©

ENTRUST

nShield Security World

CodeSafe v13.6.14
Developer Guide

28 November 2025

© 2025 Entrust Corporation. All rights reserved.

Table of Contents

Tntroduction ... 1
11.Read thisguide if 1

1.2. Security World Software 2
1.2.1. Utility help options. 4

1.3. Requirements 4

1.4. Further information 5

1.5, Security adViSOries 5

1.6. Contacting Entrust nShield Support 6

2. About the Secure Execution Engine SEE. 7
2.1. Why use the Secure Execution Engine? 7
210 Codeintegrity 8

2.1.2. Code confidentiality 8

2.1.3. Dataconfidentiality. 9

214 . Dataintegrity 9

2.1.5. Authentication and access control 10

2.2. How SEE WOrKs M
2.21.Code specCifiCs 12
2.2.2.S€CUNIRY. . . 12

223 Internals ... 13
2.3.SEE system architecture 14
24 .SEE anduserdata 16
2.40. Whatisuserdata? 16

2.4.2. Creating userdata suitable for loading intothe HSM 16
2.5.SEE and Security Worlds 16

3. Designing SEE machines and SEE-ready HSMs 18
3.1. Writing SEE machines - Solo XC 18
3.1.1. Designing for the glibc architecture. 18

3.1.2. Designing for the SEElib architecture. 19

3.1.3. SEE machines for new algorithmso 21

3.1.4. Signing userdata for additional security 23

3.1.5. Building your SEE machine and host-side application................... ... 25

4. Example SEE machines 29
4.1. Configure the Windows Build Environment 29
4.2. Examples for glibc library 30
4.2.1. Building the HSM-side code. 31

422 Helloworldexample 32

42.3. SEE-Randomexample 34

424 SEE-Enquiry example 35

425 TCPproxy example 36

4.3. Examples for SEEIIb. 37
4.3.1. Building Linux host examples 38
4.3.2. Building Windows host examples 39
4.3.3. Building Solo SEE module examples 39
4.3.4. Building Solo XC SEE module examples 41
4.35. Example: Hello-World 42
4.3.6. A3A8 example. 46
43.7. Example: RTC. 58
4.3.8. Example: Tickets. 64
4.3.9. Example: Benchmark. 69
5.Debugging SEE machines 78
5.1. Debugging settingsand output. 78
5.1.1. Debugging authorization. 78
5.1.2. Obtaining debugging output. 79

5.2. Finding memory leaks with stattree. 81
5.3.Segment addresses for Solo 82
5.4. Vulnerability testharness 83
5.5. Troubleshooting guide 83
6. Deploying SEE Machines 86
6.1. About the Feature Enabling Mechanism (FEM) 86
6.2. Obtaining and using export certificates. 86
6.3. Automatically loadinga SEE machine. 87
6.3.1. Automatically loading a glibc SEE machine withuserdata.................. 90
6.3.2. Automatically loading a glibc SEE machine without userdata 90
6.4. Configuring the nShield Connect to use CodeSafe Direct 91
6.5. Configuring a SEE machine using the frontpanel 92
6.5.1. Configuring a glibc SEE machine. 93
6.5.2. Configuring a SEElib SEE machine 93
6.6. Remotely loading and updating SEE machines 93
7 URIIIES 97
J00CPIOC . oo 97
700 USage . o 97

7.2, el o0l . 98
7.20.Usage. . 98
7.3.loadmache ... 99
7.30.USa0€ . 100

74 loadsee-setup 101

7A1.USage. .. 101

7A42.0UtpuUt .. 103
7.4.3. loadsee-setup --display 105
7.5.hsc_loadseemachine. 105
7.5.0.USa0€. 105

7.6, NV eIy . 106
7.6 Usage. . 106
7.6.2. OUtpuUt . .. 108

8. Environment variables 110
O.SEElib functions 112
O.1. SEElib_init. 12
9.2. SEElib_RecProcessThreads 112
9.3. SEElib_StartProcessorThreads 112
9.4, SEElib_GetUserDatalen. 113
9.5.SEElib_ReadUserData 113
9.6. SEElib_ReleaseUserData. 113
9.7. SEElib_InitComplete 114
9.8. SEElib_AwaitJob. 14
9.9. SEElib_StartTransactListener 114
9.10. SEElib_Transact. 114
9.11. SEElib_MarshalSendCommand 115
9.12. SEElib_GetUnmarshalResponse. 115
9.13. SEElib_FreeCommand 116
9.14. SEElib_FreeReply 116
9.15. SEElib_Returndob 116
9.16. SEElib_SubmitCoreJob 116
9.17. SEElib_GetCoredob 17
9.18. SEElib_GetUserDatalen 17
9.19. SEElib_Submit 17
9.20. SEElIb_QuUery 17
9.21. SEElib_StartSEEJobListener. 118
9.22. SEElib_QuerySEEJob 118
9.23.SEElib_ReleaseSEEJob 119
10. Differences between glibc and bsdlib (SoloXConly) 120
10.1. glibc Compatibility exceptions. 121

11. Allowlist for SEE machines 122

Chapter 1. Introduction

1. Introduction

CodeSafe is a runtime on the Entrust nShield HSM that allows third-party developers to run
their own code within the secure boundary of the module. Using the CodeSafe Developer
Kit, developers write their own CodeSafe Apps, cross-compile them and package them to
run on the HSM. While on the HSM, the CodeSafe App is segregated from the actual keys
loaded onto the module: even the keys the App uses. This means that CodeSafe can be
used without affecting the FIPS 140 validation of the module it runs on.

Where the HSMs provide security controls on key usage, CodeSafe provides control over
application code. Depending on the runtime used, you're either sending nCore commands
to the HSM, or designing your own protocol to send data and commands back and forth.

The CodeSafe™ Developer Kit includes the Secure Execution Engine (SEE) technology. The
CodeSafe product comprises a suite of cross-compilers and support tools that allow you to
develop SEE machines.

With CodeSafe, you can build and deploy Trusted Agents to perform application-specific
security functions on your behalf on unattended servers, or in unprotected environments
where the operation of the system is outside of your direct control. Examples of Trusted
Agents include digital meters, authentication agents, time-stamps, audit loggers, digital sig
nature agents and custom encryption processes.

Traditionally, HSMs have protected cryptographic keys within a defined security boundary;
SEE allows you to extend that security boundary to include code that utilizes those pro-
tected keys. The code itself can be signed and encrypted to provide additional protection.

e ‘ This manual applies to both the nShield Solo XC and to the nShield Solo
PCle.

1.1. Read this guide if ...

Read this guide if you are writing and running SEE applications in C with a SEE-Ready HSM.
This guide:

- Introduces the concept of the Secure Execution Engine (SEE)

+ Explains how to use the example SEE machines provided on the installation media

Describes how to write your own SEE applications in C using the CodeSafe Developer
Kit

+ Describes how to run your secure SEE applications using a SEE-Ready HSM

CodeSafe v13.6.14 Developer Guide 1/123

Chapter 1. Introduction

+ Describes how to obtain export certificates for SEE applications, if required

This guide assumes that you are familiar with the concept of Security World. For informa-

tion on using keys, including the options and parameters available for the generatekey util-

ity, see nShield Security World v13.6.14 Key Management Guide.

This guide assumes that you are familiar with the following documentation:

« The nShield API guides that describe the use of hardware security modules with third-

party software products

« The nCore Developer Tutorial, which explains how to write applications using a hard-

ware security module

« The nCore APl Documentation (supplied as HTML), which describes the nCore C API

1.2. Security World Software

The default locations for Security World Software and program data directories on English-

language systems are summarized in the following table:

Directory Linux default path
name

nShield Instal- /opt/nfast/
lation

Key Manage- /opt/nfast/kmdata/
ment Data

Dynamic Fea- /opt/nfast/femcerts/
ture Certifi-
cates

Static Feature /opt/nfast/kmdata/hsm-
Certificates ~ ESN/features

Log Files /opt/nfast/log

User Log Files /home/<user>/nshieldlogs

Remote Static
Feature Certifi
cates

Windows environment vari-
able

NFAST_HOME

NFAST_KMDATA

NFAST_CERTDIR

NFAST_LOGDIR

NFAST_USER_LOGDIR

Windows Server 2016 or later

C:\Program Files\nCi-
pher\nfast

C:\ProgramData\nCipher\Key
Management Data

C:\ProgramData\nCipher\Fea-
ture Certificates

%NFAST_KMDATA%\hsm-esn\fea-
tures

C:\ProgramData\nCipher\Key
Management Data

C:\ProgramData\nCipher\Log
Files

C:\Users\<user>\nshieldlogs

%NFAST_KMDATA%\hsm-ESN\fea-
tures

CodeSafe v13.6.14 Developer Guide

2/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/key-mgmt/intro.html

Chapter 1. Introduction

Directory Linux default path Windows environment vari- Windows Server 2016 or later
name able

Remote Static %NFAST_KMDATA%\hsm-ESN\fea-
Feature Certifi tures

cates

Dynamic feature certificates must be stored in the directory stated
above. The directory shown for static feature certificates is an example
location. You can store those certificates in any directory and provide
o the appropriate path when using the Feature Enable Tool. However, you
must not store static feature certificates in the dynamic features certifi-

cates directory.

The instructions in this guide refer to the locations of the software installation and program
data directories as follows:

- By name (for example, Key Management Data).
- Linux: By absolute path (for example, /opt/nfast/kmdata).

- Windows: By nShield environment variable names enclosed with percent signs (for
example, $NFAST_KMDATA%).

NFAST_KMDATA cannot be a symbolic link.
If the software has been installed into a non-default location:

+ Linux: Create a symbolic link from /opt/nfast/ to the directory where the software is
actually installed.

« Windows: Ensure that the associated nShield environment variables are re-set with the
correct paths for your installation. For more information about creating symbolic links,
see your operating system’s documentation.

Windows only

By default, the Windows C:\ProgramData\ directory is a hidden direc-
tory. To see this directory and its contents, you must enable the display
of hidden files and directories in the view settings of the Folder Options.

o The absolute paths to the Security World Software installation directory
and program data directories are stored in the indicated nShield environ
ment variables at the time of installation If you are unsure of the loca-
tion of any of these directories, check the path set in the environment

variable.

CodeSafe v13.6.14 Developer Guide 3/123

Chapter 1. Introduction

With previous versions of Security World Software, the Key Manage-
ment Data directory was located by default in C:\nfast\kmdata. The Fea
ture Certificates directory was located by default in C:\nfast\fem, and
the Log Files directory was located by default in C:\nfast|1og.

1.2.1. Utility help options

Unless noted, all the executable utilities provided in the bin subdirectory of your nShield
installation have the following standard help options:

« -h|--help displays help for the utility
- -v|--version displays the version number of the utility

- -U|--usage displays a brief usage summary for the utility.

1.3. Requirements
To write and run a SEE C application on the HSM, you need:
« A SEE-Ready hardware security module

0 To determine whether your HSM is SEE-Ready, refer to the product
data sheet for your HSM.

Encrypted SEE machines are not currently supported for use with
nShield Connects. When the SEEMachine binary is installed on the
Connect itself for automated loading at boot, the SEE Confidential-
o ity key is not available. However, when a client host loads a SEEMa-
chine, it has access to the SEE Confidentiality key and can cause
the binary to be decrypted. In this scenario, the Connect works fine

with encrypted SEEMachine binaries.

+ A Feature Enable smart card for activating the SEE capabilities of your HSM
- The CodeSafe Developer Kit (supplied on this installation media)

+ An appropriate GCC compiler (supplied on this installation media) for the target HSM.

You must have installed your SEE-Ready HSM and the necessary Security World for nShield
for the CodeSafe Developer Kit. You must install at least the following software component
bundles included on the installation media:

« hwsp Hardware Support

CodeSafe v13.6.14 Developer Guide 4/123

Chapter 1. Introduction

« ctls Core Tools
« csd CodeSafe Developer
« gcesrc Prebuilt PowerPC GCC for CodeSafe/C

When you have installed and configured your SEE-Ready HSM, to make full use of SEE, you
must create a Security World by using one of the following tools:

« new-world

« the front panel (only on network-attached HSMs).

1.4. Further information
This guide forms one part of the information and support provided by Entrust.
The nCore APl Documentation is supplied as HTML files installed in the following locations:

 API reference for host:

° Linux: /opt/nfast/document/ncore/html/index.html

° Windows: $NFAST_HOME%\document\ncore\html\index.html
+ APl reference for SEE:

° Linux: /opt/nfast/document/csddoc/html/index.html

° Windows: $NFAST_HOME%\document\csddoc\html\index.html

We recommend that you monitor the Announcements & Security
Notices section on Entrust nShield Support,

0 https://trustedcare.entrust.com/, where any announcement of Security
advisories will be made.

1.5. Security advisories

If Entrust becomes aware of a security issue affecting nShield HSMs, Entrust will publish a
security advisory to customers. The security advisory will describe the issue and provide rec
ommended actions. In some circumstances the advisory may recommend you upgrade the
nShield firmware and or image file. In this situation you will need to re-present a quorum of
administrator smart cards to the HSM to reload a Security World. As such, deployment and
maintenance of your HSMs should consider the procedures and actions required to
upgrade devices in the field.

o The Remote Administration feature supports remote firmware upgrade
of nShield HSMs, and remote ACS card presentation.

CodeSafe v13.6.14 Developer Guide 5/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/new-world.html
https://trustedcare.entrust.com/

Chapter 1. Introduction

We recommend that you monitor the Announcements & Security Notices section on
Entrust nShield, https://trustedcare.entrust.com/, where any announcement of nShield
Security Advisories will be made.

1.6. Contacting Entrust nShield Support

To obtain support for your product, contact Entrust nShield Support,
https://trustedcare.entrust.com/.

CodeSafe v13.6.14 Developer Guide 6/123

https://trustedcare.entrust.com/
https://trustedcare.entrust.com/

Chapter 2. About the Secure Execution Engine SEE

2. About the Secure Execution Engine SEE

The Secure Execution Engine (SEE) enables application code to run within the secure envi-
ronment of a SEE-Ready HSM.

To use SEE, you must order and enable it first, see Optional features.
o You must order the developer and user environments separately. SEE
machines cannot be loaded on HSMs on which SEE is not enabled.

The CodeSafe Developer Kit includes the following:

« The CodeSafe Developer Libraries

+ A built GCC compiler, plus source and makefile to customize your own version, if
required

- The CodeSafe Utilities (described in Utilities):
° tct2 (the Trusted Code Tool)
° elftool
° loadsee-setup
° loadmache (for use with SEE1ib)
° hsc_loadseemachine
° seessl-migrate.py

° a set of host utilities (for use with the Solo XC glibc-based SEE machines) that
enable the standard 10 and socket connections: see-sock-serv, see-stdioe-serv,
see-stdioesock-serv, see-stdoe-serv:

B see-sock-serv
B see-stdoe-serv
B see-stdioe-serv

B see-stdioesock-serv.

2.1. Why use the Secure Execution Engine?

The main uses of cryptography are:

« Integrity
+ Confidentiality

- Authentication

Using an HSM to protect your cryptographic keys provides all these advantages. Your keys
are only ever available in unencrypted form when they are loaded into the HSM: when key

CodeSafe v13.6.14 Developer Guide 7/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/tct2.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/elftool.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/loadsee-setup.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/loadsee-setup.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/loadsee-setup.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/loadmache.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/loadmache.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/loadmache.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/see-serv.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/see-serv.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/see-serv.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/see-serv.html

Chapter 2. About the Secure Execution Engine SEE

blobs are stored on the host, their integrity is protected by a Message Authentication Code
(MAC). Access to the keys is controlled by using a Security World or an Operator Card Set
(OCS).

However, traditionally, the code that uses the keys remains on the server. This means that
the code is open to attack. It is possible that the code could be modified in such a way as to
leak important information or compromise your business rules. For example, it could fail to
enforce such rules as “the books must balance” or “traders shall balance their positions by
the close of trading”.

By implementing a solution with the SEE, you not only protect your cryptographic keys but
also extend the security boundary to include your security critical code and data.

Using the techniques of code signing, data wrapping, and secure storage, the SEE enables
you to maintain the confidentiality and integrity of application code and data and to bind
them together so that only code in which you have confidence has access to confidential
data.

2.1.1. Code integrity

In many secure applications, the primary concern is for the code to execute the correct
sequence of operations and to not do anything else, such as leak information or key data.
You can use the supplied Trusted Code Tool (tct2) to sign the HSM-side code and initializa
tion data (if required) that make up a SEE machine. Application authors can use signatures
to delegate authority to use key material and other resources.

2.1.2. Code confidentiality

When you use the SEE, the code that runs on an HSM can be stored in an encrypted for-
mat. The encryption key can be either a Triple Data Encryption Standard (Triple DES) or
Advanced Encryption Standard (AES) key protected by either a Security World or an OCS.

Encrypted SEE machines are not currently supported for use with
nShield Connects. When the SEEMachine binary is installed on the Con-
nect itself for automated loading at boot, the SEE Confidentiality key is
0 not available. However, when a client host loads a SEEMachine, it has
access to the SEE Confidentiality key and can cause the binary to be
decrypted. In this scenario, the Connect works fine with encrypted

SEEMachine binaries.

The Access Control List (ACL) entry, UseAsLoaderKey, enables a key to be used to decrypt

CodeSafe v13.6.14 Developer Guide 8/123

Chapter 2. About the Secure Execution Engine SEE

SEE objects on the HSM but that does not allow you to use it for standard decryption
where the answer is returned to the host. This ensures that the code itself is not available
“in the clear” outside of the HSM/SEE and; therefore, that any intellectual property embod-
ied in the code is protected.

To load encrypted code, the user must first load the encryption key. Therefore, if the encryp
tion key is protected by an OCS, only users with sufficient smart cards from that OCS can
load the code. Because this SEE confidentiality key does not have decryption permissions
(only the UseAsLoaderKey ACL entry), from a security standpoint, it is not essential that it be
protected by an OCS.

HSM-protected SEE confidentiality keys can be useful in situations
where the server or HSM is unexpectedly reset, because, in such a case,
the SEE machine can then be reloaded without user intervention.

2.1.3. Data confidentiality
There are two main issues regarding data confidentiality:

+ Transient confidentiality of data in the running system

+ Long-term confidentiality of data when the code is not loaded.

The SEE protects the program'’s information in the running system by enabling the program
mer to determine the interface by which data can come in and out of the system and then
rigorously enforce that interface.

Long-term confidentiality is preserved by using the non-volatile memory on the HSM. The
SEE program can access this storage by using nCore APl commands. Small quantities of
highly sensitive information can be stored directly in the nonvolatile random access mem-
ory (NVRAM). When the amount of information to be stored exceeds the capacity of the
NVRAM, data can be stored in an encrypted blob with a much smaller key stored in the
NVRAM. This functionality allows the amount of secure storage to be limited only by the
capacity of the host. For more information, see the nCore Developer Tutorial.

2.1.4. Data integrity

Confidential data is of little use if it can be changed by an attacker. Data stored in the
HSM’'s NVRAM could only be altered if the Access Control List (ACL) were to allow this to
happen or if the physical security of the HSM were compromised. When a large volume of
data is made into a blob, a hash of that blob can be stored in the NVRAM so that changes
can be detected.

CodeSafe v13.6.14 Developer Guide 9/123

Chapter 2. About the Secure Execution Engine SEE

Another option for maintaining data that is not likely to change (such as root CA keys) is to
place it in the application initialization space and then use code integrity techniques to pro
tect the application initialization space.

2.1.5. Authentication and access control

A key feature of the SEE is the way that it can tie the integrity of the code to access control
of the resources that the code uses.

The key-management architecture controls access to objects such as keys by means of
ACLs. These lists specify sets of operations and verification keys that are used to check the
credentials authorizing these operations.

With SEE, you can create keys that can only be used to encrypt or sign SEE machines (the
SEE HSM-side code and, if required, its userdata). Encrypted application code is effectively
bound to the encryption key, thereby ensuring that it can only be loaded onto an HSM on
which you have already loaded the key. This functionality effectively gives you OCS protec-
tion on application code.

Encrypted SEE machines are not currently supported for use with
nShield Connects. When the SEEMachine binary is installed on the Con-
nect itself for automated loading at boot, the SEE Confidentiality key is
0 not available. However, when a client host loads a SEEMachine, it has
access to the SEE Confidentiality key and can cause the binary to be
decrypted. In this scenario, the Connect works fine with encrypted

SEEMachine binaries.

SEE also extends the authorization credentials to include signatures on code. This simple
extension turns out to be very powerful. When a body of code issues a command to use a
resource that is controlled by an ACL, it may present a certificate indicating that the signa-
tures on the code should be examined by the ACL checking system. If the signature on the
code verifies with one of the keys listed in the ACL, the operations delegated to that key
can be carried out in that command.

Therefore, this extension of the authorization credentials means that you can create keys
that can only be used by the SEE-resident code. These keys can be protected by the Secu-
rity World or by OCSs.

The SEE code has access to the HSM's NVRAM. Files stored in the HSM's non-volatile mem
ory also have ACLs. These ACLs describe not only who can access the file but what
changes can be made to the file. For example, this feature enables you to create secure
counters that you know can never be zeroed or that you know can be zeroed only by a

CodeSafe v13.6.14 Developer Guide 10/123

Chapter 2. About the Secure Execution Engine SEE

trusted application running in the SEE.

2.2. How SEE works

o A hardware security module maintains strict separation between the
nShield core functions and the user code.

The application starts with the code for a SEE machine stored in a file on the host. A SEE
machine is a binary executable of a type appropriate for the HSM. It communicates with the
nShield Solo XC core by means of the interprocess communication (IPC).

Applications may be written in C and compiled to form the SEE machine itself. Alterna-
tively, the SEE machine may consist of a language interpreter and the HSM code supplied
as a script or byte code by means of userdata. For more information, see SEE and userdata.

If a separate host-side program is required, you can write the host-side code in C, using the
nCore API. Alternatively, you can use the language of your choice. Example utilities written
in Java are provided in the component jhsee in /opt/nfast/java/examples (Linux) or
%NFAST_HOME%\java\examples (Windows).

These example utilities provide equivalent functionality to the C examples of similar names.
You can adapt them as required. See the supplied Javadocs for full information about the
Java example utilities.

The SEE machine can be signed, encrypted, or both, with the Trusted Code Tool (tct2). For
more information about this command-line utility, see Utilities.

Encrypted SEE machines are not currently supported for use with
nShield Connects. When the SEEMachine binary is installed on the Con-
nect itself for automated loading at boot, the SEE Confidentiality key is
0 not available. However, when a client host loads a SEEMachine, it has
access to the SEE Confidentiality key and can cause the binary to be
decrypted. In this scenario, the Connect works fine with encrypted
SEEMachine binaries.

The first step is to load the SEE machine onto the HSM. The hardserver software, supplied
on this installation media, automatically loads the SEE machine whenever the HSM is reset,
provided that:

« The HSM is SEE-Ready

e To determine whether your HSM is SEE-Ready, refer to the product
data sheet for your HSM.

CodeSafe v13.6.14 Developer Guide 11/123

Chapter 2. About the Secure Execution Engine SEE

« The HSM sets the enquiry level 4 HasSEE flag
+ A suitable machine image file is configured

- The load_seemachine section of the configuration file is configured to enable the load-
ing of SEE machines on startup.

0 You can perform this configuration with the loadsee-setup command-
line utility. See Utilities.

For development purposes, you can also load SEE machines manually by running the load-
mache command-line utility or, optionally, you can load SEE machines that require support
from a host-side see-*-serv utility by specifying the -M option when you run the utility. See
Utilities.

2.2.1. Code specifics

To use the functions provided by the SEE machine, the host application creates a SEE
World, supplying the initialization data, which includes the HSM resident portion of the appli
cation code, initialization flags and any other SEE World initialization information required.
The functions provided by the HSM-resident code can then be accessed by the SEE
machine on command from the host-side portion of the application. The SEE World is a pri-
vate work space and has a handle, an M_KeyID. As with other identifiers, this handle is associ
ated with a ClientID. A host application can only access a SEEWor1d on the connection that
created the SEEWor1d or on connections that have the same ClientID.

The CreateSEEWorld command takes a byte block called the SEE user data. This block can
be used to pass initialization data when a SEE machine is started. This file also carries the
signatures for the SEEWor1d.

o Refer to the nCore CodeSafe APl Documentation for detailed informa-
tion about the CreateSEEWor1ld command.

2.2.2. Security

When the SEE machine has been initialized, the host application can call the functions that
the SEE machine provides. These calls are sent using the nCore APl command SEEJob.

For example, if you write code to implement a custom algorithm, the host application no
longer calls the nCore API Encrypt command. Instead, it calls the encrypt function of the
SEE machine. The algorithm in the SEE machine then asks the core for the key, uses the key
to encrypt the message, and returns the result. This is explained in detail for the Solo XC in
Designing SEE machines and SEE-ready HSMs.

CodeSafe v13.6.14 Developer Guide 12/123

Chapter 2. About the Secure Execution Engine SEE

The SEE machine can then make calls into the nShield core with the standard nCore API.
The replies are returned directly to the SEE machine without ever leaving the protection of
the HSM.

The SEE machine can access keys, or other objects that are protected
by the HSM, only by making nCore API calls to the nShield core. HSM-
side SEE code has the same privileges and access to the cryptographic
o functionality of the HSM as that given to the host-side programs using
the nCore API. However, it is possible to create SEE application keys
that can be used only by particular SEE applications and not by the
host.

2.2.3. Internals

CodeSafe uses two command queues; The following diagram gives an overview of how
they function. The hardserver sends commands to the input queue. The input queue looks

at the commands and directs them to either the nCore API core or to the SEEWor1d.

nShield module

] Input queue

/’_-_—‘

\

™~ —~
N NN

Hardserver
nCore
SEEWorld
API core
Output queue
o In this release you can only create a single SEEWor1d for each HSM at
any one time.

The nCore API core takes commands from the input queue, processes them in turn, and

CodeSafe v13.6.14 Developer Guide 13/123

Chapter 2. About the Secure Execution Engine SEE

places them on the output queue. These commands may have come from the server or
from the SEEWor1d.

The output queue receives the completed jobs from the core. It determines whether the
command was issued by the SEEWor1d or the hardserver and sends the result to the appropri
ate place.

While any command sent to the SEEWor1d may cause a number of calls to the nCore API
core (and these calls circulate within the HSM), a given command only ever produces a sin-
gle reply that is returned to the server. After the SEEWor1ld has completed the job, it returns
a reply. The core returns this reply to the hardserver and on to the application; this is the
reply to the SEEJob command, handled in exactly the same manner as for any other nCore
APl command.

The SEEJob reply is returned with Status_0K provided that the SEE machine returns a reply
to the nShield core. The return of this kind of reply does not mean that the command itself
was completed successfully in the SEE machine, only that communication between the
core and the SEE machine was completed successfully. The SEE machine returns its own
errors (if any) in the reply.

The application running in the SEEWor1d does not have direct access to the user interface.
Therefore, all interaction with the user must be performed by the host application. In some
cases, especially when loading tokens that are protected by multiple smart cards, it can be
useful to have the host application load an object and then pass control to the application
in the Status_0K. You cannot pass the ObjectID because this is specific to the ClientID.
Therefore, to pass control to the application in the Status_0K, you must use key tickets.

Key tickets were introduced to the nCore API specifically for SEE, although they can also be
used to pass keys between different clients on the host. The client (or SEE application) that
creates a key asks for a ticket for the key. It passes the ticket to the other client, which
redeems the ticket for an ObjectID. There is only ever one copy of the object, and all com-
mands have to comply with the ACL.

2.3. SEE system architecture

There are different architectural strategies that you can use when designing a CodeSafe
SEE system, distinguished by the library they utilize:

CodeSafe v13.6.14 Developer Guide 14/123

Chapter 2. About the Secure Execution Engine SEE

Approach 1 - seelib

Client application

A

custom interface

\
(Communication stub ‘

‘ nCipher generic stub ‘

Host side

Module side Y

‘ SEE machine code

‘ seelib rlib

N B

Approach 2 -
bsdlib/glibc

Client application

A

4

(see_*_serv

Y

SEE machine code

bsdlib/glibc el |

VES underlay

\sldioe ’sockers ‘ nfstub‘eic...

Approach 3

— CodeSafe

Direct (utilising bsdlib/glibc)

(Client application

TCP/IP

A

Host side

L] Module side

C see-sock-serv)
A

y

4 SEE machine code

bsdlib/glibc e |

VES underlay

stdioe ‘ sockets | nfsiub|etc.y

Before designing your CodeSafe SEE system, decide which architecture best suits your

requirements:

« glibc: This architecture allows the use of TCP sockets and a high performance GNU C

library in CodeSafe. This makes it possible to communicate with a SEE machine using a

generic approach.

glibc can only be used if you are using an nShield Solo XC module and supports ISO C,
POSIX, and System V standards.

A design using this architecture is well suited for SEE machines that implement applica

tions such as Web servers and proxies.

If you are designing a CodeSafe Direct system, you must use the

0 glibc architecture. The SEE11b library is not supported for use with

CodeSafe Direct.

If you are designing a CodeSafe SEE system using the glibc library,

0 you can use headers as normal for a Unix-based system (for exam-

ple, stdio.h, stdlib.h, pthread.h).

« SEETib: A design using this legacy architecture is well suited to protecting custom cryp

tography within a SEE machine. The A3A8 example program provides a simple demon-

CodeSafe v13.6.14 Developer Guide

15/123

Chapter 2. About the Secure Execution Engine SEE

stration of how to achieve this; see Designing SEE machines and SEE-ready HSMs for
additional information.

If you are designing a CodeSafe SEE system using the SEELib
library, you can use the header file seelib.h, which contains wrap-
0 per functions for the software interrupts, in addition to a limited
subset of the standard C library. See SEElib functions for additional
information.

Unless you have a specific reason to use the SEE11b architecture, Entrust recommend using
the glibc architecture, as it provides a more familiar standards-based programming environ
ment using standard socket and standard 10 interfaces. Note that SEE11ib typically requires
additional work on the host application to interface to the SEE code. This is not required
when using the standards-based glibc approach.

2.4. SEE and userdata

2.4.1. What is userdata?

A userdata file can contain any data that is useful to the SEE machine. For example, you can
use a CPIO archive to supply many different data files in a single directory structure (exam-
ples are provided in Designing SEE machines and SEE-ready HSMs.

All SEE machines built with glibc must be provided with a valid ASCII-
format CPIO archive. This archive forms the base of the file system avall
o able to your SEE machine. Even if your SEE machine does not use this
file system, you must still create and supply it with dummy userdata as

a place-holder.

2.4.2. Creating userdata suitable for loading into the HSM

You can create a userdata file suitable for loading into the HSM by turning it into a SAR file
with the tct2 command-line utility. Signing the userdata file in this way offers improved
security.

2.5. SEE and Security Worlds

Within a Security World, the following actions may be configured to require authorization
from the nShield Security Officer Key (Kyso) , or a key with authority delegated from the

Knso:

CodeSafe v13.6.14 Developer Guide 16/123

Chapter 2. About the Secure Execution Engine SEE

+ Allocation and forced freeing of nonvolatile memory
+ Setting the real-time clock

+ Enabling the run-time debugging options.
Each of these features can be enabled individually.

At Security World creation time, certificates may be created delegating authority from Kyso
to keys protected by logical tokens which are split amongst the Administrator Card Set
(ACS) in the usual way, but may require a different K/N threshold to reassemble. For exam-
ple, you may wish to require that only one of five Administrator Cards be presented to set
the real-time clock on an HSM, but three of them to replace the ACS.

The tools that create these certificates are:

- Windows: The nShield CSP Wizard
« new-world

« the front panel (only on network-attached HSMs)

A Security World created using some older tools does not have any of
these delegation certificates to support nonvolatile memory and real-

o time clock operations or to allow debugging of SEE applications. There-
fore, such operations would require full Kyso authorization.

To sign or encrypt the HSM-side code, the signing and encryption keys must belong to the
Security World to which the HSM belongs.

To test code outside a Security World, you can use the initunit command-line utility to
remove the HSM from the Security World. In this case you cannot sign or encrypt your
code, and the code cannot access keys protected by the Security World.

If you use the initunit command-line utility to initialize the HSM, any
user can set the clock and create or free NVRAM files. This means that
o any user can free an existing file and allocate another file with the same
name but with different contents or with a different ACL. Most security

policies forbid this.

CodeSafe v13.6.14 Developer Guide 17/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/new-world.html

Chapter 3. Designing SEE machines and SEE-ready HSMs

3. Designing SEE machines and SEE-ready
HSMs

This manual addresses SEE for the Solo XC and Connect XC.

For Solo XC, see Writing SEE machines - Solo XC

3.1. Writing SEE machines - Solo XC

This chapter describes how to write a SEE machine for use on SEE-Ready HSMs.

An SEE machine is an executable binary file of a type appropriate for the HSM that commu-
nicates with the nShield core (which runs in kernel mode) using a defined set of software
interrupts. These interrupts, and their wrapper functions, provide a run-time environment
that includes memory and thread management as well as an interface for accepting and
returning jobs and calling nCore APl commands.

C source code is compiled using one of the GCC cross-compilers supplied with the Code-
Safe Developer Kit. For details of required compiler options; see Example SEE machines and
the makefiles supplied with the examples.

The compiled code can then be signed, packed, and encrypted by using the Trusted Code
Tool (tct2 utility) to produce a secure archive; see Utilities.

In CodeSafe versions prior to 13.3, the Solo XC only supports SEE
machines smaller than 70 MB. From 13.3 onwards, the Solo XC can sup-
port SEE machines up to 800 MB.

3.1.1. Designing for the glibc architecture

The GNU C library glibc is supplied together with libpthreads, 1ibrt and a system call
underlay for use with CodeSafe SEE development.

A rich set of C function calls is available to use in SEE machine development. Native sup-
port for Unix-based system calls is provided, only restricted by an allowlist of the system
calls (Allowlist for SEE machines) allowed in the SEE environment.

A subset of the Unix-based system calls, implemented in terms of the inter-process commu
nication interface (IPC), allows access to the cryptographic HSM kernel. The provided sys-
tem calls include a virtual file system and associated set of input and output devices with
which you interact in the standard manner.

CodeSafe v13.6.14 Developer Guide 18/123

Chapter 3. Designing SEE machines and SEE-ready HSMs

The virtual file system is supported as an extension to the file system.

Also provided are some link-time plug-ins that extend the virtual file system to provide addi
tional capabilities:

. hoststdioe.o: stdin, stdout, and stderr facility hooks; seestream_stdio(7see)

hoststdoe.o: stdout and stderr facility hooks; seestream_stdio(7see)

hostinetsocks.o: TCP socket facility hooks; seestream_inet(7see)

- hoststdioeinetsocks.o: TCP socket facility and stdin, stdout, and stderr facility
hooks; seestream_inet(7see)seestream_stdio(7see)

The link-time plug-in vulnerability.o is provided for the purposes of
o debugging (see Vulnerability test harness). Entrust recommends that
you do not link vulnerability.o into a production SEE machine.

3.1.2. Designing for the SEElib architecture

This section describes how to design SEE machines using the SEE11ib architecture. This kind
of architecture requires host-side software to create the SEE World and communicate with
the HSM.

To start the SEE machine running with a particular SEE userdata, the host application calls
the nCore APl command CreateSEEWor1d. This command creates a SEE World using data
previously loaded into the HSM with the LoadBuffer command from a buffer created with
the CreateBuffer command. See the nCore APl Documentation (supplied as HTML) for
information about the nCore APl commands.

You can also use or adapt the supplied example Java class SEEWor1d to initialize the SEE

machine.

When the host application calls CreateSEEWor1d, the HSM allocates memory for the SEE
World and sets up its input and output job queues. It then runs the SEE machine’s main()

function.
The SEE machine’s main() function must:

« Call SEE1ib_init() before any other SEE library function to initialize the SEE library and
to check that the HSM is running the expected version of the library

- If the machine accepts userdata:

° call SEE1ib_GetUserDatalen to determine the length of the byte block that was
passed with CreateSEEWor1d

° call SEE1ib_ReadUserData to load the byte block

CodeSafe v13.6.14 Developer Guide 19/123

Chapter 3. Designing SEE machines and SEE-ready HSMs

° determine whether the byte block is valid
° initialize any required structures

. Start at least one thread which receives and processes commands (this thread must
call SEE1ib_AwaitJob)

o The SEE1ib_StartProcessorThreads function can be used for this
purpose.

« Call SEE1ib_InitComplete and return a status.

The status passed to SEE1ib_InitComplete is returned to the calling application in the reply
to CreateSEEWor1ld The application can determine the status values, with one exception: if
the machine fails before calling SEE1ib_InitComplete(), the CreateSEEWorld command
returns a value of 1 (SEEInitStatus_MachineFailed) in this field. You should therefore avoid
choosing the value 1 to indicate successful initialization.

When the application receives the reply to CreateSEEWor1d with Status_OK and an accept-
able initstatus, it can start to submit jobs with the nCore APl command SEEJob.

You can also use or adapt the supplied example Java class SEEJob to submit jobs to the SEE
machine.

The SEEJob command takes a byte block, which is passed to the SEE1ib_AwaitJob function
without being interpreted in any way. It is up to the host application to assemble this byte
block and the SEE machine to interpret it.

After the job has been processed, assemble the reply into a byte block and call SEE1ib_Re-
turnJob to return it using the nShield core.

The nShield core assembles this byte block into a reply and returns it to the host applica-
tion. Provided that the job is returned before the command times out, the reply has the sta-
tus OK. The SEE machine must include any necessary status information within the byte
block it returns. The calling application must remember to check this status as well as the
status of the SEEJob nCore API function and the transport call, for example NFastApp_Trans-
act().

The SEE machine can call nCore API functions with SEE1ib_Transact or SEE1lib_MarshalSend
Command and SEETib_GetUnmarshalResponse. It may submit these as part of its initialization,
before it calls SEELib_InitComplete(). However, if it does not call SEELib_InitComplete()
within 30 seconds of start-up, the CreateSEEWor1d command returns SEEInitStatus_Ma-
chineFailed. For this reason, you should not perform (for example) lengthy key generation
operations during initialization.

SEE1ib_Transact has syntax equivalent to the NFastApp_Transact function in the C generic

CodeSafe v13.6.14 Developer Guide 20/123

Chapter 3. Designing SEE machines and SEE-ready HSMs

stub. It takes a command structure and returns a reply structure. SEE1ib_MarshalSendCom-
mand takes a command structure and submits it. SEE11b_GetUnmarshalResponse reads a
response from a buffer and returns a reply structure.

o SEETib_StartTransactListener must be called successfully before you
use SEE1ib_Transact to communicate with the nShield core.

3.1.3. SEE machines for new algorithms

In addition to being able to perform basic cryptographic operations, any SEE machine that
implements an algorithm must also be able to:

+ Generate keys
+ Import keys
+ Store keys as key blobs.

The SEE machine can use the nCore API functions GenerateRandom and GeneratePrime to
acquire random numbers and random prime numbers from the HSM's hardware random
number generator.

The SEE machine can perform its own multiprecision arithmetic. Otherwise, it can use the
nCore APl BignumOp command to perform multiprecision arithmetic and the ModExp and Mod-
ExpCrt commands to perform modular exponentiation.

If you are using keys as session keys, there is no requirement for them ever to be placed in
the nShield core. The only time that you need to transfer a key to the core is if you need to
create a key blob for long-term storage. However, if you need to keep track of several keys,
you may want to make use of the nShield core’s object store rather than having to create a
similar structure in your own code.

For an example of how See machines can implement a non-standard algorithm, see A3A8
example.

3.1.3.1. Key type

The SEE machine stores keys using the random key type. This is a plain byte block with no
structure.

If the key contains several values, for example, exponent and modulus, the SEE machine
must implement its own routines for marshalling and unmarshalling the byte block into the
correct structure.

0 ‘ SEE machines using standard algorithms do not use the random key

CodeSafe v13.6.14 Developer Guide 21/123

Chapter 3. Designing SEE machines and SEE-ready HSMs

type. Instead, they use standard nCore key types.

3.1.3.2. ACL

The ACL needs to be constructed so that the SEE machine and only the SEE machine can
access the key. To transfer a key from the nShield core to the SEE machine, the key must
have the ExportAsPlain flag set in its ACL. The permission group with ExportAsPlain must
be protected by a certifier so that this operation can only be performed by the SEE
machine.

Although one obvious solution is to use the key that was used to sign the SEE machine,
Kinteg: @s the certifier, using Kiq in this way means that whoever signed the SEE machine
could potentially access any key for this algorithm. A better solution is to add an extra signa
ture to the SEE machine by using a second key, Ka.» The K.y Signature proves that the
code has not changed since it was signed. The K, Signature is then used to control access
to keys.

You can use the generatekey command-line utility to generates keys for use as Ka,» and
Kinteg DY specifying the seeinteg application as a key generation parameter.

The ACL must also have the correct MakeBlob permissions. If you want to use the standard
Security World tools for key management and recovery, the host application can use these
tools to create the ACL.

0 SEE machines using standard algorithms generally do not need to get
the key as plain text in the SEE machine.

3.1.3.3. Storage

For long-term storage, the key needs to be encapsulated in a key blob that is protected by
the Security World or an OCS. To provide OCS replacement and recovery, you may also
require additional key blobs protected by other card sets.

You could write a function where your SEE machine calls MakeBlob and returns the blob to
the host. Alternatively, you could write a method that returns a key ticket and have the host
application create the key blobs.

If you are using a Security World, the host application can use nfkm library calls to create
and store the key blobs.

3.1.3.4. Loading stored keys

CodeSafe v13.6.14 Developer Guide 22/123

Chapter 3. Designing SEE machines and SEE-ready HSMs

In general, it is easier for the host application to manage tokens, because it has direct
access to the user interface and can prompt the user to insert cards and enter passphrases.

When the token has been loaded, the host application can load the key and pass a key
ticket to the SEE machine. The SEE machine can then redeem the key ticket for a KeyID and
use this to access the key. If you have several keys that are protected by a token, it usually
makes sense to pass a ticket for the KeyID of the logical token, rather than passing tickets
for each key.

You should also pass in a ticket for the logical token if the host application that loads the
token exits afterwards. When it exits, it destroys the logical token'’s ID, which invalidates all
loaded keys that were using it. Passing the logical token’s ID in to the SEE machine prevents
its destruction when the application exits.

3.1.3.5. C run-time library

Entrust supplies a customized version of the GNU C (glibc) library for Solo XC SEE
machines. Common features such as threading and mutexes are provided by glibc.

See SEElib functions for reference information about glibc functions.

3.1.4. Signing userdata for additional security

Signing userdata files can help increase the security of CodeSafe SEE applications. Both
types of SEE machine architecture, using glibc and using SEElib, can take advantage of the
security benefits offered by signing userdata files.

For example, if your SEE machine is intended to perform some cryptography functions
using a given key, it would be advantageous to prevent that key from being accessed by
any unauthorized SEE machines. This can be achieved by signing the userdata file for your
SEE machine.

The following figure provides an overview diagram of the process of signing a SEE
machine’s userdata file.

CodeSafe v13.6.14 Developer Guide 23/123

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe machine UserData

o
plication Key
I il f

signs -~ hash of key certifies use of -~ signs
‘ I,; hash of key certifies use of——
A ' A
(MachineKey (UserDataKey
(SEEInteg) (SEEInteg)

The following sequence, in which an original SEE machine is represented by machine.elf
and an original userdata file is represented by userdata.bin, demonstrates the process of
signing a SEE machine’s userdata file:

1. Create the key Kcemacn Of type seeinteg to sign the SEE machine by running a com-
mand similar to:

generatekey seeinteg plainname=seemach ...

2. Create the key K craata Of type seeinteg to sign the userdata by running a command sim
ilar to:

generatekey seeinteg plainname=userdata ...

3. Run the generatekey command-line utility to create a key K.+, (the key with which
your SEE machine is to perform its cryptography functions), specifying Kcergata fOr its
seeintegname:

generatekey simple plainname=crypto --seeintegname=userdata ...

e ‘ This example assumes K.t IS being created as a Triple DES key.

4. Run the tct2 command-line utility to sign the userdata file for your SEE machine with
the key Kysergatar SPECITYING Koeemacn @S the SEE machine key:

tet2 --sign --key=userdata --machine-key-ident=seemach --infile=userdata.bin --outfile=userdata.sar

CodeSafe v13.6.14 Developer Guide 24/123

Chapter 3. Designing SEE machines and SEE-ready HSMs

o ‘ For information about the tct2 command-line utility, see tct2.
5. Run the tct2 command-line utility to sign the SEE machine with the key Keeemacn:

tct2 --sign --key=seemach -- machine-type=PowerPCELF --is-machine --infile=machine.elf
--outfile=machine.sar

The result of the process demonstrated in this sequence of steps is that no SEE machine
can use the key K.t Unless at least one of the following conditions is met:

+ It has been signed by the correct Kemaen and is used in conjunction with the correct
userdata file

+ You make use of the key recovery feature.

3.1.5. Building your SEE machine and host-side application

The following steps provide an overview of the process you follow to use your application
with SEE:

1. If you want to sign or encrypt your application, generate code-signing and confidential
ity keys as applicable.
2. Compile and link the host application’s source files using the native compiler on the

host. See the diagram in the following step.

3. Compile and link the SEE machine source using the GCC cross compiler. See the follow
ing diagram.

CodeSafe v13.6.14 Developer Guide 25/123

Chapter 3. Designing SEE machines and SEE-ready HSMs

Machines using SEEJobs Machines using the POSIX
directly (requiring seelib) runtime (requiring bsdlib/glibc)
stdio h

stdio.h (from rtlib)

Compile source (from badlib/glibc)

. lib h
code to object files r:ie :og c socketh
"Pl = myprog.c
Y Y
powerpe-codesafe-linux-gnou
Link object files to ELF
format executables
Y Y
Myprog.o TYProz.o
s-eelibua- hivvisextras.a
.) libc.a
librtusz.a hostinetsocks.a
Y Y
powerpe-codezafe-linux-goo-Id
elf
Convert ELF to SXF HpEeE
format for packing]
elftoal
. myprog.sxf
Pack (and optionally
sign) SXF to SAR file for]
loading itz
MYyprog.sar

stdio.h (host C lib)
nfastapp h
myprog-host.c

Build host application
(only required for seelib) gecord

myprog.host

4. If required, use the Trusted Code Tool (tct2) to sign the SEE machine with the code-
signing keys. See Utilities for additional information.

5. Use the Trusted Code Tool (tct2) to pack the HSM files and create a SAR file. You
must pack the binary file even if signatures are not required. See Utilities for additional

CodeSafe v13.6.14 Developer Guide 26/123

Chapter 3. Designing SEE machines and SEE-ready HSMs

information.

6. Use the Trusted Code Tool (tct2) to pack (and, if required, sign with the code-signing

keys) the userdata file and create a SAR file. You must pack the userdata file even if sig
natures are not required (unless you use one of the see-*-serv host utilities with the
--userdata-raw option. See Utilities for additional information.

Custom format CPIO format Bytecode format

le.g. for seelib) [e.g. for bsdlib/glibe) [e.g. old CodeSale/])

T

var weeew
var S vesow indlas him|
war wwew s .
cpénc udata.cpio war javac
Make initial A
userdala lile myclata. bin
" o
L \f T
el
Pack |and optionally sign))
userdata to (SAR file sserdota sor

7. If required, use the Trusted Code Tool (tct2) to encrypt the userdata file, using the con

fidentiality key.

. Place the userdata SAR file and the host application in an appropriate location to be
used at runtime.

. For SEE machines using the SEE11ib architecture, userdata file can either be either
loaded automatically or can be loaded by running the loadmache command-line utility.

For SEE machines that require support from a host-side see-*-serv utility, the host util
ity loads the userdata file automatically.

The following diagram shows these different methods for loading a SEE machine.

CodeSafe v13.6.14 Developer Guide 27/123

Chapter 3. Designing SEE machines and SEE-ready HSMs

userdata.sar

Machines using SEEJobs Machines using the POSIX
directly (requiring seelib) runtime (requiring glibc)
g N g N
Load SEE machine ‘ myprog.sar ‘ ‘ myprog.sar ‘

userdata.sar

™ e N
[loadmache) see_*_serv)
N / _ J
LoadSEEWorld
CreateSEEWorld
(Loaded SEE machine | | Loaded SEE machine |
_ /
Load host e
application (only ‘ myprog-host ‘
required for seelib) | |
/
General outline Method 1 (glibc) Method 2 (glibc)
V N Ve Ve N
Autoload SEE machine (hardserver | { hardserver [hardserver)
NI J Ny / § /
configure with loadsee-setup I
- ~ LoadSEEWorld -
| postioad-<custom> | CreateSEEWorld S . LoadSEEWorld | postioad_glibc
\ / RN
) A |
| e N)
,4*;\ | see_*_serv -
/ " A . - J
| postload_glibc)| - -
v h ~ CreateSEEWorld
/ ™ e h / ™~
| loaded SEE machine | | Loaded SEE machine KLoclded SEE machine |
/ \ / -
WorldID as
__PublishedObject . N
T see_" _serv)i
_ _/

For more information, see Automatically loading a SEE machine.

CodeSafe v13.6.14 Developer Guide 28/123

Chapter 4. Example SEE machines

4. Example SEE machines

This chapter documents the example SEE machines.

The supplied C examples consist of the source files and associated makefiles (Linux) and
Cmake files (Windows) needed to compile and run the examples. To run the compiled exam
ples correctly, you must have the latest version of the Security World for nShield. If you are
using a Linux operating system, you must have version 2.22.34 or later of the HSM firmware.
If you are using a Windows operating system, you must be on the latest version of the HSM
firmware.

o The latest versions of both the Security World for nShield and HSM
firmware are supplied on the installation media.

Encrypted SEE machines are not currently supported for use with
nShield Connects. When the SEEMachine binary is installed on the Con-
nect itself for automated loading at boot, the SEE Confidentiality key is
o not available. However, when a client host loads a SEEMachine, it has
access to the SEE Confidentiality key and can cause the binary to be
decrypted. In this scenario, the Connect works fine with encrypted
SEEMachine binaries.

4.1. Configure the Windows Build Environment

The Windows build environment requires that the following tools be already installed:

- CMake for Windows, minimum version 3.9.
- Visual Studio 2022 Build Tools.

+ Ninja build system for Windows.

Each example is supplied with CMake files for each HSM architecture and Windows host
environment.

The specifics of building the C code for the HSM architectures and the Windows host envi-
ronment are described in the next sections.

In order to build the examples, you must use the Visual Studio Developer Command
Prompt. This command prompt needs to be initialized to use the 64-bit compilation tools in
the following manner:

1. Open a Windows command prompt, using Run as Administrator.

2. Navigate to the Visual Studio Build Tools installation directory. The default location for

CodeSafe v13.6.14 Developer Guide 29/123

Chapter 4. Example SEE machines

thisis C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Auxil-
iary\Build.

3. At the command prompt, execute the initialization batch file, vevars64.bat. The batch
file sets the required environment variables for using the 64-bit compilation tools.

4. At this point you may wish to enter the PowerShell environment. This can be done by
executing the powershell command at the command prompt.

If you exit (close) the initialized Windows command prompt (or
PowerShell), then these initialization steps must be repeated when
you open a new command prompt in order to build the examples.

For information on the different library paths necessary to perform a
0 64-bit build of your own code, see the nCore APl Documentation (sup-
plied as HTML).

We strongly recommend that you familiarize yourself with the process
o of building the example programs supplied on the CodeSafe installation
media before you attempt to adapt the makefiles to any other environ-

ments.

4.2. Examples for glibc library

This section is relevant when using a glibc based SEE machine with an nShield Solo XC or
an nShield Connect XC.

In default CodeSafe installations, the following C examples are supplied in directories under
the path /opt/nfast/c/csd/examples/ (Linux) or $NFAST_HOME%\c\csd\examples\ (Win-

dows):
Location Description
glibsee/helloworld.c This example is a simple, introductory test program.
glibsee/see-random.c This example demonstrates basic usage of the generic stub within SEE.

glibsee/see-enquiry.c This example demonstrates host code running within SEE with no large modifica-

tions.

glibsee/tcp-proxy.c This example is a multithreaded TCP-TCP proxy that forwards all connections on
port 8080 to 127.0.0.1:80.

If the nShield Connect is configured to use see-sock-serv directly, any supplied glibc exam
ples that use see-sock-serv can be run directly on the nShield Connect, rather than via a

client machine.

CodeSafe v13.6.14 Developer Guide 30/123

Chapter 4. Example SEE machines

The examples here show how to run a SEE machine from a command line. Alternatively, if
you wish to run a SEE machine directly, please see Deploying SEE Machines.

If you are running see-sock-serv directly on an nShield Connect, port
numbers in the examples should be modified to bind to ports within the
range 8000-8999.

All supplied examples for glibc, both standard and SSL-related, require one of the see-*-
serv host-side utilities. For more information about these utilities, see see-*-serve utilities.

o The SEE machine type must be specified as --machine-type=PowerPCELF
when running the tct?2 tool.

4.2.1. Building the HSM-side code

1. Create a directory in your home (Linux) or Documents (Windows) location to contain
the platform examples. For example, to create and enter a directory called bui1dGLIB-
mod:

Linux

cd ~
mkdir buildGLIBmod
cd buildGLIBmod

Windows

cd Documents
mkdir buildGLIBmod
cd buildGLIBmod

2. Configure the module examples build using the command:

Linux

cmake -DCMAKE_TOOLCHAIN_FILE=<path to GLIB tool chain> <path to GLIB SEE examples>

For example, using the default locations for the tool chain and the GLIB SEE exam-
ples:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-1linux-xc-glibsee.cmake
/opt/nfast/c/csd/examples/

Windows

CodeSafe v13.6.14 Developer Guide 31/123

Chapter 4. Example SEE machines
cmake -G "Ninja" -DCMAKE_TOOLCHAIN_FILE=<path to GLIB tool chain> <path to GLIB SEE examples>

For example, using the default locations for the tool chain and the GLIB SEE exam-
ples:

cmake -G "Ninja" -DCMAKE_TOOLCHAIN_FILE="C:\Program Files\nCipher\nfast\c\csd\cmake\codesafe-1inux-xc-
glibsee.cmake" "C:\Program Files\nCipher\nfast\c\csd\examples"

3. Build the module examples using the command:

Linux

cmake --build <build output location>

For example:

cmake --build .
Here, the . specifies the location where the build products should be placed, in this
case to the current directory.

Windows

Ninja

This results in the creation of a directory, glibsee, which contains all the compiled
examples. The build process will create a file for each example, with an .elf suffix.

4.2.2. Helloworld example

This example source code is a simple example of an SEE machine written in C. It is not
intended to be the basis for any real world applications. It is intended only to demonstrate
how to write SEE machines in C and the use of an appropriate host utility to handle output
to stdout and stderr.

4.2.2.1. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable Format) file
into a SAR (Secure or SEE ARchive) file as follows:

tct2 --pack --machine-type=PowerPCELF --infile=helloworld.elf --outfile=helloworld.sar

CodeSafe v13.6.14 Developer Guide 32/123

Chapter 4. Example SEE machines

For additional security, you can also choose to set options in this command that sign or
encrypt the file. For more information, see tct2.

4.2.2.2. Creating a userdata file

All SEE machines built with the glibc C library must be provided with a
valid ASCII-format CPIO archive. This archive forms the base of the file
0 system available to your SEE machine. You can use the cpioc com-
mand-utility that we provide to create CPIO archives of the correct
type.

e Although the hellowor1ld example does not use its file system, you must
still create and supply it with dummy userdata as a place-holder.

Create a dummy userdata file as follows:

echo dummy > dummy
cpioc userdata.cpio dummy

Output:

F dummy
Written 'userdata.cpio': 1 files, @ directories, 0 errors

4.2.2.3. Running the example

To run the helloworld example on a PowerPC-based SEE machine, use the following com-
mands:

see-stdoe-serv --machine helloworld.sar --userdata-raw userdata.cpio

Output:

nC SEE glibc entering main
Hello world!

o If you are using a nShield Connect, you must also set the --no-feature-
check option when running the see-stdoe-serv utility.

Before rerunning this example, run the following command to clear all HSMs:

CodeSafe v13.6.14 Developer Guide 33/123

Chapter 4. Example SEE machines

nopclearfail --clear --all

4.2.3. SEE-Random example

This example shows basic usage of the generic stub from within SEE. It requests 128 bytes
of random material from the HSM and prints the result in hexadecimal.

Before running or rerunning this example, run the following command to clear all HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the compiled
examples (both SXF and ELF files).

4.2.3.1. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable Format) file
into a SAR (Secure or SEE ARchive) file:

tct2 --pack --machine-type=PowerPCELF --infile=see-random.elf --outfile=see-random.sar

For additional security, you can also set options in this command to sign or encrypt the file.
For more information, see tct2.

4.2.3.2. Running the example

To run the SEE-Random example on a PowerPC-based SEE machine, use the following com-
mands:

see-stdoe-serv --machine see-random.sar --userdata-raw userdata.cpio

Output:

nC SEE glibc entering main

52 D1 C4 73 28 49 79 62 CD E6 64 14 1C 3B E1 B2 70 3D 6B D5 DF DE CE 7F 47 50 70 06 B6
€0 52 7F 19 3A @A 7D E4 73 83 D8 EB F4 E5 82 F3 53 38 45 2A E3 08 49 1A 58 77 35 5F 5C
7C D9 7B 57 4A A9 C4 F4 67 C7 30 91 4A CA oC 15 1F A7 F2 E1 2B 61 E2 3A CE EF BD FF ED
49 97 68 7B 76 D2 AC 8B 98 AA 02 FD 30 01 68 60 49 4C OF 7E 23 7F AC EC B5 6A DE 0B (D
45 72 89 96 DD E2 96 C2 B8 7B 97 AA

e If you are using an nShield Connect, you must also set the --no-fea-
ture-check option when running the see-stdoe-serv utility.

CodeSafe v13.6.14 Developer Guide 34/123

Chapter 4. Example SEE machines

4.2.4. SEE-Enquiry example

This example shows how to cross-compile example code, originally written for use from the
host environment, to be run within the SEE without any substantial modifications.

Before running or rerunning this example, run the following command to clear all HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the compiled
examples (both SXF and ELF files).

o This example code is based on enquiry.c provided elsewhere in the soft
ware distribution.

4.2.4.1. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable Format) file
into a SAR (Secure or SEE ARchive file):

tct2 --pack --machine-type=PowerPCELF --infile=see-enquiry.elf --outfile=see-enquiry.sar

For additional security, you can also set options in this command to sign or encrypt the file.
For more information, see tct2.

4.2.4.2. Running the example

To run the SEE-Enquiry example on a PowerPC-based SEE machine, use the following com-
mands:

see-stdoe-serv --machine see-enquiry.sar --userdata-raw userdata.cpio

Output:

nC SEE glibc entering main
Server:

enquiry reply flags none
enquiry reply level Six

serial number 1BD7-DE7B-A370
mode operational
version 2.38.7

speed index 4240

rec.queue 3o o 152

[etc]

CodeSafe v13.6.14 Developer Guide 35/123

Chapter 4. Example SEE machines

o If you are using an nShield Connect, you must also set the --no-fea-
ture-check option when running the see-stdoe-serv utility.

4.2.5. TCP proxy example

The TCP proxy example demonstrates how to set up a conduit between the local host and a
destination IP address.

Before running or rerunning this example, run the following command to clear all HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the compiled
examples (both SXF and ELF files).

The default destination address is declared in the source code file tcp-proxy.c as follows:

#idefine BACKEND_ADDR "127.0.0.1"

For the TCP proxy example to work correctly, you must change this default destination
address. You can replace the default address with the IP address of any valid website.

By default, the example TCP proxy code sets the front end port to 8080 and the back end
port to 80. The remainder of this example assumes the use of these values, but you can
change them as necessary.

4.2.5.1. Re-building the HSM-side code

If the file tcp-proxy.c has been modified as described in section TCP proxy example, then
the example needs to be rebuilt in order for the changes to be effective. The example can
be rebuilt by executing the cmake build command from within the appropriate directory as
described in section Examples for glibc library for example:

Linux

cd ~/buildGLIBmod
cmake --build .

In this example the directory path would be ~/buildGLIBmod/glibsee.

Windows

cd C:\Users\<USER-NAME>\Documents\buildGLIBMod

CodeSafe v13.6.14 Developer Guide 36/123

Chapter 4. Example SEE machines
Ninja
In this example the directory path would be C:\Users\<USER-NAME>\Docu-
ments\buildGLIBMod\glibsee\.

o If the example has been rebuilt, before continuing ensure that you are
working in the directory that contains the compiled examples.

4.2.5.2. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable Format) file
into a SAR (Secure or SEE ARchive) file:

tet2 --pack --machine-type=PowerPCELF --infile=tcp-proxy.elf --outfile=tcp-proxy.sar

You can also set options in this command to sign or encrypt the file. For more information,
see tct2.

4.2.5.3. Running the example

Run the example on a PowerPC-based SEE machine as follows:

see-sock-serv --trace --machine tcp-proxy.sar --userdata-raw userdata.cpio

You can check that the example is working correctly by entering the URL http://local-
host:8080/ into any browser. If the example is working correctly, the browser displays the
website at the address specified in the tcp-proxy.c file.

4.3. Examples for SEElib

In default CodeSafe installations, the following C examples are supplied in directories under
the path /opt/nfast/c/csd/examples/csee (Linux) or $NFAST_HOME%\c\csd\examples\csee
(Windows).

Location Description

csee/hello/ This example source code demonstrates a simple SEE machine in C and how you
can use it from a C program on the host.

csee/a3a8/ This example code demonstrates how to write an SEE machine in C code and how
to use it from a C program on the host.

CodeSafe v13.6.14 Developer Guide 37/123

Chapter 4. Example SEE machines

Location Description
csee/nvram/ This example shows the simple use of NVRAM in an SEE machine written in C.
csee/rte/ This example demonstrates the use of an SEE machine written in C that imple-

ments a very simple timestamp service.

csee/tickets/ This example provides an APl demonstration showing how an SEE machine can be
written in C.
csee/benchmark/ This example implements a very simple utility that uses an SEE machine written in

C to time stamp requests to benchmark the speed of response to requests.

We also supply a Java version of the HelloWorld example. This consists of the source files
for host-side applications that you can run with the example SEE machines written in C in
order to understand how simple SEE machines work, see About the Java example.

The nvram, rtec, and benchmark C examples can extract debugging information from the SEE
trace buffer in all Security Worlds. If the Security World has restricted or authorized-only
access to SEE debugging, the example prompts the user for the number of Administrator
Cards required to gain authorization. Therefore, to avoid unnecessary exposure of the
Administrator Cards, do not try to run these examples on an HSM in a production Security
World. Debugging information from the trace buffer is not available for the A3A8 or tickets
C examples.

4.3.1. Building Linux host examples

1. Create a directory in your home location to contain the host platform examples. For
example, create a directory called buildhost, and enter this directory:

mkdir ~/buildhost
cd ~/buildhost

2. Configure the host platform examples using the command:

cmake <path to SEELib examples>

For example:

cmake /opt/nfast/c/csd/examples/

Here, the location of the examples is the default location, /opt/nfast/c/csd/examples.

3. Build the host platform examples using the command:

CodeSafe v13.6.14 Developer Guide 38/123

Chapter 4. Example SEE machines
cmake --build <build output location>

For example

cmake --build .
Here, the . specifies the location where the build products should be placed, in this
case to the current directory.

This results in the creation of a directory, csee, which contains a subdirectory for each
of the examples. For example ~/buildhost/csee/a3a8.

4.3.2. Building Windows host examples

1. Create a directory in your Documents location to contain the host examples. For exam-
ple, create a directory called host, and enter this directory:

cd Documents
mkdir host
cd host

2. Configure the host platform examples using the command:

cmake -G "Ninja" -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=cl "C:\Program
Files\nCipher\nfast\c\csd\examples"

3. Build the host examples using the command:
ninja
This results in the creation of a directory, csee, which contains a subdirectory for each
of the examples.

Each example’s subdirectory contains a directory, module, which contains the complied
module code.

4.3.3. Building Solo SEE module examples

1. Create a directory in your home (Linux) or Documents (Windows) location to contain
the module examples. For example, create a directory, buildSoloMod, and enter this
directory.

CodeSafe v13.6.14 Developer Guide 39/123

Chapter 4. Example SEE machines

Linux

cd ~
mkdir buildSoloMod
cd buildSoloMod

Windows

cd Documents
mkdir buildSoloMod
cd buildSoloMod

2. Configure the module examples build using the command:

Linux

cmake -DCMAKE_TOOLCHAIN_FILE=<path to Solo + module tool chain> <path to CSEE examples>

For example, using default locations for the Solo + module tool chain and the CSEE
examples:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-1linux-solo-csee.cmake
/opt/nfast/c/csd/examples/

Windows

cmake -G "Ninja" -DCMAKE_TOOLCHAIN_FILE="C:\Program Files\nCipher\nfast\c\csd\cmake\codesafe-1inux-
solo-csee.cmake" "C:\Program Files\nCipher\nfast\c\csd\examples"

3. Build the modules using the command:

Linux
cmake --build <build output location>
For example:

cmake --build .

Here the . specifies the location where the build products should be placed, in this
case to current directory.
Windows

Ninja

This will result in the creation of a directory, csee, which contains a subdirectory for

CodeSafe v13.6.14 Developer Guide 40/123

Chapter 4. Example SEE machines

each of the examples. Each example’s subdirectory contains a directory, module, which
contains the compiled module code. For example, ~/buildSoloMod/csee/a3a8/module.
The compiled module executables have the suffix sxf.

4.3.4. Building Solo XC SEE module examples

1. Create a directory in your home (Linux) or Documents (Windows) location to contain
the module platform examples. For example, create a directory, buildXCmod, and enter
this directory:

Linux

cd ~
mkdir buildXCmod
cd bukdXCmod

Windows

cd Documents
mkdir buildXCmod
cd buildXCmod

2. Configure the module examples build using the command:

Linux

cmake -DCMAKE_TOOLCHAIN_FILE=<path to Solo XC module tool chain> <path to SEElib examples>

For example, using the default locations for the Solo XC module tool chain and the
SEELib examples, the command would be:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-1linux-xc-csee.cmake
/opt/nfast/c/csd/examples/

Windows

cmake -G "Ninja" -DCMAKE_TOOLCHAIN_FILE="C:\Program Files\nCipher\nfast\c\csd\cmake\codesafe-1inux-xc-
csee.cmake" "C:\Program Files\nCipher\nfast\c\csd\examples"

3. Build the module examples using the command:

Linux

cmake --build <build output location>

For example:

CodeSafe v13.6.14 Developer Guide 41/123

Chapter 4. Example SEE machines
cmake --build .

Here the . specifies the location where the build products should be placed, in this
case to current directory.

Windows

Ninja

This will result in the creation of a directory, csee, which contains a subdirectory for
each of the examples Each example’s subdirectory contains a directory, module, which
contains the compiled module code. For example, ~/buildXCMod/csee/a3a8/module.
The compiled module executables have the suffix .elf.

4.3.5. Example: Hello-World

This example source code demonstrates a simple SEE machine in C and how you can use it
from a C program on the host. The SEE machine examines the characters in the SEE job
passed to it and replaces each lowercase alphabetic character with the corresponding
uppercase character, returning the result as the SEE job reply. Additionally, if the SEE World
is created with a userdata file, any characters found in the userdata file are replaced in the
input SEE job with the character X.

The Hello-World example is not intended to be the basis for any real
0 world applications. It is intended only to demonstrate how to write SEE

machines in C and host-side use of an SEE machine by code written in
C.

There is also an example of the host-side code written in Java, supplied
o in the nCipherKM-SEE-Examples.jar found in /opt/nfast/java/exam-
ples/ (Linux) or $NFAST_HOME%\java\examples\ (Windows).

4.3.5.1. Signing, packing, and loading the SEE machine

1. Generate a key with which to sign the SEE machine:

generatekey -m 1 seeinteg

2. Complete the prompts as follows:

recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >

CodeSafe v13.6.14 Developer Guide 42/123

Chapter 4. Example SEE machines

size: Key size? (bits, minimum 1024) [2048] >

OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>

plainname: Key name? [] > hellomachine

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

key generation parameters:

operation Operation to perform generate
application Application seeinteg
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes

type Key type RSA

size Key size 2048
pubexp Public exponent for RSA key (hex)
plainname Key name hellomachine
nvram Blob in NVRAM (needs ACS) no

Loading ‘dev-ocs':
Module 1: @ cards of 1 read
Module 1 slot @: ‘dev-ocs' #1
Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.
Key successfully generated.
Path to key: <path-to-key>

Where <path-to-key>is /opt/nfast/kmdata/local/key_seeinteg_hellomachine (Linux)
or C:\ProgramData\nCipher\Key Management Data\local\key_seeinteg_hellomachine
(Windows).

3. Change to the module directory.
For nShield Solo:

Linux

cd ~/buildSoloMod/csee/hello/module
Windows
cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\hello\module

For nShield Solo XC:

Linux

cd ~/buildSoloXC/csee/hello/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\hello\module

4. Use the tct2 command line utility to convert the file into a SAR file.

CodeSafe v13.6.14 Developer Guide 43/123

Chapter 4. Example SEE machines

For nShield Solo:
Convert the hello.sxf file to a SAR file:

Linux

tet2 --sign-and-pack --is-machine -i hello.sxf --machine-type=PowerPCSXF -o hello.sar -k hellomachine

Windows

tct2 -m 1 --sign-and-pack --is-machine -i .\hello.sxf --machine-type=PowerPCSXF -o hello.sar -k
hellomachine

Output:

Signing machine as ‘PowerPCSXF'.

Loading ‘dev-ocs':

Module 1: @ cards of 1 read

Module 1 slot @: ‘dev-ocs' #1

Module 1 slot @:- passphrase supplied - reading card
Card reading complete.

For nShield Solo XC:
Convert the hello.elf file to a SAR file:

Linux

tet2 --sign-and-pack --is-machine -i hello.elf --machine-type=PowerPCELF -0 hello.sar -k hellomachine

Windows

tet2 --sign-and-pack --is-machine -i .\hello.elf --machine-type=PowerPCELF -0 hello.sar -k
hellomachine

Output:

Signing machine as ‘PowerPCELF'.

Loading ‘dev-ocs':

Module 1: @ cards of 1 read

Module 1 slot @: ‘dev-ocs' #1

Module 1 slot @:- passphrase supplied - reading card
Card reading complete.

6 ‘ For more information about this command, see tct2.

5. Load the SEE machine into the HSM by running the command:

CodeSafe v13.6.14 Developer Guide 44/123

Chapter 4. Example SEE machines

loadmache -m 1 hello.sar

This example describes how to load the SEE machine by running
the Toadmache command-line utility. In a production environment,
0 you can choose to configure the 1oad_seemachine section of the
host or client configuration file so that an SEE machine is loaded

automatically. See Automatically loading an SEE machine.

4.3.5.2. Preparing example userdata

You do not need to create real userdata for this example. Instead, you can simply pack a
small text file with tct2 and pass the packed file to the SEE machine to serve as userdata.

However, you can also choose to create and sign a real userdata file in the same way as for
the A3A8 example; see A3A8 example

When you run the Hello-World example, because the characters in the
userdata you supply are converted from lower case to replaced by the

o character X in the output file, including a new line sequence in the user-
data can produce unexpected results.

4.3.5.3. Running the example
To run the C example change to the host application directory by running the command:

Linux

cd ~/buildHost/csee/hello/hostside

Windows
cd C:\Users\<USER-NAME>\Documents\hostside\csee\hello\hostside
Pack the desired user data in the SAR file suitable for loading onto the HSM. Optionally, you

could use the Trusted Code Tool (tct2) to create a signed and packed SAR file for this step.

4.3.5.4. Usage

The hello example program has the following arguments:

hello <FILENAME> [<USERDATA>.sar]

CodeSafe v13.6.14 Developer Guide 45/123

Chapter 4. Example SEE machines

FILENAME

This parameter is the name of the input file that contains the source string.

USERDATA

This optional parameter is the name of a file that contains letters to be replaced by the
ASCII character X in the output file.

4.3.5.4.1. What the code actually does
The host-side C code performs the following tasks:

1. It prompts the user to supply a file name and an optional USERDATA file.

2. It sends the string in the file, converted if necessary to standard output.
The HSM-side code awaits jobs from the host and performs the following:

1. It transforms the contents of the input file, capitalizing all input and replacing any char-
acters that appear in the optional USERDATA file with an ASCII character X.

2. It sends the result as output.

4.3.6. A3A8 example

This example code demonstrates how to write an SEE machine in C code and how to use it
from a C program on the host.

The A3A8 example is not intended to be the basis for any real world appli
cations. The algorithm used, known as ACOMP128, has been shown to
o be insecure and is not appropriate for production use. It is used here
only to demonstrate the implementation of an algorithm in an SEE appli
cation, not to endorse it in any way.

o This example does not support debugging when the SEE debug level is
set to Generate Authorization Key.

The SEE machine is used to process data with the A3/A8 algorithm in conjunction with a
Triple-DES key as follows:

1. Data comes in the form of a sequence of 16-byte input values.

2. These values are split into two 8-byte halves that are each Triple-DES ECB decrypted
with the master key and reassembled to give a 16-byte key.

3. Then a 16-byte random value is generated and, along with the 16-byte key, is fed into

CodeSafe v13.6.14 Developer Guide 46/123

Chapter 4. Example SEE machines

the A3/A8 algorithm to produce a 12-byte output value.

4. The output from the HSM consists of a sequence of 28-byte blocks comprising the ran
dom value and the output value.

There is also an example of the host-side code written in Java, supplied
in the nCipherKM-SEE-Examples.jar found in opt/nfast/java/examples
(Linux) or $NFAST_HOME%\java\examples (Windows).

4.3.6.1. Signing, packing, and loading the SEE machine
To sign, pack, and load the SEE machine:

1. Generate a key with which to sign the SEE machine:

generatekey -m 1 seeinteg

2. Complete the prompts as follows:

recovery: Key recovery? (yes/no) [yes] >

type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >

size: Key size? (bits, minimum 1024) [2048] >

OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>

plainname: Key name? [] > a3a8machine

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

key generation parameters:

operation Operation to perform generate
application Application seeinteg
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes

type Key type RSA

size Key size 2048
pubexp Public exponent for RSA key (hex)

plainname Key name a3a8machine
nvram Blob in NVRAM (needs ACS) no

Loading ‘dev-ocs':

Module 1: @ cards of 1 read

Module 1 slot @: ‘dev-ocs' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: <path-to-key>

<path-to-key>is /opt/nfast/kmdata/local/key_seeinteg_a3a8machine (Linux) or
C:\ProgramData\nCipher\Key Management Data\local\key_seeinteg_a3a8machine (Win
dows).

3. Change to the directory by running the command:

CodeSafe v13.6.14 Developer Guide 47/123

Chapter 4. Example SEE machines

For nShield Solo

Linux

cd ~/buildSoloMod/csee/a3a8/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\a3a8\module

For nShield Solo XC

Linux

cd ~/buildXCMod/csee/a3a8/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\a3a8\module

4. Use the tct2 command line utility to convert the file into a SAR file.

$ generatekey -m 1 seeinteg

recovery: Key recovery? (yes/no) [yes] >

type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >

size: Key size? (bits, minimum 1024) [2048] >

OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>

plainname: Key name? [] > a3a8machine

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

key generation parameters:

operation Operation to perform generate
application Application seeinteg
protect Protected by token

slot Slot to read cards from 0

recovery Key recovery yes

verify Verify security of key yes

type Key type RSA

size Key size 2048

pubexp Public exponent for RSA key (hex)

plainname Key name a3a8machine

nvram Blob in NVRAM (needs ACS) no

Loading ‘ocs-dev':

Module 1: @ cards of 1 read

Module 1 slot @: ‘ocs-dev' #1

Module 1 slot @:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_seeinteg_a3a8machine

5. Change to the directory by running the command:

CodeSafe v13.6.14 Developer Guide

48/123

Chapter 4. Example SEE machines

For nShield Solo

Convert the a3a8mach.sxf file into a SAR file.

tet2 -m 1 --sign-and-pack --is-machine -i a3a8mach.sxf --machine-type=PowerPCSXF -o a3a8mach.sar -k
a3a8machine

Output:

Signing machine as ‘PowerPCSXF'.

Loading ‘ocs-dev':

Module 1: @ cards of 1 read

Module 1 slot @: ‘ocs-dev' #1

Module 1 slot @:- passphrase supplied - reading card
Card reading complete.

For nShield Solo XC

Convert the a3a8mach.elf file into a SAR file.

tet2 -m 1 --sign-and-pack --is-machine -i a3a8mach.elf --machine-type=PowerPCELF -o a3a8mach.sar -k
a3a8machine

Output:

Signing machine as ‘PowerPCELF'.

Loading ‘ocs-dev':

Module 1: @ cards of 1 read

Module 1 slot @: ‘ocs-dev' #1

Module 1 slot @:- passphrase supplied - reading card
Card reading complete.

6. Load the SEE machine into the HSM by running the command:

loadmache -m 1 a3a8mach.sar

This example describes how to load the SEE machine by running the

loadmache command-line utility. In a production environment, you can
0 choose to configure the load_seemachine section of the host or client
configuration file so that an SEE machine is loaded automatically. See

Automatically loading an SEE machine

4.3.6.2. Creating and signing userdata

To create and sign the userdata file:

CodeSafe v13.6.14 Developer Guide 49/123

Chapter 4. Example SEE machines

1. Change to the host-side code directory by running the command:

Linux

$ cd ~/buildhost/csee/a3a8/hostside

Windows

cd C:\Users\<USER-NAME>\Documents\hostside\csee\a3a8\hostside

2. Generate a key with which to sign a dummy userdata file for the example by running
the command:

generatekey -m 1 seeinteg

3. Complete the prompts as follows:

recovery: Key recovery? (yes/no) [yes] >

type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >

size: Key size? (bits, minimum 1024) [2048] >

OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>

plainname: Key name? [] > a3a8userdata

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

key generation parameters:

operation Operation to perform generate
application Application seeinteg
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes

type Key type RSA

size Key size 2048
pubexp Public exponent for RSA key (hex)

plainname Key name a3a8userdata
nvram Blob in NVRAM (needs ACS) no

Loading ‘dev-ocs':

Module 1: @ cards of 1 read

Module 1 slot @: ‘dev-ocs' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: <path-to-key>

<path-to-key>is /opt/nfast/kmdata/local/key_seeinteg_a3a8userdata (Linux) or
C:\ProgramData\nCipher\Key Management Data\local\key_seeinteg_a3a8userdata
(Windows).

4. Create a dummy userdata file. Because the A3/A8 algorithm does not use the initializa-
tion data, the dummy userdata need contain only one arbitrary character to use as user
data.

CodeSafe v13.6.14 Developer Guide 50/123

Chapter 4. Example SEE machines

5. Use the tct2 command-line utility to sign and pack a dummy userdata file for the exam
ple:
For nShield Solo

Linux

tet2 --sign-and-pack --machine-type=PowerPCSXF --infile a3a8userdata --outfile=a3a8userdata.sar
--machine-key-ident=a3a8machine -k a3a8userdata

Output:

Loading ‘ocs-dev':

Module 1: @ cards of 1 read

Module 1 slot @: ‘ocs-dev' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.[sudo] password for XXX:

Windows

tet2 --sign-and-pack --machine-type=PowerPCSXF --infile=a3a8userdata --outfile=a3a8userdata.sar
--machine-keyident=a3a8machine -k a3a8userdata

Output:

No module specified, using 1
Signing machine as 'PowerPCSXF'.

For nShield Solo XC:

Linux

tet2 --sign-and-pack --machine-type=PowerPCELF --infile a3a8userdata --outfile a3a8userdata.sar
--machine-key-ident=a3a8machine -k a3a8userdata

Output:

Loading ‘ocs-dev':

Module 1: @ cards of 1 read

Module 1 slot @: ‘ocs-dev' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Windows

tet2 --sign-and-pack --machine-type=PowerPCELF --infile=a3a8userdata --outfile=a3a8userdata.sar
--machine-keyident=a3a8machine -k a3a8userdata

Output:

CodeSafe v13.6.14 Developer Guide 51/123

Chapter 4. Example SEE machines

No module specified, using 1
Signing machine as 'PowerPCELF'.

e ‘ For more information about this command, see tct2

4.3.6.2.1. Running and testing the example

The a3test example application takes the following arguments:

a3test [-m <MODULEID>] <USERDATA>.sar

-m <MODULEID>
This option specifies the ModulelD of the HSM to use.

<USERDATA>.sar

This parameter specifies a userdata file (packed as a SAR) to use.
Thus, you can run the a3test program created in this example with a command of the form:

Linux

./a3test -m 1 a3a8userdata.sar

Windows

a3test -m 1 a3a8userdata.sar

The a3test example then processes data for approximately 20 seconds. If the example pro-
gram runs successfully, its final output is of the form:

Getting Sarfile info (400 bytes)....
Creating world: init status was @ (OK)
Making Master Key:

Get ticket.......

Sending ticket to SEEWorld:

181000 triples, 21 sec

Releasing context

Thank you for watching. The end.

If the output from a3test takes any other form, this indicates an error. In case of an error,
use the enquiry command-line utility to check:

« Whether the correct firmware is installed
+ Whether the correct server is running

« Whether the HSM is in the operational state.

CodeSafe v13.6.14 Developer Guide 52/123

Chapter 4. Example SEE machines

4.3.6.3. NVRAM example

The NVRAM example shows the simple use of NVRAM in an SEE machine written in C. It uses
a file in NVRAM as a sort of postage meter. The contents of the file are interpreted as a lit-
tle-endian integer that determines how many 'stamps' can be issued. Each time the host
program is invoked, it requests one or more stamps from the machine, and the NVRAM
counter is decreased accordingly.

The NVRAM example is not intended to be the basis for any real world applications. It is
intended only to demonstrate how to write SEE machines in C that access the HSM's
NVRAM.

4.3.6.3.1. Signing, packing, and loading the SEE machine
To sign, pack, and load the SEE machine:

1. Generate a key with which to sign the SEE machine:

generatekey seeinteg

2. Complete the prompts as follows:

module: Module to use? (1, 2) [1] >

recovery: Key recovery? (yes/no) [yes] >

type: Key type? (RSA, DSA) [RSA] >

size: Key size? (bits, minimum 1024) [1024] >

OPTIONAL: pubexp: Public exponent for RSA key (in hex)? []
>

plainname: Key name? [] > nvrammachine

key generation parameters:

operation Operation to perform generate
application Application seeinteg
module Module to use 1
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes

type Key type RSA

size Key size 1024
pubexp Public exponent for RSA key (in hex)

plainname Key name nvrammachine

Key successfully generated.
Path to key: <path-to-key>

<path-to-key>is /opt/nfast/kmdata/local/key_seeinteg_nvrammachine (Linux) or
%NFAST_KMDATA%\1local\key_seeinteg_nvrammachine (Windows).

3. Change to the directory by running the command:

For nShield Solo

CodeSafe v13.6.14 Developer Guide 53/123

Chapter 4. Example SEE machines

Linux

cd ~/buildSoloMod/csee/nvram/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\nvram\module

For nShield Solo XC

Linux

cd ~/buildXCMod/csee/nvram/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\nvram\module

4. Use the tct2 command line utility to convert the file.
For nShield Solo
Convert the nvram. sxf file into a SAR file.

Linux

tet2 --sign-and-pack --is-machine -i nvram.sxf --machine-type=PowerPCSXF -o nvram.sar -k nvrammachine

Windows

tet2 -m 1 --sign-and-pack --is-machine -i nvram.sxf --machine-type=PowerPCSXF -o nvram.sar -k
nvrammachine

Output:

Signing machine as 'PowerPCSXF'.
Loading ‘ocs-dev':

Module 1: @ cards of 1 read
Module 1 slot 0: ‘ocs-dev' #1

Module 1 slot @:- passphrase supplied - reading card
Card reading complete.

For nShield Solo XC
Convert the nvram.elf file into a SAR file.

Linux

CodeSafe v13.6.14 Developer Guide 54/123

Chapter 4. Example SEE machines

tet2 --sign-and-pack --is-machine -i nvram.elf --machine-type=PowerPCELF -0 nvram.sar -k nvrammachine

Windows

tet2 -m 1 --sign-and-pack --is-machine -i nvram.elf --machine-type=PowerPCELF -0 nvram.sar -k
nvrammachine

Output:

Signing machine as 'PowerPCELF".

Loading ‘ocs-dev':

Module 1: @ cards of 1 read

Module 1 slot @: ‘ocs-dev' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

0 ‘ For more information about this command, see tct?2.

5. Load the packed SEE machine into the HSM by running the command:

loadmache nvram.sar

This example describes how to load the SEE machine by running the
loadmache command-line utility. In a production environment, you can

choose to configure the load_seemachine section of the host or client
0 configuration file so that an SEE machine is loaded automatically. For
information about configuration files, see nShield HSM configuration
files.

4.3.6.3.2. Creating NVRAM and userdata files
You must now use the setup example application to create:

« An NVRAM file
« A userdata file that contains only the exact name of the specified NVRAM file.

1. Change to the host-side application directory by running the command:
Linux

cd ~/buildhost/csee/nvram/hostside

Windows

cd C:\Users\<USER-NAME>\Documents\hostside\csee\nvram\host

CodeSafe v13.6.14 Developer Guide 55/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html

Chapter 4. Example SEE machines
2. Create these files by running the setup command with 'root' (Linux) or Administra
tor (Windows) privileges:

Linux

./setup nvramfile 100 nvramuserdata

Windows

setup.exe nvramfile 100 nvramuserdata

3. Complete the on-screen instructions:

Please insert the next administrator card and press enter.
Please enter card passphrase:
allocated NVRAM file ‘nvramfile'.

4.3.6.3.3. setup

The setup example application takes the following arguments:

setup [-k|--key <APPNAME>,<IDENT>] <nvram-filename> <stamp-count> <userdatafile>

-k|--key <APPNAME>,<IDENT>

This option specifies a signing key identified by APPNAME and IDENT. Specifying a sign
ing key creates an NVRAM file that can only be accessed with authorization from that
key (for example, by signing the userdata with the same key). A signing key is optional.

<nvram-filename>

This parameter specifies the name of an NVRAM file to create. The name must contain
no more than 11 characters.

<tampcount>

This parameter specifies the number of stamps to issue.

<userdatafile>

This parameter specifies the name of the userdata SAR file created when the setup
example application is run.

You can also use the setup example application to delete an existing NVRAM file. To delete
a file, run setup with the --delete option, as follows:

setup --delete <nvram-filename>

CodeSafe v13.6.14 Developer Guide 56/123

Chapter 4. Example SEE machines

In this case, setup deletes the NVRAM file specified by nvram-filename.

4.3.6.3.4. Signing and packing the userdata

Run the Trusted Code Tool (tct2) to sign and pack the created userdata file you created
with the setup example application:

Linux

tet2 -m 1 --pack --infile nvramuserdata --outfile nvramuserdata.sar

Windows

tct2 --pack --infile nvramuserdata --outfile nvramuserdata.sar

If the NVRAM file created by the setup example application is bound to
a key (that is, if you specified the -k|--key option when running setup),
use that same key when signing the userdata file with tct2.

4.3.6.3.5. Running and testing the example
Run the nvram example application as follows:

Linux

./nvram ./nvramuserdata.sar 50

Windows

nvram.exe nvramuserdata.sar 50

Output:

SEEJob: read 1 bytes...
Stamp Request Accepted.
SEEJob: read 1 bytes...
Stamp Request Accepted.
SEEJob: read 1 bytes...

4.3.6.3.6. nvram

The nvram example application takes the following arguments:

CodeSafe v13.6.14 Developer Guide 57/123

Chapter 4. Example SEE machines

nvram <userdatafile>.sar [<iterations>]

<userdatafile>.sar

This parameter specifies the name of the userdata SAR file to use. Normally, this file has
been created by the setup example application (its name specified by that utility’s user-
datafile parameter).

<iterations>

This parameter specifies an integer that is the amount by which the nvram example appli
cation is to decrease its counter (as it issues virtual stamps).

4.3.6.3.7. What the code actually does
The host-side code performs the following tasks in order:

1. It allocates an NVRAM file with an access control list that requires the permission of a
specified key for reading or writing.

2. It requests the name of a file to be loaded as a packed user data block and, optionally,
the number of virtual stamps to request.

The HSM-side code awaits jobs from the host and returns a single byte to indicate whether
or not a stamp has been issued.

4.3.7. Example: RTC

This source code provides an example of an SEE machine written in C that implements a

very simple timestamp service.

Your SEE-Ready HSM must have an onboard real-time clock for this
0 example to run correctly, and you must have set the clock using the rtc
command-line utility.

The rtc example code is deficient in a number of ways and is not intended to be the basis
for any real world applications. It is intended only to demonstrate some important concepts
in writing SEE machines in C to perform time-stamping.

4.3.7.1. Signing, packing, and loading the SEE machine
To sign, pack, and load the SEE machine:

1. Generate a key with which to sign the SEE machine:

CodeSafe v13.6.14 Developer Guide 58/123

Chapter 4. Example SEE machines

generatekey -m 1 seeinteg

2. Complete the prompts as follows:

recovery: Key recovery? (yes/no) [yes] >

type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >

size: Key size? (bits, minimum 1024) [2048] >

OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>

plainname: Key name? [] > rtccode

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

key generation parameters:

operation Operation to perform generate
application Application seeinteg
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes

type Key type RSA

size Key size 2048
pubexp Public exponent for RSA key (hex)

plainname Key name rtccode
nvram Blob in NVRAM (needs ACS) no

Loading ‘dev-ocs':

Module 1: @ cards of 1 read

Module 1 slot 0: ‘dev-ocs' #1

Module 1 slot @:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.

Path to key: <path-to-key>

<path-to-keyis /opt/nfast/kmdata/local/key_seeinteg_rtccode (Linux) or C:\Pro-

gramData\nCipher\Key Management Data\local\key_seeinteg_rtccode (Windows).
3. Change to the directory by running the command:

For nShield Solo:

Linux

cd ~/buildSoloMod/csee/rte/module

Windows
cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\rtc\module
For nShield Solo XC:

Linux

cd ~/build-XC/csee/rte/module

CodeSafe v13.6.14 Developer Guide 59/123

Chapter 4. Example SEE machines

Windows

cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\rtc\module

4. Use the tct2 command-line utility to convert the file into a SAR file.

For nShield Solo

tet2 -m 1 --sign-and-pack --is-machine -i rtc.sxf --machine-type=PowerPCSXF -o rtc.sar -k rtccode

Output:

Signing machine as ‘PowerPCSXF'.
Loading ‘ocs-dev':
Module 1: @ cards of 1 read

Module 1 slot @: ‘ocs-dev' #1
Module 1 slot 0:- passphrase supplied - reading card

Card reading complete.

For nShield Solo XC:

tet2 -m 1 --sign-and-pack --is-machine -i rtc.elf --machine-type=PowerPCELF -o rtc.sar -k rtccode

Output:

Signing machine as ‘PowerPCELF'.

Loading ‘ocs-dev':

Module 1: @ cards of 1 read

Module 1 slot @: ‘ocs-dev' #1

Module 1 slot 0:- passphrase supplied - reading card

Card reading complete.

5. Load the packed SEE machine into the HSM by running the command:

loadmache rtc.sar

This example describes how to load the SEE machine by running
the loadmache command-line utility. In a production environment,
you can choose to configure the 1oad_seemachine section of the
o host or client configuration file so that an SEE machine is loaded
automatically. For information about configuration files, see nShield

HSM configuration files.

CodeSafe v13.6.14 Developer Guide 60/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html

Chapter 4. Example SEE machines

43711 rtc

The rtc example application takes the following arguments:

rte [-y|--verify <file>] [-a|--userdata <SEEDATA>] <userdatafile> <APPNAME>,<IDENT>

-y|---verify

This option verifies the returned time-stamp for the file named file.

-a|---userdata <SEEDATA>
This option specifies use of the file SEEDATA for SEE userdata.

<userdatafile>

This parameter specifies a userdata file that contains at least one character.

<APPNAME>, <IDENT>

These parameters specify the APPNAME and IDENT of the key for the rtc example
application to use.

4.3.7.1.2. Running the example

1. Enter the host-side application directory by running the command:

Linux

cd ~/buildhost/csee/rtc/hostside/

Windows

cd C:\Users\<USER-NAME>\Documents\host\csee\rtc\hostside

2. Create the test userdata file to be time-stamped by running the command:

Linux

cp /opt/nfast/c/csd/examples/csee/rtc/host/rtc.c ./mytestuserdata

Windows

copy "C:\Program Files\nCipher\nfast\c\csd\examples\csee\rtc\hostside\rtc.c" mytestuserdata

3. Generate an RSA key for the RTC example to use by running the command and com-
pleting the prompts in the output as follows:

CodeSafe v13.6.14 Developer Guide 61/123

Chapter 4. Example SEE machines

Linux

generatekey simple

Output:

protect: Protected by? (token, module) [token] >

recovery: Key recovery? (yes/no) [yes] >

type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,HMACRIPEMD160, HMACSHA1,
HMACSHA256, HMACSHA384, HMACSHA512, HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >

size: Key size? (bits, minimum 1024) [2048] >

OPTIONAL: pubexp: Public exponent for RSA key (hex)? []

>

ident: Key identifier? [] > rtctest

plainname: Key name? [] > rtctest

OPTIONAL: seeintegname: SEE integrity key?

(a3a8machine, nvrammachine, a3a8userdata, hellomachine, rtccode) []

>

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

key generation parameters:

operation Operation to perform generate

application Application simple$./rtc mytestuserdata simple,rtctest >
mytestuserdata.stamp

Please insert the next operator card and press enter.

Please enter card passphrase:

rtc: timestamp issued.

protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes
type Key type RSA
size Key size 2048
pubexp Public exponent for RSA key (hex)

ident Key identifier rtctest
plainname Key name rtctest
seeintegname SEE integrity key

nvram Blob in NVRAM (needs ACS) no

Loading ‘ocs-dev':

Module 1: @ cards of 1 read

Module 1 slot @: ‘ocs-dev' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_simple_rtctest

Windows

generatekey -m 1 simple

Output:

protect: Protected by? (token, module) [token] >

recovery: Key recovery? (yes/no) [yes] >

type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
HMACRIPEMD16@, HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512,
HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >

CodeSafe v13.6.14 Developer Guide 62/123

Chapter 4. Example SEE machines

size: Key size? (bits, minimum 1024) [2048] >

OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>

ident: Key identifier? [] > rtctest

plainname: Key name? [] > rtctest

OPTIONAL: seeintegname: SEE integrity key?
(a3a8machine, a3a8userdata, hellomachine, rtccode) [] >
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

key generation parameters:

operation Operation to perform generate
application Application simple
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes
type Key type RSA
size Key size 2048
pubexp Public exponent for RSA key (hex)

ident Key identifier rtctest
plainname Key name rtetest
seeintegname SEE integrity key

nvram Blob in NVRAM (needs ACS) no

Loading ‘dev-ocs':

Module 1: @ cards of 1 read

Module 1 slot @: ‘dev-ocs' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: C:\ProgramData\nCipher\Key Management Data\local\key_simple_rtctest

6 ‘ The rtc example application only supports the use of RSA keys.

4. Run the RTC example by executing the following command:

Linux

./rtc mytestuserdata simple,rtctest > mytestuserdata.stamp

Windows

rtc.exe mytestuserdata simple,rtctest > mytestuserdata.stamp

5. Complete the on-screen instructions:

Please insert the next operator card annvramd press enter.
Please enter card passphrase:
rtc: timestamp issued.

4.3.7.1.3. What the code actually does

The host-side code performs the following tasks in order:

1. It sends a session key to the HSM.

CodeSafe v13.6.14 Developer Guide 63/123

Chapter 4. Example SEE machines

2. When a time-stamped command is returned, it verifies the time-stamp using the ses-
sion key.

The HSM-side code performs the following tasks in order:

1. It awaits a job from the host.
2. It time-stamps the contents of the job and signs the result with the session key.

3. It returns the job to the host.

4.3.8. Example: Tickets

This example source code is an APl demonstration showing how an SEE machine can be
written in C.

The Tickets example is not intended to be the basis for any real world applications. In partic
ular, it does not support the loading of keys protected by card sets with the -k option. It is
intended to demonstrate:

+ How to write SEE machines in C
« Simple, custom-built marshalling and unmarshalling of jobs

« The use of tickets. See Internals for information about key tickets; also, for information
about the consumption of single ticket, see Loading stored keys.

Windows only
%SNFAST_HOME%\c\csd\examples\csee\tickets\
The C code consists of the following parts:

+ In the module directory, the source for the SEE machine:
> armtickets.c (SEE machine start-up and job-processing threads)
° usrjobs.c (job processing code)
« In the host directory, source for the host application:
° hosttickets.c (starts the SEE machine, sends jobs and traces debug).

- The common directory contains a simple header file (common.h) for shared data structures
between the HSM and the host code.

Sample makefiles are provided for building the HSM and host-side code (Makefile-host)
and can be found in their respective directories.

4.3.8.1. Signing, packing, and loading the SEE machine

CodeSafe v13.6.14 Developer Guide 64/123

Chapter 4. Example SEE machines

To sign, pack, and load the SEE machine:
1. Change to the module directory by running the command:
For nShield Solo

Linux

cd ~/buildSoloMod/csee/tickets/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\tickets\module

For nShield Solo XC

Linux

cd ~/buildXCMod/csee/tickets/module
Windows
cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\tickets\module

2. Use the tct2 command line utility to convert the file into a SAR file.
For nShield Solo

Convert the armtickets.sxf file into a SAR file.

tet2 -m 1 --pack --infile armtickets.sxf --outfile armtickets.sar

For nShield Solo XC

Convert the armtickets.elf file into a SAR file.

tct2 -m 1 --pack --infile armtickets.elf --outfile armtickets.sar

3. Load the SEE machine into the HSM by running the command:

loadmache armtickets.sar

This example describes how to load the SEE machine by running
0 the loadmache command-line utility. In a production environment,

you can choose to configure the 1oad_seemachine section of the

host or client configuration file so that an SEE machine is loaded

CodeSafe v13.6.14 Developer Guide 65/123

Chapter 4. Example SEE machines

automatically. For information about configuration files, see nShield
HSM configuration files.

4. Generate a key for the example to use by running the command and completing the
prompts in the output as follows:

Linux

generatekey simple

Output:

protect: Protected by? (token, module) [token] >

recovery: Key recovery? (yes/no) [yes] >

type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
HMACRIPEMD160, HMACSHAT, HMACSHA256, HMACSHA384, HMACSHA512,
HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >

size: Key size? (bits, minimum 1024) [2048] >

OPTIONAL: pubexp: Public exponent for RSA key (hex)? []

>

ident: Key identifier? [] > ticketkey

plainname: Key name? [] > ticketkey

OPTIONAL: seeintegname: SEE integrity key?

(a3a8machine, nvrammachine, a3a8userdata, hellomachine, rtccode) []
>

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

key generation parameters:

operation Operation to perform generate
application Application simple
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes

type Key type RSA

size Key size 2048
pubexp Public exponent for RSA key (hex)

ident Key identifier ticketkey
plainname Key name ticketkey
seeintegname SEE integrity key

nvram Blob in NVRAM (needs ACS) no

Loading ‘ocs-dev':

Module 1: @ cards of 1 read

Module 1 slot @: ‘ocs-dev' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_simple_ticketkey

Windows

generatekey -m 1 simple

Output:

CodeSafe v13.6.14 Developer Guide 66/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html

Chapter 4. Example SEE machines

protect: Protected by? (token, module) [token] >

recovery: Key recovery? (yes/no) [yes] >

type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
HMACRIPEMD16@, HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512,
HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >

size: Key size? (bits, minimum 1024) [2048] >

OPTIONAL: pubexp: Public exponent for RSA key (hex)? []

>

ident: Key identifier? [] > ticketkey

plainname: Key name? [] > ticketkey

OPTIONAL: seeintegname: SEE integrity key?

(a3a8machine, a3a8userdata, hellomachine, rtccode) [] >

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

key generation parameters:

operation Operation to perform generate
application Application simple
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes

type Key type RSA

size Key size 2048
pubexp Public exponent for RSA key (hex)

ident Key identifier ticketkey
plainname Key name ticketkey
seeintegname SEE integrity key

nvram Blob in NVRAM (needs ACS) no

Loading ‘dev-ocs':

Module 1: @ cards of 1 read

Module 1 slot @: ‘dev-ocs' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: C:\ProgramData\nCipher\Key Management Data\local\key_simple_ticketkey

4.3.8.2. hosttickets

The hosttickets example application takes the following arguments:

hosttickets [-f|--file <userdatafile>][-k|--key <APPNAME>,<IDENT>]

-k|--key <APPNAME>,<IDENT>
These options specify a Security World key.

For the public/private key pair, a Security World key can be specified with the -k option.
The specified Security World key must be an RSA key of the type simple that is not tied
to an SEE code-signing key. Otherwise, a fresh RSA key pair is generated automatically.

-f|--file <userdatafile>

These options specify a file for the userdata block.

o The option to load a file for the userdata block is included only for

CodeSafe v13.6.14 Developer Guide 67/123

Chapter 4. Example SEE machines

example purposes.

4.3.8.3. Running the example application
1. Change to the host application directory by running the following command:

Linux

cd ~/buildhost/csee/tickets/hostside/

Windows

cd C:\Users\<USER-NAME>\Documents\hostside\csee\tickets\hostside

2. Run the hosttickets example application, specifying the simple key created earlier:

Linux

./hosttickets -k simple,ticketkey

Windows

hosttickets.exe -k simple,ticketkey

3. Complete the on-screen instructions:

Enter string to be encrypted (256 characters maximum): 1skjfdljsdlfjsdlk
HostSide> Loading security world key (simple,ticketkey)

Please present the cardset protecting the key:

Module 1: @ cards of 1 read

Module 1 slot @: ‘ocs-dev' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

HostSide> Creating World: init status was @ (OK)

HostSide> Sending ticket for private RSA key to module

HostSide> Generating AES session key and creating blob under public RSA key
HostSide> Sending key blob to module

HostSide> Sending cipher-text to module

HostSide> decrypted cipher text received from SEE machine:
"1skjfdljsdlfjsdik"

HostSide> Thank you for watching. The end.

4.3.8.4. What the code actually does
The host-side code performs the following tasks in order:

1. It prompts the user for a string.

CodeSafe v13.6.14 Developer Guide 68/123

Chapter 4. Example SEE machines

2. It acquires an RSA key pair, either freshly created or loaded from the Security World
(only HSM protected key pairs are supported).

3. It sends a ticket for the private half of the RSA key to the HSM-side code.
4. It generates a session key (DES3).

5. It encrypts the session key as a blob with the public half of the RSA key.
6. It sends the resulting blob to the HSM-side code.

7. It encrypts the string with the session key.

8. It sends the encrypted string to the HSM-side code.

9. It receives the decrypted string back from the HSM.

The HSM-side code awaits jobs from the host and performs the following tasks in order:

1. It receives and redeems the ticket for the private RSA key.
2. It receives the session key blob and decrypts it with the private RSA key.
3. It receives the encrypted string and decrypts it with the session key.

4. It sends the decrypted string back to the HSM.

4.3.9. Example: Benchmark

This example source code implements a very simple utility that uses an SEE machine writ-
tenin C to time stamp requests to benchmark the speed of response to requests. You can
use it for benchmarking during the development of other SEE machines or adapt it as

required.
Your SEE-Ready HSM must have an onboard real-time clock for this
0 example to run correctly, and you must have set the clock using the rtc
command-line utility
o ‘ This utility does not accept encrypted user data.

4.3.9.1. bm-test

The bm-test example application takes the following arguments:

bm-test [-1|--log <LOGFILE>][-a|--userdata <userdatafile>] <APPNAME>,<IDENT>

-1]--1og <LOGFILE>

These options specify a file name to which to write time-stamps. If no log file is speci-
fied, no logging occurs.

CodeSafe v13.6.14 Developer Guide 69/123

Chapter 4. Example SEE machines
-3|--userdata <userdatafile>
These options specify a file for an (optional) userdata block.

<APPNAME>, <IDENT>

These parameters specify the APPNAME and IDENT of a key that is to be into the SEE
machine (and that SEE machine thereafter uses for signing purposes).

This utility does not have the --slot or --debug standard options.

4.3.9.2. bm-verify

The bm-verify example application takes the following arguments:

bm-verify <LOGFILE>

The LOGFILE parameter specifies the name of the log file created by the bm-test example
application (specified by that application’s -1|--1o0g option).

4.3.9.3. Packing and loading the SEE machine
To pack and load the SEE machine:
1. Change to the module directory by running the command:
For nShield Solo

Linux

cd ~/buildSoloMod/csee/benchmark/module

Windows
cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\benchmark\module
For nShield XC

Linux

cd ~/buildXCMod/csee/benchmark/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\benchmark\module

CodeSafe v13.6.14 Developer Guide 70/123

Chapter 4. Example SEE machines

2. Use the tct2 command line utility to convert the file into a SAR file.
For nShield Solo

Convert the bm-machine.sxf file into a SAR file.

tet2 -m 1 --pack --infile bm-machine.sxf --outfile bm-machine.sar

For nShield XC

Convert the bm-machine.elf file into a SAR file.

tet2 -m 1 --pack --infile bm-machine.elf --outfile bm-machine.sar

3. Load the SEE machine into the HSM by running the command:

loadmache bm-machine.sar

This example describes how to load the SEE machine by running
the Toadmache command-line utility. In a production environment,
you can choose to configure the 1oad_seemachine section of the
e host or client configuration file so that an SEE machine is loaded
automatically. For information about configuration files, see nShield

HSM configuration files.

4. Generate a key for the benchmark application to use by running the command and
completing the prompts in the output as follows:

Linux

generatekey simple

Output:

protect: Protected by? (token, module) [token] >

recovery: Key recovery? (yes/no) [yes] >

type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
HMACRIPEMD16@, HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512,
HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >

size: Key size? (bits, minimum 1024) [2048] >

OPTIONAL: pubexp: Public exponent for RSA key (hex)? []

>

ident: Key identifier? [] > benchmark-test

plainname: Key name? [] > benchmark

OPTIONAL: seeintegname: SEE integrity key?

(a3a8machine, nvrammachine, a3a8userdata, hellomachine, rtccode) []
>

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

CodeSafe v13.6.14 Developer Guide 71/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html

Chapter 4. Example SEE machines

key generation parameters:

operation Operation to perform
application Application

protect Protected by

slot Slot to read cards from
recovery Key recovery

verify Verify security of key
type Key type

size Key size

pubexp Public exponent for RSA key (hex)
ident Key identifier

plainname Key name

seeintegname SEE integrity key

nvram Blob in NVRAM (needs ACS)

Loading ‘ocs-dev':
Module 1: @ cards of 1 read
Module 1 slot @: ‘ocs-dev' #1

generate
simple
token

0

yes

yes

RSA

2048

benchmark-test
benchmark

no

Module 1 slot 0:- passphrase supplied - reading card

Card reading complete.

Key successfully generated.

Path to key: /opt/nfast/kmdata/local/key_simple_benchmark-test

Windows

generatekey -m 1 simple

Output:

protect: Protected by? (token, module) [token] >
recovery: Key recovery? (yes/no) [yes] >

type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
HMACRIPEMD160, HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512,
HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >

size: Key size? (bits, minimum 1024) [2048] >

OPTIONAL: pubexp: Public exponent for RSA key (hex)? []

>

ident: Key identifier? [] > benchmark-test

plainname: Key name? [] > benchmark-test

OPTIONAL: seeintegname: SEE integrity key?

(a3a8machine, a3a8userdata, hellomachine, rtccode) [] >

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

key generation parameters:

operation Operation to perform
application Application

protect Protected by

slot Slot to read cards from
recovery Key recovery

verify Verify security of key
type Key type

size Key size

pubexp Public exponent for RSA key (hex)
ident Key identifier

plainname Key name

seeintegname SEE integrity key

nvram Blob in NVRAM (needs ACS)

Loading ‘dev-ocs':
Module 1: @ cards of 1 read
Module 1 slot 0: ‘dev-ocs' #1

generate
simple
token

0

yes

yes

RSA

2048

benchmark-test
benchmark-test

Module 1 slot @:- passphrase supplied - reading card

Card reading complete.

CodeSafe v13.6.14 Developer Guide

72/123

Chapter 4. Example SEE machines

Key successfully generated.
Path to key: C:\ProgramData\nCipher\Key Management Data\local\key_simple_benchmark-test

4.3.9.4. Running the example application
To use the example change to the host application directory by running the command:

Linux

cd ~/buildhost/csee/benchmark/hostside/

Windows
cd C:\Users\<USER-NAME>\Documents\host\csee\benchmark\hostside

Run the bm-test example application as follows, completing any on-screen instructions in
the output:

Linux

./bm-test -1 bmtest.log simple benchmark-test

Windows

bm-test.exe -1 bmtest.log simple benchmark-test

Output:

Please insert the next operator card and press enter.
Please enter card passphrase:

1 878 878.00

2 1758 879.00

3 2639 879.67

4 3522 830.50

5 4406 881.20

6 5284 880.67

o The application will run indefinitely, the user must terminate the applica
tion manually by using Ctrl-C.

Run the bm-verify example application, specifying the log file, bm-test.1log, created in the
previous step by the bm-test application.

CodeSafe v13.6.14 Developer Guide 73/123

Chapter 4. Example SEE machines

Linux

./bm-verify bmtest.log

Windows

bm-verify.exe bmtest.log

Output:

Verified timestamp #1.
Verified timestamp #2.
Verified timestamp #3.
Verified timestamp #4.
Verified timestamp #5.
Verified timestamp #6.

4.3.9.5. What the code actually does
The host program performs the following tasks in order:

1. It tickets a generated key into the SEE machine.
2. The SEE machine uses that key for signing purposes.
3. Each request is concatenated with the current time and then signed.

4. The signature is concatenated with the time and then returned to the host side.
On the host side, two programs are generated:

- bm-test

« bm-verify.

The bm-test command is used to generate pseudo-random values that are sent to the
HSM-side code to be signed. Every second, the total number of completed time-stamp
requests is printed, along with the average number completed each second.

The bm-verify command looks for the file specified as LOGFILE on the host. From this file,
bm-verify extracts the public key and verifies the time-stamp requests until it finds an
invalid request or reaches the end of the file.

4.3.9.6. About the Java example

We supply a Java version of the HelloWor1ld example. This consists of the source files for

CodeSafe v13.6.14 Developer Guide 74/123

Chapter 4. Example SEE machines

host-side applications that you can run with the example SEE machines written in C (or any
other SEE machines written in any language) in order to understand how simple SEE
machines work.

o ‘ For information about the C examples for SEElib, see Examples for
SEElib

The Java SEE example files can be found within the nCipherKM-SEE-Examples jar located in
/opt/nfast/java/examples (Linux) or $NFAST_HOME%\java\examples (Windows). A common
directory is also supplied which contains files that are used by more than one of the exam-
ples.

The Java examples have the same options as their equivalent, similarly named C examples.

4.3.9.6.1. Supported versions of Java

The following versions of Java have been tested to work with, and are supported by, your
nShield Security World Software:

- Java8 (or Java 1.8x)
. Javall
- Javal7
- Java2l

We recommend that you ensure Java is installed before you install the Security World Soft-
ware. The Java executable must be on your system path.

If you can do so, please use the latest Java version currently supported by Entrust that is
compatible with your requirements. Java versions before those shown are no longer sup-
ported. If you are maintaining older Java versions for legacy reasons, and need compatibil-
ity with current software, please contact https://www.oracle.com/java/technologies/
javase-jdk11-downloads.html for Java downloads.

4.3.9.6.2. HelloWorld.java

The HelloWor1ld.java example is not intended to be the basis for any
real world applications. It is intended only to demonstrate host-side use
of an SEE machine by code written in Java.

First, ensure you have already built the file hello.sxf as described in Examples for SEElib
converted this into the file hello.sar and loaded it into the HSM as described in Signing,
packing, and loading the SEE machine.

CodeSafe v13.6.14 Developer Guide 75/123

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html

Chapter 4. Example SEE machines

To build the example:

1. Change to the example directory by running the command:

Linux

cd /opt/nfast/java/examples

Windows

cd %NFAST_HOME%\java\examples

2. Extract the example files by running the command:

Linux

jar xf nCipherkM-SEE-Examples.jar
jar xf ../classes/nCipherKM-jhsee.jar

Windows

jar xf nCipherkM-SEE-Examples.jar
jar xf ..\classes\nCipherKM-jhsee.jar

3. Compile the example using this command:

Linux

javac -cp /opt/nfast/java/classes/nCipherkM.jar com/ncipher/see/hostside/*.java

javac -cp

.:/opt/nfast/java/classes/nCipherkM.jar com/ncipher/see/hostside/examples/helloworld/HelloWorld.java

Windows

javac -cp "%NFAST_HOME%\java\classes\nCipherKM.jar com\ncipher\see\hostside*.java"

javac -cp "%NFAST_HOME%\java\classes\nCipherkM.jar A
com\ncipher\see\hostside\examples\helloworld\HelloWorld.java"

To run the helloworld example:

1. Ensure you are in the example’s directory by running the command:

Linux

cd /opt/nfast/java/examples

Windows

cd %NFAST_HOME%\java\examples

CodeSafe v13.6.14 Developer Guide

76/123

Chapter 4. Example SEE machines

2. Run the example:

Linux

java -cp .:/opt/nfast/java/classes/nCipherKkM.jar
com/ncipher/see/hostside/examples/hellowor1d/HelloWorld <FILENAME> [<USERDATA>]

Windows

java -cp "%NFAST_HOME%\java\classes\nCipherKM.jar ~
com\ncipher\see\hostside\examples\helloworld\HelloWorld <FILENAME> [<USERDATA>]"

In this example, <FILENAME> is the name of an input file to pass to the SEE machine as an
SEE job, and <USERDATA> the name of an (optional) userdata file. The SEE machine trans-
forms the input by replacing all lowercase alphabetic characters in <FILENAME> with their
uppercase equivalents and replacing any characters in <FILENAME> that are also found in
<USERDATA> (if supplied) with the character X.

CodeSafe v13.6.14 Developer Guide 77/123

Chapter 5. Debugging SEE machines

5. Debugging SEE machines

This chapter provides some guidance on debugging an SEE machine.

5.1. Debugging settings and output
To debug an SEE application effectively, you must have:

 Enabled SEE debugging when creating the Security World in which the application is
to run, see new-world (dsee and dseeall options).

+ Set Cmd_CreateSEEWor1d_Args_flags_EnableDebug when creating the SEE World.

If you try to set the Cmd_CreateSEEWor1d_Args_flags_EnableDebug
flag in a Security World that does not allow SEE debugging, the Cre
o ateSEEWor1d command returns AccessDenied. This also occurs if you
call CreateSEEWor1d in a Security World where SEE debugging is

restricted and an appropriate certifier is not present.

5.1.1. Debugging authorization

Access to the SEE trace buffer is controlled by the Security World in which the SEE
machine runs. Every Security World has exactly one of the following properties:

+ Restricted SEE debugging

This is the default setting. When SEE debugging is restricted, there is no delegation
key from Kyso for accessing the SEE trace buffer. All Security Worlds created by soft-
ware released before the introduction of SEE have restricted SEE debugging. A full quo
rum of Administrator Cards is required to access the SEE trace buffer in such Security
Worlds.

+ Authorized SEE debugging

In this case, a delegation key from Kyso exists to allow access to the SEE trace buffer. A
subset of a full quorum of the Administrator Cards is required to access the SEE trace
buffer in such Security Worlds. This delegation key must have been created and the
number of cards required to authorize access to the SEE trace buffer must have been
specified when the Security World was created.

« No access-control SEE debugging

In this case, no authorization of any kind is required for accessing the SEE trace buffer.

CodeSafe v13.6.14 Developer Guide 78/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/new-world.html

Chapter 5. Debugging SEE machines

No cards are required to access the SEE trace buffer in such Security Worlds. This prop
erty must have been specified when the Security World was created.

5.1.2. Obtaining debugging output

For SEE machines that require support from a host-side see-*-serv utility, you can run the
see-*-serv utilities with the --trace or --plain-trace option to perform tracing automati-
cally.

For SEE machines using the SEE1ib architecture, the TraceSEEWor1d() command can be
used to return debugging information. An example of this is provided in the a3a8 host-side
example code. See A3A8 example.

Data written to standard output and standard error on the HSM is written to the SEE
World's Trace Buffer. The Trace Buffer is a 3000 character circular buffer: if more than
3000 characters are written to it without being retrieved, information is lost on a first-
in/first-out basis. The TraceSEEWorld command retrieves the contents of the buffer so that
the host can analyze or display them.

If the SEE machine crashes, a SEE register dump is printed to the SEE Trace Buffer for the
nShield Solo, but not for the nShield Solo XC.

For example, assume that the HSM code calls the following command:

printf("Hello World!\n");

The string Hello World!\nis pushed into the Trace Buffer. A host-side call to TraceSEEWor1d
would then return this string and empty the buffer.

If a SEE World is terminated by the HSM (for instance, if its last remaining thread exits or it
causes a fatal signal to be raised), a diagnostic message is usually sent to the Trace Buffer
to help debug the problem.

5.1.2.1. Example Debug

If an illegal access violation (segmentation fault) occurs, the tail of the Trace Buffer looks
similar to this:

*** World exits: thread 28 caused CPU exception

DSI exception:

Exception vector 00300h
r0 =001D9E40h r1 =001D9IF38h r2 =00C4EQ90h r3 =00000008h
r4 =00000000h r5 =00C00444h rb6 =00000000h r7 =601C21B1h
r8 =00C39CB8h r9 =00000019h r10=40000000h r11=00002000h
r12=00000000h r13=00D08048h r14=00000000h r15=00000000h

CodeSafe v13.6.14 Developer Guide 79/123

Chapter 5. Debugging SEE machines

r16=00000000h r17-00000000h r18=00000000h r19=00000000h
r20-00000000h r21=00000000h r22=00000000h r23=00C40000h
r24=FFFC5CDOh r25=00C3A750h r26=00C40000h r27-00C40000h
r28=00000000h r29-00000000h r30=00000000h r31=00D00000h
XER=20000000h CR =20000000h LR =00C00444h CTR=00C39B9Ch

PC =00C00448h MSR=0000F030h

f0 =0000000000000000h 1 =0000000000000000h
2 =0000000000000000h f3 =0000000000000000h
f4 =0000000000000000h 5 =0000000000000000h
f6 =0000000000000000h 7 =0000000000000000h
f8 =0000000000000000h 9 =0000000000000000h

10 =0000000000000000h
12 =0000000000000000h
14 =0000000000000000h
f16 =0000000000000000h
18 =0000000000000000h
20 =0000000000000000h
22 =0000000000000000h
f24 =0000000000000000h
26 =0000000000000000h
28 =0000000000000000h
30 =0000000000000000h

11 =0000000000000000h
13 =0000000000000000h
15 =0000000000000000h
17 =0000000000000000h
19 =0000000000000000h
f21 =0000000000000000h
23 =0000000000000000h
25 =0000000000000000h
27 =0000000000000000h
29 =0000000000000000h
31 =0000000000000000h

FPSCR=00000000h
The program counter, which is currently at position 00C00448h in the PowerPC-based compi
lation shows where this access occurs.

The following excerpt from the PowerPC based map file created at application link time (by
specifying the -map option to the linker) indicates that the problem address is inmain.o:

.text 0x00c00000 0x3alac
(.text.stub.text..gnu.linkonce.t.*)
.text 0x00c00000 Oxabc usermain.o
0x00c00160 main
.text 0x00c00a5¢c 0x544 .\1ib-ppc-gcc\seelib.a(nfstrerr.o)
0x00c00abc NFast_StrError

To find out which instruction is causing the segmentation fault, calculate the offset into
main.o. The formula is:

program_counter - object_base_address

The calculation is as follows:

00C00448h -
00C00000

0x00448h

Once the location of the problem is located in this way, investigate it as follows:

1. Recompile the source with the -g option and no optimization (if you did not originally
compile it with these options).

CodeSafe v13.6.14 Developer Guide 80/123

Chapter 5. Debugging SEE machines

2. Run an object dump utility on the object files powerpc-codesafe-1inux-gnu-objcopy.

The head of the generated object is now similar to the following for PowerPC based
objects:

434: 38 7a 03 34 addi r3,r26,820

438: 38 80 00 08 1i r4,8

43c: 4c ¢b 31 82 crclr 4*cril+eq

440: 483 00 00 01 bl 449 <main+0x2e0>
444: 38 60 00 08 1i r3,8

448: 80 03 00 00 1wz r0,0(r3)

44c: 4b ff fe 74 b 2c0 <main+0x160>

450: 3c 80 00 00 1is rd4,0

From this output is it possible to see that the segmentation fault is caused by an illegal
access to the pointer held in R4 (which the register dump showed to be 80000004h, an obvi-
ously invalid user mode memory address). The source shows plainly that the instruction at
offset 0458h in usermain.o is trying to assign to *1, but i has not been allocated. The bug
can now be fixed and the program rebuilt.

5.2. Finding memory leaks with stattree
You can use the stattree command-line utility to find memory leaks. Run the command:

Linux

stattree | grep Mem

Windows

stattree | find "Mem"

For each HSM in the Security World, this command produces output that reports values for
the total memory (MemTotal), the memory currently allocated to the kernel (MemAllocKer-
nel), and the memory currently allocated to the loaded SEE machine (MemAllocUser).

If no SEE machine is loaded, the output from this stattree command (if there is only one
HSM) looks similar to the following:

-MemTotal 128921600
-MemAllocKernel 1355776
-MemAllocUser 0

If an SEE machine is loaded, the output from this stattree command (if there is only one
HSM) looks similar to the following:

CodeSafe v13.6.14 Developer Guide 81/123

Chapter 5. Debugging SEE machines

-MemTotal 128921600
-MemAllocKernel 1355776
-MemAllocUser 1032192

You can monitor a loaded SEE machine’s memory usage by either repeatedly running and
checking output from stattree or by writing code to call the nCore statistics APIs directly.
In any case, if any reported memory value appears to being growing continuously over time,
this probably indicates some kind of memory leak.

5.3. Segment addresses for Solo

SEE executables are non-relocatable; that is, they are loaded in memory at the addresses
specified in the image. Ensure that you choose these addresses carefully so that they map
onto usable RAM and do not overlap with memory being used by the kernel. Typically, this
means you must choose an address at the high end of RAM.

Different HSM types have different mappable memory ranges.

« The CodeSafe compiler sets all values for Solo XC and later HSM models.

« You have to set the ranges in the CodeSafe application code if you are developing for
Solo +.

The rest of this section describes guidelines for Solo +.

To determine your HSM type, run the enquiry command-line utility and check the SEE
Machine Type output. You can then determine where the mappable memory range starts
from this table:

SEE Machine Type Start of mappable range

PowerPCSXF 0x00400000

These ranges follow the approximately 4MB of RAM reserved for use by the kernel.

You can use the stattree command-line utility to find the total length of the mappable
range. Run the command:

Linux

stattree | grep MemTotal

Windows

CodeSafe v13.6.14 Developer Guide 82/123

Chapter 5. Debugging SEE machines

stattree | find "MemTotal"

This command produces output that reports values for the total memory (MemTotal) for
each HSM in the Security World.

For Solo +, we recommend the following segment addresses as starting points:

SEE Machine Type PowerPCSXF

text segment start 0xa00000

data segment start 0x00d00000

Arguments to the linker -Ttext 0xa00000 -Tdata 0xd00000

For large SEE machines more space may be needed in the text segment, causing a linker
error of the following form:

powerpc-codesafe-linux-gnu-1d: section .data [00d00000 -> 00d0327f] overlaps section .text [00c00000 -> 00d7bd8b]
powerpc-codesafe-linux-gnu-1d: section .sdata [00d03280 -> 00d@35ef] overlaps section .text [00c00000 ->
00d7bd8b]

powerpc-codesafe-linux-gnu-1d: section .sbss [00d@35f0 -> 00d036ab] overlaps section .text [00c00000 -> 00d7bd8b]
powerpc-codesafe-linux-gnu-1d: section .bss [00d036b0 -> 00d0854f] overlaps section .text [00c00000 -> 00d7bd8b]

To resolve this example error, you could move the data segment start point upward (for
example, to 0x00e00000) as necessary to prevent the overlap. Alternatively (or additionally),
you could move the text segment start point downward.

5.4. Vulnerability test harness

We supply a test harness called vulnerability.o that can be used for debugging SEE
machines. It supplies a standard set of command-line arguments and environment variables
to the SEE environment, as well as providing the standard stdioe and socket support.

o Because the vulnerability.o test harness is insecure, we recommend
that you not link vulnerability.o into a production SEE machine.

5.5. Troubleshooting guide

CodeSafe v13.6.14 Developer Guide 83/123

Chapter 5. Debugging SEE machines

Symptom

SEEJob takes a long time then fails
with HardwareFailed

CreateSEEWor1ld fails with BadMa-
chineImage

SEE machine loading fails with Bad-
MachineImage

CreateSEEWor1d fails with Invalid-
Certificate

SEE machine loading fails with
InvalidCertificate.

The SEE machine crashes, and
Trace Buffer output shows raised
signal.

Possible problems

The SEE machine has deadlocked or
entered an infinite loop which pre-
vents the job from returning and
causes the SEEJob to trigger the
command time-out.

No SEE machine is loaded.

The file being loaded is not a cor-
rectly formatted SAR file.

The SEE machine file is corrupted.

The SEE machine has been com-
piled or linked with the wrong
options.

The machine signing hash on user-
data signatures does not match any
signature hash on the currently
loaded machine.

The SEE machine signatures were
created incorrectly.

Dependent on signal number.

Solution

Check the code for possible dead-
locks or infinite loops. Non-obvious
problems can be debugged by writ-
ing progress reports to the Trace
Buffer and calling TraceSEEWor1d
after the job returns Hardware-
Failed.

Load an SEE machine

Ensure that the correct SEE
machine file is being loaded. Ensure
that the SEE machine has been
properly processed by the Trusted
Code Tool into a SAR file.

Rebuild the SEE machine, or revert
to a known good back-up.

SEE machines must be nonexe-
cutable, uncompressed, non-relocat
able AlFs or SXFs, packaged as SAR
files.

Ensure the correct SEE machine
with the correct signatures is
loaded.

Ensure the correct user data is
being passed to CreateSEEWor1d.

Ensure the user data signatures are
correct.

SEE machine signatures must be
created with the machine key speci
fication --is-machine. Recreate the
SEE machine SAR with correct sig-
natures.

Check stdh.h and signal.h for sig-
nal descriptions then check the
code to see how that signal could
be raised.

CodeSafe v13.6.14 Developer Guide

84/123

Chapter 5. Debugging SEE machines

Symptom

AccessDenied from CreateSEEWor1d.

All SEEJobs return with Status_Can-
celled.

NoModuleMemory is returned from the
CreateSEEWor1ld command.

NoModuleMemory is returned when
loading a SEE machine.

Error from link: section .data [hhh
hhhhh - hhhhhhhh] overlaps sec-
tion .text [hhhhhhhh - hhhhh-
hhh]

Possible problems

SEE World debugging is not avail-
able in Security World.

SEE machine is returning AccessDe-
niedin SEE1ib_initComplete.

SEE11ib transaction listener is not
running.

Segment addresses clash with ker-
nel pages.

Segment addresses overlap.

Segment addresses are not usable
RAM.

Userdata has been specified but is
not expected.

The previous SEE machine has not
been cleared

Segment addresses overlap.

Solution

Check the Security World's SEE
debugging policy.

Check the SEE machine set-up
code to see where it might be pass-
ing AccessDenied to SEE1ib_initCom
plete, and fix the cause of that, if
necessary.

If you are using SEE1ib_Transact
you must call SEETib_StartTrans-
actlListener before making use of
SEE1ib_Transact.

Adjust segment positions away
from kernel RAM; see Segment
addresses for Solo

Adjust segment away from each
other; see Segment addresses for
Solo

Adjust segment positions to usable
RAM; see Segment addresses for
Solo

Exclude the userdata.

Clear the previous SEE machine;
see clearing a SEE machine from
the front panel or clearing a SEE
machine remotely

Adjust segment away from each
other; see Segment addresses for
Solo

CodeSafe v13.6.14 Developer Guide

85/123

Chapter 6. Deploying SEE Machines

6. Deploying SEE Machines

This chapter discusses the deployment of SEE machines after their development is com-
plete. It includes information about Feature Enabling as this applies to SEE.

Deploying a SEE machine involves the following steps:

1. Sign and encrypt the SEE machine. See Signing methods and Encryption.

2. Obtain an export certificate for the SEE machine from Entrust and incorporate the cer-
tificate in the distribution. See Obtaining and using export certificates.

3. Distribute the SEE machine to customers.

6.1. About the Feature Enabling Mechanism (FEM)

Entrust provides a Feature Enabling Mechanism (FEM) that controls the software that any
given HSM can use. This is used to control access to the SetSEEMachine command that
loads the SEE machines.

The SetSEEMachine command can be authorized in either of the following ways:

« The GeneralSEE static feature is set with a bit in the EEPROM. If this bit is set, the com-
mand can load any SEE machine without further certificates or authorization.

- If the GeneralSEE static feature is not applied, the command requires a dynamic Fea-
ture Enabling certificate chain to load a SEE machine.

All CodeSafe development environments have the GeneralSEE static feature. However, to
deploy an already-developed SEE machine, you require the dynamic Feature Enabling certifi
cate chain.

Customers who require the dynamic certificate chain can load a SEE machine only when
the key used to sign the SEE machine is export approved by Entrust through the provision
of a signing certificate (an ADDER certificate). See Obtaining and using export certificates.

The SEE machine signing (ADDER) certificate authorizes SetSEEMachine on any HSM, but
the dynamic Feature Enabling certificate chain is valid only on the specified HSM.

6.2. Obtaining and using export certificates

0 You must understand and agree to the conditions for exporting SEE
machines. Contact Entrust for full details of these conditions.

CodeSafe v13.6.14 Developer Guide 86/123

Chapter 6. Deploying SEE Machines

To obtain an export certificate for a SEE machine:

Users with a Restricted SEE, [SEE(R)], enabled Connect will need to run
0 update world files to pull the ADDER cert onto the Connect file sys-
tem to load a SEE machine.

1. Generate a signing key and send the hash to Entrust together with a description of the
SEE machine.

Entrust approves the SEE machine for export and sends you an ADDER certificate to
allow the SEE machine signed by the specified key to run.

2. Sign the SEE machine with the signing key supplied to Entrust and, optionally, encrypt
it.

3. Develop an installation process that places the certificate in the /opt/nfast/femcerts
(Linux systems) or $NFAST_CERTDIR% (Windows) directory.

4. Distribute the signed SEE machine and the certificate to end-users with the appropri-
ate installation instructions.

6.3. Automatically loading a SEE machine
The figures below outline different methods for loading a SEE machine.

Loading SEE machines for Solo XC:

CodeSafe v13.6.14 Developer Guide 87/123

Chapter 6. Deploying SEE Machines

Machines using SEEJobs
directly (requiring seelib)

Load SEE machine

myprog.sar
userdata.sar

v

™

| loadmache)

N _/
v

e N

[/ Loaded SEE machine
o
Load host 14
application (only

myprog-host
required for seelib)

Machines using the POSIX
runtime (requiring glibc)

myprog.sar
userdata.sar

v

/ - \\

[see_*_serv)

o ,/'
LoadSEEWorld
CreateSEEWorld

/- N
| Loaded SEE machine)
\ J/

General outline

Autoload SEE machine hardserver
configure with loadsee-setup

/

| postload-<custom>

Method 1 (glibc)

(hardserver |
A s

LoadSEEWorld \
CreateSEEWorld

Method 2 (glibc)

hardserver

LoadSEEWorld

N
Ve
(see_* serv
AN /
v CrealeSEEWorld
9 N ~ / ~
| Loaded SEE machine | | Loaded SEE machine | Loaded SEE machine)
. S o / o /
| WorldID as Y §
_PublishedObject . N\
— see_" _serv
.
Loading SEE machines for Solo PCle:
Machines using SEEJobs Machines using the POSIX
directly (requiring seelib) runtime (requiring bsdlib)
4 ™ , ™~
Load SEE machine myprog.sar myprog.sar
userdata.sar userdata.sar
\ * J \ * J
| loadmache [see_*_serv
N \. /
LoadSEEWorld
CreateSEEWorld
B A)
- N - ~
| Loaded SEE machine | Loaded SEE machine |
N _ N _
Load host e
application (only myprog-host
required for seelib) |
General outline Method 1 (bsdlib) Method 2 (bsdlib)
~ P ~ ~
Autoload SEE machine | hardserver) [hardserver) [hardserver
configure with loadsee-setup - - b I i -
- N LoadSEEWorld \ p ~
| postload-<custom> CreateSEEWorld ~— - LoadSEEWorld postload_bsdlib)
N N \
\
\ v |

oy (
(see_*

(*_serv
\

e \
| postload_bsdlib) ~ B
\ /

y v T CreateSEEWorld

Ve ~N v Y Ve B ‘\\
[Loaded SEE machine | | Loaded SEE machine) | Loaded SEE machine |
\ J]
(WorldiDas \ .
_ PublishedObiject / .
T see_" _serv
_ Y,

CodeSafe v13.6.14 Developer Guide 88/123

Chapter 6. Deploying SEE Machines

You can load SEE machines manually by running the loadmache command-line utility or,
optionally, you can load SEE machines that require support from a host-side see-*-serv util
ity by specifying the -M option when you run the utility.

However, you can also configure the hardserver to load SEE machines automatically when-
ever the HSM is initialized (that is, when the hardserver starts, or restarts, or after the HSM
receives a ClearUnit command).

To configure the hardserver to load a SEE machine automatically, you must edit the set-
tings in the host systems hardserver configuration file. Entrust provides the loadsee-setup
command-line utility to help you set up, display, and remove settings in the hardserver con-
figuration file that control the automatic loading of SEE machines.

For a usage description of the loadsee-setup command-line utility, see
o Loadsee setup. For more information about the configuration files, see
nShield HSM configuration files.

The loadsee-setup utility configures the hardserver settings that specify:

« The name of the SEE machine file to be automatically loaded
- If appropriate, the name of an accompanying userdata file.

- If appropriate (if userdata is specified), the published-object name for the SEE
machine

« The name of an appropriate post-load program (to perform setup and initialization
tasks for the SEE machine) and any necessary arguments for it (a -m option to specify
an HSM is automatically added)

For SEE machines that require support from a host-side see-*-serv utility, Entrust provides
the postload-bsdlib post-load program, which runs the appropriate host utility, in
restricted mode, while returning control back to the hardserver. The postload-bsdlib pro-
gram takes the same arguments as the see-*-serv host utilities (see see-*-serv utilities),
together with a --provision argument that takes one of the following parameters to spec-
ify which utility to run:

. stdoe
« stdioe
- sock

. stdioesock

For SEE machines using the SEE11ib architecture, it is usually necessary to write a custom
post-load program.

CodeSafe v13.6.14 Developer Guide 89/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html

Chapter 6. Deploying SEE Machines

6.3.1. Automatically loading a glibc SEE machine with userdata

To configure the hardserver configuration file to automatically load a glibc SEE machine
and its accompanying userdata file, run a command similar to the following example:

Linux

loadsee-setup -m1 -M /tmp/MySEEMachine.sar -U /tmp/MyUserdata.sar -p MyPublishedObjectName -P glibc -A "--
provision sock -p MyPublishedObjectName"

Windows

loadsee-setup -m1 -M C:\MySEEMachine.sar -U C:\MyUserdata.sar -p MyPublishedObjectName -P glibc -A "--provision
sock -p MyPublishedObjectName"

In this example, MySEEMachine.sar is the SEE Machine (packed as a SAR file), MyUser -
data.sar is the userdata (packed as a SAR file), MyPublishedObjectName is the name to use
for publishing the KeyID of the started SEE machine, and the glibc parameter specifies use
of the postload-bsdlib post-load program.

The sock parameter in this example tells postload-bsdlib to run the see-sock-serv host util
ity. If a different host utility were necessary, you would specify the appropriate parameter
for the appropriate utility (stdoe, stdioe, or stdioesock).

When running a command of this form, ensure that the parameters spec
ifying name of the published object (in this example, MyPublishedObject

0 Name) are the same for both the loadsee-setup utility and the postload-
bsdlib program.

For more information about the loadsee-setup command-line utility, see Loadsee setup.

6.3.2. Automatically loading a glibc SEE machine without userdata

To configure the hardserver configuration file to automatically load a glibc SEE machine
without its accompanying userdata file (which instead is to be loaded by the host utility),

run a command similar to the following example:

Linux

loadsee-setup -m1 -M /tmp/MySEEMachine.sar -P glibc -A "--provision sock --userdata-sar /opt/nfast/nc-
seemachines/MyUserdata.sar"

Windows

CodeSafe v13.6.14 Developer Guide 90/123

Chapter 6. Deploying SEE Machines

loadsee-setup -m1 -M C:\MySEEMachine.sar -P glibc -A "--provision sock --userdata-sar C:\MyUserdata.sar"

In this example, MySEEMachine.sar is the SEE Machine (packed as a SAR file) and the glibc
parameter specifies use of the postload-bsdlib post-load program.

The sock parameter in this example tells postload-bsdlib to run the see-sock-serv host util
ity. If a different host utility were necessary, you would specify the appropriate parameter

for the appropriate utility (stdoe, stdioe, or stdioesock).

The MyUserdata.sar parameter in this example, passed to the postload-bsdlib program,
specifies a userdata file (packed as a SAR) that is to be loaded by the host utility.

To specify userdata that has not been packed as a SAR file, use the
--userdata-raw option instead of --userdata-sar.

To turn on SEE debugging, pass one of the options --trace or --plain
-trace as an argument for the post-load program. See also Debugging
SEE machines.

The host utility will be run in restricted mode, using the -r option.

6.4. Configuring the nShield Connect to use CodeSafe

Direct

The CodeSafe client can be any OS platform (including mainframe, Non-Stop or embedded
device). The use of CodeSafe Direct eliminates proxy devices, complexity and points of fail-

ure.

CodeSafe v13.6.14 Developer Guide

91/123

Chapter 6. Deploying SEE Machines

Implementation without CodeSafe Direct

o Security World
Appvllcqhon (e.g. Web software RFS .
service) — any OS client machine (Remote File System)
see-sock-serv

HSM

SEE

CodeSafe Direct implementation

S Vs
. h (Remote File System)
client machine

direct ()

SOCket_IF Pl ee-sock-sery HSM
connection
K SEE

service) — any OS

tpplication (e.g. Web

The nShield Connect can be configured to receive direct socket connections from the SEE
machine via see-sock-serv, removing the need for a client machine. You do this by specify-
ing postload_prog and postload_args in the load_seemachine section of the nShield Con-
nect hardserver configuration file, located in NFAST_KMDATA/hsm-<ESN>, where <ESN> is the
Electronic Serial Number of the HSM. (For more information about this section of the con-
figuration file, see load_seemachine.

0 CodeSafe Direct is supported on glibc-based SEE machines only: the
functionality is not available on SEElib-based machines.

The configuration file can be managed in two ways: via the front panel of the nShield Con-
nect (see Configuring a SEE machine using the front panel), and by using the remote config
uration functions to push a config.new file, containing the postload_prog and postload-
_args settings, to the HSM.

o ‘ For more information, see nShield HSM configuration files.

6.5. Configuring a SEE machine using the front panel
To use see-sock-serv directly, you must create a glibc SEE machine.

Ensure that the SEE machine for the application is in the /opt/nfast/custom-seemachines
(Linux) or %$NFAST_HOME%\custom-seemachines (Windows) directory on the remote file sys-

CodeSafe v13.6.14 Developer Guide 92/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html

Chapter 6. Deploying SEE Machines

tem.

If a SEE machine has previously been loaded on a network-attached HSM with a front
panel, such as an nShield Connect, clear the current SEE machine from memory in one of
the following ways:

- Press the Clear button on the front of the HSM.

+ Log in to a host machine as a user in the nfast group and run the following command
(m1is the Security World’s module number for the HSM whose front panel you used in
the previous steps):

sudo /opt/nfast/bin/nopclearfail -c -w -ml

6.5.1. Configuring a glibc SEE machine
Select the CodeSafe menu option, and enter the following information when prompted:

1. The name of the SEE machine file.

2. The name of the userdata file.

o ‘ For CodeSafe Direct, the userdata file must be packed as a SAR
file.

3. The type of custom SEE machine you are using (BSD1ib sockserv). worldid_pubname,
postload_prog, and postload_args will be passed to load_seemachine. For detailed
descriptions of the options in this section, see load_seemachine.

6.5.2. Configuring a SEElib SEE machine

Select the CodeSafe menu option, and enter the following information when prompted:

1. The name of the SEE machine file.

2. The name of the userdata file, if required.
The userdata file must be packed as a SAR file.

3. The type of custom SEE machine you are using (SEE11ib).
4. The ID of the SEE World to create.

6.6. Remotely loading and updating SEE machines

CodeSafe v13.6.14 Developer Guide 93/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine

Chapter 6. Deploying SEE Machines

The SEE remote push facility allows the remote deployment of CodeSafe SEE machines to
an nShield Connect, negating the need to physically visit the HSM to load or update the
SEE machine. This is achieved by editing the configuration file on the RFS for a specific
nShield Connect to specify the new SEE machine, then setting a configuration flag in the
config file to true.

Before configuring an HSM to autonomously run a SEE machine and accept updates using
the RFS, that HSM must first be set up to accept remotely-pushed configurations. Refer to
Remote Administration v13.6.14 User Guide for more information.

For more information about configuring log file storage options, see Configuring log file
storage.

Both SEETib and BSD1ib sockserv SEE machines are supported on the nShield Connect.

To configure an nShield Connect to autonomously run a SEE machine and accept updates
using the RFS:

1. Place the SEE machine in the following location:

° Linux: /opt/nfast/custom-seemachines

° Windows:(:\Program Files\nCipher\nfast\custom-seemachines
2. Copy the existing config file to a new file called config.new.

3. In the Toad_seemachine section of the config.new file for the remote HSM, add or
amend the following settings:

module=1

pull_rfs=yes
machine_file=mymachinename.sar
userdata=myuserdata.sar
worldid_pubname=publ_name

These settings specify the type, name and user data of the SEE
o machine you wish to load. For more information about each setting,
see load_seemachine.

0 For CodeSafe Direct, the userdata file must be packed as a SAR
file.

The remote HSM will load the new SEE machine in place of any
e existing SEE machine. If no machine_file value is set, then pushing
the config file will remove any existing machines on the HSM.

4. In the sys_log section of the config.new file for the remote HSM, add or amend the fol
lowing settings:

CodeSafe v13.6.14 Developer Guide 94/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureLogStorage
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureLogStorage
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureLogStorage
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureLogStorage
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureLogStorage
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureLogStorage
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureLogStorage
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureLogStorage
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureLogStorage
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureLogStorage
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/config-files.html#load_seemachine

Chapter 6. Deploying SEE Machines

[sys_log]
behaviour=push
push_interval=1

This allows the HSM to push its hardserver.log to the RFS every
minute (push_interval=1). This change is recommended for trou-
bleshooting and verification purposes. The default is 60 (minutes).

These settings control how and where log messages are written.
e Using the example above, messages will be written to the sys-
tem.log and hardserver.1log files of the HSM, which are accessible
using the remote file system. You may wish to revise the push_in-
terval to a higher value once the nShield Connect has successfully
loaded the new SEE machine.

5. Run nopclearfail to clear the module.
6. Run enquiry to check that the module is ready.

7. From the location of the HSM config file, run cfg-pushnethsm to push the new config
file to the HSM:

cfg-pushnethsm --address=module_IP_address config.new

Location:

° Linux: /opt/nfast/kmdata/hsm-#i##-####-###/config
> Windows: C:\ProgramData\nCipher\Key Management Data\hsm-####-#i##-###\con
fig
8. Run nopclearfail -c -w.

9. If you are loading a new or different SEE machine, search the HSM's hardserver log for
the string hsc_loadseemachine to check whether the SEE machine loaded or whether it
reported an error.

10. Verify the SEE machine has loaded by running stattree:

stattree PerModule 1 ModuleEnvStats

A non-zero MemAllocUser value indicates that the SEE machine is loaded.

You can do this on any working client, including the RFS if it is also
o a client, of the nShield Connect. On "XC" HSMs, this requires a
firmware version of 12.50.2 or greater.

CodeSafe v13.6.14 Developer Guide 95/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/enquiry.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/cfg-pushnethsm.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/cfg-pushnethsm.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/cfg-pushnethsm.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/stattree.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/stattree.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/stattree.html

Chapter 6. Deploying SEE Machines

The HSM pushes the config file back to the RFS with changes:

- The pull_rfs flag is set to no, because the SEE machine is now loaded.

- The machine_file and userdata values are now set to the paths to their respective loca
tions in the embedded OS of the HSM.

To load a new SEE machine to multiple nShield Connects, we recommend scheduling down
time for each HSM, upgrading them on a per HSM basis. Each nShield Connect configura-
tion file is specific to an individual HSM and each configuration file should be updated sepa
rately to load the new SEE machine.

CodeSafe v13.6.14 Developer Guide 96/123

Chapter 7. Utilities

/. Utilities

Entrust supplies the following SEE-specific nShield command-line utilities:

. elftool.
+ loadmache.
+ loadsee-setup.
- hsc_loadseemachine
« The see-*-serv host-side utilities:
° see-sock-serv.
° see-stdoe-serv.
° see-stdioe-serv.
° see-stdioesock-serv.
- seessl-migrate.py.

« tct2 (the Trusted Code Tool)
This appendix also describes the following general nShield command-line utilities:
- nfkmverify

For a list of all supplied nShield utilities, see nShield v13.6.14 Utilities Reference.

/.1. cpioc

The cpioc command-line utility takes a collection of files and packs them up into a userdata
archive file that the SEE machine can use.

7.1.1. Usage

cpioc userdata.cpio <MyFilel> <MyFile2> <MyFile3> <[...]>

In this command, <MyFile1>, <MyFile2>, and <MyFile3> represent the files being packed into
the userdata.cpio file that is generated by the command. You can specify as many files as
appropriate.

You can also specify one or more directories; the command automatically packs their con-
tents (including any subdirectories) into the generated userdata.cpio file.

CodeSafe v13.6.14 Developer Guide 97/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/utilities/summary.html

Chapter 7. Utilities

/.2. elftool

The elftool command-line utility lets you convert ELF format executables into a format
suitable for loading as an SEE machine.

7.2.1. Usage

elftool [<options>] <infile> [<outfile>]

This utility has the following options:
-d|--dump-fields

These options dumps (display) all fields in the input file infile as they are read.
-q|--quiet

These options suppresses informative messages.

--single-section

This option checks that exactly one of each section type is present in the input file
infile. If more than one section of a type is present, an error is displayed.

--aif

This option generates an output file outfile in nonexecutable AIF output (ARM only, dep
recated).

--bin

This option generates an output file outfile in raw binary format.

--sxf

This option generates an output file outfile in nShield SEE Executable Format (SXF).

-n|--no-output

These options check the input file infile without generating any output.

To view the loadable sections of an ELF file, use the following command:

elftool --dump-fields <infile>

This command displays details of the sections of the file under one of the following cate-
gories:

CodeSafe v13.6.14 Developer Guide 98/123

Chapter 7. Utilities

Read Only

This category includes program code and constant data (either Read or Read+Execute
permissions).

Read/Write

This category includes non-constant data initialized to particular values (Read+Write per

missions).

Zero Init

This category includes non-constant data initialized to zero.

To generate an AIF or SXF format output file correctly, the ELF input file must have the fol-
lowing characteristics:

- The address range for one category of data (for example, Read Only) must not overlap
with the address range for another (for example, Read/Write).

- All Zero Init data must come after all Read/Write datain memory (that is, Zero Init
data must occupy a higher memory address).

The default options for most linkers ensure that ELF files meet these requirements.

To convert a ELF file into SXF, a format specifically for SEE machines, use the following
command:

elftool --sxf <infile> <outfile>

SXF format files can be loaded on all existing SEE-enabled HSMs. This is the preferred for-
mat.

To convert a ELF file into binary format, use the following command:

elftool --bin <infile> <outfile>

The output file consists of the Read Only data immediately followed by the Read/Write
data, without a header. This may be useful in applications other than SEE Machine images.

7.3. loadmache

The loadmache command-line utility supplied with the Secure Execution Engine (SEE) loads
an SEE machine into an SEE-enabled HSM. The hardserver can automatically use this utility
to load an SEE machines.

CodeSafe v13.6.14 Developer Guide 99/123

Chapter 7. Utilities

To use this command, you must be logged in to the host computer as a user in the group
nfast (Linux) or as a user who is permitted to create privileged connections (Windows).

o ‘ SEE machines that require support from a host-side see-*-serv utility

If your SEE machine requires support from a host-side see-*-serv util-
o ity, you must run one of those utilities as appropriate to serve the SEE
machine before its networking or stdioe provisions can work.

7.3.1. Usage

loadmache [-m|--module=<MODULE>] [-s|--slot=<SLOT>] [-U|--unencrypted] [-e|--encryptionkey=<IDENT>] [-a|--
sighash=<HASH>] [-n|--noprompt] <machine-filename>

In this command, the machine-filename parameter specifies the path of the SEE machine.
If machine-filename is not specified, loadmache tries to select a machine from the location
specified by the 'NFAST_SEE_MACHINEIMAGE_* environment variables. See Environment

variables for more information about environment variables.

7.3.1.1. HSM options

-m|--module=<MODULE>

These options specify the hardware security module to use.

-s|--slot=<SLOT>

These options specify the slot from which to load cards.

7.3.1.2. SEE machine loading options

-a|--sighash=<HASH>
These options specify that the SEE machine is to be signed with a key whose hash is
HASH.

-n|--noprompt

These options specify that you are never prompted for missing smart cards.

-U|--unencrypted

These options specify that the SEE machine is to be unencrypted. This is the default. If
set, these options override any previously specified NFAST_SEE_MACHINEENCKEY_*
variable. See Environment variables for more information about environment variables.

CodeSafe v13.6.14 Developer Guide 100/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html

Chapter 7. Utilities

-e|--encryptionkey=<IDENT>

These options specify that the SEE machine is to be encrypted with the key identified
by IDENT. If set, these options override the -U|--unencrypted options.

If neither the -e|--encryptionkey nor the -U|--unencrypted options are
specified, a decryption key is used only if the name of a suitable one is
o found in the location specified by the NFAST_SEE_MACHINEENCKEY _DE-
FAULT environment variable. See Environment variables for more informa

tion about environment variables.

/.4. loadsee-setup

The loadsee-setup command-line utility helps you set up, display, or remove settings in the
hardserver configuration file that control the automatic loading of SEE machines.

You can use loadsee-setup for one of three types of action by specifying the appropriate

option:

+ Specifying the --setup option selects the setup action, used to add a new configura-

tion or replace an existing configuration

+ Specifying the --remove option selects the remove action, used to remove an existing

configuration (without replacing it)
- Specifying the --display option selects the display action, used to display the config-
uration of one or all HSMs

7.4.1. Usage

loadsee-setup -s|--setup -m <MODULE>
loadsee-setup -r|--remove -m <MODULE>
loadsee-setup -d|--display [-m <MODULE>]

7.4.1.1. Action selection

-s|--setup
This option selects the setup action, enabling you to set up the hardware configuration
file for the HSM specified by -m|--module=<MODULE> to provide automatic loading for the
SEE machine specified by -M|--machine=<MACHINE>.sar.

You must always specify the -m|--module=<MODULE> and -M|
o --machine=<MACHINE>. sar options when using the --setup option. See

CodeSafe v13.6.14 Developer Guide 101/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html

Chapter 7. Utilities

the comments in the hardserver configuration file for information about
the effects of specifying or omitting other options.

-r|--remove
This option selects the remove action, enabling you to remove settings that control auto
matic SEE machine loading from the hardware configuration file for the HSM specified
by -m|--module=<MODULE>

-d|--display

This option selects the display action, enabling you to display the current configuration
of automatic SEE machine loading for the HSM specified by -m|--module=<MODULE> or, if
no HSM is specified, all HSMs in the Security World.

7.4.1.2. Setup options

-M|--machine=<MACHINE>.sar
This option specifies the SEE machine file (packed as a SAR). You must supply a value
for this option when using setup mode.

-U|--userdata=<USERDATA>.sar
This option specifies the name of the userdata file (packed as a SAR) to be passed to
SEE machine.

-k|--key=<IDENT>
This option identifies the seeconf key protecting the SEE machine. You must supply this
option is the SEE machine is encrypted. Only HSM-protected keys are supported.

-S|--sighash=<HASH>
This option identifies the hash of the key that the SEE machine is signed with. You only
need to supply this option if the SEE machine is encrypted and you are using a dynamic
SEE feature. This option is not required if the SEE machine is not encrypted or if you
have the GeneralSEE static feature.

-p|--published-object=<NAME>
This option specifies the PublishedObject name to use for publishing the KeyID of the
started SEE machine.

-P|--postload-prog=<PROGRAM>

This option specifies the post-load program to be run after the SEE machine is loaded.

o | In most cases, SEE machines using the bsd1lib/glibc architecture

CodeSafe v13.6.14 Developer Guide 102/123

Chapter 7. Utilities

should supply the value bsd1lib/glibc to specify use of the provided
postload-bsdlib program.

-A]--postload-args="<ARGUMENTS>"

This option specifies an argument string to pass to the post-load program specified by
the --postload-prog option. Supply the individual arguments within the double quota-
tion marks, each argument separated from the next by a single space.

7.4.1.3. General options

-m|--module=<MODULE>
This option specifies the HSM with the hardware configuration file that is to be acted
upon by the command. You must supply a value for this option in either setup or
remove mode.

-c|--configfile=<FILENAME>

This option specifies name of (or path to) the hardserver configuration file to be acted
upon by the command. The default is /opt/nfast/kmdata/config/config (Linux) or
%NFAST_KMDATA%\config\config (Windows).

-f|--force

Setting this option allows the command to make configuration changes without prompt
ing you.

--no-reset

This option prevents resetting HSMs with changed configurations.

7.4.2. Output

7.4.2.1. loadsee-setup --setup
This section provides an example of loadsee-setup used in --setup mode.

When --setup mode is specified, the only other required options are -m|--module=<MODULE>
and -M|--machine=<MACHINE>.sar. However, if you supply the -A|--postload-args="<ARGU-
MENTS>" option, you must also supply the -P|--postload-prog=<PROGRAM> option.

To set up a hardware configuration file to provide automatic loading for an SEE machine,
run a command similar to the following Solo XC example:

loadsee-setup --setup -m1 --machine /tmp/test.sar --postload-prog=glibc --postload-args="--provision stdoe

CodeSafe v13.6.14 Developer Guide 103/123

Chapter 7. Utilities

--userdata-sar /tmp/userdata.sar --trace"

If automatic SEE machine loading has already been configured for the specified HSM, 1oad-
see-setup warns you before it is overwritten:

Module #1 new SEE configuration saved, new configuration follows:
Module #1:
Machine file: /tmp/test-helloworld.sar
Userdata file:
Wor1ldID published object:

Postload helper: glibc
Postload args: --provision stdoe --userdata-sar /tmp/test.cpio.sar
--trace

Clear modules now to reload new configuration? (yes/mo): yes

You can use the -f|--force option to bypass this warning and overwrite the existing config
uration.

After setting up the configuration, loadsee-setup resets the affected HSM (unless you
specified the --no-reset option).

7.4.2.2. loadsee-setup --remove
This section provides an example of loadsee-setup used in --remove mode.

When --remove mode is specified, the only other required option is -m|--module=<MODULE>.
This specifies the HSM with the hardserver configuration file that needs the settings for
automatic SEE machine loading removed.

To remove settings for automatic SEE machine loading from an HSM's hardware configura-

tion file, run a command similar to the following example:

loadsee-setup --remove -ml

If the HSM specified by -m|--module=<MODULE> does not exist or is not currently configured
to automatic SEE machine loading configured, an error is displayed. Otherwise, the current
configuration is displayed and loadsee-setup prompts you to continue:

Module #1:
Machine file: /tmp/test-helloworld.sar
Userdata file:
Wor1ldID published object:

Postload helper: glibc
Postload args: --provision stdoe --userdata-sar /tmp/test.cpio.sar
--trace

Erase this configuration? (yes/no): yes
Module #1 SEE auto-loading configuration removed.
Clear modules now to reload new configuration? (yes/nmo): yes

CodeSafe v13.6.14 Developer Guide 104/123

Chapter 7. Utilities

You can use the -f|--force option to bypass warnings and remove the existing configura-
tion without being prompted.

After removing the configuration, loadsee-setup resets any HSM with a configuration that
has changed (unless you specified the --no-reset option). After running loadsee-setup
command in --remove mode, no SEE machines are automatically loaded onto the specified
HSM.

7.4.3. loadsee-setup --display
This section provides an example of loadsee-setup used in --display mode.

You are not required to specify any additional options with --remove mode. You can specify
the -m|--module=<MODULE> option to display the settings for automatic SEE machine loading
in a particular HSM's hardserver configuration file; without specifying this option, loadsee-
setup displays the settings for automatic SEE machine loading in the hardserver configura-
tion files for any HSM in the Security World for which these settings exist.

To display settings for automatic SEE machine loading for all HSMs, run a command similar
to the following example:

§ loadsee-setup --display

This command produces output similar to the following:

Module #1:
Machine file: /tmp/test-helloworld.sar
Userdata file:
Wor1dID published object:
Postload helper: glibc
Postload args: --provision stdoe --userdata-sar /tmp/test

/.5. hsc_loadseemachine
The hsc_loadseemachine utility enables you to publish an SEE machine. The utility:

1. Loads an SEE machine into each HSM configured.

2. Publishes a newly created SEE world, if appropriate.

7.5.1. Usage

hsc_loadseemachine [<options>]

CodeSafe v13.6.14 Developer Guide 105/123

Chapter 7. Utilities

7.5.1.1. Options

-m|--module

This option specifies the HSM number into which the configuration data must be read.
The default value is 0.

The SEE machine can be loaded only if you specify this option. If you do not specify this
option, the utility examines the configuration file to check the changes that are made to
the load_seemachine section and then reset any HSM that has had its entry modified.
The hardserver loading script then calls hsc_loadseemachine -m MODULE for each HSM
that has been reset.

-c|--configfile=<FILENAME>

This option specifies the name of the configuration file that must be read.

7.6. nfkmverify

The nfkmverify command-line utility verifies key generation certificates. You can use nfk-
mverify to confirm how a particular Security World and key are protected. It also returns
some information about the Security World and key.

The nfkmverify utility compares the details in the ACL of the key and those of the card set
that currently protects the key.

A key that has been recovered to a different card set shows a discrepancy for every
respect that the new card set differs from the old one. For example, a key recovered from a
2-of-1 card set to a 1-of-1 card set has a different card-set hash and a different number of
cards, so two discrepancies are reported. The discrepancy is between the card set men-
tioned in the ACL of the key and the card set by which the key is currently protected (that
is, the card set mentioned in the key blobs).

A key that has been transferred from another Security World shows dis-
o crepancies and fails to be verified. We recommend that you verify keys
in their original Security World at their time of generation.

If you must replace your Security World or card set, we recommend that you generate new
keys whenever possible. If you must transfer a key, perform key verification immediately
before transferring the key; it is not always possible to verify a key after transferring it to a
new Security World or changing the card set that protects it.

7.6.1. Usage

CodeSafe v13.6.14 Developer Guide 106/123

Chapter 7. Utilities

nfkmverify [-f|--force] [-v|--verbose] [-U|--unverifiable] [-m|--module=<MODULE>] [appname ident [appname ident
[...11]

7.6.1.1. Help options
-h|--help
This option displays help for nfkmverify.
-V|--version
This option displays the version number for nfkmverify.
-u|--usage

This option displays a brief usage summary for nfkmverify.

7.6.1.2. Program options

-m|--module=<MODULE>
This option performs checks with module MODULE.

-f|--force

This option forces display of an output report that might be wrong.

-U|--unverifiable
This option permits operations to proceed even if the Security World is unverifiable.

o If you need the -U|--unverifiable option, there may be some seri-
ous problems with your Security World.

-v|--verbose

This option prints full public keys and generation parameters.

-C|--certificate
This option checks the original ACL for the key using the key generation certificate. This
is the default.

-L|--1oaded

These options check the ACL of a loaded key instead of the generation certificate.

-R|--recov

This option checks the ACL of the key loaded from the recovery blob.

CodeSafe v13.6.14 Developer Guide 107/123

Chapter 7. Utilities

--allow-dh-unknown-sg-group

This option allows an operation to proceed even if a Diffie-Hellman key is using an
unrecognized Sophie-Germain group.

7.6.2. Output

Output returned from nfkmverify can take a variety of forms, depending on the parameters
of the given key generation certificate, Security World, and key concerned. Examples of pos
sible output resulting from several different situations are provided below.

Under normal circumstances, issuing a command of the form:

nfkmverify --verbose --unverifiable myapp 020010621a13h25m@2

returns output of the form:

** [Security world] **
1 Administrator Cards
(Currently in Module #1 Slot #@: Card #1)

Cardset recovery ENABLED

Passphrase recovery disabled

Strict FIPS 140 level 3 (does not improve security) disabled

SEE application nonvolatile storage disabled

real time clock setting disabled

SEE debugging disabled

Generating module ESN @A42-E645-7A75 currently #1 (in same incarnation)

** [Application key myapp 020010621a13h25m02] **
[Named 'test Thu, 21 Jun 2001 13:25:02 +0100"']

Useable by HOST applications.

Recovery ENABLED.

MODULE-ONLY protection

Type RSAPrivate 1024 bits keygenparams.type= RSAPrivate 2

.params.rsaprivate.flags= none 0x00000000

.lenbits= 0x00000400 1024
.given_e absent
.nchecks absent

Generating module ESN QA42-E645-7A75 currently #1 (in same incarnation)
nCore hash 233901f3329aa9e29cd79d3bb7b32d549b725fc3
public_half.type= RSAPublic 1

.data.rsapublic.e= 4 bytes
00010001

.n= 128 bytes
8363b219 183de558 48c8379e 840895ff @babdbae 392848c6 cOaeb7f9 d10b046d
43214b70 4878b518 8e599c69 1cd61db@ bab4f852 425¢70f5 b9c@0Ge5 4cedalsf
c062b5dd 01852380 f70275a1 87036947 68ef59f0 db5d2e84 dbae8dc1 7542e94d
adedece8 cb3c9fb6 98fab8af 52c94137 a76ab7dd 38648134 0df55ca8 2f45e8b7

Verification successful, check details above.

Output of the form shown above indicates successful verification of the relevant key gener
ation certificate.

CodeSafe v13.6.14 Developer Guide 108/123

Chapter 7. Utilities

The following examples indicate forms of output that could be returned if you try to verify
the generation certificate of a key generated in a Security World that was created with an
insufficiently up-to-date version of Security World for nShield.

In such a case, issuing a command of the form:

nfkmverify --verbose myapp spong

returns output of the form:

PROBLEM: no world generation certificates
PROBLEM: application key myapp spong: no key generation signature
2 issues found, NOT VERIFIED

Adding the --unverifiable option to the same command:

nfkmverify --verbose --unverifiable myapp spong

returns output of the form:

PROBLEM: application key myapp spong: no key generation signature
1 issues found, NOT VERIFIED

Then, also adding the --force option to this same command:

nfkmverify --force --verbose --unverifiable myapp spong

returns output of the form:

PROBLEM: application key myapp spong: no key generation signature
PROBLEMS BUT FORCING POSSIBLY-WRONG OUTPUT
** [Security world] **
UNVERIFIED SECURITY WORLD !
proceeding anyway as requested
** [Application key myapp spong] **
[Not named]
Useable by HOST applications.
Recovery ENABLED.
MODULE-ONLY protection

1 issues found, NOT VERIFIED

CodeSafe v13.6.14 Developer Guide 109/123

Chapter 8. Environment variables

8. Environment variables

This appendix describes the environmental variables used by Security World Software to

control SEE functionality:

Variable

NFAST_SEE_MACHINEENCKEY_DEFAULT

NFAST_SEE_MACHINEENCKEY_<module>

NFAST_SEE_MACHINEIMAGE_DEFAULT

NFAST_SEE_MACHINEIMAGE_<module>

NFAST_SEE_MACHINESIGHASH_DEFAULT

Description

This variable is the name of the SEEConf key needed to
decrypt SEE-machine images. Running the command
loadmache --encryptionkey=<IDENT> (or 1oadmache
--unencrypted) overrides any value set by this variable.

This variable is the name of the SEEConf key needed to
decrypt the SEE-machine image targeted for the spec
ified HSM. It overrides NFAST_SEE_MACHINEENCKEY_DE-
FAULT for the specified HSM. Running the command
loadmache --encryptionkey=<IDENT> (or 1oadmache
--unencrypted) overrides any value set by this variable.

This variable is the path of the SEE machine image to
load on to any HSM for which a specific image is not
defined. Supplying the machine-filename parameter
when running the loadmache command-line utility over
rides this variable. This variable is not affected when
running the loadsee-setup or hsc_loadseemachine utili
ties.

This variable is the path of the SEE machine image to
load on to the specified HSM. If set, this variable over-
rides the use of NFAST_SEE_MACHINEIMAGE _DEFAULT for
the specified HSM. Supplying the machine-filename
parameter when running the loadmache command-line
utility overrides the NFAST_SEE_MACHINEIMAGE _<module>
variable. This variable is not affected when running the
loadsee-setup or hsc_loadseemachine utilities.

This variable is the default key hash of the vendor sign
ing key (seeinteg) that signs SEE machine images.
This variable is only required if you are using a dynamic
SEE feature with an encrypted SEE machine. Running
the command loadmache --sighash=<HASH> any value
set in this variable.

CodeSafe v13.6.14 Developer Guide

110/123

Chapter 8. Environment variables

Variable Description

NFAST_SEE_MACHINESIGHASH_<module> This variable is the key hash of the vendor signing key
(seeinteq) that signs SEE machine images for the spec
ified HSM. It overrides NFAST_SEE_MACHINESIGHASH_DE-
FAULT for the specified HSM. This variable is only
required if you are using a dynamic SEE feature with
an encrypted SEE machine. Running the command
loadmache --sighash=<HASH> any value set in this vari-
able.

Windows-only

When the hardserver is running normally as a service, these are System
variables only; not the User Variables. The hardserver checks first for
o these variables, but if any given value is not set in the environment, the

hardserver next searches for a string value in the Registry under HKEY_LO
CAL_MACHINE\SYSTEM\CurrentControlSet\Services\nFast Server\Envi-
ronment.

For information on additional (non-SEE) environment variables used by Security World Soft
ware, see Environment variables.

CodeSafe v13.6.14 Developer Guide 111/123

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/env-variables.html

Chapter 9. SEElib functions

9. SEEIib functions

The file seelib.h contains wrapper functions for the software interrupts.

9.1. SEElib_init

extern void SEElib_init(void);

This function initializes the SEE11b library.

It also checks that the SWI interface that was implemented by the nShield core matches
the version that the SEE machine implements.

o ‘ This function does not return on error.

9.2. SEEIlib_RecProcessThreads

int
SEE1ib_RecProcessThreads(void);

This function returns the recommended number of processing threads on this system.

9.3. SEElib_StartProcessorThreads

struct ProcessThreadCtx; /* User-defined */
typedef struct SEELlib_ProcessContext
{

struct ProcessThreadCtx *uc;

unsigned char *iobuf;
int iobuf_maxlen;

}
SEE1ib_ProcessContext;

typedef struct ProcessThreadCtx * (*SEEJobInitFn) (SEElib_ProcessContext *pC);

/* Function called during thread initialisation */

typedef int (*SEEJobFn) (SEElib_ProcessContext *pC, M_Word tag, int in_len);

/* Function to process an SEEJob; data is sent in & out via pC->iobuf.

Returns length being returned.

*/

extern int SEElib_StartProcessorThreads(int nthreads, int stacksize, SEEJobInitFn
pfnInit, SEEJobFn pfnProcess);

This function causes the SEE library to start a number of processing threads. Each thread
has its own SEET1b_ProcessContext allocated, which remains constant throughout the life

CodeSafe v13.6.14 Developer Guide 112/123

Chapter 9. SEElib functions

of the thread.

A working buffer for a given thread is allocated; the iobuf member points to this buffer and
iobuf_maxlen is set to the size. Data for the SEEJob is passed in and out through this buffer.

For each thread, the supplied SEEJobInitFn is called first, and the ProcessThreadCtx pointer
it returns is stored in the SEELib_ProcessContext structure. This structure is typically some
convenient thread-local storage. The pointer may be NULL if it is not required.

When a job arrives for the given thread, the supplied SEEJobFn is called. It is passed the SEE1
ib_ProcessContext pointer pC, a tag, and a length (in_len). The SEEJob data is at

pC—>iobuf, length in_len. The tag is merely for information. The function should process the
data and leave a reply at pC > 1iobuf. The return value from the function indicates the num-
ber of bytes to be returned from this buffer.

9.4. SEElib_GetUserDatalen

extern M_Word SEElib_GetUserDatalen (void);

This function gets the length in bytes of the UserData block that was passed in to create
this SEE World. The function returns O if the UserData block has been freed with SEELib_Re-
leaselUserData().

9.5. SEElib_ReadUserData

extern int SEE1ib_ReadUserData (M_Word offset, unsigned char *buf, M_Word len);

This function reads selected bytes from the UserData block, starting at offset bytes in and
continuing for len bytes. It returns an M_Status value.

9.6. SEElib_ReleaseUserData

extern void SEE1ib_ReleaseUserData(void);

This function frees the resources associated with the UserData block. Typically, if an SEE
machine copies the UserData block into some internal format on initialization, it should call
this function on completion to avoid having two copies of the data in memory.

CodeSafe v13.6.14 Developer Guide 113/123

Chapter 9. SEElib functions

9.7. SEElib_InitComplete

extern void SEElib_InitComplete(M_Word status);

This function must be called as soon as the SEE World has been initialized. This call must be
made as soon as the SEE World is ready to accept jobs or has decided that it cannot accept
jobs.

The status value forms the initstatus value in the reply to the CreateSEEWor1d nCore API
command.

9.8. SEElib_AwaitJob

extern int SEE1ib_AwaitJob(M_Word *tag_out, , unsigned char *buf, M_Word *len_io);

This function blocks and waits for the next SEEJob in from the nShield core. On entry, *buf
and *1en_io give the base and length of a buffer area to receive the job. On return, *1en_io
is set to the length delivered (if the job is received successfully). This buffer is a copy of the
seeargs field that was sent in to the SEEJob command.

The *tag_out value is the tag for this command. It must be returned in the SEE1ib_Return-
Job so that the nShield core associates the reply with this command.

The SEE1ib_AwaitJob function returns an M_Status, which is only likely to be 0K or Buffer-
Full.

o If you use SEET1ib_StartProcessorThreads(), it calls this function auto-
matically, and you should not call this function yourself.

9.9. SEElib_StartTransactListener

extern void SEElib_StartTransactlListener(void);

This function starts the thread that listens for SEE1ib_Transact calls and dispatches them.
This function must be called before any use is made of SEE1ib_Transact.

9.10. SEElib_Transact

extern int SEELib_Transact(struct M_Command *cmd, struct M_Reply *buf);

CodeSafe v13.6.14 Developer Guide 114/123

Chapter 9. SEElib functions

This function marshals a command, submits it, waits for the response, and unmarshals it
into a reply structure.

9.11. SEElib_MarshalSendCommand

extern int SEElib_MarshalSendCommand(M_Command *cmd);

This function marshals a command and places it on the input queue for processing by the
nShield core.

The command takes a reference to an M_Command structure, as described in the nCore Code-
Safe APl Documentation.

The SEE machine can submit any of the nCore APl commands listed in the Basic commands
and Key-Management commands sections of the nCore CodeSafe APl Documentation
except:

« RetryFailedModule
« GetWhichModule
+ MergeKeyIDs.

If the SEE machine attempts to submit one of these commands, the nShield core returns a
response with the status code NotAvailable.

The SEE1ib_MarshalSendCommand function returns an M_Status value. This value is 0K if the
command was marshalled and transferred to the nShield core correctly.

Do not mix calls to SEE_Transact() and SEE1ib_MarshalSendCommand()
o and SEETib_GetUnmarshalResponse(), because the replies may be misdi-
rected.

9.12. SEElib_GetUnmarshalResponse

extern int SEE1lib_GetUnmarshalResponse(M_Reply *buf);
If there is a reply in the input queue for this SEE World, this function returns the first job in
the queue. Otherwise, it blocks and waits for the nShield core to return a job.
On return, M_Reply contains the unmarshalled reply.

The SEE1ib_GetUnmarshalResponse function returns an M_Status value. This value is 0K if the

CodeSafe v13.6.14 Developer Guide 115/123

Chapter 9. SEElib functions

reply was unmarshalled successfully. The return of this value does not necessarily mean
that the command was completed successfully, only that the reply was unmarshalled. You
must also check the M_Status within the reply.

9.13. SEElib_FreeCommand

extern int SEElib_FreeCommand(struct M_Command *cmd);

This function frees a command structure and is equivalent to the generic stub function
NFastApp_FreeCommand (described in the nCore CodeSafe APl Documentation).

9.14. SEElib_FreeReply

extern int
SEE1ib_FreeReply(struct M_Reply *reply);

This function frees a reply structure and is equivalent to the generic stub function NFastAp-
p_FreeReply (described in the nCore CodeSafe APl Documentation).

9.15. SEElib_ReturnJob

extern void SEElib_ReturnJob(M_Word tag, const unsigned char *data, unsigned int len);
This function returns an SEEJob reply to the nShield core so that the core can pass it to the
calling application.

o If you use the SEE1ib_StartProcessorThreads() function, it calls SEE1-
ib_ReturnJob() for you.

The tag field must match the tag supplied in the SEE1ib_AwaitJob() call that created the
job.

The given data is copied away and forms the seereply field of the SEEJob reply (see the
description of the SEEJob command in the nCore CodeSafe APl Documentation).

9.16. SEElib_SubmitCoreJob

extern int SEE1ib_SubmitCoreJob(const unsigned char *data, unsigned int len);

CodeSafe v13.6.14 Developer Guide 116/123

Chapter 9. SEElib functions

This function puts a job on the input queue for processing by the core. The byte block is
passed in data and 1en. It should be a full marshalled M_Command with a valid tag at the start.

This function returns an M_Status, which is typically OK or BufferFull (if len is too big).

9.17. SEElib_GetCoreJob

extern int SEE1ib_GetCoreJob (unsigned char *buf, M_Word *len_io);

This function blocks and waits for a job submitted to the core to be returned. On entry, buf
points to a buffer of length (*1en_io) max. On exit, if successful, *1en_io is the length of
bytes returned.

This function returns an M_Status, which is typically OK or BufferFull (if len_io is too big).

9.18. SEElib_GetUserDatalLen

extern M_Word SEElib_GetUserDatalen (void);

This function gets the length in bytes of the UserData block passed in to create this SEE
World.

If this data has been discarded because SEE1ib_ReleaselUserData() has been called, this
function returns 0.

9.19. SEEIlib_Submit

extern int SEElib_Submit(M_Command *cmd, M_Reply *reply, PEVENT ev, SEELlib_ContextHandle tctx);

This function submits the command specified in cmd. The transaction listener thread calls
EventSet ev, if ev is non-NULL, when the reply returns for this command. The reply is unmar
shalled into reply and tctx is returned to the caller in SEELib_Query.

Unlike SEELib_SubmitCoreJob this function can be called at the same time as another thread
is blocking in SEE1ib_Transact.

SEE1ib_StartTransactListener must have been called before this function is called.

9.20. SEEIlib_Query

CodeSafe v13.6.14 Developer Guide 17/123

Chapter 9. SEElib functions
extern int SEELib_Query(M_Reply **replyp, SEELlib_ContextHandle *tctx_r);

This function is called to receive a reply that is being held by the transaction listener thread.
It is typically called after having been woken from EventWait as a result of the transaction lis
tener thread posting to the event passed in to SEE1ib_Submit.

If *replyp is NULL, SEE1ib_Query accepts any returned reply, and *replyp is changed to
point to that reply. If *replyp is not NULL, the function accepts the reply specified; other
replies are queued internally.

tetx_r may be NULL. If it is not, the tctx used when submitting the reply is stored in
*tctx_r. SEELib_Query can return, in addition to the usual return values, TransactionNotYet-
Complete if the reply (or any reply if *replyp was NULL) has not come back from the core
yet.

SEE1ib_StartTransactListener must have been called before this function is called.

9.21. SEElib_StartSEEJobListener

extern int SEE1ib_StartSEEJobListener (PEVENT ev);
This function starts the SEEJob listener thread which blocks calling SEE1ib_AwaitJob, caches
the new job and then sets the event ev if ev is non-NULL.

Use SEE11b_QuerySEEJob to receive any SEEJobs that have been cached by this listener
thread, followed by SEE1ib_ReturnJ]ob to reply to the SEEJob, then followed by SEE1ib_Re-
leaseSEEJob to free the buffer.

It is safe to call this function multiple times. Calls after the first call will have no effect.

9.22. SEElib_QuerySEEJob

extern M_Status SEE1ib_QuerySEEJob(M_Word *tag_out, unsigned char **buf, M_Word *1len);

This function is called to receive a SEEJob that is being held by the SEEJob listener thread. It
is typically called after having been woken from EventWait as a result of the SEEJob listener
thread setting the event passed in to SEE1ib_StartSEEJobListener.

buf is set to the buffer containing the SEEJob, len is set to the length of the data contained
in buf.

CodeSafe v13.6.14 Developer Guide 118/123

Chapter 9. SEElib functions

This function returns TransactionNotYetComplete if there were no outstanding SEEJobs.

9.23. SEEIlib_ReleaseSEEJob

extern void SEElib_ReleaseSEEJob(unsigned char **buf);

This function is called to release a buffer which was returned from SEE1ib_QuerySEEJob. This
function must be called after the buffer specified by buf in a call to SEE1ib_QuerySEEJob has
been finished with. This function is safe to call even if *buf is NULL. In addition, this func-
tion sets *buf to NULL on completion.

CodeSafe v13.6.14 Developer Guide 119/123

Chapter 10. Differences between glibc and bsdlib (SoloXC only)

10. Differences between glibc and bsdlib
(SoloXC only)

In order to provide CodeSafe developers the ability to write standard POSIX calls and be
able to run in the SEE environments, gcc wrappers are used in Solo XC programs to over-
ride certain standard GNU C library (glibc) functions. Older SEE programs built to run on
Solo+ use the BSD C Library (bsd1ib). For example, both CodeSafe and Libc, have a defini-
tion for the function socket:

socket(int __domain, int __type, int __protocol)

At link time, the function call is overridden and resolved to the CodeSafe implementation. A
linker options is used to accomplish that.

-W1,-wrap=socket

The standard POSIX socket () function can still be used calling real_socket(). The applica
bility of the standard (real_%*) familiarity of functions is limited in the SEE environment
due to embedded system constraints.

All the wrapped functions were replaced by equivalent ones with the underlying IPC sup-
port to communicate with nShield core and provide the same functionality as in legacy sys-

tems.
List functions that were wrapped and redefined:

- socket()
« bind()

« listen()
. accept()
. connect()
- read()

- write()

- send()

« setsockopt()
- poll()

. select()

CodeSafe v13.6.14 Developer Guide 120/123

Chapter 10. Differences between glibc and bsdlib (SoloXC only)

10.1. glibc Compatibility exceptions

As a consequence of some function redefinitions and the underlying differences, some stan
dard C functions may not work as expected in CodeSafe.

FILE *fdopen(int fd, const char *mode): associates a stream with an existing file
descriptor, fd. In the case of a socket fd (returned by CodeSafe socket() implementation)
the association result may fail or cause unexpected errors in subsequent calls. Developers
should avoid using fdopen with non-standard Unix file descriptors.

CodeSafe v13.6.14 Developer Guide 121/123

Chapter 11. Allowlist for SEE machines

11. Allowlist for SEE machines

Classic and GLIBC SEE machines are restricted to a subset of Linux system calls they can
execute.

An SEE machine that attempts to execute a system call that is not allowed will be immedi-
ately terminated by a safeguarding process.

Allowed system calls

1 __NR_exit

3 __NR_read

5 __NR_open

7 __NR_waitpid
9 __NRL_link

11 __NR_execve
13 __NR_time

19 __NR_Iseek
22 __NR_umount
29 __NR_pause
37 __NR_Kkill

39 __NR_mkdir
41 __NR_dup

45 __NR_brk

54 __NR_ioctl

63 __NR_dup2
65 __NR_getpgrp
83 __NR_symlink
90 __NR_mmap
94 __NR_fchmod
102 __NR_socketcall
107 __NR_Istat

14 __NR_wait4

2 __NR_fork

4 __NR_write

6 __NR_close

8 __NR_creat

10 __NR_unlink
12 __NR_chdir

15 __NR_chmod
21 __NR_mount
24 __NR_getuid
33 __NR_access
38 __NR_rename
40 __NR_rmdir
42 __NR_pipe

49 __NR_geteuid
60 __NR_umask
64 __NR_getppid
78 __NR_gettimeofday
85 __NR_readlink
91 __NR_munmap
99 __NR_statfs
106 __NR_stat
108 __NR_fstat

119 __NR_sigreturn

CodeSafe v13.6.14 Developer Guide

Chapter 11. Allowlist for SEE machines

120 __NR_clone

140 __NR_lIseek

145 __NR_readv

160 __NR_sched_get_priority_min
163 __NR_mremap

173 __NR_rt_sigaction

175 __NR_rt_sigpending
177 __NR_rt_sigqueueinfo
179 __NR_pread64

182 __NR_getcwd

195 __NR_stat64

197 __NR_fstat64

204 __NR_fcntle64

207 __NR_gettid

232 __NR_set_tid_address
250 __NR_tgkill

286 __NR_openat

326 __NR_socket

328 __NR_connect

330 __NR_accept

332 __NR_getpeername
334 __NR_send

336 __NR_recv

338 __NR_shutdown

340 __NR_getsockopt

Allowed system calls

125 __NR_mprotect

141 __NR_getdents

146 __NR_writev

162 __NR_nanosleep

172 __NR_rt_sigreturn
174 __NR_rt_sigprocmask
176 __NR_rt_sigtimedwait
178 __NR_rt_sigsuspend
181 __NR_chown

190 __NR_ugetrlimit

196 __NR_Istat64

202 __NR_getdents64
205 __NR_madyvise

221 __NR_futex

234 __NR_exit_group
252 __NR_statfs64

300 __NR_set_robust_list
327 __NR_bind

329 __NR_listen

331 __NR_getsockname
333 __NR_socketpair

335 __NR_sendto

337 __NR_recvfrom

339 __NR_setsockopt

CodeSafe v13.6.14 Developer Guide

123/123

	nShield Security World: CodeSafe v13.6.14 Developer Guide
	Table of Contents
	1. Introduction
	1.1. Read this guide if …​
	1.2. Security World Software
	1.2.1. Utility help options

	1.3. Requirements
	1.4. Further information
	1.5. Security advisories
	1.6. Contacting Entrust nShield Support

	2. About the Secure Execution Engine SEE
	2.1. Why use the Secure Execution Engine?
	2.1.1. Code integrity
	2.1.2. Code confidentiality
	2.1.3. Data confidentiality
	2.1.4. Data integrity
	2.1.5. Authentication and access control

	2.2. How SEE works
	2.2.1. Code specifics
	2.2.2. Security
	2.2.3. Internals

	2.3. SEE system architecture
	2.4. SEE and userdata
	2.4.1. What is userdata?
	2.4.2. Creating userdata suitable for loading into the HSM

	2.5. SEE and Security Worlds

	3. Designing SEE machines and SEE-ready HSMs
	3.1. Writing SEE machines - Solo XC
	3.1.1. Designing for the glibc architecture
	3.1.2. Designing for the SEElib architecture
	3.1.3. SEE machines for new algorithms
	3.1.4. Signing userdata for additional security
	3.1.5. Building your SEE machine and host-side application

	4. Example SEE machines
	4.1. Configure the Windows Build Environment
	4.2. Examples for glibc library
	4.2.1. Building the HSM-side code
	4.2.2. Helloworld example
	4.2.3. SEE-Random example
	4.2.4. SEE-Enquiry example
	4.2.5. TCP proxy example

	4.3. Examples for SEElib
	4.3.1. Building Linux host examples
	4.3.2. Building Windows host examples
	4.3.3. Building Solo SEE module examples
	4.3.4. Building Solo XC SEE module examples
	4.3.5. Example: Hello-World
	4.3.6. A3A8 example
	4.3.7. Example: RTC
	4.3.8. Example: Tickets
	4.3.9. Example: Benchmark

	5. Debugging SEE machines
	5.1. Debugging settings and output
	5.1.1. Debugging authorization
	5.1.2. Obtaining debugging output

	5.2. Finding memory leaks with stattree
	5.3. Segment addresses for Solo
	5.4. Vulnerability test harness
	5.5. Troubleshooting guide

	6. Deploying SEE Machines
	6.1. About the Feature Enabling Mechanism (FEM)
	6.2. Obtaining and using export certificates
	6.3. Automatically loading a SEE machine
	6.3.1. Automatically loading a glibc SEE machine with userdata
	6.3.2. Automatically loading a glibc SEE machine without userdata

	6.4. Configuring the nShield Connect to use CodeSafe Direct
	6.5. Configuring a SEE machine using the front panel
	6.5.1. Configuring a glibc SEE machine
	6.5.2. Configuring a SEElib SEE machine

	6.6. Remotely loading and updating SEE machines

	7. Utilities
	7.1. cpioc
	7.1.1. Usage

	7.2. elftool
	7.2.1. Usage

	7.3. loadmache
	7.3.1. Usage

	7.4. loadsee-setup
	7.4.1. Usage
	7.4.2. Output
	7.4.3. loadsee-setup --display

	7.5. hsc_loadseemachine
	7.5.1. Usage

	7.6. nfkmverify
	7.6.1. Usage
	7.6.2. Output

	8. Environment variables
	9. SEElib functions
	9.1. SEElib_init
	9.2. SEElib_RecProcessThreads
	9.3. SEElib_StartProcessorThreads
	9.4. SEElib_GetUserDataLen
	9.5. SEElib_ReadUserData
	9.6. SEElib_ReleaseUserData
	9.7. SEElib_InitComplete
	9.8. SEElib_AwaitJob
	9.9. SEElib_StartTransactListener
	9.10. SEElib_Transact
	9.11. SEElib_MarshalSendCommand
	9.12. SEElib_GetUnmarshalResponse
	9.13. SEElib_FreeCommand
	9.14. SEElib_FreeReply
	9.15. SEElib_ReturnJob
	9.16. SEElib_SubmitCoreJob
	9.17. SEElib_GetCoreJob
	9.18. SEElib_GetUserDataLen
	9.19. SEElib_Submit
	9.20. SEElib_Query
	9.21. SEElib_StartSEEJobListener
	9.22. SEElib_QuerySEEJob
	9.23. SEElib_ReleaseSEEJob

	10. Differences between glibc and bsdlib (SoloXC only)
	10.1. glibc Compatibility exceptions

	11. Allowlist for SEE machines

