;
M_ByteBlock certsignmsg;

nCore v13.6.14 Developer Tutorial 137/237

Chapter 9. Key structures

} M_CertType_SingleCert_CertBody;

° signature is the certsignmsg, which is signed with the private key that corre-
sponds to pubkeydata.

« A certsignmsg has the following structure, which must be marshalled into a byte block:

typedef struct {
M_MagicValue header;
M_Word flags;
int n_hks;
M_KeyHash *hks;
M_Nonce *nonce;
M_ACL *acl;
M_MagicValue footer;
} M_CertSignMessage;

- header

This must be set to the value MagicValue_CertMsgHeader, defined in messages-ags-
dh.h.

- flags
The following flags are defined:

° CertSignMessage_flags_nonce_present
> CertSignMessage_flags_acl_present
> CertSignMessage_flags_do_not_cache

- n_hks and *hks

This table can be used to restrict the keys to which this certificate applies. If there are
entries in this table, then the hash of the key object used—or, for an NSO certificate,
the hash of the module key used—must also be in this table. If the table is empty
(n_hks = 0), then the certificate can be used to authorize any operations on a key with
a matching ACL.

+ *nonce
This is a nonce returned by the GetChallenge command.
. *acl

Optionally, this is a valid ACL that authorizes the action to be performed. If this ACL
contains a certmech or a certifier field in a permission group, then a valid certificate
signed by the key whose hash is in the permission group must precede this certificate
in the chain.

nCore v13.6.14 Developer Tutorial 138/237

Chapter 9. Key structures

- footer

This must be set to the value MagicValue_CertMsgFooter, defined in messages-ags-
dh.h.

The certsgnmsg block should be passed to a suitable signature algorithm. For RSA signature
keys, use a mechanism that hashes the block first (for example, RSAhSHATpPKCS1). The mod-
ule checks all of the above and returns:

. Status_BadCertKeyHash if the verification key does not match the given hash
- Status_VerifyFailed if the signature cannot be verified with the given key

« Status_UnknownChallenge if the nonce was not one that the module had issued
recently

. Status_AccessDenied if the ACL still does not permit your request for some other rea-
son.

The certificate type CertType_SEECert, however, has an empty CertBody. In order to use cer
tificates of this type:

1. Specify in the M_Certificate structure the hash of the signing key that was used to
sign the SEE World data that authorized the action.

2. The access control system checks to ensure that the SEE World data was, in fact,
signed by the specified key.

3. If so, the certificate is accepted much as a signingkey certificate would be. However,
because a signingkey certificate is always treated as fresh but an SEE certificate is
not, the flag PermissionGroup_flags_FreshCerts must not be set in the next ACL in the
stack.

Thus, code executing within the SEE can authorize itself to perform an action requiring
authorization from a key that signed the code. It can do this by creating an M_Certificate,
setting its key hash appropriately, and setting its type to SEECert.

nCore v13.6.14 Developer Tutorial 139/237

Chapter 10. NFKM Functions

10. NFKM Functions

This chapter describes the functions and structures that are used in the C NFKM library.
This library gives access to Security World key-management functions.

10.1. Debugging NFKM functions

Most of the NFKM functions that are described in this chapter can write data to a debug or
error log. However, they do not usually do so except under circumstances outside of those
encountered during normal operation (for example, if the module is not properly initialized).
You can control the writing of data to a debug or error log with the NFKM_L0G environment

variable.

Use the NFKM_getinfo call to get the current state before using any other call that relies on
the data in the NFKM_S1lotInfo structure being up-to-date.

10.2. Functions

Several operations, especially card set creation and loading, require multiple function calls.
In this case there is usually a *_begin function which must be called first. There is a *_nex-
txxx function that can be called a number of times. Finally there is a *_done function. If, due
to user input you decide not to complete the operation there is a *_abort function which
clears up memory.

10.2.1. NFKM_changepp

Change the passphrase on a card.

M_Status NFKM_changepp(
NFast_AppHandle app,
NFastApp_Connection conn,
const NFKM_SlotInfo *slot,
unsigned flags,
const M_Hash *oldpp,
const M_Hash *newpp,
NFKM_ShareFlag remove,
NFKM_ShareFlag set,
struct NFast_Call_Context *cctx

. const NFKM SlotInfo *slot is the slot in which the card is loaded

- unsigned flags is a flags word, the following flag is defined:

nCore v13.6.14 Developer Tutorial 140/237

Chapter 10. NFKM Functions

#tdefine NFKM_changepp_flags_NoPINRecovery Tu

- const M_Hash *oldpp is a pointer to the current passphrase hash

- const M_Hash *newpp is a pointer to the new passphrase hash

NFKM_ShareFlag remove is a list of shares whose passphrases you want to remove,
regardless of newpp

NFKM_ShareFlag set is a list of shares whose passphrases you want to set or change.

0 The remove and set flags must be disjoint. A default appropriate to the
type of card in the slot is used if both remove and set are zero.

10.2.2. NFKM_checkconsistency

This function checks the general consistency of the Security World data:

M_Status NFKM_checkconsistency(
NFast_AppHandle app,
NFKM_DiagnosticContextHandle callctx,
NFKM_diagnostic_callback *informational,
NFKM_diagnostic_callback *warning,
NFKM_diagnostic_callback *fatal,
struct NFast_Call_Context *cctx

It returns Status_OK unless:

.- there was a fatal error, in which case it returns the return value from fatal(), which
must be nonzero

+ any other diagnostic callback returned nonzero, in which case it returns that callback’s
return value (because checking was aborted at that point).

10.2.3. NFKM_checkpp

Verifies that a passphrase is correct for a given card. Each share on the card which has a
passphrase set is checked.

M_Status NFKM_checkpp(
NFast_AppHandle app,
NFastApp_Connection conn,
const NFKM_SlotInfo *slot,
const M_Hash *pp,
struct NFast_Call_Context *cctx

nCore v13.6.14 Developer Tutorial 141/237

Chapter 10. NFKM Functions

10.2.4. NFKM_cmd_generaterandom

Utility function: calls the nCore GenerateRandom command. Requires an app handle and an
existing connection.

M_Status NFKM_cmd_generaterandom(
NFast_AppHandle app,
NFastApp_Connection conn,
M_Word wanted,
unsigned char **block_r,
struct NFast_Call_Context *cctx

Sets *block_r to point to newly allocated memory containing the random data.

10.2.5. NFKM_cmd_destroy

Utility function: calls the nCore Destroy command to destroy an nCore object. Requires an
app handle and an existing connection.

M_Status NFKM_cmd_destroy(
NFast_AppHandle app,
NFastApp_Connection conn,
M_ModuleID mn,
M_KeyID idka,
const char *what,
struct NFast_Call_Context *cctx

The what argument should describe what sort of thing you are destroying, for the benefit of
people reading log messages created when things go wrong.

10.2.6. NFKM_cmd_loadblob

Utility function: calls the nCore Loadblob command to load a blob. Requires an app handle
and an existing connection.

M_Status NFKM_cmd_loadblob(
NFast_AppHandle app,
NFastApp_Connection conn,
M_ModuleID mn,
const M_ByteBlock *blab,
M_KeyID idlt,
M_KeyID *idk_r,
const char *whatfor,
struct NFast_Call_Context *cctx

Set id1t to zero if the blob is module-only.

nCore v13.6.14 Developer Tutorial 142/237

Chapter 10. NFKM Functions

The whatfor argument should describe what blob you are loading, for the benefit of people
reading log messages created when things go wrong.

10.2.7. NFKM_cmd_getkeyplain

Utility function: calls the nCore Export command to obtain the plain text of a key object.
Requires an app handle and an existing connection.

M_Status NFKM_cmd_getkeyplain(
NFast_AppHandle app, NFastApp_Connection
conn,
M_ModuleID mn,
M_KeyID idka,
M_KeyData *keyvalue_r,
const char *what,
struct NFast_Call_Context *cctx

The what argument should describe what sort of key you are querying the plain text of, for
the benefit of people reading log messages created when things go wrong.

When you've finished with the exported key data, call NFastApp_Free_KeyData onit.

10.2.8. NFKM_erasecard

This function erases an operator card in the given slot:

M_Status NFKM_erasecard(
NFast_AppHandle app,
NFastApp_Connection conn,
const NFKM_SlotInfo *slot,
NFKM_FIPS140AuthHandle fips140auth,
struct NFast_Call_Context *cctx

10.2.9. NFKM_erasemodule

Erases a module. The module must be in (pre-)init mode. All NSO permissions are granted,
and the security officer’s key is reset to its default.

M_Status NFKM_erasemodule(
NFast_AppHandle app,
NFastApp_Connection conn,
const NFKM_ModuleInfo *m,
struct NFast_Call_Context *cc

nCore v13.6.14 Developer Tutorial 143/237

Chapter 10. NFKM Functions

- const NFKM_ModuleInfo *mis a pointer to the module to be erased.

10.2.10. NFKM_hashpp

This function hashes a passphrase for use as an Operator Card Set passphrase:

M_Status NFKM_hashpp(
NFast_AppHandle app,
NFastApp_Connection conn,
const char *string,
M_Hash *hash_r,
struct NFast_Call_Context *cctx

10.2.11. NFKM_initworld_*

10.2.11.1. NFKM_initworld_abort

Destroys a Security World initialization context.

void NFKM_initworld_abort(
NFKM_InitWorldHandle iwh

)5

« NFKM_InitWorldHandle iwh is the handle for Security World initialization returned by

NFKM_initwor1ld_begin.

10.2.11.2. NFKM_initworld_begin

Does the initial part of work for a Security World initialization. The following diagram illus-

trates the paths through the NFKM_initworld process:

nCore v13.6.14 Developer Tutorial

144/237

Chapter 10. NFKM Functions

|'/- -.\'
begin }7 5
I_\\-__ /.'
B _ Y :
s ™ s N
_abort ‘ _setinitmoduleparams
. vy . Y
— %
SR
_gethash ‘
I"_ _./'
-
_nexteard
I'-_\- _-_/'
R
_done
I'_ y

M_Status NFKM_initworld_begin(
NFast_AppHandle app,
NFastApp_Connection conn,
NFKM_InitWorldHandle *iwh,
const NFKM_ModuleInfo *m,
const NFKM_InitWorldParams *iwp,
struct NFast_Call_Context *cc

« NFKM_InitWorldHandle *iwh is a pointer to the address of handle to set
- const NFKM_ModuleInfo *mis a pointer to the module to be initialized

- const NFKM_InitWorldParams *iwp is a pointer to the parameters for new world

If this function fails, nothing will have been allocated and no further action need be taken; if
it succeeds, the handle returned must be freed by calling NFKM_initwor1ld_done or NFK-
M_initworld_abort.

It will help if you call NFKM_getinfo again after this function — otherwise you won't be able
to refer to the module’s slots since it was in PreInitialisation mode last time you looked.

10.2.11.3. NFKML_initworld_done

Finishes Security World initialization.

nCore v13.6.14 Developer Tutorial 145/237

Chapter 10. NFKM Functions

M_Status NFKM_initwor1ld_done(
NFKM_InitWorldHandle iwh

)5

« NFKM_InitWorldHandle iwh is the handle for Security World initialization returned by
NFKM_initwor1ld_begin.

If this function succeeds, the handle will have been freed; if it fails, you must still call NFK-
M_initworld_abort.

10.2.11.4. NFKM_initworld_gethash

Fetches the identifying hash for new administrator cards created by this job.

void NFKM_initworld_gethash(
NFKM_InitWorldHandle iwh,
M_Hash *hh

« NFKM_InitWorldHandle iwh is the handle for Security World initialization returned by
NFKM_initworld_begin.

« M_Hash *hhis a pointer to a memory location to which you want the function to write
the hash

10.2.11.5. NFKM_initworld_nextcard

Writes an administrator card.

M_Status NFKM_initworld_nextcard(
NFKM_InitWorldHandle iwh,
NFKM_SlotInfo *s,
const M_Hash *pp,
int *left

« NFKM_InitWorldHandle iwh is the handle for Security World initialization returned by
NFKM_initwor1ld_begin.

NFKM_STotInfo *sis a pointer to the slot containing the admin card
- const M_Hash *ppis a pointer to the passphrase for the card

+ int *left is the address to store number of cards remaining.

10.2.11.6. NFKM_initworld_setinitmoduleparams

nCore v13.6.14 Developer Tutorial 146/237

Chapter 10. NFKM Functions

Configures the parameters for module initialization at the end of the world initialization.

M_Status NFKM_initworld_setinitmoduleparams(
NFKM_InitWorldHandle iwh,
const NFKM_InitModuleParams *imp

« NFKM_InitWor1ldHandle iwh is the handle for Security World initialization returned by
NFKM_initworld_begin.

- const NFKM_InitModuleParams *imp is a pointer to the module initialization params.

10.2.12. NFKM_loadadminkeys_*

10.2.12.1. NFKM_loadadminkeys_begin

Initializes an operation to load administrator keys. Initially, no tokens are selected for load-
ing. The following diagram illustrates the paths through the NFKM_loadadminkeys process:

nCore v13.6.14 Developer Tutorial 147/237

Chapter 10. NFKM Functions

_begin -
| J A\l
_zelecttoken _zelecttokens
» whichtokens =
-
L J = whichtokens ——
_loadtokens -
B _nextcard
-
_getobjects

h,. - !
[_getkey |

- |
[_stealkey

F - ¥
[_gettoken

.,. t
' I

B stealtoken

L)
_done - /

M_Status NFKM_loadadminkeys_begin(

NFast_AppHandle app,
NFastApp_Connection conn,
NFKM_LoadAdminKeysHandle *1akh,
const NFKM_ModuleInfo *m,
struct NFast_Call_Context *cc

« NFKM_LoadAdminKeysHandle *1akh is a pointer to the address to which the function

writes a handle for this operation.

nCore v13.6.14 Developer Tutorial

148/237

Chapter 10. NFKM Functions

- const NFKM_ModuleInfo *mis a pointer to the module on which you wish to load the
keys.

10.2.12.2. NFKM_loadadminkeys_done

Frees a key loading context. Any keys and tokens remaining owned by the context are
destroyed.

void NFKM_loadadminkeys_done(
NFKM_LoadAdminKeysHandle lakh
)5

« NFKM_LoadAdminKeysHandle 1akh is the handle returned by NFKM_loadadminkeys_begin

10.2.12.3. NFKM_loadadminkeys_{get,steal}{key,token}

These are convenience functions which offer slightly simpler interfaces than NFKM_loadad-
minkeys_getobjects.

The steal functions set the NFKM_LAKF_STEAL flag, which the get functions do not; the key
functions load keys whereas the token functions fetch logical tokens. See NFKM_loadad-
minkeys_getobjects for full details about the behavior of these functions.

M_Status NFKM_loadadminkeys_getkey(
NFKM_LoadAdminKeysHandle lakh,
int i,
M_KeyID *k

M_Status NFKM_loadadminkeys_stealkey(
NFKM_LoadAdminKeysHandle lakh,
int 1,
M_KeyID *k

M_Status NFKM_loadadminkeys_gettoken(
NFKM_LoadAdminKeysHandle lakh,
int i,
M_KeyID *k

M_Status NFKM_loadadminkeys_stealtoken(
NFKM_LoadAdminKeysHandle lakh,
int 1,
M_KeyID *k

nCore v13.6.14 Developer Tutorial 149/237

Chapter 10. NFKM Functions

« NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin
- int 1 isthe label for the key or token

« M_KeyID *k is a pointer to the address to store the keyid

o A key cannot be loaded once its logical token has been stolen. There-
fore, if you want to steal a key and its token, you must steal the key first.

10.2.12.4. NFKM_loadadminkeys_getobjects

Extracts objects from the admin keys context.

M_Status NFKM_loadadminkeys_getobjects(
NFKM_LoadAdminKeysHandle 1lakh,
M_KeyID *v,
const int *v_k,
const int *v_lt,
unsigned f

NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin
« M_KeyID *v is a pointer to the output vector of keyids

- const int *v_kis a vector of key labels

. const int *v_1t is a vector of token labels

- unsigned fis a bitmap of flags

Extracts objects from the admin keys context. Logical tokens must have been loaded using
the selecttokens, loadtokens and nextcard interface; keys must have their protecting logi-
cal token loaded already. The KeyIDs for the objects are stored in the array v in the order of
their labels in the v_k and v_1t vectors, keys first. The label vectors are terminated by an
entry with the value -1. Either v_k or v_1t (or both) may be null to indicate that no objects
of that type should be loaded.

Usually, the context retains ownership of the objects extracted: the objects will remain avail
able to other callers, and will be Destroyed when the context is freed. If the flag NFKM_LAK-
F_STEAL is set in f, the context will forget about the object; it will not be available to subse-
quent callers, nor be Destroyed automatically.

Stealing a logical token will prevent keys from being loaded from blobs
until that token is reloaded. However, note that keys which have already
been loaded but not stolen will remain available.

As an example, consider the case where LT has been loaded. Two calls are made to getob-
jects: one which fetches Kgg, and a second which steals the token LTg. It is no longer possi-

nCore v13.6.14 Developer Tutorial 150/237

Chapter 10. NFKM Functions

ble to get Kza (because LTg is now unavailable), but further requests to get Kge will be hon-
oured.

If an error occurs, the contents of the vector v are unspecified, and no objects will have
been stolen. However, some of the requested keys may have been loaded.

10.2.12.5. NFKM_loadadminkeys_loadtokens

Starts loading the necessary tokens. It might be possible that they're all loaded already, in
which case *left is reset to zero on exit.

M_Status NFKM_loadadminkeys_loadtokens(
NFKM_LoadAdminKeysHandle lakh,
int *left

« NFKM_LoadAdminKeysHandle 1akh is the handle returned by NFKM_loadadminkeys_begin

« int *left is the address at which to store the number of cards remaining.

10.2.12.6. NFKM_loadadminkeys_nextcard

Reads an admin card.

M_Status NFKM_loadadminkeys_nextcard(
NFKM_LoadAdminKeysHandle lakh,
const NFKM_SlotInfo *s,
const M_Hash *pp, int *left

NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin
- const NFKM_SlotInfo *sis a pointer to slot to read
- const M_Hash *ppis a pointer to passphrase hash, or NULL if the card has no passphrase

- int *left is the address at which to store the number of cards remaining.

10.2.12.7. NFKM_loadadminkeys_selecttoken

Selects a single token to be loaded.

M_Status NFKM_loadadminkeys_selecttokens(
NFKM_LoadAdminKeysHandle 1akh,
int k

nCore v13.6.14 Developer Tutorial 151/237

Chapter 10. NFKM Functions

« NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin

- int *kis a key or token label. A key label requests that the token protecting that key
be loaded.

10.2.12.8. NFKM_loadadminkeys_selecttokens

Selects a collection of tokens to be loaded.

M_Status NFKM_loadadminkeys_selecttokens(
NFKM_LoadAdminKeysHandle lakh,
const int *k

« NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin

- const int *kis an array of key or token labels

The array is terminated by an entry containing the value -1. Each entry may be either a key
or token label. A key label requests that the token protecting that key be loaded.

10.2.12.9. NFKM_loadadminkeys_whichtokens

Discovers which logical tokens will be read in the next or current loadtokens operation.

NFKM_ShareFlag NFKM_loadadminkeys_whichtokens(
NFKM_LoadAdminKeysHandle lakh
)5

« NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin

Returns a bitmap of logical tokens to be loaded.

10.2.13. NFKM_loadcardset_*

10.2.13.1. NFKM_loadcardset_abort

This function aborts the loading of a card set:

void NFKM_loadcardset_abort(
NFKM_LoadCSHandle state
)E

10.2.13.2. NFKM_loadcardset_begin

nCore v13.6.14 Developer Tutorial 152/237

Chapter 10. NFKM Functions

Use the NFKM_getinfo call to get the current state before using any
other call that relies on the data in the NFKM_STotInfo structure being up
to date.

This function prepares to load a card set. The following diagram illustrates the paths
through the NFKM_loadcardset process:

_begin
)
_abort
_nexteard
_done

M_Status NFKM_loadcardset_begin(
NFast_AppHandle app,
NFastApp_Connection conn,
const NFKM_ModuleInfo *module,
const NFKM_CardSet *cardset,
NFKM_LoadCSHandle *state_r,
struct NFast_Call_Context *cctx

10.2.13.3. NFKM_loadcardset_done

This function completes the loading of a card set:

M_Status NFKM_loadcardset_done(
NFKM_LoadCSHandle state,
M_KeyID *1logtokid_r

10.2.13.4. NFKM_loadcardset_nextcard

Use the NFKM_getinfo call to get the current state before using any
9 other call that relies on the data in the NFKM_S1lotInfo structure being up

nCore v13.6.14 Developer Tutorial 153/237

Chapter 10. NFKM Functions

to date.

This function attempts to load the next card in a card set:

M_Status NFKM_loadcardset_nextcard(
NFKM_LoadCSHandle state,
const NFKM_SlotInfo *slot,
const M_Hash *pp,
int *sharesleft_r,
struct NFast_Call_Context *cctx

It returns Status_OK if the card was loaded successfully. Otherwise, in the event of an error,
the return value will be TokenIOError, PhysTokenNotPresent, DecryptFailed, or potentially
something else in the event of an unrecoverable error. After any error, even a recoverable
one, *sharesleft_r is not changed.

10.2.14. NFKM_loadworld_*

10.2.14.1. NFKM_loadworld_abort

Destroys a Security World loading context.

void NFKM_loadworld_abort(
NFKM_LoadWor1dHandle 1wh
)E

« NFKM_LoadWor1dHandle 1wh is the handle for the Security World to be loaded returned
by NFKM_loadwor1ld_begin.

10.2.14.2. NFKM_loadworld_begin

Initializes an operation to program a module with an existing Security World. The following
diagram illustrates the paths through the NFKM_loadwor1d process:

nCore v13.6.14 Developer Tutorial 154/237

Chapter 10. NFKM Functions

_begin
) Y
_abort _setinitmoduleparams
Y
_nexteard
_done

M_Status NFKM_loadworld_begin(
NFast_AppHandle app,
NFastApp_Connection conn,
NFKM_LoadWor1dHandle *1wh,
const NFKM_ModuleInfo *m,
struct NFast_Call_Context *cc

« NFKM_LoadWorldHandle *1wh is a pointer to the address of handle to fill in

- const NFKM_ModuleInfo *mis a pointer to the module to be initialized

If this function fails, nothing will have been allocated and no further action need be taken; if
it succeeds, the handle returned must be freed by calling NFKM_loadwor1d_done or NFK-
M_loadworld_abort.

As with initializing new Security Worlds, it will help if you call NFKM_getinfo again after this
function.

10.2.14.3. NFKM_loadworld_done

Finishes Security World loading.

M_Status NFKM_loadworld_done(
NFKM_LoadWor1dHandle 1wh
)E

« NFKM_LoadWorldHandle 1wh is the handle for the Security World to be loaded returned

nCore v13.6.14 Developer Tutorial 155/237

Chapter 10. NFKM Functions

by NFKM_loadwor1ld_begin.

If this function succeeds, the handle will have been freed; if it fails, you must still call NFK-
M_Tloadworld_abort.

10.2.14.4. NFKM_loadworld_nextcard

Reads an administrator card.

M_Status NFKM_loadworld_nextcard(
NFKM_LoadWor1dHandle 1wh,
const NFKM_SlotInfo *s,
const M_Hash *pp, int *left

NFKM_LoadWorldHandle 1wh is the handle for the Security World to be loaded returned
by NFKM_loadwor1ld_begin.

- const NFKM_SlotInfo *sis a pointer to the slot containing the admin card
- const M_Hash *ppis a pointer to the passphrase for the card

« int *left is a pointer to the address to store number of cards remaining

10.2.14.5. NFKM_loadworld_setinitmoduleparams

Configures the parameters for module initialization at the end of the world initialization.

M_Status NFKM_loadworld_setinitmoduleparams(
NFKM_LoadWor1dHandle 1wh,
const NFKM_InitModuleParams *imp

« NFKM_LoadWorldHandle 1wh is the handle for the Security World to be loaded returned
by NFKM_loadwor1ld_begin

- const NFKM_InitModuleParams *imp is a pointer to the module initialization parameters.

10.2.15. NFKM_makecardset_*

10.2.15.1. NFKM_makecardset_abort

This function aborts the creation of a card set:

void NFKM_makecardset_abort(
NFKM_MakeCSHandle state
)5

nCore v13.6.14 Developer Tutorial 156/237

Chapter 10. NFKM Functions

10.2.15.2. NFKM_makecardset_begin

This function prepares to make a new card set. The following diagram illustrates the paths
through the NFKM_makecardset:

|'If'- ™
=
N y
I_,,I_\
‘ _gethash ‘
L ¢ f
K..é..
i - Y
-'/ " 4 " _malkezhareacl
_abort | _setflags o ,
I'\._ _f)I I"‘-\._ _a-'”l | i
i] ! I/' ""-._
_setshareacl
l\.__ -./I
A
I A
4 ™y
_nexteard ‘
'_ A
s ™,
‘ _getlogicaltoken
M v
."f- -.\'.
‘ _done ‘
N)}
o NFKM_makecardset_setflags, NFKM_makecardset_makeshareacl or NFKM_-
makecardset_setshareacl are not recommended for normal use

Use the NFKM_getinfo call to get the current state before using any
0 other call that relies on the data in the NFKM_STotInfo structure being up
to date.

M_Status NFKM_makecardset_begin(
NFast_AppHandle app,
NFastApp_Connection conn,
const NFKM_ModuleInfo *module,

nCore v13.6.14 Developer Tutorial 157/237

Chapter 10. NFKM Functions

NFKM_MakeCSHandle *state_r,

const char *name,

int n,

int k,

M_Word flags,

int timeout,

NFKM_FIPS140AuthHandle fips14@auth,
struct NFast_Call_Context *cctx

- const NFKM_ModuleInfo *module is a pointer to the module to use to make the card set

- NFKM_MakeCSHandle *state_r is a pointer to the card set state.

typedef struct NFKM_MakeCSState
*NFKM_MakeCSHandle;

- const char *name is the name to use for this card set.
- int nis the total number of cards in the set

« int kis the quorum, the number of cards that must be read to recreate the logical
token.

- M_Word flags a flags word, the following flag is defined:

NFKM_SAF_REMOTE Tu /*Allow remote reading of shares */

- int timeout is the time out for the card set or O for no time out. This is the time in sec-
onds from the loading of the card set after which the module will destroy the logical
tokens protected by the card set.

NFKM_FIPS140AuthHandle fips140@auth is only required in FIPS 140 Level 3 Security Worlds.

10.2.15.3. NFKM_makecardset_done

This function completes the creation of a card set:

M_Status NFKM_makecardset_done(
NFKM_MakeCSHandle state,
NFKM_CardSetIdent *ident_r,
NFKM_FIPS14@AuthHandle fips14@auth

10.2.15.4. NFKM_makecardset_gethash

The functions fetches the identifying hash for cards created by this makecardset job.

void NFKM_makecardset_gethash(
NFKM_MakeCSHandle mch,

nCore v13.6.14 Developer Tutorial 158/237

Chapter 10. NFKM Functions

M_Hash *hh

10.2.15.5. NFKM_makecardset_getlogicaltoken

Fetches the logical token id for a card set which has been written.

M_Status NFKM_makecardset_getlogicaltoken(
NFKM_MakeCSHandle mch,
M_KeyID *1tid,
unsigned f

)i

#define NFKM_MCF_STEAL 1u

Only call this function after NFKM_makecardset_nextcard says there are no shares left.

If you set NFKM_MCF_STEAL in f then you get to keep the logical token id and NFKM_makecard-
set_done won't destroy it.

10.2.15.6. NFKM_makecardset_makeshareacl

Constructs a share ACL.

M_Status NFKM_makecardset_makeshareacl(
NFKM_MakeCSHandle mch,
M_Word f,
M_ACL *acl

Dispose of the ACL using NFastApp_FreeACL when you've finished.

10.2.15.7. NFKM_makecardset_nextcard

Use the NFKM_getinfo call to get the current state before using any
0 other call that relies on the data in the NFKM_STotInfo structure being up
to date.

This function writes the next card in a new card set:

M_Status NFKM_makecardset_nextcard(
NFKM_MakeCSHandle state,
const char *name,
NFKM_SlotInfo *slot,
const M_Hash *pp,
int *sharesleft_r,
NFKM_FIPS14QAuthHandle fips14@auth

nCore v13.6.14 Developer Tutorial 159/237

Chapter 10. NFKM Functions

It returns values and semantics as for NFKM_Tloadcardset_nextcard.

The per-card name must be NULL for n=1 card sets, and non-NULL for all other card sets.

10.2.15.8. NFKM_makecardset_setflags

M_Word NFKM_makecardset_setflags(
NFKM_MakeCSHandle mch,
M_Word bic,
M_Word xor

Returns the current flags; then clears the bits in bic and toggles the bits in xor.
The flags wanted are the Card_flags_* ones.

It is best to avoid using this function; instead, pass appropriate Card-
Set_flags_to NFKM_makecardset_begin and it will automatically set
appropriate share flags.

10.2.15.9. NFKM_makecardset_setshareacl

Sets the ACL to be set on subsequent shares of this card set.

void NFKM_makecardset_setshareacl(
NFKM_MakeCSHandle mch,
M_ACL *acl

The ACL is not copied: the pointer must remain valid. The initial state is that no ACL is set
for shares; to return to this state, pass a null pointer.

It is best to avoid using this function; instead, pass appropriate Card-
o Set_flags_to NFKM_makecardset_begin and it will construct and use an
appropriate ACL.

10.2.16. NFKM_newkey_*

10.2.16.1. NFKM_newkey_makeacl

This function creates the ACL for a new key:

M_Status NFKM_newkey_makeacl(
NFast_AppHandle app,
NFastApp_Connection conn,

nCore v13.6.14 Developer Tutorial 160/237

Chapter 10. NFKM Functions

const NFKM_WorldInfo *world
const NFKM_CardSet *cardset
M_Word flags,

M_Word opperms_base,

M_Word opperms_maskout,

M_ACL *acl

struct NFast_Call_Context *cctx

1. const NFKM WorldInfo *world must be non-NULL.

2. const NFKM_CardSet *cardset must be NULL for module-only protection, or non-NULL

for Operator Card Set protection.

3. The following flags are defined:

a.

NFKM_NKF_IKWID

If this flag is set, NFKM_makeacl does not perform its standard checks. This lets you
create keys with esoteric ACLs. IKWID stands for 'l know what I'm doing'. You
should not set this flag unless you are sure this is true.

. NFKM_NKF_NVMemB1lob

If this flag is set, NFKM_makeac1 creates an NVRAM key blob, using the standard
ACL options.

. NFKM_NKF_NVMemB1obX

If this flag is set, NFKM_makeacl creates an NVRAM key blob, using the extended
options.

. NFKM_NKF_PerAuthUseLimit

If this flag is set, NFKM_makeac1 creates an ACL with a per auth use limit.

. NFKM_NKF_Protection_mask
. NFKM_NKF_ProtectionCardSet
. NFKM_NKF_ProtectionModule

It is not necessary to set this flag in conjunction with NFKM_makeac1 or NFKM_make-
blobs.

. NFKM_NKF_ProtectionNoKey

This flag can be used when generating only public keys.

i. NFKM_NKF_ProtectionUnknown

It is not necessary to set this flag in conjunction with NFKM_makeac1 or NFKM_make-
blobs.

nCore v13.6.14 Developer Tutorial 161/237

Chapter 10. NFKM Functions

j- NFKM_NKF_PublicKey
If this flag is set, NFKM_makeacl creates the ACL for the public half of a key.

k. NFKM_NKF_Recovery_mask

. NFKM_NKF_RecoveryDefault, NFKM_NKF_RecoveryRequired, NFKM_NKF_RecoveryDis-
abled, NFKM_NKF_RecoveryForbidden

If any of these flags are returned by NFKM_findkey, it indicates that recovery is

enabled.
Result for a new key if the Security World has enabled disabled
recovery:
NFKM_NKF_RecoveryDefault enabled disabled
NFKM_NKF_RecoveryRequired enabled InvalidACL
NFKM_NKF_RecoveryDisabled disabled disabled
NFKM_NKF_RecoveryForbidden InvalidACL disabled

m. NFKM_NKF_RecoveryNoKey

If this flag is returned by NFKM_findkey, it indicates that there is no private key.
n. NFKM_NKF_RecoveryUnknown

If this flag is returned by NFKM_f1indkey, it indicates that recovery is unknown.
o. NFKM_NKF_SEEAppKey

If this flag is set, NFKM_makeacl creates an ACL with a certifier for a SEE World. It
has been superseded by NFKM_NKF_SEEAppKeyHashAndMech.

p. NFKM_NKF_SEEAppKeyHashAndMech

If this flag is set, NFKM_makeacl creates an ACL with a certifier for a SEE World
specifying the key hash and signing mechanism.

g. NFKM_NKF_TimeLimit
If this flag is set, NFKM_makeac1 creates an ACL with a time limit.

r. NFKM_NKF_HasCertificate

4. M_ACL *acl —the ACL will be overwritten and, therefore, should not contain any point-
ers to memory that has been operated on by malloc.

Set to have oppermissions values like _Sign, _Decrypt,_UseAsBlobKey, _UseAsCertifi-

nCore v13.6.14 Developer Tutorial 162/237

Chapter 10. NFKM Functions

cate, or similar. In many cases, you can set oppermissions to be one or more of the fol-
lowing macros, depending on the capabilities of the key:

o

NFKM_DEFOPPERMS_SIGN
NFKM_DEFOPPERMS_VERIFY
NFKM_DEFOPPERMS_ENCRYPT

NFKM_DEFOPPERMS_DECRYPT
You can also use some combination of those macros for keys that can do both, such as

o

o

o

RSA and symmetric keys:

#define NFKM_DEFOPPERMS_SIGN
(Act_OpPermissions_Details_perms_Sign|Act_OpPermissions_Details_perms_UseAsCertificate
|Act_OpPermissions_Details_perms_SignModuleCert)

#define NFKM_DEFOPPERMS_VERIFY (Act_OpPermissions_Details_perms_Verify)

#define NFKM_DEFOPPERMS_ENCRYPT
(Act_OpPermissions_Details_perms_Encrypt|Act_OpPermissions_Details_perms_UseAsBlobKey)
#define NFKM_DEFOPPERMS_DECRYPT
(Act_OpPermissions_Details_perms_Decrypt|Act_OpPermissions_Details_perms_UseAsBlobKey)

If you wish to modify the default ACL, you may do so after calling this function. In such
a case, the ACL will be allocated dynamically.

The Protection flags either must be Unknown or they must be NFKM_Module or NFKM_Card
Set and correspond to whether cardset is non-NULL. In any case, NFKM_CardSet deter-
mines the protection.

You must free the ACL at some point, either by using NFastApp_FreeACL or, if the ACL
was part of a command, as part of a call to NFastApp_Free_Command.

10.2.16.2. NFKM_newkey_makeaclx

This is an alternative to NFKM_newkey_makeacl which enables you to define more complex
ACLs by defining input in the NFKM_MakeACLParams structures.

M_Status NFKM_newkey_makeaclx(
NFast_AppHandle app,
NFastApp_Connection conn,
const NFKM_WorldInfo *w,
const NFKM_MakeACLParams *map,
M_ACL *acl,
struct NFast_Call_Context *cc

typedef struct NFKM_MakeACLParams {

M_Word f;

M_Word op_base, op_bic;

const NFKM_CardSet *cs;

const M_Hash *seeinteg; SEEAppKey

nCore v13.6.14 Developer Tutorial 163/237

Chapter 10. NFKM Functions

M_Word timelimit; TimeLimit

const M_KeyHashAndMech *seeintegkham; SEEAppKeyHashAndMech

M_Word pa_uselimit; PerAuthUselimit
NFKM_FIPS14@AuthHandle fips; NVMemBlob, maybe others later
const M_Hash *hknvacl; NVMemB1lobX

} NFKM_MakeACLParams;

The values for NFKM_Wor1dInfo and NFKM_CardSet are the same as for NFKM_newkeymakeacl.

o If you are creating a key for a SEE application, specify the application
signing key using a M_KeyHashAndMech. Use of an M_Hash is deprecated.

10.2.16.3. NFKM_newkey_makeblobs

This function creates the working and recovery blobs for a newly generated key:

M_Status NFKM_newkey_makeblobs(
NFast_AppHandle app,
const NFKM_WorldInfo *world,
M_KeyID privatekey,
M_KeyID publickey,
const NFKM_CardSet *cardset,
M_KeyID logtokenid,
M_Word flags,
NFKM_Key *newkeydata_io,
struct NFast_Call_Context *cctx

- world must be non-NULL.

« One or both of privatekey and publickey may be O if only one-half, or possibly even
neither, is to be recorded. If the key is a symmetric key, supply it as privatekey.

- cardset and logtokenid must be set consistently; either both must be NULL or both
must be non-NULL, depending on whether cardset was O in NFKM_makeac1.

- flags should be as in NFKM_makeac1 for the private half (_PublicKey must not be speci-
fied).

This call overwrites the previous contents of newkeydata_io members privblob, -pubblob
and privblobrecov, so these should not contain pointers to any memory that has been oper
ated on by malloc. This call also fills in the hash member. It does not change the other mem-
bers, which must be set appropriately before the caller uses NFKM_recordkey.

10.2.16.4. NFKM_newkey_makeblobsx

This function creates the working and recovery blobs for a newly generated key— it offers
more functionality than NFKM_newkey_makeblobs as you can specify details for the blobs in a
parameters structure. In particular it may be used to create a key blob stored in NVRAM.

nCore v13.6.14 Developer Tutorial 164/237

Chapter 10. NFKM Functions

M_Status NFKM_newkey_makeblobsx(
NFast_AppHandle app,
NFastApp_Connection conn,
const NFKM_WorldInfo *w,
const NFKM_MakeBlobsParams *mbp,
NFKM_Key *k,
struct NFast_Call_Context *cc

typedef struct NFKM_MakeBlobsParams {
M_Word f;

M_KeyID kpriv, kpub, 1t;

const NFKM_CardSet *cs;

NFKM_FIPS14@AuthHandle fips; NVMemBlob, maybe others later
M_KeyID knv; NVMemBlob[X]
M_KeyID knvacl; NVMemBlobX

} NFKM_MakeBlobsParams;

10.2.16.5. NFKM_newkey_writecert

Sets up the key generation certificate information for a new key.

M_Status NFKM_newkey_writecert(
NFast_AppHandle app,
NFastApp_Connection conn,
const NFKM_ModuleInfo *m,
M_KeyID kpriv,
M_ModuleCert *mc,
NFKM_Key *k,
struct NFast_Call_Context *cctx

The argument mc should be the key generation certificate for a symmetric or private key.

To free the data stored in the Key structure, call NFKM_freecert.

10.2.17. NFKM_operatorcard_changepp

0 This function has been superseded by the NFKM_changepp function, see
NFKM_changepp.

This function changes the passphrase on an operator card:

M_Status NFKM_operatorcard_changepp(
NFast_AppHandle app,
NFastApp_Connection conn,
const NFKM_SlotInfo *slot,
const M_Hash *oldpp,
const M_Hash *newpp,
struct NFast_Call_Context *cctx

nCore v13.6.14 Developer Tutorial 165/237

Chapter 10. NFKM Functions

Either oldpp or newpp may be NULL to indicate the absence of a passphrase.

10.2.18. NFKM_operatorcard_checkpp

o This function has been superseded by the NFKM_checkpp function, see
NFKM_checkpp.

This function checks the passphrase on an operator card:

M_Status NFKM_operatorcard_checkpp(
NFast_AppHandle app,
NFastApp_Connection conn,
const NFKM_SlotInfo *slot,
const M_Hash *pp,
struct NFast_Call_Context *cctx

pp may be NULL to indicate the absence of a passphrase.

10.2.19. NFKM_recordkey

This function writes the key blobs to the kmdata area of the host computer’s hard disk:

M_Status NFKM_recordkey(
NFast_AppHandle app,
NFKM_Key *key,
struct NFast_Call_Context *cctx

NFKM_recordkey does not take over any of the memory in the key. Whether the key is mod-
ule protected, smart-card protected, or has some other kind of protection is inferred from
the privblob details.

The NFKM_Key block should be cleared to all-bits-zero before use. If you use any advanced
features, set the version field (member v) to the correct value before calling recordkey.

10.2.20. NFKM_recordkeys

NFKM_recordkeys does the same job as NFKM_recordkey for multiple keys.

M_Status NFKM_recordkeys(
NFast_AppHandle app,
NFKM_Key **k,
size_t n,
struct NFast_Call_Context *cc

nCore v13.6.14 Developer Tutorial 166/237

Chapter 10. NFKM Functions

Either all the keys are written or none are.

10.2.21. NFKM_replaceacs_*

10.2.21.1. NFKM_replaceacs_abort

Destroys an admin card replacement context.

void NFKM_replaceacs_abort(
NFKM_ReplaceACSHandle rah
IE

NFKM_ReplaceACSHandle rahis the job handle returned by NFKM_replaceacs_begin

10.2.21.2. NFKM_replaceacs_begin

Starts a job to replace the Administrator Card Set. The following diagram illustrates the
paths through the NFKM_replaceacs process:

nCore v13.6.14 Developer Tutorial 167/237

Chapter 10. NFKM Functions

o

i ™
‘ _preflizhtcheck
\ Y,

¢ ™

4{ _begin

‘ b S

P

. ™ j ™
‘ _abort ‘ _readeard
. N v
‘ ' ™
‘ _middle
I_\- -._I"l
' ™
‘ _writecard
. A
s ™
‘ _done

S

M_Status NFKM_replaceacs_begin(
NFast_AppHandle app,
NFastApp_Connection conn,
NFKM_ReplaceACSHandle *rah,
const NFKM_ModuleInfo *m,
struct NFast_Call_Context *cc

« NFKM_ReplaceACSHandle *rahis a pointer to the address to which the function will write
the job handle

- const NFKM_ModuleInfo *mis a pointer to the module to use for the transfer

If this function fails, there is nothing else to do; if it succeeds, you must either go all the
way through NFKM_replaceacs_done or call NFKM_replaceacs_abort to throw away all of the
state.

10.2.21.3. NFKM_replaceacs_done

nCore v13.6.14 Developer Tutorial 168/237

Chapter 10. NFKM Functions

Wraps up an admin card replacement job.

M_Status NFKM_replaceacs_done(
NFKM_ReplaceACSHandle rah
)5

« NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

10.2.21.4. NFKM_replaceacs_gethash

Fetches the identifying hash for new administrator cards created by this job.

void NFKM_replaceacs_gethash(
NFKM_ReplaceACSHandle rah,
M_Hash *hh

« NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

« M_Hash *hhis a pointer to the address to write the hash

10.2.21.5. NFKM_replaceacs_middle

Does the work in the middle of an admin card set replacement job.

M_Status NFKM_replaceacs_middle(
NFKM_ReplaceACSHandle rah
D5

NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

10.2.21.6. NFKM_replaceacs_preflightcheck

Verifies that a replaceacs operation is safe.

int NFKM_replaceacs_preflightcheck(
NFast_AppHandle app,
const NFKM_WorldInfo *w,
int *unsafe,
struct NFast_Call_Context *cc

« NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin
- const NFKM_WorldInfo *wis a pointer to the world information

- int *unsafe is cleared if safe, nonzero if not

nCore v13.6.14 Developer Tutorial 169/237

Chapter 10. NFKM Functions

If the operation is safe, *unsafe is cleared; otherwise it will contain a nonzero value. Later,
this might explain in more detail what the problem is. Currently, the only check is for world
file entries which aren’t understood (and therefore might be blobs of keys which would
need to be replaced).

10.2.21.7. NFKM_replaceacs_readcard

Reads an administrator card, with a view to replacing it.

M_Status NFKM_replaceacs_readcard(
NFKM_ReplaceACSHandle rah,
const NFKM_SlotInfo *s,
const M_Hash *pp,
int *left

« NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin
- const NFKM_SlotInfo *sis a pointer to the slot containing the admin card
- const M_Hash *ppis a pointer to the passphrase hash for the card

« int *left is a pointer to the address to store number of cards remaining

10.2.21.8. NFKM_replaceacs_writecard

Writes a replacement administrator card.

M_Status NFKM_replaceacs_writecard(
NFKM_ReplaceACSHandle rah,
NFKM_SlotInfo *s, const M_Hash *pp,
int *left

« NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

NFKM_STotInfo *sis a pointer to the slot containing admin card
- const M_Hash *ppis a pointer to the passphrase hash for the card

« int *left is a pointer to the address to store number of cards remaining

nCore v13.6.14 Developer Tutorial 170/237

Chapter 11. OpenSSL with NFKM Engine

11. OpenSSL with NFKM Engine

11.1. Quick usage

Assuming you have a key named sslkey protected by OCS ss10CS and the current working
directory contains your index.html file. Ensure that the environment variable OPENSS-
L_ENGINES is defined as $NFAST_HOME/openss1/1ib/engines-3/0 on Linux or
%SNFAST_HOME%\openss1\1lib\engines-3\0 on Windows before running the following. The
command assumes that you already have a certificate. If you don't have one, see the com-
mand in Testing with a self-signed certificate.

The command has been wrapped for readability but should be written on one line.

preload -c ss10CS openssl s_server -engine nfkm -keyform engine
-key simple_sslkey -port 4433 -cert <path-to-certificate> -HTTP

You can verify that this works with cURL command in a different terminal window:

curl https://www.example.com:4433/index.html

The output should print the contents of your index.html file.

You can see the server using the HSM to make signatures by running openss1 with NFLOG_-
SEVERITY=debug1 set.

11.2. Testing with a self-signed certificate

The following assumes there is an existing OCS called exampleocs present in the Security
World and that the environment variable OPENSSL_ENGINES is defined as
$NFAST_HOME/openss1/1ib/engines-3/0 on Linux or $NFAST_HOME%\openss1\1lib\engines-3\0
on Windows. The commands have been wrapped for readability but should each be written
on one line.

Verify that the NFKM engine works with openssl.

1. Create a key using the generatekey utility.

generatekey simple protect=token recovery=yes ident=ssltest
plainname=ssltest type=RSA size=2048 pubexp='" nvram=no

2. Create a self-signed certificate for the key using openssl req.

nCore v13.6.14 Developer Tutorial 171/237

Chapter 11. OpenSSL with NFKM Engine

preload -c exampleocs openssl req -x509 -engine nfkm -keyform engine
-subj /CN=www.example.com -addext subjectAltName=DNS:www.example.com
-key simple_ssltest -new > ssltest.pem

3. openssl s_server includes an example web server, which can be told to use the NFKM
engine with the newly created key and certificate.

a. Make a new directory in your current directory with a new file called index.html
containing the text <h1>Sample page</h1>.

b. From the new directory, run the following command.

preload -c exampleocs openssl s_server -engine nfkm -keyform engine
-key simple_ssltest -port 4433 -cert ../ssltest.pem -HTTP

You can now request the page using cURL in a different terminal window.

curl --insecure https://www.example.com:4433/index.html

This should print <h1>Sample page</h1>.

You can see the server using the HSM to make signatures by running openss1 with NFLOG_-
SEVERITY=debug1 set.

11.3. Common problems

11.3.1. invalid engine "nfkm"

Ensure the environment variable OPENSSL_ENGINES is defined as
$NFAST_HOME/openss1/1ib/engines-3/0 on Linux or $NFAST_HOME%\openss1\1lib\engines-3\0
on Windows.

11.3.2. unable to load server certificate private key file

Ensure that preload is used when using operations with an OCS-protected or softcard-pro-
tected key:

. preload -c ocsname openssl [+-]

- preload -s softcardname openssl [++]

nCore v13.6.14 Developer Tutorial 172/237

Chapter 12. nCore APl commands

12. nCore APl commands

This chapter describes the complete nShield command set. It is divided into the following

sections:
- Basic commands

These commands are available on all nShield modules. They do not offer any key-man-
agement functionality

- Key-management commands
These commands are only available on nForce and nShield modules.
- Commands used only by the generic stub

These commands are included for information only. You should not need to call them
directly. Commands are listed alphabetically within each section. For each command,
the following information is listed:

« the command name
+ the states in which the command can be issued
- the required inputs

+ the expected output

If the module is unable to complete a requested command due to a
non-fatal condition, such as lack of memory or an unknown command,
0 the module sends a response with no reply data. The reply’s cmd value is
sent to C(md_ErrorReturn with the condition indicated by the status
word that was returned in the header.

Unless specified otherwise, there is a limit of 8K on the total message
0 that can be sent to the nShield server for each command, or in reply.
This means that the maximum length of any byteblock sent for process-

ing must be somewhat less that 8K.

12.1. Basic commands

The following basic commands, described in this section, are available on all nShield mod-
ules:

« ClearUnit

nCore v13.6.14 Developer Tutorial 173/237

Chapter 12. nCore APl commands

« ClearUnitEx
+ ModExp
+ ModExpCrt

These commands perform cryptographic acceleration without key management.

These commands are intended for use by applications that manage their own keys.

12.1.1. ClearUnit

All non-error states "Privileged" users only

This command resets a module, returning it to the same mode that it was previously in. The
module and server negotiate to enable the module to be reset without disturbing the host'’s
PCl subsystem. When the module is cleared:

- all object handles, for example 1D, or IDyy, are invalidated
 any share reassembly process that is currently active is aborted

- the module enters the self-test state.
ClearUnit does not destroy:

« module keys Ky
« module signing key Ky,
+ long-term fixed signing key K¢

« nShield Security Officer's key Kyso.

12.1.1.1. Arguments

struct M_Cmd_ClearUnit_Args {
M_ModuleID module; ModuleID
};

12.1.1.2. Reply
The reply structure for this command is empty.

The status is Status_0K or, if the unit is already being reset, Status_UnitReset. The reply is
sent immediately (that is, before the unit is actually cleared).

nCore v13.6.14 Developer Tutorial 174/237

Chapter 12. nCore APl commands

12.1.1.3. Notes

In versions of the server prior to 1.40, the ClearUnit command caused a hard reset. In
release 1.40, the ClearUnit command was given a new command number, and the old com-
mand number was renamed 01dClearUnit, which is included for backward compatibility
only. From release 1.40, servers interpret ClearUnit and 01dClearUnit as ClearUnit. The
ClearUnit command fails with Status_UnknownCommand on servers older than release 1.40.

12.1.2. ClearUnitEx

All non-error states "Privileged" users only
This command resets a module, and optionally enables you to change the mode as required.
ClearUnitEx is implemented entirely by the hardserver, which:

+ Checks and sets the scratchpad registers

« Setsawant clear state on the command target

Further behavior is identical to the ClearUnit command, including sending ClearUnit (not
ClearUnixEx) to the module. See ClearUnit for more about the ClearUnit command.

12.1.2.1. Arguments

bitmap: flags

harmless: 16-
ModuleID module [<module to be reset>]
ModuleMode mode [<desired module mode>]

- Flags are not currently used.

12.1.2.2. Module mode settings

The following desired module mode settings are available:

ModuleMode Default =0
ModuleMode Maintenance =1
ModuleMode Operational =2
ModuleMode Initialisation =3

12.1.2.3. Reply

+ The ModuleMode value in the reply corresponds to the bit field in scratchpad O.

nCore v13.6.14 Developer Tutorial 175/237

Chapter 12. nCore APl commands

« If the module is already part way through a reset, then @ref Status_UnitReset is
returned.

« If the request cannot be completed because the main application of the module does
not support software mode changes, then @ref Status_ModuleApplicationNotSup-
ported is returned.

- If the request cannot be completed because the module monitor does not support soft
ware mode changes, then @ref Status ModuleMonitorNotSupported is returned.

Firmware releases prior to v12 do not support changing the mode with-
o out use of the MOI switch. The mode argument must be 0. With the
appropriate firmware, the mode argument can be used to change the

mode.

12.1.3. ModExp

Operational state initialization state

This command performs modular exponentiation on parameters passed by the client.

12.1.3.1. Arguments

struct M_Cmd_ModExp_Args {

M_Bignum a; A base
M_Bignum p; P power
M_Bignum n; N modulus
I
12.1.3.2. Reply

struct M_Cmd_ModExp_Reply {
M_Bignum r;

Is
wherer = A’mod N
12.1.4. ModExpCrt
Operational state initialization state

This command performs modular exponentiation on parameters passed by the client. ModEx

nCore v13.6.14 Developer Tutorial 176/237

Chapter 12. nCore APl commands

pCrt uses the Chinese Remainder Theorem to reduce the time it takes to perform the opera
tion.

12.1.4.1. Arguments

struct M_Cmd_ModExpCrt_Args {

M_Bignum a; A base
M_Bignum p; P modulus larger factor
M_Bignum q; Q modulus smaller factor
M_Bignum dmp1; D mod (P-1)
M_Bignum dmq1; D mod (Q-1)
M_Bignum iqmp; Q-1 mod P
Y
12.1.4.2. Reply

Uses M_Cmd_ModExp_Reply.

12.1.4.3. Notes

It is assumed that P >= Q.

12.2. Key-management commands

The commands described in this section, are only available on key-management modules.

If you send any of these commands to an acceleration-only module, it fails with the status
value Status_InvalidState.

12.2.1. ChangeSharePIN

Operational state initialization state

This command enables a PIN that protects a single share to be changed. The old PIN must
be provided unless the share has no PIN. Likewise, the new PIN must be provided unless the
PIN is being removed.

The module decrypts the share using the old PIN and the Ky associated with the token. If
the share is decrypted correctly, the module encrypts it using the new PIN and the K. It
then writes the newly encrypted share to the smart card or software token.

This operation can be performed regardless of whether or not the logical token associated

nCore v13.6.14 Developer Tutorial 177/237

Chapter 12. nCore APl commands

with this share is "present”. The only requirement is that both the smart card with the share
and the Ky associated with the token be present within the module.

12.2.1.1. Arguments

struct M_Cmd_ChangeSharePIN_Args {
M_Cmd_ChangeSharePIN_Args_flags flags;
M_PhysToken token;
M_KMHash hkm;
M_ShortHash hkt;
M_Word i;
M_PIN *oldpin;
M_PIN *newpin;

- The following flags are defined:

> Cmd_ChangeSharePIN_Args_flags_oldpin_present

Set this flag if the input contains the old PIN. The old PIN must be specified unless
the share was previously encrypted without a PIN or if the share uses the pro-
tected PIN path.

> Cmd_ChangeSharePIN_Args_flags_newpin_present

Set this flag if the input contains the new PIN. The new PIN must be specified
unless the share is to be encrypted without a PIN or if the share uses the pro-
tected PIN path.

> Cmd_ChangeSharePIN_Args_flags__allflags
M_KMHash hkmis Module key hash Hgy
M_ShortHash hkt is a short, 10-byte token hash, such as returned by GetSlotInfo.

« M_Word i is the share number
M_PIN *oldpinis the old PIN, or NULL
M_PIN *newpinis the new PIN, or NULL

12.2.1.2. Reply

The reply structure for this command is empty.

12.2.2. ChannelOpen

Operational state, initialization state Requires a ClientID

nCore v13.6.14 Developer Tutorial 178/237

Chapter 12. nCore APl commands

This command opens a communication channel that can be used for bulk encryption. Data
can then be transferred over this channel by using the ChannelUpdate command.

o ‘ Channel operations are only available for symmetric algorithms.

12.2.2.1. Arguments

typedef struct {
M_ModuleID module;
M_ChannelType type;
M_Cmd_ChannelOpen_Args_flags flags;
M_ChannelMode mode;
M_Mech mech;
M_KeyID *key;
M_IV *given_iv;
} M_Cmd_ChannelOpen_Args;

« M_ChannelType type is the data transfer mechanism for the channel. At present, only
ChannelType_Simple is supported. Alternatively, ChannelType_Any can be used to let the
module pick the"best" channel type that it supports.

ChannelType_Any
ChannelType_Simple

« M_Cmd_ChannelOpen_Args_flags flags The following flags are defined:
° Cmd_ChannelOpen_Args_flags_key_present

Set this flag if the command contains a KeyID. The command must include a KeyID
unless you are using a hashing mechanism.

> Cmd_ChannelOpen_Args_flags_given_iv_present

Set this flag if the command designates which initialization vector to use. For
encryption and signature mechanisms, if this flag is not set and the mechanism
requires an initialization vector, the module will create a random iv and return it in
the reply. For decryption and verification mechanisms, this flag must be set and
the M_IV must be specified or Status_InvalidParameter will be returned.

« M_ChannelMode mode determines the operation to perform on this channel. The follow-
ing modes are defined:

° ChannelMode_Encrypt
° ChannelMode_Decrypt
° ChannelMode_Sign

° ChannelMode_Verify

nCore v13.6.14 Developer Tutorial 179/237

Chapter 12. nCore APl commands

M_Mech mech is the mechanism to use. See Mechanisms for information on supported
mechanisms.

M_KeyID *key is the KeyID of the key to use on the channel. The key must have the
appropriate Encrypt, Decrypt, Sign, or Verify permissions in its ACL. It must also be an
appropriate type for the given mechanism. In order to use unkeyed hash mechanisms,
this key field must be absent.

M_IV *given_iv is the initialization vector to use on the channel. This field is optional
for the Encrypt and Sign modes, but it must be given for the Decrypt and Verify
modes. Status_InvalidParameter is returned if this field is not present when it is
required or if it has an incorrect mechanism.

12.2.2.2. Reply

typedef struct {
M_Cmd_ChannelOpen_Reply_flags flags;
M_KeyID idch;

M_IV *new_iv;

M_ChannelOpenInfo openinfo;

} M_Cmd_ChannelOpen_Reply;

M_Cmd_ChannelOpen_Reply_flags flags

The following flag is defined: Cmd_ChannelOpen_Reply_flags_new_iv_present. This flag
is set if the new_iv field is present.

M_KeyID idchis the ID of the Channel. It is like a KeyID; it may be used to refer to the
channel and can be destroyed with the Destroy command after use. However, it will be
different to the KeyID.

e The server will destroy the channel automatically when the last con
nection associated with the application that created it closes.

M_IV *new_iv is an initialization vector for the channel. It is returned only if the channel
mode is Encrypt or Sign and no given_iv has been sent with the command.
M_ChannelOpenInfo openinfo is extra information about the channel:

struct M_ModuleChannelOpenInfo {

M_ChannelType type;

union M_ChannelType__ExtraMCOI info;
15

M_ChannelType type is the channel type used.

union M_ChannelType__ExtraMCOI info is extra information that is dependent on the
channel type. It allows the client to access a device driver, if necessary, in order to per-

nCore v13.6.14 Developer Tutorial 180/237

Chapter 12. nCore APl commands

form data transfer.

12.2.3. ChannelUpdate

Operational state, initialization state Requires a ClientID

This command transfers data over a communication channel for bulk encryption. Such a
channel must be opened with the ChannelOpen command before the ChannelUpdate com-
mand can be used.

o ‘ Channel operations are only available for symmetric algorithms.

Data is streamed into an open channel by giving one or more Update commands. The last
data block to be processed should have the final flag set. This final block does not have to
contain any input data (except in Verify mode; see below). Input data does not have to be
multiples of the block size for block ciphers; the module will buffer the data internally as
necessary. In general, the output block will contain all the data that can be
encrypted/decrypted unambiguously given the input so far. However, PKCS #5 padding
usually lags behind by a block when decrypting.

For decryption—and for encryption in non-padding modes—you must have supplied a
whole number of input blocks. Otherwise, a status of Status_EncryptFailed or Status_De-
cryptFailed will be returned. Status_DecryptFailed is also used if unpadding fails during
decryption.

For signing modes, no output will be generated until the final bit is set, in which case the sig
nature or hash will be output as the byte block.

For verification modes, no output is generated. Instead, the plain text message must be
input by ChannelUpdate commands with their final bit clear, then a ChannelUpdate with the
final bit set is given, with the signature/hash bytes given as the input block. This will return a
status of OK or VerifyFailed, as appropriate.

12.2.3.1. Arguments

struct M_Cmd_ChannelUpdate_Args {
M_Cmd_ChannelUpdate_Args_flags flags;
M_KeyID idch;
M_ByteBlock input;

B

« The following flag is defined: Cmd_ChannelUpdate_Args_flags_final. This flag indicates
the last block of input data.

nCore v13.6.14 Developer Tutorial 181/237

Chapter 12. nCore APl commands

« M_KeyID 1idch is the ChannelID returned by ChannelOpen.
- M_ByteBlock input is a byte block of input data (it may be of zero length)

12.2.3.2. Reply

struct M_Cmd_ChannelUpdate_Reply {
M_ByteBlock output;
B

M_ByteBlock output is a byte block containing output data from the channel. This block
may be of zero length.

12.2.4. Decrypt

Operational state, initialization state Requires a ClientID

This command takes a cipher text and decrypts it with a previously stored key.

The limit of 8K does not apply to data decrypted by this command. This is because the
Generic Stub library splits the command into a ChannelOpen command followed by a num-
ber of ChannelUpdate commands. Only symmetric mechanisms use channels; asymmetric

mechanisms cannot.

For information on formats, see Encrypt.

12.2.4.1. Arguments

struct M_Cmd_Decrypt_Args {
M_Cmd_Decrypt_Args_flags flags;
M_KeyID key;
M_Mech mech;
M_CipherText cipher;
M_PlainTextType reply_type;

« No Flags are defined.
« M_KeyID key is IDga.

« M_Mech mech: See Mechanisms for information on supported mechanisms. If mech is not
Mech_Any, then it must match the mechanism of the ciphertext, cipher.mech. If it does
not match, then a MechanismNotExpected error is returned.

12.2.4.2. Reply

nCore v13.6.14 Developer Tutorial 182/237

Chapter 12. nCore APl commands

struct M_Cmd_Decrypt_Reply {
M_PlainText plain;
}

12.2.5. DeriveKey

Operational state, initialization state Requires a ClientID

This command creates a new key object from a number of other keys that have been stored
already on the module. Then, DeriveKey returns a KeyID for the new key.

There are two special key types used by DeriveKey:

- atemplate key — the template is used to provide the ACL and application data for the
output key

- awrapped key — a key type for holding encrypted keys.

12.2.5.1. Arguments

struct M_Cmd_DeriveKey_Args {
M_Cmd_DeriveKey_Args_flags flags;
M_DeriveMech mech;
int n_keys;
M_vec_KeyID keys;
union M_DeriveMech__DKParams params;
} M_Cmd_DeriveKey_Args;

+ The following flag is defined: Cmd_DeriveKey_Args_flags_WorldHashMech Indicates that
the hash mechanism for Security World keys will be used for identifying keys. By
enabling the Cmd_DeriveKey_Args_flags_WorldHashMech flag, keys shall be identified by
the selected world hash mechanism. See DeriveKey and DeriveKeyEx.

« M_DeriveMech mech

See Derive Key Mechanisms for information on supported mechanisms.
- int n_keys

This value is the number of keys that have been supplied in the key table.
« M_vec_KeyID keys

This is a table containing the KeyIDs of the keys that are to be used. You must enter the
KeyIDs of these keys in the following order:

a. template key

nCore v13.6.14 Developer Tutorial 183/237

Chapter 12. nCore APl commands

b. base key
c. wrapping key(s)

Each key must be of the correct type for the mechanism.

Each of these keys must have an ACL that permits them to be used for DeriveKey oper
ations in this role.

Any of the keys may have an ACL that requires a certificate. If more
o than one of the keys requires a certificate, then all the certificates
must have the same signing key.

- union M_DeriveMech__DKParams params

Parameters for the specific wrapping mechanism. See Derive Key Mechanismes.

union M_DeriveMech__DKParams {
M_DeriveMech_ConcatenationKDF_DKParams concatenationkdf;
M_DeriveMech_PKCS8Encrypt_DKParams pkcs8encrypt;
M_DeriveMech_PKCS8Decrypt_DKParams pkcs8decrypt;
M_DeriveMech_RawDecrypt_DKParams rawdecrypt;
M_DeriveMech_AESKeyWrap_DKParams aeskeywrap;
M_DeriveMech_AESKeyUnwrap_DKParams aeskeyunwrap;
M_DeriveMech_RawDecryptZeroPad_DKParams rawdecryptzeropad;
M_DeriveMech_ECCMQV_DKParams eccmqv;
M_DeriveMech_ECDHKA_DKParams ecdhka;
M_DeriveMech_ECIESKeyUnwrap_DKParams ecieskeyunwrap;
M_DeriveMech_ECIESKeyWrap_DKParams ecieskeywrap;
M_DeriveMech_ConcatenateBytes_DKParams concatenatebytes;
M_DeriveMech_RawEncrypt_DKParams rawencrypt;
M_DeriveMech_NISTKDFmCTRpRijndaelCMACr32_DKParams nistkdfmctrprijndaelcmacr32;
M_DeriveMech_RawEncryptZeroPad_DKParams rawencryptzeropad;

i

12.2.5.2. Reply

struct M_Cmd_DeriveKey_Reply {
M_KeyID key;
Is

The M_KeyID points to the derived key. The ACL and application data for this key are the
ACL and application data that have been stored as the key data of the template key. The
key type is defined by the mechanism used. The key data is determined by the base key, the
wrapping key (or wrapping keys), and the mechanism.

12.2.5.3. Notes

The key derivation mechanisms provide a means of converting keys of many different types

nCore v13.6.14 Developer Tutorial 184/237

Chapter 12. nCore APl commands

into KeyType_Wrapped and then back again. The type of the original key is usually not pre-
served in the Wrapped data format (the EncryptMarshalled mechanism does preserve type).

Therefore, one key may be converted to another of a different type by unwrapping it with a
different mechanism. Indeed, the key data itself may be modified by unwrapping it with a
different key.

This feature is provided to increase flexibility and interoperability, which is a major goal of
the DeriveKey command. However, it can be a potential weak point in security. Therefore,
Entrust recommends that whenever a base key is turned into a Wrapped key type, if the new
key is to be used within the nShield environment, the ACL for the new key be set only to
allow decoding back to the original key. This is done by setting the DeriveKey ACL entry in
the wrapped key so that:

« the mech field identifies the correct decoding mechanism

- the otherkeys table identifies the correct unwrapping key in the right role.

12.2.6. Destroy

Operational state, initialization state Requires a ClientID

This removes a key object from memory and zeroes any storage associated with it.
This command can be used to destroy:

- a key object by specifying an IDga

- alogical token by specifying an IDy;

+ aModuleSEEWor1ld by specifying a KeyID
+ an impath by specifying an ImpathID

« an FTSessionID or FileTransferID

+ achannel

- a foreign token lock

- multiple objects that were previously merged by means of MergeKeyIDs. Only the
merged KeyID is removed; the underlying keys remain loaded.

When an object has multiple KeyIDs, Destroy only removes the KeyID for the current Clien-
tID or SEEWor1ld. The underlying object is removed when the last KeyID for the object is
destroyed.

It is an error to Destroy an 1Dk, that has not been issued previously by the nShield server or
that has already been destroyed.

nCore v13.6.14 Developer Tutorial 185/237

Chapter 12. nCore APl commands

o An ID¢a may be reused for a new object after the current object is
destroyed.

A key that forms part of a merged set made with MergeKeyIDs (see MergeKeyIDs) cannot be
destroyed. Attempts to do so will return an ObjectInUse error. Destroy the merged KeyID
first.

12.2.6.1. Arguments

struct M_Cmd_Destroy_Args {
M_KeyID key;
b

M_KeyID key can be any object with an M_KeyID, such as an IDy,, an IDgy, or the SEE World's
KeylID.

12.2.6.2. Reply

The reply structure for this command is empty.

12.2.7. Duplicate

Operational state, initialization state Requires a ClientID

This command duplicates a key object within module memory and returns a new handle to
it. The new key object can then be manipulated independently of the original key object.

The new key inherits its ACL from the original key.

12.2.7.1. Arguments

struct M_Cmd_Duplicate_Args {
M_KeyID key;
I

M_KeyID key is IDga.

12.2.7.2. Reply

struct M_Cmd_Duplicate_Reply {
M_KeyID newkey;

nCore v13.6.14 Developer Tutorial 186/237

Chapter 12. nCore APl commands

M_KeyID newkey is IDgao.

12.2.8. Encrypt

Operational state, initialization state Requires a ClientID

This command encrypts data by using a previously loaded key. It returns the cipher text.

The limit of 8K does not apply to data encrypted by this command. This is because the
Generic Stub library splits the command into a ChannelOpen command followed by a num-
ber of ChannelUpdate commands. Only symmetric mechanisms use channels; asymmetric
mechanisms cannot.

12.2.8.1. Arguments

struct M_Cmd_Encrypt_Args {
M_Cmd_Encrypt_Args_flags flags;
M_KeyID key;
M_Mech mech;
M_PlainText plain;
M_IV *given_iv;

+ The following flag is defined:
Cmd_Encrypt_Args_flags_given_iv_present

This flag must be set if the command includes the initialization vector. If this flag is not
set, the module will generate a random initialization vector if one is required by this
mechanism.

« M_KeyID key is IDga.

« M_Mech mech
See Mechanisms for information on supported mechanisms. If Mech_Any is specified
and an |V is given, the mechanism is taken from that IV. Otherwise, if Mech_Any is not

specified, the given mechanism is used. Moreover, if an IV is given, its mechanism must
match the given mechanism, otherwise Status_MechanismNotExpected will be returned.

« M_IV *given_iv

This can be either the IV to use or otherwise NULL if no IV is defined or if you prefer that
the module choose an IV on its own.

nCore v13.6.14 Developer Tutorial 187/237

Chapter 12. nCore APl commands

12.2.8.2. Reply

struct M_Cmd_Encrypt_Reply {
M_CipherText cipher;
};

12.2.9. Export

Operational state, initialization state Requires a ClientID

This command is used to extract key material in plain text.

0 Most private key objects should have an ACL (or ACLs) that forbid the
reading of this data in plain text.

12.2.9.1. Arguments

struct M_Cmd_Export_Args {
M_KeyID key;
e

12.2.9.2. Reply

struct M_Cmd_Export_Reply {
M_KeyData data;
I

12.2.10. FirmwareAuthenticate

Operational state, initialization state, maintenance state

This command is used to authenticate the firmware in a module by comparing it to a
firmware image on the host. If performed in the maintenance state it can be used to authen
ticate the monitor.

Use the fwcheck command-line utility to perform this operation.

12.2.11. FormatToken

Operational state, initialization state May require a KNSO certificate

nCore v13.6.14 Developer Tutorial 188/237

Chapter 12. nCore APl commands

This command initializes a smart card.

12.2.11.1. Arguments

struct M_Cmd_FormatToken_Args {
M_Cmd_FormatToken_Args_flags flags;
M_PhysToken token;

M_KMHash *auth_key;

i

+ The following flag is defined:
Cmd_FormatToken_Args_flags_auth_key_present

Set this flag if the input includes a module key hash to use for challenge-response
authentication. This flag can only be used if the smart card supports authentication.

« M_KMHash *auth_key is the Hyy of @ module key or a NULL pointer. The module key is com
bined with the unique identity of the token to produce the key to be used for chal-
lenge-response authentication.

12.2.11.2. Reply

The reply structure for this command is empty.

12.2.12. GenerateKey and GenerateKeyPair
Operational state, initialization state Requires a ClientID

May require a KNSO certificate

The GenerateKey command randomly generates a key object of the given type and with the
specified ACL (or ACLs) and stores it in internal RAM.

The GenerateKeyPair command randomly generates a matching public and private key pair.
Use GenerateKey for symmetric algorithms.

For public-key algorithms, use GenerateKeyPair.

12.2.12.1. Arguments

struct M_Cmd_GenerateKey_Args {
M_Cmd_GenerateKey_Args_flags flags;

nCore v13.6.14 Developer Tutorial 189/237

Chapter 12. nCore APl commands

M_ModuleID module;
M_KeyGenParams params;
M_ACL acl;

M_AppData *appdata;

struct M_Cmd_GenerateKeyPair_Args {
M_Cmd_GenerateKeyPair_Args_flags flags;
M_ModuleID module;
M_KeyGenParams params;
M_ACL aclpriv;
M_ACL aclpub;
M_AppData *appdatapriv;
M_AppData *appdatapub;
} M_Cmd_GenerateKeyPair_Args;

+ The following flags are defined:

o

Cmd_GenerateKey_Args_flags_Certify

If this flag is set, the reply will contain a certificate of data type ModuleCert that
describes the security policy for this key or key pair. This certificate enables an
observer, such as an organization’s Security Officer or a certificate authority, to
check that the key or key pair was generated in compliance with a stated security
policy before they allow the key to be used. The certificate contains:

" H,, for the key
® the application data field or fields
® the ACL (or ACLs)

® The certificate is signed by the module's private key.
=1
ML
Cmd_GenerateKey_Args_flags_appdata_present

You must set this flag if the request contains application data for the symmetric
key.

Cmd_GenerateKey_Args_flags_PairwiseCheck

If this flag is set, the module performs a consistency check on the key by creating
a random message, then encrypting and decrypting this message. The test fails if
the encrypted message is the same as the plain text or if the encrypted message

fails to decrypt to the plain text.

Cmd_GenerateKeyPair_Args_flags_Certify
Cmd_GenerateKeyPair_Args_flags_appdatapriv_present

You must set this flag if the request contains application data for the private key.

nCore v13.6.14 Developer Tutorial 190/237

Chapter 12. nCore APl commands

> Cmd_GenerateKeyPair_Args_flags_appdatapub_present
You must set this flag if the request contains application data for the public key
° Cmd_GenerateKeyPair_Args_flags_PairwiseCheck
« M_ModuleID module

If the module ID is nonzero, the key is loaded onto the specified module. If the module
ID is O, the key is loaded onto the first available module. You can use the GetWhichMod-
ule command to determine which modules contain which keys).

« M_KeyGenParams params

The key type and required parameters needed to generate this key or key pair are as fol
lows:

struct M_KeyGenParams {
M_KeyType type;
union M_KeyType__GenParams params;

b5

« The following key types are defined:

> KeyType_ArcFour Use GenerateKey

> KeyType_Blowfish

> KeyType_CAST Use GenerateKey

> KeyType_CAST256

° KeyType_DES Use GenerateKey

° KeyType_DES2 Use GenerateKey

° KeyType_DES3 Use GenerateKey

> KeyType_DHPrivate Use GenerateKeyPair

° KeyType_DHPublic Do not use for key generation
> KeyType_DKTemplate

° KeyType_DSAComm Use GenerateKey

> KeyType_DSAPrivate Use GenerateKeyPair

> KeyType_DSAPublic Do not use for key generation
° KeyType_HMACMD2

° KeyType_HMACMD5

° KeyType_HMACRIPEMD160

° KeyType_HMACSHA1

nCore v13.6.14 Developer Tutorial 191/237

Chapter 12. nCore APl commands

> KeyType_HMACSHA256

° KeyType_HMACSHA384

° KeyType_HMACSHA512

° KeyType_HMACSHA3b224

° KeyType_HMACSHA3b256

° KeyType_HMACSHA3b384

° KeyType_HMACSHA3b512

> KeyType_HMACTiger

> KeyType_IDEA

° KeyType_KCDSAComm

> KeyType_KCDSAPrivate

> KeyType_KCDSAPublic

° KeyType_Random Use GenerateKey

> KeyType_R(2

> KeyType_RC5

° KeyType_Rijndael

> KeyType_RSAPrivate Use GenerateKeyPair
> KeyType_RSAPublic Do not use for key generation
° KeyType_SEED

> KeyType_Serpent

° KeyType_Skipjack

> KeyType_Twofish

> KeyType_Void KeyType_Wrapped Created by DeriveKey
° KeyType_Any Do not use for key generation

° KeyType_None Do not use for key generation

o When generating a key pair, you must specify the key type for the
private half of the key pair.

0 ‘ The following key types have key generation parameters:

union M_KeyType__GenParams {
M_KeyType_RSAPrivate_GenParams rsaprivate;
M_KeyType_DSAPrivate_GenParams dsaprivate;
M_KeyType_Random_GenParams random;
M_KeyType_DSAComm_GenParams dsacomm;
M_KeyType_DHPrivate_GenParams dhprivate;
M_KeyType_Wrapped_GenParams wrapped;

b5

nCore v13.6.14 Developer Tutorial 192/237

Chapter 12. nCore APl commands

> M_KeyType_RSAPrivate_GenParams rsaprivate. See RSA.

° M_KeyType_DSAPrivate_GenParams dsaprivate. See DSA.

> M_KeyType_Random_GenParams random. See Random.

> M_KeyType_DSAComm_GenParams dsacomm. See DSA.

> M_KeyType_DHPrivate_GenParams dhprivate. See Diffie-Hellman and ElGamal.

> M_KeyType_Wrapped_GenParams wrapped. Generating a wrapped key creates a ran-
dom key block. This may be useful in some key derivation schemes.

DES and Triple DES do not have any key generation parameters. ArcFour and CAST use
the same parameters as the key type RANDOM. ElGamal uses key type Diffie-Hellman.

« M_ACL acl
See ACLs.
- M_AppData *appdata

This is application data. If the command contains application data, the appropriate flag
must be set. If no appdata is provided, the appdata stored with the key is set to all-bits-

zero.
« M_ACL aclpriv
ACL for private half
« M_ACL aclpub
ACL for public half
- M_AppData *appdatapriv
appdata for private half.
- M_AppData *appdatapub

appdata for public half.

12.2.12.2. Reply

struct M_Cmd_GenerateKey_Reply {
M_Cmd_GenerateKey_Reply_flags flags;
M_KeyID key;
M_ModuleCert *cert;

}

struct M_Cmd_GenerateKeyPair_Reply {

nCore v13.6.14 Developer Tutorial 193/237

Chapter 12. nCore APl commands

M_Cmd_GenerateKeyPair_Reply_flags flags;
M_KeyID keypriv;
M_KeyID keypub;
M_ModuleCert *certpriv;
M_ModuleCert *certpub;
};

« The following flags are defined:
> Cmd_GenerateKey_Reply_flags_cert_present
> Cmd_GenerateKeyPair_Reply_flags_cert_present

These flags are set if the reply contains a certificate or a certificate pair.

« M_KeyID key is IDga.

« M_ModuleCert *cert is a certificate that describes how the key was generated.

struct M_ModuleCert {

M_CipherText signature;
M_ByteBlock modcertmsg;
b5

struct M_ModCertMsg {

M_ModCertType type;

union M_ModCertType__ModCertData data;
b5

union M_ModCertType__ModCertData {
M_ModCertType_KeyGen_ModCertData keygen;
b5

struct M_ModCertType_KeyGen_ModCertData {
M_ModCertType_KeyGen_ModCertData_flags flags:
M_KeyGenParams genparams;

M_ACL acl;

M_Hash hka;

15

> M_ModCertType type From release 1.67.15 and later, this should be type KeyGen with
code 2. The previous type, now called 01dKeyGen, did not distinguish between pub-
lic and private keys and should no longer be used

The following flag is defined:
® ModCertType_KeyGen_ModCertData_flags_public
Set this flag if this is the public half of a key pair.

> M_KeyGenParams genparams

nCore v13.6.14 Developer Tutorial 194/237

Chapter 12. nCore APl commands

These are the key generation parameters to be used to generate this key.
° M_ACL acl

This is the ACL that was applied to this key when it was created.
° M_Hash hka

This is the SHA-1 hash of the key value.

12.2.12.3. Notes

If the Strict_FIPS140 flag was set in the SetKNSO command, GenerateKey or GenerateKey-
Pair will fail with status Status_StrictFIPS140 if you attempt to generate a secret key that
can be exported as plain text. A secret key is any key that can have Sign or Decrypt permis-
sions.

12.2.13. GeneratelLogicalToken
Operational state, initialization state Requires a ClientID
May require a KNSO certificate
This command generates a random token key K;, associates it with the given properties and

secret-sharing parameters (n and t), and encrypts it with the given module key that is identi
fied by its hash, Hqw.

The result is stored internally, and an identifier IDxr and a hash Hy; are returned. The token is
referred to by its identifier in commands and by its hash in ACLs.

12.2.13.1. Arguments

struct M_Cmd_GeneratelLogicalToken_Args {
M_ModuleID module;
M_KMHash hkm;
M_TokenParams params;

%

« M_ModuleID module

If the module ID is nonzero, the key is loaded onto the specified module. If the module
ID is O, the token is generated on the first available module.

« M_KMHash hkmis the H¢v of the module key to use to protect this token. If you supply an

nCore v13.6.14 Developer Tutorial 195/237

Chapter 12. nCore APl commands

all zero Hyw, the module will use the null module key.

12.2.13.2. Reply

struct M_Cmd_GeneratelogicalToken_Reply {
M_KeyID idkt;
M_TokenHash hkt;

i

« M_KeyID idkt is IDyr
- M_TokenHash hkt is Hyr

12.2.14. GetChallenge

Operational state, initialization state Requires a ClientID

The GetChallenge command returns a nonce that is used to build a fresh certificate. See
Certificates. GetChallenge is also used during impath setup.

12.2.14.1. Arguments

struct M_Cmd_GetChallenge_Args {
M_ModuleID module;
I

12.2.14.2. Reply

struct M_Cmd_GetChallenge _Reply {
M_KMHash nonce;

i

12.2.15. GetKML

Operational state, initialization state

This command is used to retrieve a KeyID for the module’s long-term public key. This key is
generated by InitialiseUnit and is held internally. Ky, has ACL permissions that allow it to
be extracted as plain text, to be used to verify signatures, to view its own ACL, and to
extend its ACL.

nCore v13.6.14 Developer Tutorial 196/237

Chapter 12. nCore APl commands

12.2.15.1. Arguments

struct M_Cmd_GetKML_Args {
M_ModuleID module;
};

12.2.15.2. Reply

struct M_Cmd_GetKML_Reply {
M_KeyID idka;
Is

M_KeyID idka is IDxs for Ky,

12.2.16. GetTicket

Operational state, initialization state Requires a ClientID

This command gets a ticket for a specific KeyID. The ticket can then be passed to another
client or to an SEE application, which can redeem the ticket for a KeyID in its name space.
Tickets can be single-use or permanent, and they can specify the destination.

o The program should treat tickets as opaque objects. nShield reserves
the right to change the structure of tickets at any time.

12.2.16.1. Arguments

struct M_Cmd_GetTicket_Args {
M_Cmd_GetTicket_Args_flags flags;

M_KeyID obj;

M_TicketDestination dest;

union M_TicketDestination__TicketDestSpec destspec;

i
« The following flags are defined:
> Cmd_GetTicket_Args_flags_Reusable

If this flag is set, the ticket can be used multiple times. Otherwise, the ticket can
only be used once.

° Cmd_GetTicket_Args_flags_HarmlessInfoFlags

Set if the nShield server understands new destinations, TicketDestination_AnyKer

nCore v13.6.14 Developer Tutorial 197/237

Chapter 12. nCore APl commands

nelClient and later. The nShield will set this flag automatically.
« M_KeyID obj

The object for which a ticket is required. This may be any object with a KeyID, for exam
ple a key, token or SEEWorld.

« M_TicketDestination dest are destinations at which this ticket can be redeemed:

typedef enum M_TicketDestination {
TicketDestination_Any =
TicketDestination_AnyClient =
TicketDestination_NamedClient =
TicketDestination_AnySEEWorld =
TicketDestination_NamedSEEWorld =
TicketDestination_AnyKernelClient
TicketDestination__Max =

} M_TicketDestination;

 TicketDestination_Any

This specifies any destination. If the nShield server has not set Cmd_GetTick-
et_Args_flags_HarmlessInfoFlags this will not include TicketDestination_AnyKernel-
Client or later destinations.

 TicketDestination_AnyClient
This specifies any client connected to this server.
 TicketDestination_NamedClient
This is the specific client that is named in the M_TicketDestination__TicketDestSpec.
« TicketDestination_AnySEEWor1d
This specifies any SEEWorld loaded on this module.
+ TicketDestination_NamedSEEWor1ld

This is the specific SEEWorld that is named in the M_TicketDestination__TicketDest-
Spec

« TicketDestination_AnyKernelClient

This specifies any client operating in kernel space. This can only be used if the nShield
server reports that the module offers the kernel interface.

« union M_TicketDestination__TicketDestSpec destspec

This specifies a specific destination:

nCore v13.6.14 Developer Tutorial 198/237

Chapter 12. nCore APl commands

union M_TicketDestination__TicketDestSpec {
M_TicketDestination_NamedSEEWorld_TicketDestSpec namedseeworld;
M_TicketDestination_NamedClient_TicketDestSpec namedclient;

b5

« M_TicketDestination_NamedSEEWor1ld_TicketDestSpec namedseeworld

This is the KeyID of the SEEWor1d:

struct M_TicketDestination_NamedSEEWorld_TicketDestSpec {
M_KeyID world;
%

« M_TicketDestination_NamedClient_TicketDestSpec namedclient

This is the SHA-1 hash of the ClientID:

struct M_TicketDestination_NamedClient_TicketDestSpec {
M_Hash hclientid;
15

12.2.16.2. Reply

struct M_Cmd_GetTicket_Reply {
M_nest_Ticket ticket;
I

M_nest_Ticket ticket is a ticket for this object to pass to the destination.

12.2.17. Hash

Operational state, initialization state

This command hashes a message.

There is no limit to the size of the plaintext. This is because the Generic Stub library splits
the command into a ChannelOpen command followed by a number of ChannelUpdate com-
mands. Only symmetric mechanisms use channels; asymmetric mechanisms cannot.

12.2.17.1. Arguments

struct M_Cmd_Hash_Args {
M_Cmd_Hash_Args_flags flags;
M_Mech mech;
M_PlainText plain;

nCore v13.6.14 Developer Tutorial 199/237

Chapter 12. nCore APl commands

« No flags are defined.
« M_Mech mech - see Mechanisms.

« M_PlainText plain This must be in the format M_PlainTextType_Bytes_Data.

12.2.17.2. Reply

struct M_Cmd_Hash_Reply {
M_CipherText sig; Hash
Y

12.2.18. ImpathKXBegin

Operational state, initialization state Requires a ClientID

This command creates a new intermodule path (impath) and returns a key-exchange mes-
sage that is to be sent to the peer module.

An impath is a cryptographically secure channel between two nShield nC-series hardware
security modules. Data sent through such a channel is secure against both eavesdroppers
and active adversaries. The channel can carry arbitrary user data as well as module-pro-
tected secrets, such as share data, to be passed directly between modules.

Modules are identified by means of M_RemoteModule structures. The elements of a M_Remote-
Module describe a specific module or a set of modules—for example, those modules that
know a particular module key—as well as information about how modules must prove their
identity. The M_RemoteModule structures are the primary means for describing security policy
decisions about impaths.

In many cases you do not need to define the impath yourself. If you use
0 the nCore remote slot commands, the nShield server will create the
required impaths automatically.

12.2.18.1. Arguments

struct M_Cmd_ImpathKXBegin_Args {
M_Cmd_ImpathKXBegin_Args_flags flags;
M_ModuleID module;
M_RemoteModule me;
M_RemoteModule him;
M_ImpathKXGroupSelection hisgroups;
M_Nonce n;

nCore v13.6.14 Developer Tutorial 200/237

Chapter 12. nCore APl commands

int n_keys;
M_vec_KeyID keys;

-+ No flags are defined.
« M_ModuleID module

The module ID of the module which is to be the local end of the impath.
« M_RemoteModule me

This is an M_RemoteModule structure describing the local module. It must exactly match
the him structure being used at the other end of the impath.

- M_RemoteModule him

This is an M_RemoteModule structure describing the peer module. It must exactly match
the me structure being used at the other end of the impath.

« M_ImpathKXGroupSelection hisgroups

This is the peer module’s list of supported key-exchange groups. This list can be
obtained, for example, by using the NewEnquiry command on the remote module. The
list is used to select the key-exchange group that is to be used when setting up the
impath.

- M_Nonce n

This is a challenge obtained from the remote module by using the GetChallenge com-
mand.

+ int n_keys is the size of the keys table

« M_vec_KeyID keys

This is a table of KeyIDs for the user keys whose hashes are listed in me. hks. The keys
must have the SignModuleCert permission enabled. User keys may be either private or
symmetric.

12.2.18.2. Reply

struct M_Cmd_ImpathKXBegin_Reply {
M_ImpathID imp;
M_ByteBlock kx;

};

« M_ImpathID imp

nCore v13.6.14 Developer Tutorial 201/237

Chapter 12. nCore APl commands

This is the ID for this impath. After the impath is no longer required, it can be disposed
of by using the Destroy command.

« M_ByteBlock kx

This is a key-exchange message that is to be transmitted to the peer module. (See
ImpathKXFinish.)

12.2.19. ImpathKXFinish

Operational state, initialization state Requires a ClientID

This command completes an impath (intermodule path) key exchange. It leaves the impath
ready for data transmission and receipt.

12.2.19.1. Arguments

struct M_Cmd_ImpathKXFinish_Args {
M_Cmd_ImpathKXFinish_Args_flags flags;
M_ImpathID imp;
M_NetworkAddress *addr;
int n_keys;
M_vec_KeyID keys;
M_ByteBlock kx;

The following flag is defined:
° Cmd_ImpathKXFinish_Args_flags_addr_present

Indicates whether the M_NetworkAddress *addr is present.

M_ImpathID imp is the ID for the impath
M_NetworkAddress *addr

This is the network address of the peer host. If supplied, this is compared against the
addr field in the him structure given to the ImpathKXBegin command.

int n_keys is the size of the keys table.

M_vec_KeyID keys

This is a table of KeyIDs for the user keys, public or symmetric, whose hashes were
listed in the hks table in the him structure given to the ImpathKXBegin command.

M_ByteBlock kx

nCore v13.6.14 Developer Tutorial 202/237

Chapter 12. nCore APl commands

This is the key-exchange message returned by ImpathKXBegin on the peer module.

12.2.19.2. Reply

The reply structure for this command is empty.

12.2.20. ImpathReceive

Operational state, initialization state Requires a ClientID

This command decrypts a user-data message that was encrypted using an impath.

12.2.20.1. Arguments

struct M_Cmd_ImpathReceive_Args {
M_ImpathID imp;
M_ByteBlock cipher;

}i

« M_ImpathID imp is the ID for the impath.

- M_ByteBlock cipher is the cipher text emitted by an ImpathSend command issued to
the peer module. Each cipher text message can be received once only, in order to pre-
vent replay attacks.

12.2.20.2. Reply

struct M_Cmd_ImpathReceive_Reply {
M_ByteBlock data;
Y

M_ByteBlock data is a recovered plain text message.

12.2.21. ImpathSend

Operational state, initialization state Requires a ClientID

This command encrypts a user message using an impath’s keys, ready for transmission to
the peer host.

nCore v13.6.14 Developer Tutorial 203/237

Chapter 12. nCore APl commands

12.2.21.1. Arguments

struct M_Cmd_ImpathSend_Args {
M_Cmd_ImpathSend_Args_flags flags;
M_ImpathID imp;
M_ByteBlock data;

IH

-+ No flags are defined.
« M_ImpathID imp is the ID for the impath.

- M_ByteBlock datais the message to be sent.

12.2.21.2. Reply

struct M_Cmd_ImpathSend_Reply {
M_ByteBlock cipher;
};

M_ByteBlock cipher is the cipher text corresponding to the given plain text data. The plain
text can be recovered by issuing an ImpathReceive command to the peer module.

12.2.22. InitialiseUnit

Pre-initialization state, initialization state "Privileged" users only

This command causes a module in the pre-initialization state to enter the initialization state.

When the module enters the initialization state, it erases all module keys Ky, including Kyo. It
also erases the module's signing key, Ky, and the hash of the Security Officer's keys, Hqnso.
It does not erase the long-term K key. It then generates a new Ky, and Ky.

In order to use the module after it has been initialized, you must set a new Security Officer’s
key.

When the module is in the pre-initialization state, you cannot obtain a
ClientID. In order to use commands that require a ClientID, use the New-
Client command after the module enters the Initialization state.

12.2.22.1. Arguments

struct M_Cmd_InitialiseUnit_Args {
M_ModuleID module;
I

nCore v13.6.14 Developer Tutorial 204/237

Chapter 12. nCore APl commands

12.2.22.2. Reply

The reply structure for this command is empty.

12.2.23. LoadBlob

Operational state, initialization state Requires a ClientID

This command allows a key blob to be loaded into the module. If this process is successful,
a new IDx, handle will be generated and returned.

For Ky blobs, the required Ky value must be present in the module’s internal storage.

For K; blobs, the logical token containing K; must be "present”. This is not possible if the Ky
associated with that K; is not present in the module. See GeneratelLogicalToken and Load-
LogicalToken.

For the archival key blobs K; or K.g, the appropriate key object must be loaded.

12.2.23.1. Arguments

struct M_Cmd_LoadBlob_Args {
M_Cmd_LoadBlob_Args_flags flags;
M_ModuleID module;
M_ByteBlock blob;
M_KeyID *idkb;

} M_Cmd_LoadBlob_Args;

The following flag is defined:
Cmd_LoadBlob_Args_flags_idkb_present

See *idkb below.

M_ModuleID module is the module id.
M_ByteBlock blob is a key blob.
M_KeyID *idkb

In order to load a blob encrypted under a token or recovery key, set the idkb_present
flag and include the identifier of either the token or the recovery key (1D for tokens,
IDxar for recovery keys) in the data as idkb. Otherwise, do not set idkb_present, and set
idkb to NULL.

12.2.23.2. Reply

nCore v13.6.14 Developer Tutorial 205/237

Chapter 12. nCore APl commands

struct M_Cmd_LoadBlob_Reply {
M_KeyID idka;
i

M_KeyID idka is IDc.

12.2.24. LoadlLogicalToken

Operational state, initialization state Requires a ClientID

May require a KNSO certificate

This command is used to initiate loading a token from shares.

The command returns an IDy. The token and any loaded shares can be removed by issuing
the Destroy command with this identifier.

When this command is issued, the module allocates space for a share-reassembly process.
In order to assemble the token, the application must issue one or more ReadShare com-
mands (see ReadShare).

12.2.24.1. Arguments

struct M_Cmd_LoadLogicalToken_Args {
M_ModuleID module;
M_TokenHash hkt;
M_KMHash hkm;
M_TokenParams params;

b5

M_ModuleID module is the module ID of the module. If you enter a module ID of O, the
command returns with status InvalidParameter.

M_TokenHash hkt is Her

M_KMHash hkm is the Hyv of the module key that is to be used to protect this token. If
you supply an all-zero HKM, the module will use the null module key.

+ M_TokenParams params

The shares information must match that which was given when the token was gener-
ated. The flags and time limit are read from the token, and values set in the command
are ignored.

12.2.24.2. Reply

nCore v13.6.14 Developer Tutorial 206/237

Chapter 12. nCore APl commands

struct M_Cmd_LoadlLogicalToken_Reply {
M_KeyID idkt;
i

M_KeyID idkt is the IDyr.

12.2.25. MakeBlob

Operational state, initialization state Requires a ClientID

This command requests that the module generate a key blob using a key whose identifier is
given. The ACL for the key must allow the key to be exported as a blob, otherwise the com-
mand will fail.

The ACL for the key ID¢, must have a MakeBlob entry (for Module and Token blobs) or
MakeArchiveBlob entry (for Direct or Indirect blobs) which permits making a blob with the
requested parameters.

For a Ky key, the relevant key must be stored internally within the module.

For a K; key, the logical token containing this key must be "present”. Otherwise, the handle
of another key object can be given to encrypt the blob. To succeed, the key object needs a
UseAsBlobKey permission.

12.2.25.1. Arguments

struct M_Cmd_MakeBlob_Args {
M_Cmd_MakeBlob_Args_flags flags;
M_BlobFormat format;
M_KeyID idka;
union M_BlobFormat__MkBlobParams blobkey;
M_ACL *acl;
M_MakeBlobFile *file;

 The following flags are defined:

> Cmd_MakeBlob_Args_flags_acl_present
Set this flag if the command contains a new ACL.
> Cmd_MakeBlob_Args_flags_file_present

Set this flag to store the blob in an NVRAM or smart card file, defined by the
M_MakeBlobFile.

nCore v13.6.14 Developer Tutorial 207/237

Chapter 12. nCore APl commands

- M_BlobFormat format
The following formats are defined:
° BlobFormat_Module
Blob encrypted by a module key.
° BlobFormat_Token
Blob encrypted by a Logical Token.
° BlobFormat Direct

Blob encrypted by a symmetric archiving key. Currently only Triple DES keys may
be used.

° BlobFormat_Indirect

Blob encrypted by an public archiving key, this requires the private key to decrypt.
Currently only RSA keys may be used.

° BlobFormat_UserKey
Not yet supported.
- union M_BlobFormat__MkBlobParams blobkey

The following MKBlobParams are defined for the four different blob types:

struct M_BlobFormat_Direct_MkBlobParams \{
M_KeyID idki;
b5

struct M_BlobFormat_Indirect_MkBlobParams \{
M_KeyID idkr;
M_Mech mech;
B5

struct M_BlobFormat_Module MkBlobParams {
M_KMHash hkm;
%

struct M_BlobFormat_Token_MkBlobParams {
M_KeyID idkt;
i

struct M_BlobFormat_UserKey_MkBlobParams {

nCore v13.6.14 Developer Tutorial 208/237

Chapter 12. nCore APl commands

M_KeyID idkr;
M_Mech mech;
i

union M_BlobFormat__MkBlobParams {
M_BlobFormat_Module_MkBlobParams module;
M_BlobFormat_Token_MkBlobParams token;
M_BlobFormat_Direct_MkBlobParams direct;
M_BlobFormat_Indirect_MkBlobParams indirect;
M_BlobFormat_UserKey_MkBlobParams userkey;
Is

« M_KeyID idki

This is the KeyID of a Triple DES key that is to be used to encrypt the blob.
« M_KeyID idkr

This is the KeyID of the public key that is to be used to encrypt the blob.
« M_Mech mec

This is the public key mechanism that is to be used to encrypt the blob.
« M_KMHash hkm

This is the hash of the module key that is to be used to encrypt the blob.
« M_KeyID idkt

This is the KeyID of the token that is to be used to encrypt the blob.
« M_ACL *acl

This is either an ACL to be used for the key blob or NULL. If no ACL is specified, the
loaded key's existing ACL is recorded in the blob. See ACLs.

The ACL created for the blob does not include permission groups that have global lim-
its (as opposed to per-authorization limits).

The permissions of the new ACL must be a subset of those specified by the existing
ACL. For more information, see SetACL.

- M_MakeBlobFile *file

A structure defining the file in which to store the blob.

struct M_MakeBlobFile {
M_MakeBlobFile_flags flags;
M_KeyID kacl;

M_PhysToken file;

nCore v13.6.14 Developer Tutorial 209/237

Chapter 12. nCore APl commands

« No flags are defined.
« M_KeyID kacl

The KeyID of a template key defining the ACL for this file. This ACL must contain the
LoadBlob permission.

« M_PhysToken file

A FileSpec specifying the location of the file.

12.2.25.2. Reply

struct M_Cmd_MakeBlob_Reply {
M_ByteBlock blob;
Bs

M_ByteBlock blobis a KeyBlob.

12.2.26. MergeKeyIDs

All non-error states Requires a ClientID

In situations where one key has been loaded onto several modules, this key will have a differ
ent KeyID on each module. The MergeKeyIDs command takes a list of KeyIDs, which are
assumed to refer to the same key, and creates a new KeyID that can be used to refer to the
key on any module. This facilitates load sharing and fail-over strategies.

12.2.26.1. Arguments

struct M_Cmd_MergeKeyIDs_Args {
int n_keys;
M_vec_KeyID keys;

i

« int n_keys is the number of keys.

« M_vec_KeyID keys is a list of IDka.

12.2.26.2. Reply

nCore v13.6.14 Developer Tutorial 210/237

Chapter 12. nCore APl commands

struct M_Cmd_MergeKeyIDs_Reply {
M_KeyID newkey;
i

M_KeyID newkey is IDga

12.2.26.3. Notes

MergeKeyIDs does not check to see whether the supplied KeyIDs actually refer to the same
key.

Merged KeyIDs may not themselves be supplied to MergeKeyIDs.

A merged KeyID will continue to work even if some of the modules containing the compo-
nent KeyIDs are reset or fail, though performance may be reduced in such cases. The
merged KeyID will only stop working after all the modules containing the component KeyIDs
are reset or fail.

MergeKeyIDs can be used to group keys, logical tokens, SEE Worlds, and any other objects
that are referred to by a KeyID and destroyed by Destroy.

The server does not attempt to ensure that the merged KeyIDs refer to the same underlying
data, or even to the same types of objects.

12.2.27. ReadShare

Operational state, initialization state Requires a ClientID

This command is used to assemble a logical token from shares.

The smart card architecture keeps public data storage areas separate
from the areas that are used to store logical token shares. Specifically, if
o a given piece of information can be read or written with ReadShare or
WriteShare, then it cannot be read or written with ReadFile or Write-

File. The converse is also true.

12.2.27.1. Arguments

struct M_Cmd_ReadShare_Args {
M_Cmd_ReadShare_Args_flags flags;
M_PhysToken token;
M_KeyID idkt;
M_Word i;
M_PIN *pin;

nCore v13.6.14 Developer Tutorial 211/237

Chapter 12. nCore APl commands

+ The following flags are defined:
> Cmd_ReadShare_Args_flags_pin_present

This flag must be set if the input includes a PIN.

o If the slot uses the ProtectedPINPath, do not include the PIN
with the command.

> Cmd_ReadShare_Args_flags_UselLimitsUnwanted

If this flag is set the module does not allocate Per-Authorisation Use limits to this
logical token. Keys protected by the assembled local token will only be permitted
to perform actions that do not have use limits. Per authorisation use limits can only
be allocated to one logical token for each insertion of the card. However, it is possi
ble that the logical token is required on several modules, or by several clients on
one module. Therefore, you should set this flag, if you are aware that you do not
need the uselimits and wish to make them available elsewhere.

« M_KeyID 1idkt is the IDy;.
« M_Word i is share number 1.

« M_PIN *pin

If the share is protected by a PIN, this must be specified in order to successfully
decrypt the share, otherwise pin must be a NULL pointer. If the input includes a PIN, the
pin_present flag must be set.

12.2.27.2. Reply

struct M_Cmd_ReadShare_Reply {
M_Word sharesleft;
I

M_Word sharesleft is the number of shares that are still required in order to recreate the
token. You can issue further ReadShare commands when the shares are present.

A sharesleft value of O indicates that all shares are present. At that point, the module will
automatically assemble the token.

12.2.27.3. Notes

nCore v13.6.14 Developer Tutorial 212/237

Chapter 12. nCore APl commands

If an error occurs during an individual share reading operation (because of, for example, an
incorrect PIN or the wrong token), the current state of the logical token is retained, and the
operation can simply be repeated.

If an error occurs during the final share reassembly process (implying that the shares have
been corrupted in some way), the logical token is invalidated, and Status_TokenReassembly-
Failed is returned. The token must then be destroyed, and the whole operation must be
restarted.

At any time during the share reassembly sequence, the host can abort it (and clear the
reassembly buffer) by calling Destroy with the given ID.. If the client closes before the
token has been assembled, the server automatically issues the Destroy command.

12.2.28. RedeemTicket

Operational state, initialization state Requires a ClientID

This command gets a KeyID in return for a key ticket.

12.2.28.1. Arguments

struct M_Cmd_RedeemTicket_Args {
M_Cmd_RedeemTicket_Args_flags flags;
M_ModuleID module;
M_nest_Ticket ticket;

i

+ No flags are defined.
« M_ModuleID module

This specifies the module ID of the module that contains this object.
« M _nest_Ticket ticket

This is the ticket that is supplied by GetTicket.

12.2.28.2. Reply

struct M_Cmd_RedeemTicket_Reply {
M_KeyID obj;
};

M_KeyID obj is the new KeylD for this object.

nCore v13.6.14 Developer Tutorial 213/237

Chapter 12. nCore APl commands

12.2.29. RemoveKM

Operational state, initialization state Requires a ClientID
May require a KNSO certificate
"Privileged" users only
This command deletes a given Ky value from permanent storage. The deletion process over-
writes the value in order to ensure its destruction.

o ‘ Kvo cannot be deleted.

12.2.29.1. Arguments

struct M_Cmd_RemovekM_Args {
M_ModuleID module;
M_Cmd_RemovekM_Args_flags flags;
M_KMHash hkm;

i

« M_ModuleID module is the ModuleID.
+ No flags are defined.
« M_KMHash hkmis Hgwm.

12.2.29.2. Reply

The reply structure for this command is empty.

12.2.30. RSAlmmedSignDecrypt

Operational state, initialization state

This command performs RSA decryption by using an RSA private key that is provided in
plain text.

12.2.30.1. Arguments

struct M_Cmd_RSAImmedSignDecrypt_Args {
M_Bignum m;
M_Bignum k_p;
M_Bignum k_q;
M_Bignum k_dmp1;

nCore v13.6.14 Developer Tutorial 214/237

Chapter 12. nCore APl commands

M_Bignum k_dmq1;
M_Bignum k_iqmp;
}

« M_Bignum m Ciphertext

« M_Bignum k_p P modulus first factor
« M_Bignum k_q Q modulus first factor
« M_Bignum k_dmp1 D MODy

« M_Bignum k_dmq1 D MODq,

- M_Bignum k_igmp Q" MOD;

12.2.30.2. Reply

struct M_Cmd_RSAImmedSignDecrypt_Reply {
M_Bignum r;

F

M_Bignum r is plain text .

12.2.30.3. Notes
The plain text and cipher text are in the nShield bignum format.

No padding is done.

12.2.31. RSAlmmedVerifyEncrypt

Operational state, initialization state

This command performs RSA encryption with an RSA public key provided in plain text.

12.2.31.1. Arguments

struct M_Cmd_RSAImmedVerifyEncrypt_Args {
M_Bignum a;
M_Bignum k_e;
M_Bignum k_n;

I

« M_Bignum a Message

« M_Bignum k_e Key exponent

nCore v13.6.14 Developer Tutorial 215/237

Chapter 12. nCore APl commands

« M_Bignum k_n Key modulus

12.2.31.2. Reply

Uses M_Cmd_RSAImmedSignDecrypt_Reply.

12.2.31.3. Notes
The plain text and cipher text are in nShield bignum format.

No padding or unpadding is performed.

12.2.32. SetACL

Operational state, initialization state Requires a ClientID

This command replaces the ACL of a given key object with a new ACL. The existing ACL
must have either ExpandACL or ReduceACL permission. If the existing ACL only includes the
ReduceACL permission, you must set the Cmd_SetACL_Args_flags_reduce flag, and also the
new ACL must be a subset of the existing ACL.

12.2.32.1. Arguments

struct M_Cmd_SetKM_Args {
M_Cmd_SetKM_Args_flags flags;
M_KeyID idka;
M_ACL *acl;

I

+ The following flag is defined:
° Cmd_SetACL_Args_flags_reduce

If this flag is not set, the command checks the ExpandACL permission in the existing
ACL. However, if this flag is set:

® the command checks the ReduceACL permission in the existing ACL
® the new ACL must be a subset of the existing ACL

« M_KeyID 1idka is IDga.

« M_ACL *aclis the new ACL for the key.

nCore v13.6.14 Developer Tutorial 216/237

Chapter 12. nCore APl commands

12.2.32.2. Reply

The reply structure for this command is empty.

12.2.32.3. Notes

The new ACL will be a subset of the original ACL if for every action in the new ACL there
exists an entry in the existing ACL in a permission group with:

- the same certifier or no certifier
+ the same or more restrictive FreshCerts flag

- use limits that are at least as permissive as those in the new ACL

The use limits are considered to be as permissive as those in the new ACL if for each limit in
the original ACL there is a limit in the new ACL:

- of the same type, global or per-authorization
+ with the same limit ID

+ with a use count and a time limit that are no greater than those in the original.
The following changes count as reducing an ACL:

- adding a certifier or NSOCertified to a group

+ adding UseLimits to a group that did not have them previously

+ adding a time limit or a use count to a use limit that did not have one previously
+ reducing an existing use count or time limit

+ adding a module serial number to a group.
The following changes do not count as reducing an ACL:

« changing the certifier for a group
+ changing the module serial number for a group
« changing a use count to a time limit or changing a time limit to a use count

- changing from NSOCertified to a specific certifier or changing from a specific certifier
to NSOCertified.

If the Strict_FIPS140 flag was set in the SetKNSO command, then SetACL
will fail with status Status_FIPS_Compliance if you attempt to add Expor

o tAsPlain to the ACL of a secret key. A secret key is any key that can
have Sign or Decrypt permissions.

If you want to record the new ACL permanently, you must make a new blob of the key.

nCore v13.6.14 Developer Tutorial 217/237

Chapter 12. nCore APl commands

12.2.33. SetKM

Operational state, initialization state Requires a ClientID
May require a KNSO certificate

"Privileged" users only

This command allows a key object to be stored internally as a module key (Ky) value. The Ky
value is derived from the key material given by ID¢.. The ACL and other information associ-
ated with IDy, are not stored.

12.2.33.1. Arguments

struct M_Cmd_SetKM_Args {
M_ModuleID module;
M_Cmd_SetKM_Args_flags flags;
M_KeyID idka;

I

M_ModuleID module

« No flags are defined.

« M_KeyID idka is IDka.

+ Ka must be a DES3 key with UseAsKM permission.

12.2.33.2. Reply

The reply structure for this command is empty.

12.2.33.3. Notes

If you attempt to set as a Ky a key that has the same hash as an existing Ky, then SetKM will
overwrite the existing module key with the new key. If you are attempting to overwrite Ky,
the command will return Status_AccessDenied.

12.2.34. SetNSOPerms

Initialization state only Requires a ClientID

"Privileged" users only

nCore v13.6.14 Developer Tutorial 218/237

Chapter 12. nCore APl commands

The SetNSOPerms command stores the key hash Hga, which is returned by GetKeyInfo as the
new Security Officer’s key.

It also determines which operations require a KNSO certificate.

The SetNSOPerms command requires you to set a flag if you want an oper
0 ation to be allowed without a certificate. This is the opposite behavior
to the SetkKNSO command.

This command may only be called once after each use of InitialiseUnit (see InitialiseU-
nit). After it is set, the Security Officer's key can only be changed by completely reinitializ-
ing the module.

12.2.34.1. Arguments

struct M_Cmd_SetNSOPerms_Args {
M_ModuleID module;
M_Cmd_SetNSOPerms_Args_flags flags;
M_KeyHash hknso;
M_NSOPerms publicperms;

I

« M_ModuleID module is the module id
 The following flag is defined:

> Cmd_SetNSOPerms_Args_flags_FIPS140Level3

If this flag is set, the module adopts a security policy that complies with FIPS 140
Level 3. This enforces the following restrictions:

® the Import command fails if you attempt to import a key of a type that can be
used to sign or decrypt messages.

e Use of the Import command for other key types requires a
Knso certificate.

® GenerateKey and GenerateKeyPair require Kyso certificates

® GenerateKey and GenerateKeyPair fail if you attempt to generate a key of a

type that can be used to sign or decrypt messages with an ACL that allows
ExportAsPlain

® SetACL fails if you attempt to add the ExportAsPlain action to the ACL of a
key of a type that can be used to sign or decrypt messages.

All cryptographic mechanisms which do not use a FIPS-approved algorithm

nCore v13.6.14 Developer Tutorial 219/237

Chapter 12. nCore APl commands

are disabled. (This restriction is new for firmware versions 2.18.13 and later).

Cryptographic algorithms which are disabled are: ArcFour, Blowfish, CAST,
CAST256, HAS160, KCDSA, MD2, MD5, RIPEMD160, SEED, Serpent, Tiger,
Twofish.

The following algorithms are unaffected: DES, DES2, DES3, Diffie-Hellman,
DSA, Rijndael (AES), RSA, SHA-1, SHA-256, SHA-384 and SHA-512

In order to fully comply with FIPS 140 Level 3 you must also ensure
that none of the following are set: NSOPerms_ops_ReadFile, NSOP-
0 erms_ops_WriteFile, NSOPerms_ops_EraseShare, NSOPerms_op-
s_EraseFile, NSOPerms_ops_FormatToken, NSOPerms_ops_Gener-
atelLogToken, NSOPerms_ops_SetKM, NSOPerms_ops_RemoveKM.

« M_KeyHash hkns is Hya to set as Henso

« M_NSOPerms publicperms

The NSOPerms word is a bit map that determines which operations do not require a cer-
tificate from the nShield Security Officer. These certificates can be reusable. The fol-
lowing flags are defined:

> NSOPerms_ops_LoadLogicalToken

> NSOPerms_ops_ReadFile

> NSOPerms_ops_WriteShare

> NSOPerms_ops_WriteFile

> NSOPerms_ops_EraseShare

> NSOPerms_ops_EraseFile

> NSOPerms_ops_FormatToken

> NSOPerms_ops_SetKM

> NSOPerms_ops_RemovekM

> NSOPerms_ops_GeneratelLogToken

> NSOPerms_ops_ChangeSharePIN

> NSOPerms_ops_OriginateKey Not allowed in SetkNSO
> NSOPerms_ops_NVMemAlloc Not allowed in SetkKNSO

> NSOPerms_ops_NVMemFree Not allowed in SetKNSO

> NSOPerms_ops_GetRTC Not allowed in SetKNSO

> NSOPerms_ops_SetRTC Not allowed in SetKNSO

> NSOPerms_ops_DebugSEEWor1d Not allowed in SetKNSO

nCore v13.6.14 Developer Tutorial 220/237

Chapter 12. nCore APl commands

> NSOPerms_ops_SendShare Not allowed in SetKNSO
> NSOPerms_ops_ForeignTokenOpen Not allowed in SetkKNSO

12.2.34.2. Reply

The reply structure for this command is empty.

12.2.34.3. Notes

Modules that are supplied by nShield are initialized with no operations
o that require Kyso certificates. This means that the key whose hash is
installed as Hxnso is irrelevant.

12.2.35. SetRTC

Operational state, initialization state Requires an SEE-Ready module
May require a KNSO certificate

"Privileged" users only

12.2.35.1. Arguments

struct M_Cmd_SetRTC_Args {
M_ModuleID module;
M_Cmd_SetRTC_Args_flags flags;
M_RTCTime time;

Is

« M_ModuleID module

The module ID of the module. If you enter a module ID of O, the command returns with
status InvalidParameter.

« The following flag is defined:
> Cmd_SetRTC_Args_flags_adjust

If this flag is set, the module calculates the difference between the current time
according to the RTC and the time supplied in the command. Next, it divides this
difference by the length of time since the clock was last set in order to determine
a drift rate. The result of all future calls to GetRTC is corrected using this drift rate.
The command returns status OutOfRange if the implied drift rate is larger than the

nCore v13.6.14 Developer Tutorial 221/237

Chapter 12. nCore APl commands

chip’s guaranteed maximum drift rate. If, however, this flag is not set, the module
will clear any current drift rate adjustment.

« M_RTCTime time is the new time.

12.2.35.2. Reply

The reply structure for this command is empty.

12.2.36. Sign

Operational state, initialization state Requires a ClientID

This command signs a message with a stored key.
For information on formats, see Encrypt.

Sign pads the message as specified by the relevant algorithm, unless you use plaintext of
the type Bignum.

You cannot sign a message that is longer than the maximum size of an
e nShield command. In order to sign longer messages, use the Hash com-
mand first, and then call Sign with the appropriate Hash plain text type.

12.2.36.1. Arguments

struct M_Cmd_Sign_Args {
M_Word flags;
M_KeyID key;
M_Mech mech;
M_PlainText plain;
M_IV *given_iv

i

 No flags are defined.
« M_KeyID key is the IDga.

12.2.36.2. Reply

struct M_Cmd_Sign_Reply {
M_CipherText sig;
Y

nCore v13.6.14 Developer Tutorial 222/237

Chapter 12. nCore APl commands

12.2.37. SignModuleState

Operational state, initialization state Requires a ClientID

SignModuleState makes the module generate a signed Module Certificate that contains
data about the current state of the module. Optionally, a challenge value may be supplied
to provide a provably fresh certificate.

12.2.37.1. Arguments

struct M_Cmd_SignModuleState_Args{
M_ModuleID module;
M_Cmd_SignModuleState_Args_flags flags;
M_SignerType enum;
M_Nonce challenge;
M_wrap_vec_ModuleAttribTag *attribs;

« The following flags are defined:

° Cmd_SignModuleState_Args_flags_challenge_present
This flag must be set if the command contains a challenge.
° Cmd_SignModuleState_Args_flags_attribs_present

This flag must be set if the command contains Module Attribute Tags. If not set
the module delivers a default set of attributes.

- SignerType can have the following values:

> KLF: The certificate is signed by the KLF long-term key. Status_NotAvailable is
returned if this key has not been set.

> KML: The certificate is signed by the KML key. This is always available (except in
pre-initialization mode, when the command is not accepted anyway).

> Appkey: The certificate is signed a user key, using the given mechanism (which can
be Mech_Any). The key must have a new OpPermission bit in its ACL, called SignMod
uleCert. SignModuleCert is a less generate permission than Sign: the module uses
it only to sign well-formed messages whose content it believes to be true. Sign
permission doesn’t imply SignModuleCert permission.

« M_wrap_vec_ModuleAttribTag *attribsis a list of the attributes to include in the signed
message

struct M_wrap_vec_ModuleAttribTag {
int n;
M_vec_ModuleAttribTag v;

nCore v13.6.14 Developer Tutorial 223/237

Chapter 12. nCore APl commands

The following attributes are defined:

ModuleAttribTag_None

ModuleAttribTag_Challenge (default if included in command)

ModuleAttribTag_ESN (default)
ModuleAttribTag_KML (default)
ModuleAttribTag_KLF (default)
ModuleAttribTag_KNSO (default)
ModuleAttribTag_KMList (default)
ModuleAttribTag_PhysSerial
ModuleAttribTag_PhysFIPS13
ModuleAttribTag_FeatureGoldCert
ModuleAttribTag_Enquiry
ModuleAttribTag_Additionallnfo
ModuleAttribTag_ModKeyInfo

12.2.37.2. Reply

The reply structure for this command is as follows:

struct M_Cmd_SignModuleState_Reply {

M_ModuleCert *cert is a certificate that describes how the key was generated.

M_ModuleCert *cert;
I

struct M_ModuleCert {

M_CipherText signature;
M_ByteBlock modcertmsg;
I

struct M_ModCertMsg {

M_ModCertType type;
union M_ModCertType__ModCertData data;
}

union M_ModCertType__ModCertData {

M_ModCertType_KeyGen_ModCertData keygen;
b5

nCore v13.6.14 Developer Tutorial

224/237

Chapter 12. nCore APl commands

struct M_ModCertType_KeyGen_ModCertData {
M_ModCertType_KeyGen_ModCertData_flags flags:
M_KeyGenParams genparams;
M_ACL acl;
M_Hash hka;

Y

+ M_ModCertType type is one of the following:
° None
° Challenge: appears if a challenge is present in the SignModuleState command
° ESN: ASCII string
° KML: KML key, defined with key hash and key data
° KLF: KLF key, defined with key hash and key data
° KNSO: not present if module is in initialization mode
° KMList
 The following flag is defined:
° ModCertType_KeyGen_ModCertData_flags_public

Set this flag if this is the public half of a key pair.
« M_KeyGenParams genparams

These are the key generation parameters to be used to generate this key.

M_ACL acl
This is the ACL that was applied to this key when it was created.
« M _Hash hka

This is the SHA-1 hash of the key value.

12.2.38. StaticFeatureEnable

Operational state, initialization state

This command is used to enable a purchased feature. It requires a certificate signed by the
nShield master feature enabling key, KSA, authorizing the feature on the specified module.

Use the fet command-line utility to perform this function.

12.2.38.1. Arguments

nCore v13.6.14 Developer Tutorial 225/237

Chapter 12. nCore APl commands

struct M_Cmd_StaticFeatureEnable_Args {
M_ModuleID module; Module ID
M_FeatureInfo info;

I

M_FeatureInfo infois a description of the feature to authorize

12.2.38.2. Reply

The reply structure for this command is empty.

12.2.39. UpdateMergedKey

All non-error states Processed by the nShield Server.

This command allows a merged key set to be manipulated, listed, or both.

12.2.39.1. Arguments

struct M_Cmd_UpdateMergedKey_Args {
M_PlainText mkey; IDKA
M_Cmd_UpdateMergedKeys_Args_flags flags
int n_addkeys;
M_KeyID *addkeys;
int n_delkeys;
M_KeyID *delkeys;

« M_PlainText mkey (IDxa) is @ merged key set created with MergeKeyIDs.
+ The following flags are defined:

> Cmd_UpdateMergedKey_Args_flags_ListWorking

If this flag is set, the keys in the resulting merged key that are in working modules
are returned.

> Cmd_UpdateMergedKey_Args_flags_ListNonworking

If this flag is set, the keys in the resulting merged key that are not in working mod-
ules are returned.

These two flags can be set together if required.
« M_KeyID *addkeys is a table of keys to be added to the merged key.

Merged key IDs that currently contain no key IDs are allowed.

nCore v13.6.14 Developer Tutorial 226/237

Chapter 12. nCore APl commands

« M_KeyID *delkeys is a table of keys to be deleted from the merged key.

6 ‘ Including a key in this list deletes all copies of the specified key.

12.2.39.2. Reply

struct M_Cmd_UpdateMergedKey_Reply {
int n_keys;
M_KeyID *keys;

b5

M_KeyID *keys is a table containing the merged key that results once the specified keys are
added and deleted from the input merged key.

If ListWorking is set, keys in working modules are included; if ListNonWorking is set, keys
not in working modules are included. If both are set, all keys are included.

12.2.39.3. Notes

You cannot add a merged key to another merged key, or delete a merged key from another
merged key.

The same key can be present more than once in a merged key.

The keys specified in addkeys are added to the target merged key first. The keys specified in
delkeys are then deleted. This means that if the same key is present in both addkeys and
delkeys, it is not present in the resulting merged key.

12.2.40. Verify

Operational state, initialization state Requires a ClientID
This command verifies a digital signature. It returns Status_0OK if the signature verifies cor-
rectly and Status_VerifyFailed if the verification fails.

The limit of 8K does not apply to data signed by this command. This is because the Generic
Stub library splits the command into a ChannelOpen command followed by a number of Chan
nelUpdate commands.

For information on formats, see Sign.

12.2.40.1. Arguments

nCore v13.6.14 Developer Tutorial 227/237

Chapter 12. nCore APl commands

struct M_Cmd_Verify_Args {
M_Cmd_Verify_Args_flags flags;
M_KeyID key;
M_Mech mech;
M_PlainText plain;
M_CipherText sig;

i

No flags are defined.
« M_KeyID key: IDga

M_Mech mech: set Mech_Any in order to use the mechanism specified in the signature. If

you specify a mechanism, Verify will compare this with the mechanism in the signa-
ture and return Status_MechanismNotExpected if the mechanisms do not match.

« M_PlainText plain: message.

M_CipherText sig: signature.

12.2.40.2. Reply

The reply structure for this command is empty.

12.2.41. WriteShare

Operational state, initialization state Requires a ClientID

May require a KNSO certificate

This command creates one share of a logical token and writes it to a smart card identified
by the S1otID, insertion counter pair. The i value identifies the share number. This com-
mand needs to be given once for each share that is to be generated.

12.2.41.1. Arguments

struct M_Cmd_WriteShare_Args {
M_Cmd_WriteShare_Args_flags flags;
M_PhysToken token;
M_KeyID idkt;
M_Word i;
M_PIN *pin;
M_ACL *acl;

i

« The following flags are defined:

> Cmd_WriteShare_Args_flags_pin_present

nCore v13.6.14 Developer Tutorial 228/237

Chapter 12. nCore APl commands

This flag must be set if the input includes a passphrase.
° Cmd_WriteShare_Args_flags_UseProtectedPINPath

Set this flag if the token reads a passphrase by means of a protected path. How-
ever, this feature is not currently implemented.

> Cmd_WriteShare_Args_flags_acl_present
Set this flag if the command contains an ACL for the share.

o Setting both pin_present and UseProtectedPINPath will cause
the command to fail with InvalidParameter.

. M_KeyID idkt: IDKT
« M_Word i is the share number for the share you are writing. Share numbers start at O.
Each share in a token can only be written once.

« M_ACL *aclis an ACL for this share. If no ACL is specified, a default ACL is assumed,
containing a single ReadShare action without any flags set and requiring no certifica-

tion.

If any shares of a logical token are to have an ACL set, you must set
an ACL for all of them. Shares with ACLs cannot be read in modules

running firmware earlier than version 1.75.0.

12.2.41.2. Reply

The reply structure for this command is empty.

12.3. Commands used by the generic stub only

The following commands are used by the generic stub library to connect to the module.

« ExistingClient
« NewClient

Applications usually do not have to call these commands directly.

12.3.1. ExistingClient

All non-error states Connection must not be associated with
a ClientID

nCore v13.6.14 Developer Tutorial 229/237

Chapter 12. nCore APl commands

This command identifies a connection as belonging to an existing client. There must be at
least one other connection from this client still open. The ExistingClient command is
called automatically by the generic stub function NFastApp_Connect as appropriate, for
example when making an additional connection to an existing client.

12.3.1.1. Arguments

struct M_Cmd_ExistingClient_Args {
M_Cmd_ExistingClient_Args_flags flags;
M_ClientID client;

i

+ No flags are defined.
« M_ClientID client: Rgc

12.3.1.2. Reply

struct M_Cmd_ExistingClient_Reply {
M_Cmd_ExistingClient_Reply_flags flags;
};

No flags are defined.

12.3.2. NewClient

Initialization state, operational state Connection must not be associated with
a ClientID

This command asks the module for a random number to use as the ClientID for a new con-
nection. It is called automatically by the generic stub function NFastApp_Connect.

12.3.2.1. Arguments

typedef struct M_Cmd_NewClient_Args {
M_Cmd_NewClient_Args_flags flags;
Is

No flags are defined.

12.3.2.2. Reply

nCore v13.6.14 Developer Tutorial 230/237

Chapter 12. nCore APl commands

struct M_Cmd_NewClient_Reply {
M_Cmd_NewClient_Reply_flags flags;
M_ClientID client;

g

+ No flags are defined.
« M_ClientID client: Rgc

nCore v13.6.14 Developer Tutorial

231/237

Chapter 13. Transaction IDs

13. Transaction IDs

13.1. Introduction

Transaction IDs, also known as correlation IDs, are identifiers that allow a request to be
traced through different layers, components, and log files of a system.

nCore supports Transaction IDs in conjunction with the Audit Logging scheme, provided in
firmware versions v13.5 and later, for nShield Solo XC, Connect XC, 5s, and 5¢c HSMs.

Transaction IDs are represented in nCore as UTF-8 strings that are permitted to be up to 88
bytes in length, not including the terminator. This is sufficient to represent the base64 of a
SHA512 or SHA3-512 hash.

By using human-readable strings, you can choose how the IDs appear when printed in
nCore client logs and audit logs. You can also use this string to encode data such as
sequence numbers, UUIDs, cryptographic hashes, or hex or base64 encodings of user-sup-
plied data.

13.2. Limitations

Some limitations are present in this release.

« Sending commands with Transaction IDs set to HSMs running firmware versions older
than v13.5 is not supported.

° If the attempt is made, commands will fail with error Status_UnknownF1ag.

+ Transaction IDs are preserved where the command is directly forwarded from the
client to the HSM. Where commands are implemented internally by the Security World
software, the linkage might not be preserved.

° In particular, this can apply to Cmd_Destroy when sent from client-side applica-
tions, as objects are reference counted in the hardserver, so the actual HSM
Cmd_Destroy command is issued by the hardserver when the reference count
reaches O. This limitation does not apply to CodeSafe, which does not use hard-

server.

° Client-side code sending large commands, such as Cmd_Decrypt, with a symmetric
key on a large ciphertext might be automatically split by library code into multiple
commands of smaller buffers. Linkage is not preserved when the Transaction ID is
set directly on the M_Command object, but if the Transaction ID is set on the connec
tion, as a thread-local, or on any of the other supported interfaces besides setting
on command directly, then it will be.

nCore v13.6.14 Developer Tutorial 232/237

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/audit-logging.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/audit-logging.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/audit-logging.html

Chapter 13. Transaction IDs

13.3. Unicode Notes

Because the Transaction ID strings can be UTF-8, the following filters and features are
present to mitigate potential issues when displaying them in JSON or text output in the
nshieldaudit tool. Where filtering occurs, one or more consecutive filtered characters are
replaced with an underscore _ character as the replacement character.

« Control characters other than new-ling, carriage-return, and tab are filtered.

+ Whitespace, including non-ASCII Unicode whitespace, is filtered when outputting in
the single-line text representation, but is not filtered in the full JSON output.

+ Bidirectional text formatting characters are filtered.

« The option to restrict to only ASCII characters can be enabled by setting the environ-
ment variable NSHIELDAUDIT _ASCII _ONLY=1 in the environment of the nshieldaudit tool
when performing the export.

Additional options may be provided for controlling permitted characters in a future release.

13.4. Setting Transaction IDs
Transaction IDs are associated with an nCore command submitted by client code.

nShield client-side software and libraries support use of the NFAST_TRANSACTION_ID environ-
ment variable as a way to inject a Transaction ID into any operation.

It can also be set programmatically in nCore client libraries, as described in the following
sections. In each case, library code will automatically copy and truncate the string to the 88
byte limit.

13.4.1. nCore C (Generic Stub)

When a command is submitted, for example by using NFastApp_Submit or NFastApp_Trans-
act, library code searches for a Transaction ID that has been set by the following functions,
in the following order of precedence:

1. Set directly on an M_Command object using the helper functions NFastApp_SetTransac-
tionID for heap-allocation, where command will be freed, or NFastApp_SetTransaction
ID_NoFree where all memory is on stack.

2. A user-supplied callback function, "upcall”, for retrieving the Transaction ID from user
call context or transaction context that has been provided to the library when NFastAp-
p_InitEx was called.

nCore v13.6.14 Developer Tutorial 233/237

Chapter 13. Transaction IDs

3. Thread-local value set via NFastApp_SetThreadTransactionID.

4. Set for a given NFastApp_Connection using NFastApp_SetConnTransactionID.
5. Set for a given NFast_AppHandle using NFastApp_SetAppTransactionID.

6. NFAST_TRANSACTION_ID environment variable.

Corresponding "Get" functions also exist for each of these "Set" functions.

The caller provides Transaction ID strings as const char * objects that can contain UTF-8
characters.

13.4.2. SEElib (CodeSafe CSEE)

Helper functions SEE1ib_SetTransactionID and SEET1ib_SetTransactionID_NoFree provide
the corresponding functionality to their NFastApp_* equivalents for setting a UTF-8 Transac
tion ID string on an M_Command directly.

Other mechanisms of setting the Transaction ID are not provided in this case. This includes
the NFAST_TRANSACTION_ID environment variable.

13.4.3. nCore Python (nfpython)

When a command is submitted, for example by using the submit() or transact() methods
of an nfpython.connection object, library code searches for a Transaction ID that has been
set by the following functions, in the following order of precedence:

1. Set directly on an nfpython.Command object using the nfpython.set_transaction_id()
function.

2. Thread-local value set using the nfpython.set_thread_transaction_id() function.

3. Set for a given nfpython.connection object using the set_transaction_id() method of
the object.

4. NFAST_TRANSACTION_ID environment variable.

Corresponding "Get" functions also exist for each of these "Set" functions.

13.4.4. nCore Java (nfjava)

When a command is submitted, for example by using the NFConnection.submit() or NFCon-
nection.transact() methods, library code searches for a Transaction ID that has been set
by the following functions. It observes the following order of precedence:

nCore v13.6.14 Developer Tutorial 234/237

Chapter 13. Transaction IDs

1. Set directly on an M_Command object using the static helper function NFUtils.setTrans-
actionID().

2. Thread-local value set via static helper function NFConnection.setThreadTransac-
tionID.

3. Set for a given NFConnection instance using NFConnection.setTransactionID method
of the connection object.

4. NFAST_TRANSACTION_ID Java system property.
5. NFAST_TRANSACTION_ID environment variable.

Corresponding "Get" functions also exist for each of these "Set" functions.

13.4.5. Higher-level APls

The thread-local Transaction ID setting function NFastApp_SetThreadTransactionID, and its
Python and Java equivalents, does not take any library handles as arguments. This means
that, in many cases, it can be called by higher-level code to provide the Transaction ID with
out having to directly modify or pass through to lower layers.

Because the storage for this function is thread-local, it can safely be used in a multi-
threaded application. NFastApp_SetThreadTransactionID can also be be called with a NULL
pointer to unset the thread-local, preventing subsequent code from unintentionally using
the Transaction ID outside of the intended scope.

Setting the NFAST_TRANSACTION_ID environment variable also provides an implementation-
agnostic and language-agnostic way to provide a Transaction ID. This can be done for a
whole program, for example, where a whole request is self-contained, which might be the
case with something like signtool. It can also be used dynamically in-process, because
library code re-checks the environment variable each time an nCore command is submitted.
Updating dynamically is only suitable when a single thread of the application is submitting
nCore commands, because environment variables are process-wide.

Supporting additional setters for particular higher-level APIs like PKCS #11 or CNG, for
example supporting setting the Transaction ID via an attribute or property on a relevant
object or handle in the higher-level API, may be considered in future if there is enough
demand and if existing interfaces are insufficient for user needs.

13.5. Transaction ID logging

13.5.1. Client debug logs

nCore v13.6.14 Developer Tutorial 235/237

Chapter 13. Transaction IDs

Transaction IDs appear in client-side debug logs as part of the traced nCore commands, as
demonstrated in the following example produced from the nCore C Generic Stub library
using the NFLOG_SEVERITY=DEBUGT environment variable.

The Transaction ID string in this example is ExampleTransactionID1234.

Generic Stub nCore Log

00:40:56 DEBUGT: NFastApp_Submit tag=17cf@8be; conn=0x55851a740800; reply=0x55851a771e30; time=1732495256
command. tag= 0x00000000 0
.cmd= Sign
.status zero
.flags= sessioninfo_present 0x00000200
.state absent
.args.sign.flags= none 0x00000000
.key= 0x9e4fal111 2656018705 2656018705
.mech= RSApPKCS1
.plain.type= Bignum
.data.bignum.m= 128 bytes
.given_iv absent
.certs absent
.extractstate absent
.sessionid absent
.sessioninfo.v= 0x00000000 0
.flags= transaction_present 0x00000004
.transaction= "ExampleTransactionID1234"

13.5.2. nCore audit logs

Transaction IDs also appear in nCore audit logs emitted by firmware version v13.5 or later.

13.5.2.1. Text audit logs

nCore audit logs can be exported from the audit database, using the nshieldaudit com-
mand, in a condensed human-readable text format summarizing the most important infor-
mation in one audit entry per line.

The Transaction ID is referenced with the trID= field in these logs, for example:

nCore text audit log

2024-11-25 00:40:56.254 1dx=1940686 src=Host trID=ExampleTransactionID1234 cmd=Sign rc=0K obj=982

13.5.2.2. nCore JSON audit logs

nCore audit logs can be exported from the audit database in JSON format showing the full
detail of the underlying nCore audit data. This is most useful if more context is needed or
where a machine-readable format is needed for additional processing.

nCore v13.6.14 Developer Tutorial 236/237

Chapter 13. Transaction IDs

The following example displays the portion of a JSON audit segment that describes an
audit event for a Sign command, similar to the one shown in the Client debug log:

nCore JSON audit segment

"v': 0,
"timestamp": 1732495256254,
"source": "Host",
"infos": [
{
"type": "Command",
"body": {
"flags": [
"sessioninfo_present"
P
"emd": "Sign",
"info": {},
"sessioninfo": {
"v': 0,
"flags": [
"transaction_present"
]I
"transaction": "ExampleTransactionID1234"
}I
"status": "0K"
}

"type": "ObjectUse",
"body": {
"v': 0,
"objid": 982,
"action": {
"type": "OpPermissions",
"details": {
"perms": [
"Sign"

nCore v13.6.14 Developer Tutorial 237/237

	nShield Security World: nCore v13.6.14 Developer Tutorial
	Table of Contents
	1. Read this guide if …​
	2. Further information
	3. Security advisories
	3.1. Contacting Entrust nShield Support

	4. nCore architecture
	4.1. Programming environment architecture
	4.2. Generating a key
	4.3. Loading a key
	4.4. Transacting a command

	5. C tutorial
	5.1. Overview
	5.1.1. nCore API functionality used in this tutorial
	5.1.2. Variables used in this tutorial

	5.2. Before connecting to the hardserver
	5.2.1. Declaring a call context
	5.2.2. Declaring memory allocation upcalls
	5.2.3. Declaring threading upcalls
	5.2.4. Initializing the nFast application handle

	5.3. Connecting to the hardserver
	5.3.1. Getting Security World information
	5.3.2. Setting up the authorization mechanism

	5.4. Generating a symmetric key
	5.4.1. Obtaining authorization and selecting a module
	5.4.2. Preparing the key-generation command and ACL
	5.4.3. Freeing memory

	5.5. Generating an asymmetric key
	5.5.1. Obtaining authorization and selecting a module
	5.5.2. Preparing the key-generation command and ACL
	5.5.3. Freeing memory

	5.6. Using a key
	5.6.1. Finding a key
	5.6.2. Loading a key

	5.7. Encrypting a file
	5.8. Cleaning up resources

	6. Java tutorial
	6.1. Overview
	6.1.1. Creating a softcard
	6.1.2. nCore classes used in this tutorial
	6.1.3. Variables used in this tutorial

	6.2. Before connecting to the hardserver
	6.3. Connecting to the hardserver
	6.4. Generating a key
	6.4.1. Methods used in generate_key()

	6.5. Using a key
	6.6. Signing a file
	6.7. Cleaning up resources

	7. Python 3 tutorial
	7.1. Prerequisites
	7.2. Set up the environment for nfpython
	7.3. Create and configure the virtualenv
	7.4. nfpython connections and commands
	7.5. Worked nfpython example for hash, sign, and verify

	8. Java examples
	8.1. Extract and compile the Java examples
	8.2. Java key management example utilities
	8.2.1. AppKeyGen.java
	8.2.2. GenerateExport.java
	8.2.3. KMJavaFloodTest.java
	8.2.4. NFKMInfo.java
	8.2.5. NVRamRTCUtil.java
	8.2.6. SimpleCrypt.java
	8.2.7. SlotPoller.java

	8.3. Java JCE/CSP example utilities
	8.3.1. AsymmetricEncryptionExample.java
	8.3.2. DK_ECDHKAExample.java
	8.3.3. ECDHExample.java
	8.3.4. ECIESExample.java
	8.3.5. EdDSAExample.java
	8.3.6. JCEChanTest.java
	8.3.7. JCEFloodTest.java
	8.3.8. JCESigTest.java
	8.3.9. KeyLoadTimer.java
	8.3.10. KeyStorageExample.java
	8.3.11. NCipherLibraryInteropExample.java
	8.3.12. SignaturesExample.java
	8.3.13. SslClientExample.java
	8.3.14. SslServerExample.java
	8.3.15. SymmetricEncryptionExample.java
	8.3.16. SignatureTest.java

	8.4. Java generic stub examples
	8.4.1. BlobInfo.java
	8.4.2. Channel.java
	8.4.3. CheckMod.java
	8.4.4. CrypTest.java
	8.4.5. DesKat.java
	8.4.6. DKTest.java
	8.4.7. EasyConnection.java
	8.4.8. Enquiry.java
	8.4.9. FloodTest.java
	8.4.10. GenCert.java
	8.4.11. InitUnit.java
	8.4.12. NFEnum.java
	8.4.13. ReportVersion.java
	8.4.14. ScoreKeeper.java
	8.4.15. SigTest.java

	9. Key structures
	9.1. Mechanisms
	9.1.1. Mech_Any

	9.2. Key Types
	9.2.1. Random
	9.2.2. ArcFour
	9.2.3. Blowfish
	9.2.4. CAST
	9.2.5. CAST256
	9.2.6. DES
	9.2.7. DES2
	9.2.8. Triple DES
	9.2.9. Rijndael
	9.2.10. SEED
	9.2.11. Serpent
	9.2.12. Twofish
	9.2.13. Diffie-Hellman and ElGamal
	9.2.14. DSA
	9.2.15. Elliptic Curve ECDH and ECDSA
	9.2.16. KCDSA
	9.2.17. RSA
	9.2.18. DeriveKey

	9.3. Hash functions
	9.3.1. SHA-1
	9.3.2. Tiger
	9.3.3. SHA-224
	9.3.4. SHA-256
	9.3.5. SHA-384
	9.3.6. SHA-512
	9.3.7. MD2
	9.3.8. MD5
	9.3.9. RIPEMD 160
	9.3.10. HAS160

	9.4. HMAC signatures
	9.5. ACLs
	9.6. Use limits
	9.7. Actions
	9.8. Action types
	9.8.1. OpPermissions
	9.8.2. MakeBlob
	9.8.3. MakeArchiveBlob
	9.8.4. NSO
	9.8.5. NVRAM
	9.8.6. ReadShare
	9.8.7. SendShare
	9.8.8. FileCopy
	9.8.9. UserAction
	9.8.10. DeriveKey and DeriveKeyEx
	9.8.11. Using DeriveKey — an example

	9.9. Certificates
	9.9.1. Using a certificate to authorize an action
	9.9.2. Generating a certificate to authorize another operation

	10. NFKM Functions
	10.1. Debugging NFKM functions
	10.2. Functions
	10.2.1. NFKM_changepp
	10.2.2. NFKM_checkconsistency
	10.2.3. NFKM_checkpp
	10.2.4. NFKM_cmd_generaterandom
	10.2.5. NFKM_cmd_destroy
	10.2.6. NFKM_cmd_loadblob
	10.2.7. NFKM_cmd_getkeyplain
	10.2.8. NFKM_erasecard
	10.2.9. NFKM_erasemodule
	10.2.10. NFKM_hashpp
	10.2.11. NFKM_initworld_*
	10.2.12. NFKM_loadadminkeys_*
	10.2.13. NFKM_loadcardset_*
	10.2.14. NFKM_loadworld_*
	10.2.15. NFKM_makecardset_*
	10.2.16. NFKM_newkey_*
	10.2.17. NFKM_operatorcard_changepp
	10.2.18. NFKM_operatorcard_checkpp
	10.2.19. NFKM_recordkey
	10.2.20. NFKM_recordkeys
	10.2.21. NFKM_replaceacs_*

	11. OpenSSL with NFKM Engine
	11.1. Quick usage
	11.2. Testing with a self-signed certificate
	11.3. Common problems
	11.3.1. invalid engine "nfkm"
	11.3.2. unable to load server certificate private key file

	12. nCore API commands
	12.1. Basic commands
	12.1.1. ClearUnit
	12.1.2. ClearUnitEx
	12.1.3. ModExp
	12.1.4. ModExpCrt

	12.2. Key-management commands
	12.2.1. ChangeSharePIN
	12.2.2. ChannelOpen
	12.2.3. ChannelUpdate
	12.2.4. Decrypt
	12.2.5. DeriveKey
	12.2.6. Destroy
	12.2.7. Duplicate
	12.2.8. Encrypt
	12.2.9. Export
	12.2.10. FirmwareAuthenticate
	12.2.11. FormatToken
	12.2.12. GenerateKey and GenerateKeyPair
	12.2.13. GenerateLogicalToken
	12.2.14. GetChallenge
	12.2.15. GetKML
	12.2.16. GetTicket
	12.2.17. Hash
	12.2.18. ImpathKXBegin
	12.2.19. ImpathKXFinish
	12.2.20. ImpathReceive
	12.2.21. ImpathSend
	12.2.22. InitialiseUnit
	12.2.23. LoadBlob
	12.2.24. LoadLogicalToken
	12.2.25. MakeBlob
	12.2.26. MergeKeyIDs
	12.2.27. ReadShare
	12.2.28. RedeemTicket
	12.2.29. RemoveKM
	12.2.30. RSAImmedSignDecrypt
	12.2.31. RSAImmedVerifyEncrypt
	12.2.32. SetACL
	12.2.33. SetKM
	12.2.34. SetNSOPerms
	12.2.35. SetRTC
	12.2.36. Sign
	12.2.37. SignModuleState
	12.2.38. StaticFeatureEnable
	12.2.39. UpdateMergedKey
	12.2.40. Verify
	12.2.41. WriteShare

	12.3. Commands used by the generic stub only
	12.3.1. ExistingClient
	12.3.2. NewClient

	13. Transaction IDs
	13.1. Introduction
	13.2. Limitations
	13.3. Unicode Notes
	13.4. Setting Transaction IDs
	13.4.1. nCore C (Generic Stub)
	13.4.2. SEElib (CodeSafe CSEE)
	13.4.3. nCore Python (nfpython)
	13.4.4. nCore Java (nfjava)
	13.4.5. Higher-level APIs

	13.5. Transaction ID logging
	13.5.1. Client debug logs
	13.5.2. nCore audit logs

