©

ENTRUST

nShield Security World

CodeSafe 5 v13.6.11
Developer Guide

30 April 2025

© 2025 Entrust Corporation. All rights reserved.

Table of Contents

Tntroduction ... 1
2.0verview of CodeSafe 5. 2
2.1. Applications as containerimages 2

2.2. Easy and fast network connectivity 2
2.3.'Secure by default' client communication 2
2.4. Better language support 3
2.5. Developer authentication 3

3. Install the CodeSafe 5 SDKon LinuxX. 4
4. Install the CodeSafe 5 SDK on Windows. 5
4.1, Prerequisites. 5
4.2. Install the Security World Software. 5
4.3 Install CodeSafe 5 5

5. nShield 5¢ Codesafe 5 Configuration.......... 6
6. Build CodeSafe 5 SDK appsot 7
6.1. General SDK USE 7
B.2. PrerequIsites. 7
6.3. SDK file structure overview. 7
6.3.1.SDK location 7

6.3.2. Containerroot file system 7

B.3.3. CMaKe 8

6.3.4. Include directories 8

6.3.5. SEE specificlibraries 9

6.3.6. Legacy compatibility 9

6.4. Building new SEE machines with SEElib........... 9
6.4.1. Developer authentication. 10

6.4.2. Deploying SEE machines 10

6.4.3. SEE machine initialization requirements. 10

6.4.4. SEElib Functions. 10

6.4.5. Host/SEE machine communication 12

6.5. Compatibility layer for legacy SEE machines, 12
6.5.1. Module-side compatibility layer 13

6.5.2. Host-side compatibility layer 14

6.5.3. Initialize module-side compatibility 14

6.5.4. Use module-side compatibility 14

6.5.5. Initialize host-side application compatibility 15

6.5.6. Use host-side application compatibility 15

7. Sign and deploy CodeSafe 5 SDK apps using csadmin 18

7.1.Signing CodeSafeimages 18

7.2. The csadmin utility tool. 18
7.2.1. Generate loadable images. 19
7.2.2. SIGNIMAGES. 22
7.2.3. Create adeveloper ID certificate. 23

7.3. Example CodeSafe developer proCess. i 24
7.3.1.Createdeveloper IDKeys 24
7.3.2. Load your certificate 26

8. Build and sign example SEE machineson Linux 28

8.1. Build module-side C examples. 28

8.2. Building Host Side C Examples. 28

8.3. Build CS5 Images for Python Examples i 29

8.4.Sign CodeSafe IMages 29

85.Run NetSEE examples 30
8.5.1. helloworld_tCp. 31
85.2 helloworld_udp 32

8.6. Run NetSEE examplesviaSSHtunnel 34
8.6.1. helloworld_tcpviaSSH Tunnel........... 34

8.7.Run CSEE examplesviaSSHtunnel. 37
871 helloviaSSHTuNNel. ... 37
872.ticketsvia SSHtunnel 41
8.7.3.benchmark via SSH tunnel 45

9. Build and sign example SEE machineson Windows 49

9.1, PrereqUisites. 49

9.2. Building Windows CodeSafe C, CSEE, and NETSEE examples 49
9.2.1. Host-side examples 50
9.2.2. Module-side examples 50

9.3. CS5images for Pythonexamples. 50

9.4.Sign CodeSafe iImages 51

10. Build and run Java examples 54

101 PrereqUISIteS 54

10.2. The Javainterface. 54

10.3. Build the examples. 55

10.4. Runthe examples 55
10.4.0. BenchMarkh ... 56
10.4.2. EChOS . . o 57
10.4.3. HelloWorld5 58
10.4.4. HostTicketsh 59

11. Debug CodeSafe 5 SEE machines 60

M. configlogsetenabled. 60

1.2.configlog setdisabled 60
1.3, 10g get. 60
T4 log Clear ... 61

12. Uninstall the CodeSafe 5 SDK. 62
13. Port existing CodeSafe applicationto CodeSafe 5............... 63
13.1. The compatibility layer 63
13.1.1. Module-side compatibility layer 64

13.1.2. Host-side compatibility layer 64

13.2. Required module-side changes forporting. 64
13.3. Required host-side changes forporting. 65
13.3.0. Initialization ... 65

13.3.2. Replacing SEEJob-related method calls.................................. 66

13.4. Rebuilding and Recompiling. 68
13.4.1. Rebuilding host-side 68

13.4.2. Rebuilding Module Side 68

14. Supporting legacy CodeSafe Direct......... 69
14.1. Legacy CodeSafe DireCt 69
14.2. CodeSafe 5 . . 69

15. SEE APl documentation 70
15.1. Why CodeSafe 5 needs a compatibility layer................. 70
15.2. SEElib functions 71
15.2.0. SEElb_init . .. 71

15.2.2. SEElib_ReadUserData. 71

15.2.3. SEElib_ReleaseUserData 71

15.2.4. SEElib_InitComplete. 71

15.2.5. SEElib_StartTransactListener 71

15.2.6. SEElib_Transact 72

15.2.7. SEElib_MarshalSendCommand. 72

15.2.8. SEElib_GetUnmarshalResponse. 72

15.2.9. SEElib_FreeCommand 73

15.2.10. SEElib_FreeReply 73

15.2.11. SEElib_SubmitCoreJob 73

15.2.12. SEElib_GetCoredob 73

15.2.13. SEElib_GetUserDatalen 74

15.2.14. SEElib_Submit 74

15.2.15. SEElb_Query 74

15.3. About the SEElib compatibility layer........... .. . 75

15.4. SEE machine module side compatibility layer, 75

15.4.1. SEElib_Legacy_Support_Init 76

15.4.2. SEElib_AwaitJob 76
15.4.3. SEElib_AwaitJobEx. 76
15.4.4,. SEElib_Returndob 77
15.4.5. SEElib_StartProcessorThreads. 77
15.4.6. SEElib_StartSEEJobListener. 78
15.4.7. SEElib_QuerySEEJob 78
15.4.8. SEElib_ReleaseSEEJob 79
15.5. Compatibility layer API Host side 79
15.5.1. netsee_initialize_legacy_seejob_support. 79
15.5.2. netsee_submit_legacy_seejob...... 80
15.5.3. netsee_wait_legacy_seejob 80
15.5.4. netsee_transact_legacy_seejob 81
15.5.5. netsee_simple_transact_legacy_seejob. 81

16. System calls allowed by CodeSafe 5 SEE machines. 83

Chapter 1. Introduction

1. Introduction

CodeSafe is a runtime on the Entrust nShield HSM that allows third-party developers to run
their own code within the secure boundary of the module. Using the CodeSafe Developer
Kit, developers write their own CodeSafe Apps, cross-compile them and package them to
run on the HSM. While on the HSM, the CodeSafe App is segregated from the actual keys
loaded onto the module, including the keys the App uses. This means that CodeSafe can be
used without affecting the FIPS 140 validation of the module it runs on.

Where the HSMs provide security controls on key usage, CodeSafe provides control over
application code. Depending on the runtime used, you are either sending nCore commands
to the HSM, or designing your own protocol to send data and commands back and forth.

The CodeSafe Developer Kit includes the Secure Execution Engine (SEE) technology. The
CodeSafe product comprises a suite of cross-compilers and support tools that allow you to
develop SEE machines.

With CodeSafe, you can build and deploy Trusted Agents to perform application-specific
security functions on your behalf on unattended servers, or in unprotected environments
where the operation of the system is outside of your direct control. Examples of Trusted
Agents include digital meters, authentication agents, timestamp servers, audit loggers, digi-
tal signature agents and custom encryption processes.

Traditionally, HSMs have protected cryptographic keys within a defined security boundary;
SEE allows you to extend that security boundary to include code that utilizes those pro-
tected keys. The code itself is signed to provide additional protection.

CodeSafe 5 v13.6.11 Developer Guide 1/86

Chapter 2. Overview of CodeSafe 5

2. Overview of CodeSafe 5

2.1. Applications as container images

In CodeSafe 5, the application is a container image, meaning a complete filesystem image
that can contain multiple executables, libraries, scripts, and data files.

This has the following benefits:

« Data files can be written to the local filesystem and persisted over container shutdown
and restart.

+ The application can comprise multiple co-operating processes. This can enhance secu-
rity by separating memory spaces and reliability by allowing individual processes to be
restarted if they crash or leak memory.

 Third-party or pre-existing Linux source code can be built and run without modifica-
tion.

- Standalone tools can be executed as subprocesses.

« Dynamically-loaded libraries work in a regular way. Code architectures that make use of
plug-in modules make code development easier and reduce the attack surface by
excluding unwanted code.

2.2. Easy and fast network connectivity

nShield 5 HSMs and CodeSafe 5 containers are logically connected via TCP/IP networking.
The container running the SEE Machine can receive incoming connections from the host
side app, establishing two-way communication between host side app and SEE machine.
Existing software that makes use of incoming or outgoing network connections can run
with little or no modifications.

Kernel-implemented networking provides good performance both for throughput and for
latency.

2.3. 'Secure by default' client communication

The CodeSafe 5 execution environment includes both a configurable firewall and an SSH
server. The firewall is set according to configuration in the signed CodeSafe 5 application
package so that only the network ports required by the application are allowed. The SSH
server allows a secure tunnel to be established to the CodeSafe 5 application. The client cre
dentials required to access this tunnel can be configured using the support tools.

CodeSafe 5 v13.6.11 Developer Guide 2/86

Chapter 2. Overview of CodeSafe 5

This means that applications, including applications ported from older CodeSafe SEE
machines, can benefit from strong authentication of their clients and protection from unau-
thorized network traffic without additional code.

2.4. Better language support
The CodeSafe 5 SDK supports:

« Cand C++
- Python

The nfpython module provides easy access to nCore APl commands.

The container environment has a regular Linux filesystem and supports system calls for
network and file /O, so a wide range of standard and third-party Python modules can
be used without modification.

Refer to the nShield Security World Release Notes for information about the supported
version for this release.

CodeSafe applications can be written using mixed languages with the usual range of IPC
and calling mechanisms available to the developer.

2.5. Developer authentication

CodeSafe 5 uses Entrust X.509 certificates to link the CodeSafe application to a real-world
developer identity through code signing.

This allows the administrator of an HSM to, for example, restrict the HSM to authorized in-
house applications or to those provided by trusted development partners.

CodeSafe 5 v13.6.11 Developer Guide 3/86

Chapter 3. Install the CodeSafe 5 SDK on Linux

3. Install the CodeSafe 5 SDK on Linux

1. Make sure that the following nShield ISO images are available locally:
> SecWor1ld_Lin64-13.x.y.1iso
° Codesafe_Lin64-13.x.y.iso

Where <x.y> are the same versions for Security World and CodeSafe.

2. Create a mount directory for each ISO:

mkdir ~/secworld_iso_mountpoint
mkdir ~/codesafe_iso_mountpoint

3. Mount the ISO images to their respective directories:

sudo mount <PATH_T0>/SecWorld_Lin64-13.x.y.iso ~/secworld_iso_mountpoint/
sudo mount <PATH_T0>/Codesafe_Lin64-13.x.y.iso ~/codesafe_iso_mountpoint/

The nShield CodeSafe 5 hostside is located in tarballs under:

1s ~/codesafe_iso_mountpoint/1linux/amd64/
csdref.tar.gz csd.tar.gz

The nShield Security World hostside is located in tarballs under:

1s ~/secworld_iso_mountpoint/linux/amd64/
ctd.tar.gz devref.tar.gz javasp.tar.gz ncsnmp.tar.gz
ctls.tar.gz hwsp.tar.gz jd.tar.gz raserv.tar.gz

4. Untar the tarballs into the root directory:

tar -zxvf ~/codesafe_iso_mountpoint/linux/amd64/csd.tar.gz -C /
tar -zxvf ~/codesafe_iso_mountpoint/linux/amd64/csdref.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/ctd.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/devref.tar.gz -C
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/javasp.tar.gz -C
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/ncsnmp.tar.gz -C
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/ctls.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/hwsp.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/jd.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/raserv.tar.gz -C /

NN N

This installs the nShield CodeSafe 5 SDK to /opt/nfast/c/csd5 and the nShield Code-
Safe 5 SDK Python files to /opt/nfast/python3/csd5.

CodeSafe 5 v13.6.11 Developer Guide 4/86

Chapter 4. Install the CodeSafe 5 SDK on Windows

4.

Install the CodeSafe 5 SDK on Windows

4.1. Prerequisites

Make sure that the following nShield ISO images are available locally:

SecWorld_Windows-13.x.y.1is0

Codesafe_Windows-13.x.y.1is0

Where <x.y> are the same versions for Security World and CodeSafe.

4.2. Install the Security World Software

0 N O 01 b~ w

. Log in as Administrator or as a user with local administrator rights.

. Mount the Security World Software ISO image and navigate into the mounted direc-

tory.

. Launch setup.msi.

. Follow the on-screen instructions.

. Accept the license terms and select Next to continue.

. Specify the installation directory and select Next to continue.
. Select Install.

. Select Finish to complete the installation.

4 3. Install CodeSafe 5

N O o b~ o w N

. Mount the CodeSafe 5 SDK ISO image and navigate into the mounted directory.
. Launch setup.msi.

. Follow the on-screen instructions.

. Accept the license terms and select Next to continue.

. Specify the installation directory and select Next to continue.

. Select Install.

. Select Finish to complete the installation.

This installs the nShield CodeSafe 5 SDK C:\Program Files\nCipher\nfast\c\csd5 and
the nShield CodeSafe 5 SDK Python files to C:\Program Files\nCi-
pher\nfast\python3\csd5.

CodeSafe 5 v13.6.11 Developer Guide 5/86

Chapter 5. nShield 5¢c Codesafe 5 Configuration

5. nShield 5¢ Codesafe 5 Configuration

To use CodeSafe 5 with a nShield 5¢ you must generate and exchange launcher service
keys between the client and the nShield 5c. These keys are essential for secure communica
tion and access to the launcher service on the module. See CodeSafe setup for the nShield
5c¢ for more information.

CodeSafe 5 v13.6.11 Developer Guide 6/86

https://nshielddocs.entrust.com/security-world-docs/v13.6.11/hsm-user-guide/hsm-mgmt/codesafe.html#nc5setup
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/hsm-user-guide/hsm-mgmt/codesafe.html#nc5setup
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/hsm-user-guide/hsm-mgmt/codesafe.html#nc5setup
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/hsm-user-guide/hsm-mgmt/codesafe.html#nc5setup

Chapter 6. Build CodeSafe 5 SDK apps

6. Build CodeSafe 5 SDK apps

6.1. General SDK use

The CodeSafe 5 SDK provides the tools necessary to build and run SEE machines on
nShield 5 HSMs. The CodeSafe 5 SEE machines are containerized. The SDK provides the
structure of the container, including a root file system, libraries required for communication
with the nCore API, and libraries to enable communication between the SEE machine and
the host. The SDK provides libraries for development, libraries built for maintaining back-
wards compatibility for legacy applications, a root file system with libraries useful for devel-
opment of new applications, such as 1ibglib and 1ibc, and useful binaries including touch,
cat, grep.

6.2. Prerequisites

GCC 8.x or later.

6.3. SDK file structure overview

6.3.1. SDK location
The default installation location of the CodeSafe 5 SDK is:

- Linux: /opt/nfast/c/csd5/
« Windows: C:\Program Files\nCipher\nfast\c\csd5\

Some tools required for SEE machine operations might be found elsewhere in the main
install. For example, csadmin, which enables loading, starting, and stopping SEE machines, is
installed in the following default locations:

« Linux: /opt/nfast/bin/csadmin
« Windows: C:\Program Files\nCipher\nfast\bin\csadmin (Windows)

These cases are described in the following sections as required.

6.3.2. Container root file system

The container root file system is located in:

CodeSafe 5 v13.6.11 Developer Guide 7/86

Chapter 6. Build CodeSafe 5 SDK apps
« Linux: /opt/nfast/c/csd5/rootfs/
+ Windows: C:\Program Files\nCipher\nfast\c\csd5\rootfs\

This root file system contains two main parts: binary files and libraries.

6.3.2.1. Binaries

rootfs/bin/ (Linux) or rootfs\bin\ (Windows) contains many useful common Linux bina-
ries that you might need within the container such as cat, grep, and touch.

rootfs/sbin/ (Linux) or rootfs\sbin\ (Windows) contains the init script for the container.

6.3.2.2. Libraries

rootfs/1ib/ and rootfs/usr/1ib/ (Linux) or rootfs\1ib\ and rootfs\usr\lib\ (Windows)
contain various useful libraries a developer might need, such as 1ibglib and 1ibc. Some of
these libraries are also essential for the proper running of the container and execution of var
ious examples.

6.3.3. CMake

The SDK installs a directory which includes CMake toolchains used for building example
SEE machines:

« Linux: /opt/nfast/c/csd5/cmake
+ Windows: C:\Program Files\nCipher\nfast\c\csd5\cmake

These toolchains can serve as examples themselves for creating custom toolchains.

6.3.4. Include directories

The SDK provides two directories with header files that can be included along with their
respective libraries to provide additional functionality in SEE machines. These headers are
stored in:

+ Linux:

° /opt/nfast/c/csd5/gee/*

° /opt/nfast/c/csd5/include-see/*
+ Windows:

> C:\Program Files\nCipher\nfast\c\csd5\gcc*

CodeSafe 5 v13.6.11 Developer Guide 8/86

Chapter 6. Build CodeSafe 5 SDK apps

> C:\Program Files\nCipher\nfast\c\csd5\include-see*

6.3.5. SEE specific libraries

The C libraries which are specific to SEE machines, including seelib.a and librtusr.a, are
located in:

« Linux: /opt/nfast/c/csd5/1ib-ppcb4-1inux-musl/*
+ Windows: C:\Program Files\nCipher\nfast\c\csd5\1ib-ppc64-Tlinux-mus1*

These libraries must be included to enable critical SEE machine functionality such as com-
munication with the nCore API.

The Python module specific to SEE machines is seeapi.py. This module is located under
Python site packages in nshield.ipcdaemon.seeapi. This must be imported as SEEAPI to
enable critical SEE machine functionality such as communication with the nCore API.

6.3.6. Legacy compatibility

The CodeSafe 5 SDK and nShield 5 HSMs are sufficiently different from previous implemen
tations that legacy applications cannot run with the CodeSafe 5 SDK. For ease of use, the
CodeSafe 5 SDK supplies a compatibility layer in the form of headers, files, and libraries to
enable legacy applications to be used in nShield 5 HSMs.

Legacy applications require recompilation with new libraries to run on nShield 5 HSMs, see
Compatibility layer for legacy SEE machines.

Do not use these compatibility layer libraries, files, and headers to cre-
A ate new SEE machines. They are only supplied to allow legacy applica-
tions to be quickly re-compiled and run on nShield 5 HSMs.

6.4. Building new SEE machines with SEEIlib

An SEE machine is a container image with a complete filesystem which can be loaded onto
an CodeSafe 5-enabled HSM as part of a container. The SEEIib library enables SEE
machines to interface with the nCore API via the IPC daemon.

Source code is compiled using one of the GCC cross-compilers supplied with the Code-
Safe SDK. For details of required compiler options, toolchains, makefiles and so on, see the
CMake files supplied with the examples, as well as Build and sign example SEE machines on
Linux and Build and sign example SEE machines on Windows.

CodeSafe 5 v13.6.11 Developer Guide 9/86

Chapter 6. Build CodeSafe 5 SDK apps

The container image must be signed using the csadmin utility tool.

6.4.1. Developer authentication
CodeSafe 5 requires a signed CodeSafe image to run SEE machines on the HSM.

The CodeSafe developer needs to request a developer ID certificate by sending a Certifi-
cate Signing Request (CSR) to Entrust support. The tool used to create the CSR is inte-
grated into the HSM software as a subcommand of csadmin utility.

For security purposes, a developer keypair must be created and stored within the HSM. In
addition, the keypair must be OCS protected to provide authorization control on its use.
The developer keypair will be created by csadmin if it does not already exist.

After the certificates are received, they are installed on the HSM and are used to sign Code
Safe application images with the csadmin tool.

The implementation of this is described in more detail in Sign and deploy CodeSafe 5 SDK
apps using csadmin,

6.4.2. Deploying SEE machines

After the code has been compiled, built, and signed, the csadmin utility tool is used to
deploy the SEE machine. It is used to load the signed CodeSafe application image and then
to start the SEE machine. The SEE machine then runs the entrypoint including the main()
function.

For more information on the csadmin utility, see Sign and deploy CodeSafe 5 SDK apps
using csadmin.

6.4.3. SEE machine initialization requirements

An SEE machine must initialize the SEE1ib before making use of any of the SEE1ib function-
ality. This is done by calling SEELib_init(). It is recommended that this call is made immedi-
ately within the main() function of an SEE machine.

6.4.4. SEElib Functions

After initialization, SEElib functions can be used to communicate with the nCore API via the
IPC daemon. These methods call functions identically to previous CodeSafe versions
although the underlying methodology has changed.

CodeSafe 5 v13.6.11 Developer Guide 10/86

Chapter 6. Build CodeSafe 5 SDK apps

6.4.4.1. SEElib_Transact()

To send a command to the nCore API and block waiting for a reply:

int SEELib_Transact(struct M_Command *cmd, struct M_Reply *reply)

This sends the emd command to the nCore API and waits for the reply to be written to
reply.

6.4.4.2. SEElib_Submit() / SEElib_Query()

To send a non-blocking command to the nCore API:

int SEET1ib_Submit(M_Command *cmd, M_Reply *reply, PEVENT ev, SEE1lib_ContextHandle tctx)

The cmd command is submitted to the nCore API. The transaction listener thread will call
EventSet ev, if ev is non-NULL when the reply returns for this command. The reply is unmar
shalled into reply and tctx is returned to the caller with SEE1ib_Query(M_Reply **replyp,
SEE1lib_ContextHandle *tctx_r).

Before using the SEE1ib_Submit() method, SEE1ib_StartTransactListener() must have
been called to start the transaction listener.

o Unlike SEETib_SubmitCoreJob(), SEE1ib_Submit() does not block and
wait for all other calls to SEETib_Transact() to complete.

6.4.4.3. SEElib_SubmitCoreJob / SEElib_GetCoreJobEx()

To submit a job to the nCore API:

extern int SEE1ib_SubmitCoreJob(const unsigned char *data, unsigned int len)

To receive a job from the nCore API:

extern int SEE1ib_GetCoreJobEx(unsigned char *buf, M_Word *len_io, unsigned flags)

SEETib_SubmitCorelob() is blocking. It waits for the job to be submitted, which includes
waiting for existing calls made to SEE1ib_Transact() to be completed. The same is true for
SEE1ib_GetCorelobEx().

For non-blocking calls, consider using SEE1ib_Submit().

CodeSafe 5 v13.6.11 Developer Guide 11/86

Chapter 6. Build CodeSafe 5 SDK apps

6.4.4.4. Other SEElib methods

For a comprehensive list of all functionality provided via the SEEIlib, see: SEE APl documen-
tation.

6.4.5. Host/SEE machine communication

The newest CodeSafe 5 implementation simplifies the host/SEE machine connection.
Host/SEE machine communication does not need to use SEEJobs or pass through the hard
server and nCore API. Communication between the host-side app and SEE machine is done
via TCP/IPv6 networking.

o The ncoreapi service can only connect to one CodeSafe container at a
time.

6.4.5.1. Update Connects running in an IPv4 context

The host side of the CodeSafe 5 examples will only be able to communicate over IPv6. Con-
nects running in an IPv4 context will not be able to run examples without changing how
CodeSafe 5 is configured on the Connect. See Working with CodeSafe for more informa-
tion.

6.5. Compatibility layer for legacy SEE machines

The CodeSafe 5 SDK provides libraries for developing new SEE machines. It also provides
libraries, files, and headers designed for maintaining backwards compatibility with legacy
CodeSafe SEE machines. SEE machines built with the compatibility layer work with the C
interface and the Java interface.

Do not use the compatibility layer libraries, files, and headers to create
A new SEE machines. They are only supplied to allow legacy applications
to be quickly re-compiled and run on nShield 5 HSMs.

The requirement for a compatibility layer arises from changes made to the overall structure
of how CodeSafe 5 SEE machines interact with both the host and with the nCore API:

« Host-SEE machine communication

In legacy CodeSafe implementations, for older HSMs, communication between a host-
side application and an SEE machine would be done via the nCore API using SEEJobs.
Using the nCore API to relay SEEJobs between the host-side and the SEE machine is no
longer supported.

CodeSafe 5 v13.6.11 Developer Guide 12/86

https://nshielddocs.entrust.com/security-world-docs/v13.6.11/hsm-user-guide/hsm-mgmt/codesafe.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/hsm-user-guide/hsm-mgmt/codesafe.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/hsm-user-guide/hsm-mgmt/codesafe.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/hsm-user-guide/hsm-mgmt/codesafe.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/hsm-user-guide/hsm-mgmt/codesafe.html

Chapter 6. Build CodeSafe 5 SDK apps

Communication via the nCore API has been replaced with direct communication
between the host and SEE machine using TCP/UDP socket connections. Optionally,
communication can be over an SSH tunnel for security. This allows greater control of
the creation, management, and use of connections between the host and SEE machine
for developers. It also improves performance as SEEJobs no longer have to be sent to
the nCore API before being forwarded to the SEE machine.

« SEE machine - nCore APl communication

Communication between the host and SEE machine no longer requires the nCore API
as an intermediary. Communication intended to be exclusively between the SEE
machine and the nCore API has also changed with the addition of the container IPC
daemon. The IPC daemon is provided by Entrust, exists within the container, and main-
tains connections between the container and the nCore API.

The IPC daemon forwards commands to the nCore API sent using the SEE11b. Outside
of the addition of the intermediary forwarder, the communication between the SEE
machine and the nCore API remains functionally unchanged.

The ncoreapi service can only connect to one CodeSafe container at a time.
The compatibility layer contains two main parts:

« liblegacy_compatibility.a, the module-side library.

+ include-see/legacy-compatibility-host/*, the host-side compatibility interface.

6.5.1. Module-side compatibility layer

The module-side compatibility layer provides the methods necessary to connect the SEE
machine to the host-side application via network connection.

The module-side compatibility layer comprises the 1iblegacy_compatibility.a library. Its
install location is:

« Linux: /opt/nfast/c/csd5/11b-ppcb4-1inux-musl/
» Windows: C:\Program Files\nCipher\nfast\c\csd5\1ib-ppc64-Tinux-musl\

Legacy SEE machines must be built with 1iblegacy_compatibility.a. When initialized, the
module-side compatibility layer opens and maintains a connection between the host-side
application and the SEE machine. This allows legacy applications to continue using SEE1-
ib_AwaitJob() and SEET1ib_ReturnJob() to accept incoming jobs and return them to the
host-side application when completed.

CodeSafe 5 v13.6.11 Developer Guide 13/86

Chapter 6. Build CodeSafe 5 SDK apps

6.5.2. Host-side compatibility layer

The host-side compatibility layer provides the methods necessary to connect the host-side
application to the SEE machine via network connection.

The host-side compatibility layer comprises the following files:

+ legacy-csee-host-side-compatibility.h contains all necessary function declarations.

+ legacy-csee-host-side-compatibility.c contains required host-side function defini-
tions required to connect to and maintain the connection to legacy SEE machines.

Their install location is:

- Linux: /opt/nfast/c/csd5/examples/csee/utils/hostside/
« Windows: C:\Program Files\nCipher\nfast\c\csd5\examples\csee\utils\hostside\

Legacy host-side applications must be built with legacy-csee-host-side-compatibility.h
and legacy-csee-host-side-compatibility.c. This is done by emulating the connection
which was previously created and managed by the hardserver and the nCore API.

legacy-csee-host-side-compatibility.c is compiled and added to the 1ibutil.a library.
Applications should link to it if they need to connect to legacy SEE machines.

6.5.3. Initialize module-side compatibility

Initialize the module-side compatibility layer:

extern void SEElib_Legacy_Support_Init(const char* PORT)

See Classic SEE (CSEE) examples in Port existing CodeSafe application to CodeSafe 5 for
how the module-side legacy support can be initialized to open a socket connection at port
PORT to communicate between host-side and SEE machines.

6.5.4. Use module-side compatibility

Legacy applications expect incoming messages from the host to be piped from the host to
the nCore API via the hardserver. From there, they eventually become accessible within the
SEE machine via calls to SEE1ib_AwaitJob() and SEE1ib_ReturnJob(). After the module-side
compatibility layer is initialized (see Initialize module-side compatibility), these functions
will work exactly as they have in previous CodeSafe applications. No further changes are
necessary.

Initializing the compatibility layer functionality via the SEE1ib_Legacy_Support_Init() call

CodeSafe 5 v13.6.11 Developer Guide 14/86

Chapter 6. Build CodeSafe 5 SDK apps

allows the compatibility layer to handle incoming and outgoing jobs as would previously
have been done by the nCore API. The Classic SEE (CSEE) examples show that the only
change made to the SEE machines to allow for backwards compatibility is the initialization
of the compatibility layer.

0 The compatibility layer only supports one client connection at a time
while the hardserver can support many.

6.5.5. Initialize host-side application compatibility

Initialize the host-side legacy application to allow connection to the SEE machine, communi
cating to the host via PORT:

netsee_initialize_legacy_seejob_support(const char * cseeContainerMachineIPv6, const char *
cseeContainerMachinePort)®

Here, cseeContainerMachinePort must match the PORT initialized by the SEE machine.
cseeContainerMachineIPv6 is the container's IPv6 address. See the execution of CSEE exam
ples in Port existing CodeSafe application to CodeSafe 5 for more information on passing in
the IPv6 address of the container.

netsee_initialize_legacy_seejob_support() establishes a connection to the SEE
machine’s container at port cseeContainerMachinePort. The compatibility layer maintains
this connection and handles the sending of SEEJobs between the host and module SEE
machine.

6.5.6. Use host-side application compatibility

The compatibility layer allows host-side application calls to interact with the SEE machine
to remain largely unchanged. Some changes to calls are, however, required. These changes,
rather than changing how the functions operate, largely serve to remove no longer required
elements, such as NFastApp_Connection.

- netsee_transact_legacy_seejob(const M_Command *command, M_Reply *reply,
struct NFast_Transaction _Context *tctx)

replaces:

NFastApp_Transact(NFastApp_Connection conn, struct NFast_Call_Context *cctx,
const M_Command *command, M_Reply *reply, struct NFast_Transaction_Context
*tctx)

o ‘ The NFastApp_Connection and NFast_Call_Context are no longer

CodeSafe 5 v13.6.11 Developer Guide 15/86

Chapter 6. Build CodeSafe 5 SDK apps

‘ required and should not be passed in.

- netsee_simple_transact_legacy_seejob(const M_Command *cmd, M_Reply *reply,
int fatal)

replaces:

simple_transact (NFastApp_Connection nc, M_Command *pcmd, M_Reply *preply,
int fatal)

e The NFastApp_Connection is no longer required and should not be
passed in.

+ netsee_submit_legacy_seejob(const M_Command *cmd, M_Reply *reply, struct
NFast_Transaction_Context *tctx)

replaces:

NFastApp_Submit(NFastApp_Connection conn, struct NFast_Call_Context *cctx,
const M_Command *command, M_Reply *reply, struct NFast_Transaction_Context
*tctx)

0 The NFastApp_Connection and NFast_Call_Context are no longer
required and should not be passed in.

- netsee_wait_legacy_seejob(M_Reply **replyp, struct NFast_Transaction_Context
**tetx)

replaces:

NFastApp_Wait(NFastApp_Connection conn, struct NFast_Call_Context *cctx, M_Re-
ply **replyp, struct NFast_Transaction_Context **tctx_r)

0 The NFastApp_Connection and NFast_Call_Context are no longer
required and should not be passed in.

With these changes implemented, legacy host-side applications, when run in conjunction
with an SEE machine properly initialized with 1iblegacy_compatibility.a, should function
identically to when run in previous implementations of CodeSafe.

This section demonstrated how to use the compatibility layer to quickly
bring legacy applications into the new CodeSafe 5 environment. New
applications should never be written with the compatibility layer. It is
o advised that, when possible, a user defined TCP/IPv6 network connec-
tion between the host-side application and the SEE machine is imple-
mented, rather than using the compatibility layer to transact jobs. How-

CodeSafe 5 v13.6.11 Developer Guide 16/86

Chapter 6. Build CodeSafe 5 SDK apps

ever, the compatibility layer does perform this job when no such cus-
tom implementation can be made.

CodeSafe 5 v13.6.11 Developer Guide 17/86

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

/. Sign and deploy CodeSafe 5 SDK apps
using csadmin

/.1. Signing CodeSafe images

All CodeSafe images must be signed before they can be loaded on to an HSM. Entrust rec-
ommends that you have two signing keys: one that you use to sign CodeSafe images that
are still under development, and one that you only use for signing tested CodeSafe images
that are ready for deployment. In this guide, the two recommended keys are referred to as
the development signing key and the production signing key, however you can name these
keys as required by your particular development organisation.

Signed CodeSafe images can be loaded to an HSM if the certificate
associated with the signing key is also loaded to that HSM. Therefore
you must ensure that the certificates associated with development sign
ing keys are never distributed outside of your development organisa-
A tion. If you develop CodeSafe images for customers who are not part of
your development organisation, you should only send them CodeSafe
images that have been signed by, and certificates that are associated

with, a production signing key.

You can create as many signing keys as you require. This allows you to use different signing
keys to group your CodeSafe images based on whatever criteria you require. For example,
you could use different signing keys based on the intended customer or on the functional-
ity of the CodeSafe image.

You must keep track of which key has been used to sign which image and ensure that the
end user receives the correct matching certificate and does not receive certificates that
they do not require.

The following sections describe the commands used to create the signing keys and certifi-
cates followed by a worked example showing the entire process of building, signing, load-
ing, and running a CodeSafe image.

/.2. The csadmin utility tool

The following examples use a Linux machine for the deployment of
CodeSafe applications. The same commands can be applied to a Win-
dows machine.

CodeSafe 5 v13.6.11 Developer Guide 18/86

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

The csadmin tool is used to manage CodeSafe images throughout the development and
deployment process. It is available as part of the Security World ISO. It must be installed as
instructed in Install the CodeSafe 5 SDK on Linux and Install the CodeSafe 5 SDK on Win-
dows.

You must be logged in as an Administrator or a user with local administrator rights to exe-
cute csadmin commands.

You must have /opt/nfast/bin in your PATH environment variable to use csadmin.
Executing csadmin displays the available subcommands:

To view the help text included here while using csadmin, run a command or sub-command
with the -h|--help option.

The csadmin tool covers CodeSafe application deployment from both
the perspective of a CodeSafe application developer and a CodeSafe

application user. The help text displays the complete set of commands
0 available. This document details the commands that are specific to
CodeSafe developers. See csadmin for an overview of the csadmin tool
and details of the other commands available.

7.2.1. Generate loadable images

CS5 images are generated with csadmin image generate. Before generating an image, the
CodeSafe 5 SDK must be previously installed. This includes an installation of Python and
nfpython suitable to run on the HSM. To display the generate operation’s usage, execute it
with the --help option:

$ csadmin image generate --help

usage: csadmin image generate [-h] --package-name PACKAGE_NAME --version-str VERSION_STR --entry-point
ENTRY_POINT --network-conf NETWORK_CONF

--packages-conf PACKAGES_CONF --rootdir ROOTDIR [--verbose] CS5FILE

positional arguments:
CSS5FILE The cs5 file to be handled

optional arguments:
-h, --help show this help message and exit
--package-name PACKAGE_NAME
Short name describing the product contents
--version-str VERSION_STR
Version number of this package contents
--entry-point ENTRY_POINT
Full path, within the container, to the entry point application to be executed upon start
--network-conf NETWORK_CONF
Full path, outside the container, to the network config file to be copied into the
container meta data
--packages-conf PACKAGES_CONF
Full path, outside the container, to the extra packages config file used to copy
additional packages into container rootfs

CodeSafe 5 v13.6.11 Developer Guide 19/86

https://nshielddocs.entrust.com/security-world-docs/v13.6.11/utilities/csadmin.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/utilities/csadmin.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/utilities/csadmin.html

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

--rootdir ROOTDIR Directory where the contents of the new container are located
--verbose Print verbose logs

Generating an image requires the name of the CS5 file and the use of the following manda-
tory command-line arguments:

- --package-name
.+ --version-str

« --entry-point

« --network-conf
- --packages-conf

« --rootdir
The following items are also required:

- A container directory (not necessarily named "container") that points to what would be
the SEE machine’s root directory.

This directory must include any files used by the application, including the entry point
program, for example:

container/

—— entrypoint

The container directory can be located anywhere in the host file system. Ensure you
pass the full path to the generate command via the --rootdir argument, as specified in
the command usage.

+ An entry point program.

This is the program that runs when the SEE container is started (on launcher start). It
must be made executable so it can be launched accordingly. In the previous example,
the entry point program is in container/usr/bin/entrypoint.

« A network configuration file. (See Example network-conf.json file.)
The valid range for container_port is 1024 - 65535.

- A file with extra packages information. (See Example extra-packages-conf.json file)

7.2.1.1. Example csadmin image generate operation

CodeSafe 5 v13.6.11 Developer Guide 20/86

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

$ csadmin image generate --package-name "MyCodeSafeApp" --entry-point /usr/bin/entrypoint --network-conf network-
conf.json --packages-conf extra-packages-conf.json --version-str 1.0 --rootdir container/ myapp.cs5

INFO: creating content package

INFO: Creating content tar ball

INFO: Creating copy of source file: network-conf.json into dest: cs5_build/meta/network-conf.json

INFO: Creating copy of source file: extra-packages-conf.json into dest: cs5_build/meta/extra-packages-conf.json
INFO: Creating compressed tar ball cs5_build/extra-packages.tar.gz out of cs5_build/extra-packages

INFO: Creating compressed tar ball cs5_build/container.tar.gz out of container/

INFO: Creating uncompressed tar ball content.tar out of cs5_build

INFO: creating cs5 file myapp.cs5

INFO: adding content hash to the package

INFO: File myapp.cs5 was created successfully!

--entry-point points to the full path of the executable program relative to the container’s
root.

CodeSafe 5 v13.6.11 Developer Guide 21/86

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

7.2.1.2. Example extra-packages-conf.json file

{
"packages": [{

"package": "python",
"description": "python 3.8 binaries",
"host_path": "python3/csd5/ppc64/usr/bin",
"machine_path": "usr/bin",
"exclude": ""

B

{
"package": "python",
"description": "python 3.8 libraries",
"host_path": "python3/csd5/ppc64/usr/1ib/python3.8",
"machine_path": "python3",
"exclude": ""

}I

{
"package": "binaries",
"description": "binaries for script support 1.0.0",
"host_path": "c/csd5/rootfs/bin",
"machine_path": "bin",
"exclude": ""

}

1
}

7.2.1.3. Example network-conf.json file

{
"incoming" : {
"tep" 1 {
"protos" : ["ipv6"], "ports" : [8000, 8001, 8888]
}
B
"outgoing" : {
"udp" : {
"protos" : ["ipv4"], "ports" : [53]
}
B
"ssh_tunnel" : {
"container_port" : 8000
}
}

7.2.1.4. Example entry point script

#!/bin/sh

export PYTHONHOME=/usr/bin

export PYTHONPATH=/usr/1lib/python3.8/:/usr/1ib/python3.8/1ib-dynload:/usr/1ib/python3.8/site-packages
python -m http.server --directory / --bind :: 8888

7.2.2. Sign images

CodeSafe images are signed with csadmin image sign. A signing key must be created

CodeSafe 5 v13.6.11 Developer Guide 22/86

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

before the CS5 file is signed, because signing must be done using HSM-protected keys.

csadmin image sign --help
usage: csadmin image sign [-h] --askeyname ASKEYNAME --devkeyname DEVKEYNAME --devcert DEVCERT [--startdate
STARTDATE] [--expirydate EXPIRYDATE]

[--out OUT] [--verbose]

CS5FILE
positional arguments:
CS5FILE The cs5 file to be signed
options:
-h, --help show this help message and exit

--askeyname ASKEYNAME
Name (ident) of the application signing key
--devkeyname DEVKEYNAME
Name (ident) of the developer signing key
--devcert DEVCERT The signed developer certificate PEM file
--startdate STARTDATE
Start of validity period for the signed ASK cert in Unix time (default: no start date)
--expirydate EXPIRYDATE
End of validity period for the signed ASK cert in Unix time (default: no expiration date)
--out OUT Name of the output file. If not specified, the cs5 file is overwritten.
--verbose Print verbose logs

For more information, see Signing CodeSafe images.

7.2.3. Create a developer ID certificate

Developer ID certificates are created with csadmin ids create. This command generates a
developer ID key with the given name (if it doesn't exist already) and a certificate signing
request so a certificate can be generated (see Signing CodeSafe images):

$ csadmin ids create --help

usage: csadmin ids create [-h] --keyname KEYNAME [-m MODULE] --x509cname COMMON_NAME [--x5@9country COUNTRY]
[--x509province STATE_OR_PROVINCE] [--x5@91ocality LOCALITY] --x5690org ORGANIZATION [--

x5090rgunit ORGANIZATIONAL_UNIT] [--verbose]

options:

-h, --help show this help message and exit
--keyname KEYNAME Name for the certificate's key.
-m MODULE, --module MODULE

Module to generate the key with.
--x509cname COMMON_NAME

The CN part of the key's DN.
--x509country COUNTRY

The C part of the key's DN.
--x509province STATE_OR_PROVINCE

The ST part of the key's DN.
--x5091ocality LOCALITY

The L part of the key's DN.
--x5090rg ORGANIZATION

The 0 part of the key's DN.
--x5090rqunit ORGANIZATIONAL_UNIT

The OU part of the key's DN.
--verbose Print verbose logs

CodeSafe 5 v13.6.11 Developer Guide 23/86

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

/.3. Example CodeSafe developer process

The examples in this chapter show how various csadmin commands can be used to create a
signed CodeSafe image for deployment. For details of the csadmin tool (See The csadmin
utility tool)

7.3.1. Create developer ID keys

To sign CodeSafe images, you must create a developer ID for your development organisa-
tion and obtain a matching certificate from Entrust. You can obtain a certificate by creating
a Certificate Signing Request (CSR) file and sending it to Entrust Support who will process
the CSR and return a signed certificate to you.

Entrust strongly recommend that you create at least two developer IDs:
a 'development' ID for signing CodeSafe images that are still in develop-

9 ment, and a 'production’ ID for signing images that are ready to be
deployed.

The csadmin ids create command provides the functionality to generate a developer ID
key if it does not already exist, as well as the CSR file in a single step.

Keep track of which certificate matches each developer ID key. When
you send a signed CodeSafe image to a customer you will need to also

0 send them the matching certificate for them to be able to load the
image on their HSM.

The developer ID keys only need to be created once. The certificates matching them have a
limited validity period and will need to be refreshed before they expire.

When you refresh a certificate you must send it to anyone who received
a copy of a SEE machine that is signed by the key matching that certifi-

o cate. Users of SEE machines require a valid certificate every time they
start the SEE machine.

To refresh a certificate, use the csadmin ids create command with an existing key. This cre
ates a CSR file for the existing key, which should be sent to Entrust Support who will
process the CSR and return a new signed certificate.

The integrity of the signing process relies on the procedural steps being followed to secure
a CodeSafe application image.

For this reason, developer ID keys are OCS protected and therefore to sign a CodeSafe

CodeSafe 5 v13.6.11 Developer Guide 24/86

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

application a quorum of OCS cards and associated passphrases must be available for the
signing.

o Only use your 'production' developer ID key to sign fully tested Code-
Safe images that you know to be ready for deployment.

CodeSafe 5 v13.6.11 Developer Guide 25/86

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

7.3.1.1. Generate an HSM-protected developer ID key and CSR

csadmin ids create --keyname developerid --x509cname developer.entrust.com --x509country US --x5@9province
Minnesota --x5091ocality Shakopee --x5090rg "CodeSafe App Development" --x509orgunit "Entrust CodeSafe"

Generate key 'testdeveloperkey' ...

Loading ‘Test0CS':

Module 1: @ cards of 1 read
Module 1 slot 0: empty

Card reading complete.

0K

Generate a CSR in 'testdeveloperkey.csr' ...

0K

Created CSR file 'testdeveloperkey.csr'. Please send it to Entrust Support

o ‘ This creates the CSR file in the location where the command was run.
o keyname must conform with character set restrictions. For more informa
tion, see ident in the Key properties table.

0 This developer ID creation was done with Test0CS, quorum of 1/1. Exact
output might vary slightly with different OCS quorums.

Send the resulting CSR to customer support to be signed by Entrust.

7.3.2. Load your certificate

When you receive your signed certificate chain back from Entrust Support, load the devel-
oper ID certificate chain in the HSM using csadmin ids add.

You can use csadmin ids 1list to view the loaded certificate.

$ csadmin ids add entrust_developerid_cert_chain.pem

FEDC-BA@9-8765 SUCCESS
$ csadmin ids list
FEDC-BA@9-8765 SUCCESS
Certificates:

{'serialNumber': '1', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust CodeSafe,
Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'abcdef12345678900987654321fedcbaabedef12', 'authKeyid': '0987654321fedcbaabcdef123456789009876543", 'notBefore':
'2023-01-01 12:34:56+00:00"', 'notAfter': '2024-01-01 12:34:56+00:00'}

{"'serialNumber': '2', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust CodeSafe,
Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'1234567890abcdeffedcba098765432112345678", 'authKeyid': 'fedcba@9876543211234567890abcdeffedcad9d8’, 'notBefore':
'2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}

7.3.2.1. Generate an Application Signing Key (ASK) with generatekey

This generates a simple ECDSA NIST521P key.

CodeSafe 5 v13.6.11 Developer Guide 26/86

https://nshielddocs.entrust.com/security-world-docs/v13.6.11/key-mgmt/key-generation-options.html#key-properties
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/key-mgmt/key-generation-options.html#key-properties
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/key-mgmt/key-generation-options.html#key-properties
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/key-mgmt/key-generation-options.html#key-properties
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/key-mgmt/key-generation-options.html#key-properties

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

The following example specifies the key to be protected with an OCS.

/opt/nfast/bin/generatekey --batch --module=1 simple type=ECDSA curve=NISTP521 ident=ask plainname=ask
protect=token

7.3.2.2. Sign the CodeSafe image

This example signs a CodeSafe application called hello.csb:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out ~/hello-
signed.cs5 ~/hello.csb

CodeSafe 5 v13.6.11 Developer Guide 27/86

Chapter 8. Build and sign example SEE machines on Linux

8. Build and sign example SEE machines on
Linux

8.1. Build module-side C examples

1. Create an empty directory to build the module side examples into, for example:

mkdir ~/buildmodule/

2. Navigate to the empty directory:

cd ~/buildmodule/

3. Build the module side examples with cmake using the following commands:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd5/cmake/codesafe-toolchain-nshield5-csee.cmake
/opt/nfast/c/csd5/examples/

cmake --build .

Successful builds create .csb images for each example. For example, the classic SEE Hello
example has a .cs5 image at ~/buildmodule/n5/csee/hello/module/hello.csb.

8.2. Building Host Side C Examples

1. Create an empty directory to build the host-side clients for the SEE machines, for
example:

mkdir ~/buildhost/

2. Navigate to the directory where the host-side examples will be built:

cd ~/buildhost/

3. Build the host-side examples with cmake using the following commands:

cmake /opt/nfast/c/csd5/examples/

cmake --build .

Successful builds create executable host-side clients for each example. For example, the

CodeSafe 5 v13.6.11 Developer Guide 28/86

Chapter 8. Build and sign example SEE machines on Linux

classic SEE Hello example has an executable program at ~/build-
host/n5/csee/hello/host/hello.

8.3. Build CS5 Images for Python Examples

1. Create an empty directory to build the Python examples into, for example:

mkdir ~/build_python

2. Navigate to the empty directory:

cd ~/build_python/

3. Build the examples with cmake using the following commands:

cmake /opt/nfast/python3/csd5/examples

cmake --build .

Successful builds create .csb images and executable host-side clients for each example.
For example, the hello_tcp example has a .csb image at ~/build_python/n5/netsee/hel-
loworld_tcp/module/helloworld_mod_tcp.cs5 and the executable program is located at
~/build_python/n5/netsee/helloworld_tcp/hostside/helloworld_host_tcp.py.

8.4. Sign CodeSafe Images

1. Use csadmin ids create to generate the developer ID key, if it does not already exist,
as well as the CSR file in a single step. If the key already exists, it only generates the
CSR.

csadmin ids create --keyname developerid --x509cname developer.entrust.com --x509country US --x5@9province
Minnesota --x5091ocality Shakopee --x5090rg "Entrust CodeSafe" --x509orgunit "Entrust CodeSafe"

Generate key 'testdeveloperkey' ...

Loading ‘TestOCS':

Module 1: @ cards of 1 read
Module 1 slot 0: empty

Card reading complete.

0K

Generate a CSR in 'testdeveloperkey.csr' ...

0K

Created CSR file 'testdeveloperkey.csr'. Please send it to Entrust Support

o ‘ This creates the CSR file in the location where the command was

CodeSafe 5 v13.6.11 Developer Guide 29/86

Chapter 8. Build and sign example SEE machines on Linux

run. This developer ID creation was done with Test0CS, quorum of
1/1. Exact output might vary slightly with different OCS quorumes.

2. Send the CSR to customer support to be signed by Entrust. You must obtain the
signed developer ID certificate in order to sign and load an application.

0 For more detailed information on Developer IDs and CSRs, see Sign
and deploy CodeSafe 5 SDK apps using csadmin.

3. Use nfast generatekey to generate a simple ECDSA NIST521P application signing key
(ASK). The following example specifies the key to be protected by the module. How-
ever, end users are encouraged to protect the key with an OCS.

/opt/nfast/bin/generatekey --batch --module=1 simple type=ECDSA curve=NISTP521 ident=ask plainname=ask
protect=module

4. Sign the CodeSafe image, for example:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out
/tmp/hello-signed.cs5 ~/ca/hello.cs5

Additional examples are provided later in this chapter.
5. Use csadmin ids add to install the developer ID certificate chain from Entrust.

You can use csadmin ids list to view the loaded certificate.

$ csadmin ids add entrust_developerid_cert_chain.pem

FEDC-BA09-8765 SUCCESS
$ csadmin ids list
FEDC-BA09-8765 SUCCESS
Certificates:

{"'serialNumber': '1', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
"abcdef12345678900987654321fedcbaabedef12', 'authKeyid': '0987654321fedcbaabedef123456789009876543"
"notBefore': '2023-01-01 12:34:56+00:00", 'notAfter': '2024-01-01 12:34:56+00:00'}

{"'serialNumber': '2', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'1234567890abcdeffedcba@98765432112345678", 'authKeyid': 'fedcba®9876543211234567890abcdeffedcad98’,
"notBefore': '2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}

8.5. Run NetSEE examples

NetSEE examples communicate between the client and SEE machine directly through a
TCP/IPv6 network connection to the container, unlike legacy applications, such as for Solo
XC or Solo+, which communicate through the hardserver to the nCore API.

CodeSafe 5 v13.6.11 Developer Guide 30/86

Chapter 8. Build and sign example SEE machines on Linux

8.5.1. helloworld_tcp

To execute the helloworld TCP example that opens a socket within the container and uses

the connection to transact a "helloworld" message:

1. Sign the .cs5 image using devcert and askeys:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-signed.cs5
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp.cs5

2. Load the signed .csb image using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-
signed.csb

The output of csadmin load contains the UUID of the loaded con-
tainer. This UUID will be required for starting the container. The
UUID can always be retrieved from the output of csadmin list.

3. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba®9-8765-4321-1234-567890abcdef

csadmin list lists the UUIDs of all containers. The IPv6 address of
the started container appears in the output of the csadmin start

0 command. It can also be found in the output of csadmin 1list and
csadmin stats.

4. Run the host-side application.

The host-side application takes three positional arguments, the IPv6 address of the con

tainer, the port number, and the message to send to the container. The port number

used by this example is 8888 by default. The message can be any string of valid charac

ters.

~/buildhost/n5/netsee/helloworld_tcp/hostside/helloworld_host_tcp ffff::fff:ffff:ffff:ffff%nshieldd 8888

hello_module

Expected output:

nseeContainerMachineIP=ffff::fff:ffff:ffff:ffff%nshieldo
nseeContainerMachinePort=8888

mesg=hello_module

Successful Connection to Socket...

CodeSafe 5 v13.6.11 Developer Guide

31/86

Chapter 8. Build and sign example SEE machines on Linux

Host>Sending TCP Message-->hello_module
Host>Hello World From HSM!

e The IPv6 address is link-local and requires the zone index to be
appended (typically $nshieldd).

8.5.1.1. helloworld_tcp for nShield 5¢

The process is the same as the 5s example, but the host-side application command will dif-
fer. Instead of IPv6, you can use the Connect’s IPv4 address:

The examples for the nShield 5¢ work similarly to the 5s module, but the IP addresses and
ports refer to the 5¢ Connect network. Similarly, for the TCP example, you can use the Con-
nect’s IPv4 address:

~/buildhost/n5/netsee/helloworld_tcp/hostside/helloworld_host_tcp 192.168.1.100 8888 hello_module

Example output:

nseeContainerMachineIP=192.168.1.100
nseeContainerMachinePort=8888
mesg=hello_module

Successful Connection to Socket...
Host>Sending TCP Message-->hello_module
Host>Hello World From HSM!

8.5.2. helloworld_udp

To execute the helloworld UDP example that opens a socket within the container and uses
the connection to transact a "helloworld" message:

1. Sign the .csb image using devcert and askeys:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out
~/buildmodule/n5/netsee/helloworld_udp/module/helloworld_mod_udp-signed.cs5
~/buildmodule/n5/netsee/helloworld_udp/module/hellowor1ld_mod_udp.cs5

2. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/netsee/helloworld_udp/module/helloworld_mod_udp-
signed.cs5

Example output:

FEDC-BA@9-8765: Uploading ~/buildmodule/n5/netsee/helloworld_udp/module/helloworld_mod_udp-signed.cs5

CodeSafe 5 v13.6.11 Developer Guide 32/86

Chapter 8. Build and sign example SEE machines on Linux

FEDC-BA@9-8765: creating machine
FEDC-BA@9-8765 SUCCESS
UUID: fedcba@9-8765-4321-1234-567890abcdef

The output of csadmin load contains the UUID of the loaded con-
o tainer. This UUID will be required for starting the container. The
UUID can always be retrieved from the output of csadmin list.

3. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba®@9-8765-4321-1234-567890abcdef

Example output:

FEDC-BAB9-8765 SUCCESS
IP ADDRESS: ffff::fff:ffffiffff:ffff

csadmin list will list the UUIDs of all containers. The IPv6 address
of the started container appears in the output of the csadmin start

e command. It can also be found in the output of csadmin 1ist and
csadmin stats.

4. Run the host-side application.

The host-side application takes three positional arguments, the IPv6 address of the con
tainer, the port number, and the message to send to the container. The port number
used by this example is 8888 by default. The message can be any string of valid charac
ters.

~/buildhost/n5/netsee/helloworld_udp/hostside/helloworld_host_udp ffff::fff:ffff:ffff:ffff%nshieldo 8888
hello_module

Example output:

nseeContainerMachineIP=ffff::fff:ffff:ffff:ffff%nshieldd
nseeContainerMachinePort=8888

mesg=hello_module

Successful Connection to Socket...

Host>Sending UDP Message-->hello_module

Host>Hello World From HSM!

o The IPv6 address is link-local and requires the zone index to be
appended (typically $nshield?).

CodeSafe 5 v13.6.11 Developer Guide 33/86

Chapter 8. Build and sign example SEE machines on Linux

8.5.2.1. helloworld_udp for 5¢

The process is the same as the 5s example, but the host-side application command will dif-
fer. Instead of IPv6, you can use the Connect'’s IPv4 address:

The examples for the nShield 5¢ work similarly to the 5s module, but the IP addresses and
ports refer to the 5¢ Connect network.

~/buildhost/n5/netsee/helloworld_udp/hostside/helloworld_host_udp 192.168.1.100 8888 hello_module

Example output:

nseeContainerMachineIP=192.168.1.100
nseeContainerMachinePort=8888
mesg=hello_module

Successful Connection to Socket...
Host>Sending UDP Message-->hello_module
Host>Hello World From HSM!

8.6. Run NetSEE examples via SSH tunnel

NetSEE examples communicate between the client and SEE machine directly through a
TCP/IPv6 network connection to the container, unlike legacy applications, such as for Solo
XC or Solo+, which communicate through the hardserver to the nCore API.

On the nShield 5¢ network, the SSHD listening address may be an IPv4
o address instead of IPv6. Adjustments to the steps below may be
needed to accommodate this.

8.6.1. helloworld_tcp via SSH Tunnel

To execute the helloworld TCP example via an SSH Tunnel that opens a socket within the
container and uses the connection to transact a "helloworld" message:

1. Create an SSHD key for the hello example:

mkdir ~/examplekeys/
ssh-keygen -t ecdsa -f ~/examplekeys/helloworld_tcp_ecdsa_key

2. Modify the network-conf.json of the helloworld_tcp example to support SSH tunnel-
ing, for example:

cat ~/buildmodule/n5/netsee/helloworld_tcp/module/network-conf.json
{

"incoming": {

CodeSafe 5 v13.6.11 Developer Guide 34/86

Chapter 8. Build and sign example SEE machines on Linux

"tep":
{
"protos": ["ipv6"],
"ports": [8888]
}
Yo
"outgoing" : {
"tep"
{
"protos": ["ipv6"],
"ports": [1]
}
Yo

"ssh_tunnel" : {
"container_port" : 8888

}

When the container server app accepts a client connection on the specified incoming

port (for example 8888), it designates and responds to the client on an ephemeral port

in the range [32768-60999] as the outgoing port. This port does not have to be defined
in the network-conf.json.

3. Rebuild the .cs5 image with the updated network-conf.json so the loaded container
will allow SSH tunneling:

sudo /opt/nfast/bin/csadmin image generate --package-name "helloworld_tcp" --entry-point
/usr/bin/entrypoint --network-conf ~/buildmodule/n5/netsee/helloworld_tcp/module/network-conf.json
--packages-conf ~/buildmodule/n5/netsee/helloworld_tcp/module/extra-packages-conf.json --version-str 1.0
--rootdir ~/buildmodule/n5/netsee/helloworld_tcp/module/container/
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp.cs5

Most paths used in generating the new image are paths to the file locations on the host
that is building the image However, the --entry-point path is the absolute path to the
entrypoint file within the container and should be /usr/bin/entrypoint, not ~/build-
module/n5/netsee/helloworld_tcp/module/container/usr/bin/entrypoint.

4. Sign the new .csb image using devcert and askeys:

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-signed.cs5
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp.cs5

5. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-
signed.csb

The output of csadmin load contains the UUID of the loaded container. This UUID will
be required for starting the container and managing the SSHD keys of the container.

CodeSafe 5 v13.6.11 Developer Guide 35/86

Chapter 8. Build and sign example SEE machines on Linux

The UUID can always be retrieved from the output of csadmin list.

. Load the public key created earlier (helloworld_tcp_ecdsa_key) to the container using
csadmin sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba@9-8765-4321-1234-567890abcdef --keyfile
~/examplekeys/helloworld_tcp_ecdsa_key.pub

. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba@9-8765-4321-1234-567890abcdef

Example output:

FEDC-BA@9-8765 SUCCESS
SSHD PORT: 6789
LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa

The output of sshd state enable contains the SSHD Port number and the listening
address of the container SSHD.

. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba@9-8765-4321-1234-567890abcdef

csadmin 1list lists the UUIDs of all containers. The IPv6 address of the started con-
tainer appears in the output of the csadmin start command. It can also be found in the
output of csadmin list and csadmin stats.

. Setup the SSH tunnel on the host:
Run csadmin sshd state get and collect the following information:

° Container tunnel address (ffff::fff:ffff:ffff:ffff)
° Container port (8888)
° SSHD port (6789)

° SSHD listening address (aaaa: :aa:aaaa:aaaa:aaaa)

o On nShield Connect the SSHD listening address may be an IPv4 or
IPvb address

Next, choose a local IP address and port number through which to access the tunnel.
Typically localhost is chosen as the local IP address (127.0.0.7Tor [::1])

CodeSafe 5 v13.6.11 Developer Guide 36/86

Chapter 8. Build and sign example SEE machines on Linux

The SSH tunnel command is formatted as follows:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_PORT:[TUNNEL_ADDRESS%1xcbr@]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr0]:8888 -f -N -p
6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshieldd

When using nShield 5s the IPv6 address is link-local and requires
the zone index to be appended (typically %nshield@). If you are
o working with a 5¢ network, replace the IPv6 address with the appro
priate nShield5c network address (IPv4 or IPv6) for your configura-

tion.

10. Run the host-side application.

The host-side application takes three positional arguments, the IPv6 address set up in
the forwarding step [::1], the port number, and the message to send to the container.
The port number used by this example is 8888 by default. The message can be any
string of valid characters.

~/buildhost/n5/netsee/helloworld_tcp/hostside/helloworld_host_tcp ::1 8888 hello_module

Expected Output:

nseeContainerMachineIP=::1
nseeContainerMachinePort=8888
mesg=hello_module

Successful Connection to Socket...
Host>Sending TCP Message-->hello_module
Host>Hello World From HSM!

8.7. Run CSEE examples via SSH tunnel

The Classic SEE (CSEE) examples are legacy examples modified to run with CodeSafe 5 to
demonstrate use of the compatibility layer. These examples are identical to examples pro-
vided with previous iterations of nShield HSMs and CodeSafe. This section describes run-

ning the CSEE examples using an SSH Tunnel

8.7.1. hello via SSH Tunnel

CodeSafe 5 v13.6.11 Developer Guide 37/86

Chapter 8. Build and sign example SEE machines on Linux

This section describes executing the legacy hello example using the compatibility layer via
an SSH Tunnel. The CSEE hello example operates functionally identically to previous hello
examples for Solo XC and Solo+.

The hello example sends a string from the host to the module. The module converts the
string to uppercase and returns the string to the host.

1. Generate an input file containing a character string to be sent to the module.

echo UPPERCASElowercase > ~/inputfile
This input file has both uppercase and lowercase characters.

2. Generate an SSHD key for the hello example:

mkdir ~/examplekeys/
ssh-keygen -t ecdsa -f ~/examplekeys/hello_ecdsa_key

3. Modify the network-conf.json of the hello example to configure SSH tunneling, for
example:

cat ~/buildmodule/n5/csee/hello/module/network-conf.json

{
"incoming": {
"tep":
{
"protos": ["ipv6"],
"ports": [8888]
}
1y
"outgoing" : {
"tep"
{
"protos": ["ipv6"],
"ports": [1]
}
¥
"ssh_tunnel" : {
"container_port" : 8888
}
}

When the container server app accepts a client connection on the
specified incoming port (for example 8888), it designates and
0 responds to the client on an ephemeral port in the range [32768-
60999] as the outgoing port. This port does not have to be defined
in the network-conf.json.

4. Rebuild the .cs5 image with the updated network-conf.json so the loaded container
will allow SSH tunneling:

CodeSafe 5 v13.6.11 Developer Guide 38/86

Chapter 8. Build and sign example SEE machines on Linux

sudo /opt/nfast/bin/csadmin image generate --package-name "hello" --entry-point /usr/bin/entrypoint
--network-conf ~/buildmodule/n5/csee/hello/module/network-conf.json --packages-conf
~/buildmodule/n5/csee/hello/module/extra-packages-conf.json --version-str 1.0 --rootdir
~/buildmodule/n5/csee/hello/module/container/ ~/buildmodule/n5/csee/hello/module/hello.cs5

Most paths used in generating the new image are paths to the file locations on the host
that is building the image. However, the --entry-point path is the absolute path to the
entrypoint file within the container and should be /usr/bin/entrypoint, not ~/build-
module/n5/csee/hello/module/container/usr/bin/entrypoint.

5. Sign the .cs5 image using devcert and askeys:

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/csee/hello/module/hello-signed.cs5
~/buildmodule/n5/csee/hello/module/hello.cs5

6. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/csee/hello/module/hello-signed.cs5

Example output:

FEDC-BA@9-8765: Uploading ~/buildmodule/n5/csee/hello/module/hello-signed.cs5
FEDC-BA@9-8765: creating machine

FEDC-BA@9-8765 SUCCESS

UUID: fedcba@9-8765-4321-1234-567890abcdef

The output of csadmin load contains the UUID of the loaded container. This UUID will
be required for starting the container and managing the SSHD keys of the container.
The UUID can always be retrieved from the output of csadmin list.

7. Load the public key created earlier (hello_ecdsa_key) to the container using csadmin
sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba®9-8765-4321-1234-567890abcdef --keyfile
~/examplekeys/hello_ecdsa_key.pub

8. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba@9-8765-4321-1234-567890abcdef

Example output:

FEDC-BAB9-8765 SUCCESS
SSHD PORT: 6789

CodeSafe 5 v13.6.11 Developer Guide 39/86

Chapter 8. Build and sign example SEE machines on Linux

10.

LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa

The output of sshd state enable contains the SSHD port number and the listening
address of the container SSHD.

. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba@9-8765-4321-1234-567890abcdef

Example output:

FEDC-BAB9-8765 SUCCESS
IP ADDRESS: ffffi:ifffiffffiffff:ffff

csadmin 1list lists the UUIDs of all containers. The IPv6 address of the started con-
tainer appears in the output of the csadmin start command. It can also be found in the
output of csadmin 1list and csadmin stats.

Setup the SSH tunnel on the host:
Run csadmin sshd state get and collect the following information:

° Container tunnel address (ffff::fff:ffff:ffff:ffff)
° Container port (8888)
SSHD port (6789)

o

° SSHD listening address (aaaa: :aa:aaaa:aaaa:aaaa)

e On nShield Connect the SSHD listening address may be an IPv4 or
IPv6 address

Next, choose a local IP address and port number through which to access the tunnel.
Typically localhost is chosen as the local IP address (127.0.0.1or [::1])

The SSH tunnel command is formatted as follows:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_PORT:[TUNNEL_ADDRESS%1xcbr@]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr@]:8888 -f -N -p
6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshieldd

o ‘ When using nShield 5s the IPv6 address is link-local and requires

CodeSafe 5 v13.6.11 Developer Guide 40/86

Chapter 8. Build and sign example SEE machines on Linux
the zone index to be appended (typically $nshield®).

1. Run the host-side application.

The host-side application takes one required positional argument, and three required
optional arguments. The required optional arguments are the IPv6 address set up in the
forwarding step [::1] (--ipv6), the UUID of the container (--uuid), and the file path to
the signed container image (--csb). The required positional argument is the input file
containing a string to convert to uppercase on the module.

~/buildhost/n5/csee/hello/hostside/hello --uuid fedcba®9-8765-4321-1234-567890@abcdef --ipvb ::1 --csb
~/buildmodule/n5/csee/hello/module/hello-signed.cs5 ~/inputfile

Example output:

Worldid: ©x1234abcd
UPPERCASELOWERCASE

The module has received the input string UPPERCASElowercase and has converted and
returned it as a fully uppercase string UPPERCASELOWERCASE.

8.7.2. tickets via SSH tunnel

This section describes executing the legacy tickets example using the compatibility layer
via an SSH Tunnel. The CSEE tickets example operates functionally identically to previous
tickets examples for Solo XC, Solo+. The tickets example serves to demonstrate crypto-

graphic functionality by encrypting and having the module decrypt a user-provided string.

1. Generate a simple RSA key to encrypt with:

sudo /opt/nfast/bin/generatekey --module=1 simple type=RSA pubexp=3 ident=encryptionkeytickets
plainname=encryptionkeytickets protect=module nvram=no size=2048

2. Generate an SSHD key for the tickets example:

mkdir ~/examplekeys/
ssh-keygen -t ecdsa -f ~/examplekeys/tickets_ecdsa_key

3. Modify the network-conf.json of the tickets example to configure SSH tunneling, for
example:

cat ~/buildmodule/n5/csee/tickets/module/network-conf.json

{

"incoming": {

CodeSafe 5 v13.6.11 Developer Guide 41/86

Chapter 8. Build and sign example SEE machines on Linux

"tep":
{
"protos": ["ipv6"],
"ports": [8888]
}
Yo
"outgoing" : {
"tep"
{
"protos": ["ipv6"],
"ports": [1]
}
Yo

"ssh_tunnel" : {
"container_port" : 8888

}

When the container server app accepts a client connection on the
specified incoming port (for example 8888), it designates and
o responds to the client on an ephemeral port in the range [32768-
60999] as the outgoing port. This port does not have to be defined

in the network-conf. json.
4. Rebuild the . cs5 image with the updated network-conf. json:

sudo /opt/nfast/bin/csadmin image generate --package-name "tickets" --entry-point /usr/bin/entrypoint
--network-conf ~/buildmodule/n5/csee/tickets/module/network-conf.json --packages-conf
~/buildmodule/n5/csee/tickets/module/extra-packages-conf.json --version-str 1.0 --rootdir
~/buildmodule/n5/csee/tickets/module/container/ ~/buildmodule/n5/csee/tickets/module/seetickets.cs5

Most paths used in generating the new image are paths to the file locations on the host
that is building the image. However, the --entry-point path is the absolute path to the
entrypoint file within the container and should be /usr/bin/entrypoint, not ~/build-
module/n5/csee/tickets/module/container/usr/bin/entrypoint.

5. Sign the .csb image using devcert and askeys:

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5
~/buildmodule/n5/csee/tickets/module/seetickets.cs5

6. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5

Example output:

FEDC-BA@9-8765: Uploading ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5
FEDC-BA@9-8765: creating machine

CodeSafe 5 v13.6.11 Developer Guide 42/86

Chapter 8. Build and sign example SEE machines on Linux

FEDC-BAB9-8765 SUCCESS
UUID: fedcba@9-8765-4321-1234-567890abcdef

The output of csadmin load contains the UUID of the loaded container. This UUID will
be required for starting the container and managing the SSHD keys of the container.
The UUID can also be retrieved from the output of csadmin 1list.

7. Load the public key created earlier (tickets_ecdsa_key) to the container using csadmin
sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba@9-8765-4321-1234-567890abcdef --keyfile
~/examplekeys/tickets_ecdsa_key.pub

8. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba@9-8765-4321-1234-567890abcdef

Example output:

FEDC-BA@9-8765 SUCCESS
SSHD PORT: 6789
LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa

The output of sshd state enable contains the SSHD Port number and the listening
address of the container sshd.

9. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba@9-8765-4321-1234-567890abcdef

Example output:

FEDC-BAB9-8765 SUCCESS
IP ADDRESS: ffffi:fff:iffffiffff:ffff

The IPv6 address of the started container appears in the output of
o the csadmin start command. It can also be found in the output of
csadmin list and csadmin stats.

10. Setup the SSH tunnel on the host:
Run csadmin sshd state get and collect the following information:

° Container tunnel address (ffff::fff:ffff:ffff:ffff)

CodeSafe 5 v13.6.11 Developer Guide 43/86

Chapter 8. Build and sign example SEE machines on Linux

1.

12.

° Container port (8888)
> SSHD port (6789)

° SSHD listening address (aaaa: :aa:aaaa:aaaa:aaaa)

e On nShield Connect the SSHD listening address may be an IPv4 or
IPv6 address

Next, choose a local IP address and port number through which to access the tunnel.
Typically localhost is chosen as the local IP address (127.0.0.1or [::1])

The SSH tunnel command is formatted as follows:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_PORT:[TUNNEL_ADDRESS%1xcbr@]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr@]:8888 -f -N -p
6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshieldd

o When using nShield 5s the IPv6 address is link-local and requires
the zone index to be appended (typically $nshield®).

Run the host-side application.

The host-side application takes three required optional arguments. The required
optional arguments are the IPv6 address set up in the forwarding above [::1] (--ipv6),
the UUID of the container (--uuid), and the file path of the signed .csb image (--csb).
The host-side also accepts the encryption key created earlier as an optional argument (

--key).

~/buildhost/n5/csee/tickets/hostside/hosttickets --uuid fedcba®9-8765-4321-1234-567890abcdef --ipvb ::1
--cs5 ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5 --key simple,encryptionkeytickets

When prompted, enter a string to encrypt (for example, testencryption) and press
Return:

Enter string to be encrypted (256 characters maximum): testencryption

The host encrypts the message then the module decrypts it and returns it in plain text

format.

Example output:

CodeSafe 5 v13.6.11 Developer Guide 44/86

Chapter 8. Build and sign example SEE machines on Linux

HostSide> Loading security world key (simple,encryptionkeytickets)
HostSide> Creating World: init status was @ (OK)

HostSide> Sending ticket for private RSA key to module

HostSide> Generating AES session key and creating blob under public RSA key

HostSide> Sending key blob to module
HostSide> Sending cipher-text to module

HostSide> decrypted cipher text received from SEE machine:

"testencryption”
HostSide> Thank you for watching. The end.

8.7.3. benchmark via SSH tunnel

This section describes executing the legacy benchmark example using the compatibility

layer via an SSH tunnel. The CSEE benchmark example operates functionally identically to

previous benchmark examples for Solo XC and Solo+. The benchmark example will transact

asynchronously with the module running multiple threads processing transactions. The
benchmark example will output transactions/second data every second.

1. Generate a simple key for signing a ticket in the bm-machine on the module:

sudo /opt/nfast/bin/generatekey --module=1 simple type=RSA pubexp=3 ident=signingkeybenchmark
plainname=signingkeybenchmark protect=module nvram=no size=2048

2. Generate an SSHD key for the benchmark example:

mkdir ~/examplekeys/

ssh-keygen -t ecdsa -f ~/examplekeys/benchmark_ecdsa_key

3. Modify the network-conf. json of the benchmark example to configure SSH tunneling,

for example:

cat ~/buildmodule/n5/csee/benchmark/module/network-conf.json

{
"incoming": {
"tep":
{
"protos": ["ipv6"],
"ports": [8888]
}
B
"outgoing" : {
"tep" :
{
"protos": ["ipv6"],
"ports": []
}
B
"ssh_tunnel" : {
"container_port" : 8888
}
}

CodeSafe 5 v13.6.11 Developer Guide

45/86

Chapter 8. Build and sign example SEE machines on Linux

When the container server app accepts a client connection on the
specified incoming port (8888), it designates and responds to the
0 client on an ephemeral port in the range [32768-60999] as the out-
going port. This port does not have to be defined in the network-
conf.json.

4. Rebuild the .csb image with the updated network-conf.json:

sudo /opt/nfast/bin/csadmin image generate --package-name "bm-machine" --entry-point /usr/bin/entrypoint
--network-conf ~/buildmodule/n5/csee/benchmark/module/network-conf.json --packages-conf
~/buildmodule/n5/csee/benchmark/module/extra-packages-conf.json --version-str 1.0 --rootdir
~/buildmodule/n5/csee/benchmark/module/container/ ~/buildmodule/n5/csee/benchmark/module/bm-machine.cs5

Most paths used in generating the new image are paths to the file locations on the host
that is building the image. However, the --entry-point path is the absolute path to the
entrypoint file within the container and should be /usr/bin/entrypoint, not ~/build-
module/n5/csee/benchmark/module/container/usr/bin/entrypoint.

5. Sign the .csb image using devcert and askeys:

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5
~/buildmodule/n5/csee/benchmark/module/bm-machine.cs5

6. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5

Example output:

FEDC-BA@9-8765: Uploading ~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5
FEDC-BA09-8765: creating machine

FEDC-BAB9-8765 SUCCESS

UUID: fedcba®9-8765-4321-1234-567890abcdef

The output of csadmin load contains the UUID of the loaded container. This UUID will
be required for starting the container and managing the SSHD keys of the container.
The UUID can always be retrieved from the output of csadmin list.

7. Load the public key created earlier (benchmark_ecdsa_key) to the container using csad-
min sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba®9-8765-4321-1234-567890abcdef --keyfile
~/examplekeys/benchmark_ecdsa_key.pub

CodeSafe 5 v13.6.11 Developer Guide 46/86

Chapter 8. Build and sign example SEE machines on Linux

8. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba@9-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
SSHD PORT: 6789
LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa

0 The output of sshd state enable contains the SSHD port number
and the listening address of the container SSHD.

9. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba@9-8765-4321-1234-567890abcdef

Example output:

FEDC-BAB9-8765 SUCCESS
IP ADDRESS: ffffi:fff:ffffiffff:ffff

The IPv6 address of the started container appears in the output of the csadmin start
command. It can also be found in the output of csadmin 1list and csadmin stats.

10. Setup the SSH tunnel on the host:

Run csadmin sshd state get and collect the following information:

° Container tunnel address (ffff::fff:ffff:ffff:ffff)
° Container port (8888)

° SSHD port (6789)

° SSHD listening address (aaaa: :aa:aaaa:aaaa:aaaa)

0 On nShield Connect the SSHD listening address may be an IPv4 or
IPv6 address

Next, choose a local IP address and port number through which to access the tunnel.
Typically localhost is chosen as the local IP address (127.0.0.Tor [::1])

The SSH tunnel command is formatted as follows:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_PORT:[TUNNEL_ADDRESS%1xcbr@]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

CodeSafe 5 v13.6.11 Developer Guide 47/86

Chapter 8. Build and sign example SEE machines on Linux

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr0]:8888 -f -N -p

6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshieldd

1. Run the host-side application.

When using nShield 5s the IPv6 address is link-local and requires
the zone index to be appended (typically %nshield@).

The host-side application takes three required optional arguments and two positional

arguments. The required optional arguments are the IPv6 address set up in the forward

ing above [::1] (--ipv6), the UUID of the container (--uuid), and the path to the

signed .cs5 image (--csb). The required positional arguments are the simple signing

key created earlier.

~/buildhost/n5/csee/benchmark/hostside/bm-test --uuid fedcba@9-8765-4321-1234-567890abcdef --ipvb ::1 --csb

~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5 simple signingkeybenchmark

Example output:

Worldid: ©@x1234abcd
759 759.00
761.
787.
831.
847.
854.
849.
840.
842.
0 8408 840.80

1522
2361
3324
4238
5124
5948
6723
7579

= O 00 NOoO Ul A~ WN =

00
00
00
60
00
Al
38
1

CodeSafe 5 v13.6.11 Developer Guide

48/86

Chapter 9. Build and sign example SEE machines on Windows

9. Build and sign example SEE machines on
Windows

9.1. Prerequisites

» Visual Studio 2022 buildtools

CMAKE version 3.9 or newer
+ Ninja build system latest version

- Visual Studio 2022 workload-vctools

9.2. Building Windows CodeSafe C, CSEE, and NETSEE
examples

1. Start the Developer Command Prompt for VS 2022 as Administrator from the Start
menu.

2. Navigate to the following directory:

cd "c:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\Common7\Tools"

3. Install the MSVC C and C++ compiler cl.exe.
4. Execute VsDev(Cmd.bat:

VsDev(md.bat

5. Runcl:

cl

6. Because the default is 32bit mode, the version displayed will show x86. Change to
64bit c1 Compiler:

cd "c:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Auxiliary\Build"

7. Execute vcvars64.bat:

vevars64.bat

CodeSafe 5 v13.6.11 Developer Guide 49/86

Chapter 9. Build and sign example SEE machines on Windows

8. Run cl and verify that the x64 version is displayed:

cl

you can build the following examples in the same VS2022 Command window:

9.2.1. Host-side examples

c:\>mkdir examples\host
c:\>cd c:\examples\host\

c:\examples\host>cmake -G Ninja -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=cl "c:\Program
Files\nCipher\nfast\c\csd5\examples"

c:\examples\host>ninja

9.2.2. Module-side examples

c:\>mkdir examples\module
c:\>cd c:\examples\module\

c:\examples\module>cmake -G "Ninja" -DCMAKE_TOOLCHAIN_FILE="c:\Program Files\nCipher\nfast\c\csd5\cmake\codesafe-
toolchain-nshield5-csee.cmake” "c:\Program Files\nCipher\nfast\c\csd5\examples"

c:\examples\module>ninja

9.3. CS5 images for Python examples

Build the following images in the V52022 Command window configured in Building Win-
dows CodeSafe C, CSEE, and NETSEE examples. You do not need to build host-side and
module-side Python examples separately. They are both built into examples\python\n5\net-
see\<example>\.

c:\>mkdir examples\python
c:\>cd c:\examples\python\

non

c:\examples\python>cmake -G "Ninja" "c:\Program Files\nCipher\nfast\python3\csd5\examples"

c:\examples\python>ninja

For example:

c:\examples\python\n5\netsee\tickets>dir
Volume in drive C is 0S

CodeSafe 5 v13.6.11 Developer Guide 50/86

Chapter 9. Build and sign example SEE machines on Windows

Volume Serial Number is 582A-CFB6 Directory of c:\examples\python\n5\netsee\tickets 03/21/2023 12:32 PM <DIR>

03/21/2023 12:32 PM <DIR> a0
03/21/2023 12:32 PM <DIR> hostside

03/21/2023 12:32 PM <DIR> module
0 File(s) 0 bytes

4 Dir(s) 906,165,829,632 bytes free

9.4. Sign CodeSafe images

0 Signing CodeSafe Images requires a Security World and Operator Card
Set (OCS).

1. Insert the OCS card.
2. Create a certificate signing request (CSR) that should be sent to Entrust to be signed:

c:\ca_ids\>csadmin ids create --keyname testdeveloperkey --x509cname developer.entrust.com --x509country US
--x509province FL --x5091ocality Shakopee --x5090rg Entrust --x509orgunit "Entrust CodeSafe"
Generate key 'testdeveloperkey' ...

Loading ‘Test0CS':

Module 1: @ cards of 1 read
Module 1 slot @: empty

Card reading complete.

0K

Generate a CSR in 'testdeveloperkey.csr' ...

0K

Created CSR file 'testdeveloperkey.csr'. Please send it to Entrust Support

The developer ID creation in this example was done with Test0CS,
quorum of 1/1. Exact output may vary slightly with different OCS

quorums.

3. Send the resulting CSR to customer support to be signed by Entrust. You must obtain
the signed developer ID certificate in order to sign and load an application.

For more detailed information on Developer IDs and CSRs, see Sign and deploy Code-
Safe 5 SDK apps using csadmin.

4. Create the ASK on the HSM (the name of the key in this example is test-ask). The fol-
lowing example specifies the key to be protected by the module. However, end users
are encouraged to protect the key with an OCS:

c:\ca_ids>C:\Progra~1\nCipher\nfast\bin\generatekey.exe --module=1 simple type=ECDSA curve=NISTP521
ident=test-ask plainname=test-ask

protect: Protected by? (token, module) [token] > module

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >

key generation parameters:

operation Operation to perform generate

CodeSafe 5 v13.6.11 Developer Guide 51/86

Chapter 9. Build and sign example SEE machines on Windows

application Application simple
protect Protected by module
verify Verify security of key yes

type Key type ECDSA
ident Key identifier test-ask
plainname Key name test-ask
nvram Blob in NVRAM (needs ACS) no

curve Elliptic curve NISTP521

Key successfully generated.
Path to key: C:\ProgramData\nCipher\Key Management Data\local\key_simple_test-ask

5. Confirm that the keys were created in the previous step:

c:\ca_ids>nfkminfo -k

Key list - 2 keys

AppName simple Ident test-ask

AppName simple Ident testdeveloperkey

6. Sign the netsee\tickets example. You need the signed cert.pem from customer sup-
port for this step and the OCS card must be inserted for signing.

c:\examples\module\n5\netsee\tickets_netsee\module>csadmin image sign --askeyname test-ask --devkeyname
testdeveloperkey --devcert c:\ca_ids\testdeveloperid_cert.pem --out seetickets_netsee-signed-with-hsm.cs5
seetickets_netsee.csh

INFO: Reading CS5 file contents...

INFO: Getting key handle from HSM...

INFO: Signing the Application Signing Key...

INFO: hashing contents using 'SHA512Hash'

INFO: Obtaining public key data from HSM...

INFO: Storing public key data on CS5 file...

INFO: Getting key handle from HSM...

INFO: Requesting signature from HSM...

INFO: Saving CS5 file to disk...

INFO: file 'seetickets_netsee.cs5' was signed successfully!

Directory of c:\examples\module\n5\netsee\tickets_netsee\module

02/16/2023 03:53 PM 27,167,860 seetickets_netsee-signed-with-hsm.cs5
1 File(s) 27,167,860 bytes
0 Dir(s) 775,613,321,216 bytes free

7. Install the developer ID certificate chain from Entrust using csadmin ids add:

csadmin ids add entrust_developerid_cert_chain.pem
FEDC-BA@9-8765 SUCCESS

csadmin ids list

FEDC-BA@9-8765 SUCCESS

Certificates:

{'serialNumber': '1", 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'abcdef12345678900987654321fedcbaabedef12', 'authKeyid': '0987654321fedcbaabcdef123456789009876543"
'notBefore': '2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}

{'serialNumber': '2", 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'1234567890abcdeffedcbad98765432112345678", 'authKeyid': 'fedcba09876543211234567890abcdeffedcadd8’,
'notBefore': '2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}

CodeSafe 5 v13.6.11 Developer Guide 52/86

Chapter 9. Build and sign example SEE machines on Windows

8. Execute netsee\tickets:

c:\examples\module\n5\netsee\tickets_netsee\module>csadmin load seetickets_netsee-signed-with-hsm.cs5
FEDC-BAB9-8765: Uploading seetickets_netsee-signed-with-hsm.cs5

FEDC-BA@9-8765: creating machine

FEDC-BA@9-8765 SUCCESS

UUID: fedcba@9-8765-4321-1234-567890abcdef

c:\examples\module\n5\netsee\tickets_netsee\module>cd c:\examples\host\n5\netsee\tickets_netsee\hostside

c:\examples\host\n5\netsee\tickets_netsee\hostside>nopclearfail -a0
Module 1, command ClearUnitEx: OK

c:\examples\host\n5\netsee\tickets_netsee\hostside>csadmin start -u fedcba®9-8765-4321-1234-567890abcdef
FEDC-BA@9-8765 SUCCESS
IP ADDRESS: ffff::fff:ffff:ffff:ffff

c:\examples\host\n5\netsee\tickets_netsee\hostside>csadmin list
FEDC-BA@9-8765
UuID State Name IP Address

fedcba@9-8765-4321-1234-567890abcdef RUNNING seetickets_netsee ffffi:fffiffff:ffff:ffff

c:\examples\host\n5\netsee\tickets_netsee\hostside>hosttickets_netsee.exe -p 8888 -U fedcba@9-8765-4321-
1234-567890abcdef -i ffff::fff:ffff:ffff:ffff%10 -c
c:\examples\module\n5\netsee\tickets_netsee\module\seetickets_netsee-signed-with-hsm.cs5
WSAStartup() Success.

HostSide>Enter string to be encrypted (8 characters maximum): hello

HostSide>Reading Identities from container

HostSide>Generating RSA keypair

HostSide>Creating World: init status was @ (OK)

HostSide>Sending ticket for private RSA key to module

HostSide>Sending key blob to module

HostSide>Sending cipher-text to module

HostSide>decrypted cipher text received from SEE machine:

"hello"

HostSide>Thank you for watching. The end.

CodeSafe 5 v13.6.11 Developer Guide 53/86

Chapter 10. Build and run Java examples

10. Build and run Java examples

The following Java examples are included:

- BenchMark5
« Echo5

+ HelloWorld5
« HostTickets5

10.1. Prerequisites

The following versions of Java have been tested to work with, and are supported by, your
nShield Security World Software:

- Java8 (or Java 1.8x)
- Javall
- Javal/
- Java2i

Ensure that Java is installed before you install the Security World software. The Java exe-
cutable must be on your system path.

If you can do so, please use the latest Java version currently supported by Entrust that is
compatible with your requirements. Java versions before those shown are no longer sup-
ported.

10.2. The Java interface

The Java interface works with the same SEE machines as the C compatibility interface, see
Compatibility layer for legacy SEE machines. These examples work with the SEE machines
built in Build and sign example SEE machines on Linux and Build and sign example SEE
machines on Windows.

CodeSafe5 uses SEEWorld5 instead of SEEWorld and SEE5Connection instead of EasyCon
nection. The SEE5Connection constructor takes the same arguments as the EasyConnec-
tion constructor. The only difference in behavior between SEE5Connection and EasyCon-
nection is the handling of SEEJob commands: if a SEE5Connection has an open socket,
SEEJob commands are diverted to the socket. This is the same as the legacy SEE machine
interface. SEE5Connection can only route to a single module. World ID is ignored.

CodeSafe 5 v13.6.11 Developer Guide 54/86

Chapter 10. Build and run Java examples

If you are supplying a SEE5Connection to the SEE5World constructor,
do not open the socket. The SEE5World constructor opens the socket
o and it will fail if the socket is already open.

The interface supports multi-threaded access to the SEE machine with

asynchronous command processing. There is no timeout on commands,

so if no reply is received, threads could be blocked indefinitely.

10.3. Build the examples

The Java example files are in the nCipherKM-See-Examples.jar in opt/nfast/java/examples
(Linux) or $NFAST_HOME%\java\examples (Windows).

Extract and compile the examples:

Linux

cd /opt/nfast/java/examples

jar xf nCipherKM-SEE-Examples.jar

jar xf ../classes/nCipherkM-jhsee.jar

javac -cp /opt/nfast/java/classes/nCipherkM.jar com/ncipher/see/hostside/*.java
javac -cp .:/opt/nfast/java/classes/nCipherKM.jar
com/ncipher/see/hostside/examples/benchmark5/BenchMark5.java

javac -cp .:/opt/nfast/java/classes/nCipherKM.jar com/ncipher/see/hostside/examples/echo5/Echo5.java
javac -cp .:/opt/nfast/java/classes/nCipherKM.jar
com/ncipher/see/hostside/examples/hellowor1d5/HelloWor1d5. java

javac -cp .:/opt/nfast/java/classes/nCipherKM.jar
com/ncipher/see/hostside/examples/hosttickets5/HostTickets5. java

Windows

cd %NFAST_HOME%\java\examples

jar xf nCipherKM-SEE-Examples.jar

jar xf ..\classes\nCipherkM-jhsee.jar

javac -cp "%NFAST_HOME%\java\classes\nCipherkM.jar com\ncipher\see\hostside*.java"
javac -cp "%NFAST_HOME%\java\classes\nCipherkM.jar A
com\ncipher\see\hostside\examples\benchmark5\BenchMark5.java"

javac -cp "%NFAST_HOME%\java\classes\nCipherkM.jar A com\ncipher\see\hostside\examples\echo5\Echo5.java"
javac -cp "%NFAST_HOME%\java\classes\nCipherkM.jar A
com\ncipher\see\hostside\examples\hellowor1d5\HelloWor1d5.java"

javac -cp "%NFAST_HOME%\java\classes\nCipherkM.jar A
com\ncipher\see\hostside\examples\hosttickets5\HostTickets5.java"

10.4. Run the examples

All the examples take the following arguments:

« ipAddress: The IPv6 address of the container. This can be obtained by running csadmin
list --esn <module-esn>, assuming that the SEE machine has been started.

CodeSafe 5 v13.6.11 Developer Guide 55/86

Chapter 10. Build and run Java examples

« UUID: This can be obtained by running csadmin list.

- see-signing-key-hash (without spaces): This can be obtained by running npkgtool
inspect with the signed SEE machine.

The key hash is on the .data.hash=line.
For example:

$ npkgtool inspect hello-signed.cs5

NpkgRecord.item.tag= KeyData
.value.keyname= ask
.use= FileSignature
.hashid.mech= SHA1THash
.data.hash= XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

All examples can be run with the following help options:

+ -h, --help: Displays the help message.
- -v, --version: Displays the version number of this program.

+ -U, --usage: Displays a brief usage summary.
Before running the examples, ensure that you are in the examples directory:

Linux

cd /opt/nfast/java/examples

Windows

cd %NFAST_HOME%\java\examples

10.4.1. BenchMark5

BenchMark5 is a simple demonstration of a Java hostside app for benchmarks.

Linux

java cp .:/opt/nfast/java/classes/nCipherkM.jar com.ncipher.see.hostside.examples.benchmark5.BenchMark5
[options] <ipAddress> <see-signing-key-hash> <key-app>

Windows

java cp "%NFAST_HOME%\java\classes\nCipherkM.jar A
com\ncipher\see\hostside\examples\benchmark5\BenchMark5 [options] <ipAddress> <UUID> <see-signing-key-hash>
<key-app>"

CodeSafe 5 v13.6.11 Developer Guide 56/86

Chapter 10. Build and run Java examples

Options:
« -m, --module=MODULE: Use module MODULE.

Default: 1

« -5, --s1ot=SLOT: Use slot SLOT for operator cards.
Default: O

« -t, --threads=THREADS: Use THREADS threads.
Default: 32

« -1, --iterations=ITERATIONS: Each thread will perform ITERATIONS iterations.
Default: 100

« -1, --1logfile=LOGFILE: Record public key and timestamps in file LOGFILE.
Arguments:

- key-app: The key to be used to encrypt the data. This must be an RSA key, for example
simple rsa2k. See generatekey for more information.

For example:

$ java cp .:/opt/nfast/java/classes/nCipherKM.jar com.ncipher.see.hostside.examples.benchmark5.BenchMark5 -1 10
XXXX 2 EXXXEXXXXEXXXX :XXXX%NSh1e1d0 XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX XX
simple rsa2k

Generating 320 Timestamps Using 32 threads

Sending ticket...

Threads started...

Finished!

10.4.2. Echo5

Echob is a simple demonstration of a Java hostside app for performance testing.

Linux

java cp .:/opt/nfast/java/classes/nCipherkM.jar com.ncipher.see.hostside.examples.echo5.Echo5 [options]
<ipAddress> <UUID> <see-signing-key-hash>

Windows

java cp "%NFAST_HOME%\java\classes\nCipherkM.jar A
com\ncipher\see\hostside\examples\echo5\Echo5 [options] <ipAddress> <UUID> <see-signing-key-hash>

Options:

« -m, --module=MODULE: Use module MODULE.
Default: 1

CodeSafe 5 v13.6.11 Developer Guide 57/86

https://nshielddocs.entrust.com/security-world-docs/v13.6.11/utilities/generatekey.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/utilities/generatekey.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/utilities/generatekey.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/utilities/generatekey.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.11/utilities/generatekey.html

Chapter 10. Build and run Java examples

« -t, --threads=THREADS: Use THREADS threads.
Default: 32

+ -p, --payload=PAYLOAD: Send PAYLOAD bytes.
Default: 32

« -1, --iterations=ITERATIONS: Each thread will perform ITERATIONS iterations.
Default: 100

- -e, --verify: Verify that the returned value matches the value sent.

For example:

$ java cp .:/opt/nfast/java/classes/nCipherKM.jar com.ncipher.see.hostside.examples.echo5.Echo5 -i 10

XXXX D IXXXEXXXX P XXXX P XXXX%NSh1e1dO XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX XX
Threads = 32 Payload = 32 bytes Iterations = 10 Verify replies = OFF

320 jobs in 0.04 seconds = 9006.18 jobs/Second, 288198 bytes/second

10.4.3. HelloWorld5

HelloWorld5 is a simple demonstration of a Java hostside app talking to a C SEE machine. It
takes the text from an <inputFile> and outputs it with all the lower-case text converted to
upper-case text.

0 The HelloWor1ld5. java example is not intended for use as the basis for
real world applications.
Linux

java cp .:/opt/nfast/java/classes/nCipherkM.jar com.ncipher.see.hostside.examples.helloworld5.HelloWorld5
[options] <inputFile> <ipAddress> <UUID> <see-signing-key-hash>

Windows

java cp "%NFAST_HOME%\java\classes\nCipherkM.jar A
com\ncipher\see\hostside\examples\helloworld5\HelloWorld5 [options] <inputFile> <ipAddress> <UUID> <see-
signing-key-hash>"

Options:

« -m, --module=MODULE: Use module MODULE.
Default: 1

For example:

$ cat /tmp/testfile.txt

lowercase

$ java cp .:/opt/nfast/java/classes/nCipherkM.jar com.ncipher.see.hostside.examples.helloworld5.HelloWor1d5
/tmp/testfile.txt xxxx:ixxX:xxXX:XXXX:xXXXx%nshieldd XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

CodeSafe 5 v13.6.11 Developer Guide 58/86

Chapter 10. Build and run Java examples

XXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXXX
LOWERCASE

10.4.4. HostTickets5

HostTickets5 is a simple demonstration of a Java hostside app using tickets.

Linux

java cp .:/opt/nfast/java/classes/nCipherkM.jar com.ncipher.see.hostside.examples.hosttickets5.HostTickets5
[options] <ipAddress> <UUID> <signing-key-hash>

Windows

java cp "%NFAST_HOME%\java\classes\nCipherkM.jar A
com\ncipher\see\hostside\examples\hosttickets5\HostTickets5 [options] <ipAddress> <UUID> <see-signing-key-
hash>"

Options:

o -m, --module=MODULE: Use module MODULE.
Default: 1

+ -5, --string=STRING: String to be encrypted.
If you do not use this option, you will be prompted for a string when you execute the

command.

for example:

$ java -cp .:/opt/nfast/java/classes/nCipherKM.jar com.ncipher.see.hostside.examples.hosttickets5.HostTickets5
-S encryptme XXXX::XXX:XXXX:XXXX:XXXX%NShieldd XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXXX

String to be encrypted = encryptme

Sending ticket...

Sending blobbed key...

Sending encrypted text...

Decrypted text = encryptme

CodeSafe 5 v13.6.11 Developer Guide 59/86

Chapter 11. Debug CodeSafe 5 SEE machines

11. Debug CodeSafe 5 SEE machines

csadmin exposes several commands you can use to manage SEE application logging.

The following SEE logging-related commands are supported by the csadmin utility.

11.1. config log set enabled

The config log set enabled command should be issued before the start command. It
uses the following format:

/opt/nfast/bin/csadmin config set log enabled -u <SEE-machine-UUID> --esn <host-ESN>

« <SEE-machine-UUID> is the UUID of the SEE machine created by the load command.
+ <host-ESN> is the ESN of the HSM hosting the SEE Machine.

For example:

/opt/nfast/bin/csadmin config set log enabled -u fedcba@9-8765-4321-1234-567890abcdef --esn FEDC-BA@9-8765

When successful, the command returns with no error.

11.2. config log set disabled

The config log set disabled command should be issued while the SEE machine is not run
ning. It uses the following format:

/opt/nfast/bin/csadmin config set log disabled -u <SEE-machine-UUID> --esn <host-ESN>

« <SEE-machine-UUID> is the UUID of the SEE machine created by the load command.
+ <host-ESN> is the ESN of the HSM hosting the SEE Machine.

For example:

/opt/nfast/bin/csadmin config set log disabled -u fedcba@9-8765-4321-1234-567890abcdef --esn FEDC-BAB9-8765

When successful, the command returns with no error.

11.3. log get

CodeSafe 5 v13.6.11 Developer Guide 60/86

Chapter 11. Debug CodeSafe 5 SEE machines

The get command returns the current SEE log contents, if any. It uses the following format:

/opt/nfast/bin/csadmin log get -u <SEE-machine-UUID>

<SEE-machine-UUID> is the UUID of the SEE machine created by the load command.

For example:

/opt/nfast/bin/csadmin log get -u fedcba®9-8765-4321-1234-567890abcdef
FEDC-BA@9-8765 SUCCESS
Success: Started ipcdaemon

11.4. log clear

The clear command deletes the current SEE log file if present. It uses the following format:

/opt/nfast/bin/csadmin log clear -u <SEE-machine-UUID>

<SEE-machine-UUID> is the UUID of the SEE machine created by the load command.

For example:

/opt/nfast/bin/csadmin log clear -u fedcba®@9-8765-4321-1234-567890abcdef
FEDC-BA@9-8765 SUCCESS
log: log cleared

CodeSafe 5 v13.6.11 Developer Guide 61/86

Chapter 12. Uninstall the CodeSafe 5 SDK

12. Uninstall the CodeSafe 5 SDK

Do not uninstall Security World or CodeSafe 5 software unless you are

certain it is no longer required or you are going to upgrade it.

o If you are using CodeSafe 5 with an nShield 5s HSM, you must back up
its sshadmin keys by running hsmadmin keys backup before you uninstall
Security World or CodeSafe 5.

The uninstaller only removes files that were created during the installation. To remove key
data or Security World data, navigate to the installation directory and delete the files in the
%NFAST_KMDATA% folder.

If you intend to remove your Security World before uninstalling the Security World Soft-
ware, Entrust recommends that you erase the OCS before you erase the Security World or
uninstall the Security World Software. Except where Remote Administration cards are used,
after you have erased a Security World, you can no longer erase any cards that belonged to
it.

1. Log in to the host computer as Administrator or as a user with local administrator
rights.

2. Run the following command to erase the OCS:

createocs -mff -s@ --erase

Where # is the module number.
3. Uninstall the Security World and CodeSafe software:
° Linux:

Run the following command:

/opt/nfast/sbin/install -u

° Windows:
1. Navigate to the Windows Control Panel, and select Programs and Features.

2. Select the Security World Software entry, then select Uninstall to remove the
software.

If required, you can safely remove the nShield module after shutting down all connected
hardware.

CodeSafe 5 v13.6.11 Developer Guide 62/86

Chapter 13. Port existing CodeSafe application to CodeSafe 5

13. Port existing CodeSafe application to
CodeSafe 5

Follow the steps in this chapter if you need to port an existing legacy SEE machine to run
on CodeSafe 5.

The porting of legacy CodeSafe application examples in this chapter assumes the perspec-
tive of a CodeSafe application developer. CodeSafe users wanting to port legacy third
party CodeSafe applications to nShield 5 might need to have the third party issuer of said
legacy CodeSafe applications port the applications and sign the ported applications.

CodeSafe users porting third party applications should ensure that the third party Code-

Safe developer is a trusted party, and should verify that the ported CodeSafe image has a
genuine certificate issued by the trusted developer. After a third party CodeSafe applica-
tion is ported and signed, the application user can skip to the "Load the signed container"
step in the following examples and continue the procedures from there.

Full examples of legacy SEE machines that have been ported with use of the compatibility
layer can be found in Build and sign example SEE machines on Linux. These Classic SEE
"CSEE" examples are legacy examples that have been modified to run with CodeSafe 5
specifically to demonstrate use of the compatibility layer. In all other ways, these examples
are identical to examples provided with previous iterations of nShield HSMs and CodeSafe.

It is assumed that an ASK and developer ID key have already been gener
ated, and that required certificates have already been obtained from
Entrust and installed into the target HSM.

13.1. The compatibility layer

Legacy CodeSafe transacted data between host application and module SEE machines
using SEEJobs. SEEJobs were sent from the host-side application to the nCore APl which
then passed the jobs on to the SEE machine, and vice versa. CodeSafe 5 removes the need
to communicate with SEE machines via the nCore API using SEEJobs.

Instead, CodeSafe 5 allows a network connection to be established directly between a
host-side application and an SEE machine. As such, support for transacting SEEJobs, and all
related methods has been removed from CodeSafe 5.

The compatibility layer provides support for SEEJobs. All methods that dealt with transact-
ing exist in the compatibility layer, but instead of passing SEEJobs to the nCore API and hav
ing the nCore API forward them, the Compatibility layer creates a network connection

CodeSafe 5 v13.6.11 Developer Guide 63/86

Chapter 13. Port existing CodeSafe application to CodeSafe 5

between the SEE machine and host application.

The methods function similarly, but the mechanism for data transaction has been updated.
The compatibility layer is split into two parts: the module-side compatibility layer, and the
host-side compatibility layer. Both parts work together to provide support for legacy SEE

machines.

The module-side SEE machine and corresponding host-side application
must both be ported successfully for them to function on CodeSafe 5.
It is not sufficient to port one side but not the other.

13.1.1. Module-side compatibility layer

The module-side compatibility layer provides the methods necessary to connect the SEE
machine to the host-side application via network connection.

The module-side compatibility layer comprises the 1iblegacy_compatibility.a library. Its
install location is:

« Linux: /opt/nfast/c/csd5/1ib-ppcb4-Tinux-musl/
« Windows: C:\Program Files\nCipher\nfast\c\csd5\1ib-ppc64-Tinux-musl\

13.1.2. Host-side compatibility layer

The host-side compatibility layer provides the methods necessary to connect the host-side
application to the SEE machine via network connection.

The host-side compatibility layer comprises the following files:

+ legacy-csee-host-side-compatibility.h

+ legacy-csee-host-side-compatibility.c
Their install location is:

« Linux: /opt/nfast/c/csd5/examples/csee/utils/hostside/
+ Windows: C:\Program Files\nCipher\nfast\c\csd5\examples\csee\utils\hostside\

13.2. Required module-side changes for porting

To port a legacy SEE machine to CodeSafe 5, only a single line change is required in code.

Initialize the compatibility layer by calling SEE1ib_Legacy_Support_Init() after SEE1-

CodeSafe 5 v13.6.11 Developer Guide 64/86

Chapter 13. Port existing CodeSafe application to CodeSafe 5

ib_Init() is called but before any legacy methods such as SEE1ib_AwaitJob() are called.
This waits for a compatible host-side application to connect before proceeding.

An example SEE machine main() properly initializing the compatibility layer:

int main(void) {

/* initialize the SEE environment */
SEETib_init();

/* initialize legacy SEE support */
SEE1ib_Legacy_Support_Init("8888");

/* The compatibility layer is initialized
carry on with SEE machine operation */
Perform_SEE_Machine_Tasks();

return 0;
}
By default, all provided example SEE machines communicate through
port 8888. You can use any port when initializing the compatibility layer,
0 however you must ensure that the host-side application compatibility
layer is passed and attempts to connect to the same port number as the
one initialized on the module-side.

After the compatibility layer has been initialized, all SEEJob-related methods, such as SEE1-
ib_ReturnJob() or SEE1ib_AwaitJob(), will work. No further changes in code are required
for legacy SEE machines to run using CodeSafe 5.

A full list of methods the compatibility layer provides support for can be
found in the "SEE Machine Module Side Compatibility Layer" section of
SEE APl documentation.

13.3. Required host-side changes for porting

Porting host-side applications to CodeSafe 5 requires changes to some method calls, in
addition to the initialization.

13.3.1. Initialization

Initialize the host-side compatibility layer using the following command:

netsee_initialize_legacy_seejob_support(const char * cseeContainerMachineIPv6, const char *
cseeContainerMachinePort)"

It takes two arguments:

CodeSafe 5 v13.6.11 Developer Guide 65/86

Chapter 13. Port existing CodeSafe application to CodeSafe 5
« The SEE machine container IP, which can be found using csadmin list
« The SEE machine port number

The port number must match the port number passed on to the module-side compatibility
layer when the module-side compatibility layer is initialized.

The container IP must be passed to the host-side application. You can pass it in as a com-
mand line argument, as in the classic SEE examples described in Build and sign example SEE
machines on Linux, however the exact implementation is the decision of the porting devel-
oper.

13.3.2. Replacing SEEJob-related method calls

Unlike the module-side compatibility layer, which allows all SEEJob-related method calls to
be called without changes, porting the host-side requires certain method calls to be
updated.

This is because the compatibility layer's replacement methods need to replace the role of
the nCore APl and send SEEJobs to and from the SEE machine’s module-side compatibility
layer.

The methods specific to the nCore API that host-side applications previously used to trans-
act SEEJobs still exist to communicate with the nCore API, but no longer support SEEJobs.

o Only nCore API calls for SEEJobs need to be updated. Other unrelated
calls to the nCore API do not need to be modified.

Host-side compatibility calls no longer require the NFastApp_Connection and NFast_Call_-
Context arguments to be passed in, as demonstrated in the following examples.

For more detailed descriptions of these methods, see the "Compatibility layer APl Host-
side" section of SEE API documentation.

13.3.2.1. NFastApp_Submit()
Replace SEEJob calls to NFastApp_Submit() with calls to netsee_submit_legacy_seejob().

For example:

NFastApp_Submit(nc, NULL, &cmd, &reply, &tctx);

Becomes:

CodeSafe 5 v13.6.11 Developer Guide 66/86

Chapter 13. Port existing CodeSafe application to CodeSafe 5

netsee_submit_legacy_seejob(&cmd, &reply, &tctx);

13.3.2.2. NFastApp_Wait()
Replace SEEJob calls to NFastApp_Wait() with calls to netsee_wait_legacy_seejob().

For example:

NFastApp_Wait(conn, NULL, &replyp, &tctxp);

Becomes:

netsee_wait_legacy_seejob(&replyp, &tctxp);

13.3.2.3. NFastApp_Transact()

Replace SEEJob calls to NFastApp_Transact() with calls to netsee_transact_legacy_see-
job().

For example:

NFastApp_Transact(conn, NULL, &cmd, &reply, &tctx);

Becomes:

netsee_transact_legacy_seejob(&cmd, &reply, &tctx);

13.3.2.4. simple_transact()

Replace SEEJob calls to simple_transact() with calls to netsee_simple_transact_lega-
cy_seejob().

For example:

simple_transact(conn, NULL, &cmd, &reply, 1);

Becomes:

netsee_simple_transact_legacy_seejob(&emd, &reply, 1);

CodeSafe 5 v13.6.11 Developer Guide 67/86

Chapter 13. Port existing CodeSafe application to CodeSafe 5

13.4. Rebuilding and Recompiling

After the host-side application and module-side SEE machine compatibility layers have
been properly initialized, and all host-side SEEJob method replacements have been made in
the code, both the host-side application and the module-side SEE machine should be
rebuilt with their respective compatibility layers properly linked and included.

The provided Classic SEE examples are practical examples of how the compatibility layer
should be implemented, and how the compatibility layer libraries and files should be linked
the build chain creating the SEE machine.

13.4.1. Rebuilding host-side

Include legacy-csee-host-side-compatibility.h in host-side application scripts that are
being ported. Recompile host-side applications so that legacy-csee-host-side-compatibil
ity.cisincluded in the source.

13.4.2. Rebuilding Module Side

Link the compatibility layer library 1iblegacy_compatibility.a to the module-side SEE
machine after the changes to the SEE machine source code have been made to initialize
the compatibility layer.

CodeSafe 5 v13.6.11 Developer Guide 68/86

Chapter 14. Supporting legacy CodeSafe Direct

14. Supporting legacy CodeSafe Direct

CodeSafe Direct is no longer available in CodeSafe 5. The following sections describe the
usage of legacy CodeSafe Direct and how similar functionality is accomplished via Code-
Safe 5.

14.1. Legacy CodeSafe Direct

Originally, the application would connect to the HSM through the Security World hard-
server. With legacy CodeSafe Direct, the nShield Connect could be configured to receive
direct socket connections to the SEE machine via see-sock-serv, removing the need for a
client machine. You could do this by specifying postload_prog and postload_args in the
load_seemachine section of the nShield Connect hardserver configuration file, located in
NFAST_KMDATA/hsm-<ESN>, where <ESN> is the Electronic Serial Number of the HSM.

14.2. CodeSafe 5

The CodeSafe 5 modern architectural approach provides a container which has an IPC dae-
mon (UNIX domain socket) that is used to send and receive nCore APl commands and
replies. The communication between the host application and CodeSafe 5 container is pro-
vided by a secure SSH daemon making use of port forwarding.

The Cmd_SEEJob nCore APl command is no longer supported by the nCoreAPI service.
Instead, the command is now requested directly from the client application on the host to
the SEE machine using a direct TCP connection. A support library is needed to support this
new connection, and this is part of the compatibility layer.

Containers listening on a specific port via the secure channel is a 'CodeSafe Direct' replace-
ment.

There are cli commands using the ‘csadmin’ utility that can establish the secure SSHD port
forwarding on the host client machine. The cs5-port-monitor will validate and then forward
the ports specified in network-conf. json. See Build and sign example SEE machines on
Linux for examples of using an SSH tunnel to communicate between the client and SEE
machine directly through a TCP/IPv6 network connection to the container. Containers can
be configured to listen to ports using the network-conf.json file.

CodeSafe 5 v13.6.11 Developer Guide 69/86

Chapter 15. SEE API documentation

15. SEE APl documentation

SEE1ib is an API that enables an SEE machine to execute nCore APl commands. Historically,
the SEE11b also provided the functionality which connected SEE machines to their host-
side applications via the nCore API. In CodeSafe 5, SEE11b still provides the methods neces-
sary to execute nCore APl commands, but communication between the SEE machine and
the host-side application is expected to be done using TCP/IPv6 network connections
which are managed directly by the SEE machine. To allow for a more seamless integration
of legacy SEE machines, which previously transacted with their host-side application via
the nCore API, a compatibility layer has been created to automatically manage these legacy

transactions.

The SEET1b API is provided as a library seelib.a that can be found in the
0 rootfs after install. Its install location is /opt/nfast/c/csd5/1ib-ppc64-
linux-musl/seelib.a on Linux.

15.1. Why CodeSafe 5 needs a compatibility layer

The compatibility layer allows pre-existing CodeSafe users to port legacy SEE machines
that were developed for nShield XC or Solo+ HSMs to the CodeSafe 5 environment.

CodeSafe 5 has a Launcher service for managing the SEE container, instead of using nCore
APl commands. All requests related to container (SEE machine) management, for example
to load a new SEE machine onto the HSM or to start, stop, or destroy a SEE machine, are
made directly to the new Launcher service.

Legacy SEE11ib applications previously allocated memory by the Cmd_CreateSEEWor1ld nCore
APl command. In CodeSafe 5, 1launcher receive, launcher create, and launcher start
requests are made to the Launcher service in combination with a new (md_CreateSeeConnec
tion command to the nCore API service to get a SEE machine running and able to communi
cate with the nCore API service.

For CodeSafe 5 applications, the nCore API service does not support the Cmd_SEEJob nCore
APl command. Instead, the command is requested directly from the client application on
the host to the SEE machine using a direct TCP/IPv6 network connection. The compatibility
layer provides support for this new connection method.

CodeSafe 5 does not use the concept of UserData. A developer can include any files, using
any directory structure, in the container image that is installed in the HSM.

CodeSafe 5 v13.6.11 Developer Guide 70/86

Chapter 15. SEE API documentation

15.2. SEEIlib functions

15.2.1. SEElib_init

extern void SEElib_init(void);

This function initializes the SEE11ib library.

6 ‘ This function does not return on error.

15.2.2. SEElib_ReadUserData

extern int SEE1ib_ReadUserData (M_Word offset, unsigned char *buf, M_Word len);

This function reads selected bytes from the UserData block, starting at offset bytes in and
continuing for len bytes. It returns an M_Status value.

UserData in CodeSafe 5 is a file located inside the container (/etc/codesafe.userdata) and
must be added when the image is constructed.

15.2.3. SEElib_ReleaseUserData

extern void SEE1ib_ReleaseUserData(void);

In CodeSafe 5 this function does not do anything. It is only present to satisfy the linker.

15.2.4. SEElib_InitComplete

extern void SEElib_InitComplete(M_Word status);

In CodeSafe 5 this function does not do anything. It is only present to satisfy the linker.

15.2.5. SEElib_StartTransactListener

extern void SEElib_StartTransactListener(void);

This function starts the thread that listens for SEE1ib_Transact calls and dispatches them.
This function must be called before any use is made of SEE1ib_Transact.

CodeSafe 5 v13.6.11 Developer Guide 71/86

Chapter 15. SEE API documentation

15.2.6. SEElib_Transact

extern int SEELib_Transact(struct M_Command *cmd, struct M_Reply *buf);

This function marshals a command, submits it, waits for the response, and unmarshals it
into a reply structure.

15.2.7. SEElib_MarshalSendCommand

extern int SEE1lib_MarshalSendCommand(M_Command *cmd);

This function marshals a command and places it on the input queue for processing by the
nShield core.

The command takes a reference to an M_Command structure, as described in the nCore Code-
Safe APl Documentation.

The SEE machine can submit any of the nCore APl commands listed in the Basic com-
mands and Key-Management commands sections of the nCore CodeSafe APl Documenta
tion except:

+ RetryFailedModule
- GetWhichModule
+ MergeKeyIDs.

If the SEE machine attempts to submit one of these commands, the nShield core returns a
response with the status code NotAvailable.

The SEE1ib_MarshalSendCommand function returns an M_Status value. This value is 0K if the
command was marshalled and transferred to the nShield core correctly.

Do not mix calls to SEE_Transact() and SEE1ib_MarshalSendCommand()
o and SEETib_GetUnmarshalResponse(), because the replies may be misdi-
rected.

15.2.8. SEElib_GetUnmarshalResponse

extern int SEE1ib_GetUnmarshalResponse(M_Reply *buf);

If there is a reply in the input queue for this SEE world, this function returns the first job in
the queue. Otherwise, it blocks and waits for the nShield core to return a job.

CodeSafe 5 v13.6.11 Developer Guide 72/86

Chapter 15. SEE API documentation

On return, M_Reply contains the unmarshalled reply.

The SEE1ib_GetUnmarshalResponse function returns an M_Status value. This value is 0K if the
reply was unmarshalled successfully. The return of this value does not necessarily mean
that the command was completed successfully, only that the reply was unmarshalled. You
must also check the M_Status within the reply.

15.2.9. SEElib_FreeCommand

extern int SEElib_FreeCommand(struct M_Command *cmd);

This function frees a command structure and is equivalent to the generic stub function
NFastApp_FreeCommand (described in the nCore CodeSafe APl Documentation).

15.2.10. SEElib_FreeReply

extern int SEELlib_FreeReply(struct M_Reply *reply);

This function frees a reply structure and is equivalent to the generic stub function NFastAp-
p_FreeReply (described in the nCore CodeSafe APl Documentation).

15.2.11. SEElib_SubmitCoreJob

extern int SEELib_SubmitCoreJob(const unsigned char *data, unsigned int len);

This function puts a job on the input queue for processing by the core. The byte block is
passed in data and 1en. It should be a full marshalled M_Command with a valid tag at the start.

This function returns an M_Status, which is typically OK or BufferFull (if len is too big).

15.2.12. SEElib_GetCoreJdob

extern int SEE1ib_GetCoreJob (unsigned char *buf, M_Word *len_io);

This function blocks and waits for a job submitted to the core to be returned. On entry, buf
points to a buffer of length (*1en_io) max. On exit, if successful, *1en_io is the length of
bytes returned.

This function returns an M_Status, which is typically OK or BufferFull (if len_io is too big).

CodeSafe 5 v13.6.11 Developer Guide 73/86

Chapter 15. SEE API documentation

15.2.13. SEElib_GetUserDatalLen

extern M_Word SEElib_GetUserDatalen (void);
In CodeSafe 5, this function gets the length in bytes of the /etc/userdata.codesafe file in
the filesystem of the container.

If this data has been discarded because SEE1ib_ReleaseUserData() has been called, this
function returns 0.

15.2.14. SEElib_Submit

extern int SEE1ib_Submit(M_Command *cmd, M_Reply *reply, PEVENT ev, SEElib_ContextHandle tctx);

This function submits the command specified in cmd. The transaction listener thread calls
EventSet ev, if evis non-NULL, when the reply returns for this command. The reply is unmar
shalled into reply and tctx is returned to the caller in SEE1ib_Query.

Unlike SEE1ib_SubmitCoreJob this function can be called at the same time as another thread
is blocking in SEE1ib_Transact.

SEE1ib_StartTransactListener must have been called before this function is called.

15.2.15. SEElib_Query

extern int SEET1ib_Query(M_Reply **replyp, SEE1lib_ContextHandle *tctx_r);

This function is called to receive a reply that is being held by the transaction listener thread.
It is typically called after having been woken from EventWait as a result of the transaction lis
tener thread posting to the event passed in to SEE1ib_Submit.

If *replyp is NULL, SEE1ib_Query accepts any returned reply, and *replyp is changed to
point to that reply. If *replyp is not NULL, the function accepts the reply specified; other
replies are queued internally.

tetx_r can be NULL. If it is not, the tctx used when submitting the reply is stored in
*tctx_r. SEETib_Query can return, in addition to the usual return values, TransactionNotYet-
Complete if the reply (or any reply if *replyp was NULL) has not come back from the core
yet.

SEE1ib_StartTransactListener must have been called before this function is called.

CodeSafe 5 v13.6.11 Developer Guide 74/86

Chapter 15. SEE API documentation

15.3. About the SEEIlib compatibility layer

The compatibility layer is provided to help port existing SEE machines and their host-side
applications to the new CodeSafe 5 architecture. The compatibility layer provides support
for legacy methods that dealt with the host-side application/SEE machine connection
(sending SEEJobs between the two and their supporting methods). Because the new Code
Safe 5 architecture has removed the need to send SEEJobs between the host-side applica-
tion and the SEE machine by using the nCore API as an intermediary, these methods are no
longer found in the CodeSafe 5 SEE1ib API.

For detailed examples of the SEElib compatibility layer's use, refer to the provided "CSEE"
or "Classic SEE" examples. These examples are legacy SEE machine examples that have
been ported using the compatibility layer.

15.4. SEE machine module side compatibility layer

The module-side compatibility layer provides a small APl to emulate the deprecated CSEE
methods while using the CodeSafe 5 architecture and TCP/IPv6 network connections
underneath.

To continue to use legacy methods within an SEE machine, the SEE machine must be
recompiled with the compatibility layer library: 1iblegacy_compatibility.a. The default
install location is /opt/nfast/c/csd5/11b-ppcb4-1linux-musl/liblegacy_compatibility.aon
Linux. This library provides support for the legacy SEElib methods described below.

There is only a one-line change that needs to be made within an SEE machine’s source to ini
tialize the compatibility layer. A call to SEE1ib_Legacy_Support_Init(). This call must be
made before any of the legacy SEE1ib calls are made, typically inmain() after SEE1-
ib_init(). After this call is made, all legacy methods operate functionally identically to
legacy versions of CodeSafe, while using TCP/IPv6 network connections behind the scenes.

Do not write new applications using the compatibility layer. The compat
0 ibility layer is provided to simplify the porting of existing legacy applica-
tions to CodeSafe 5.

CodeSafe 5 allows the use of TCP/IPv6 network connections to connect the host-side appli
cation to an SEE machine, simplifying the communication between the two, and expanding
the functionality of the communication between the two. The compatibility layer allows
legacy applications to run using the old style of SEEJobs, but doing so with new applica-
tions is not advised.

CodeSafe 5 v13.6.11 Developer Guide 75/86

Chapter 15. SEE API documentation

15.4.1. SEElib_Legacy_Support_Init

o This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

extern void SEElib_Legacy_Support_Init(const char* PORT);

This function initializes the compatibility layer for legacy SEE machines for use with Code-
Safe 5. This method must be called before any other legacy methods. This method initial-
izes all the support required for legacy SEE machines to function properly.

15.4.2. SEElib_AwaitJob

o This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

extern int SEElib_AwaitJob(M_Word *tag_out, unsigned char *buf, M_Word *1len_io);

This function blocks and waits for the next SEEJob to come in from the host-side applica-
tion. On entry, *buf and *1en_io give the base and length of a buffer area to receive the job.
On return, *1en_io is set to the length delivered (if the job is received successfully). This
buffer is a copy of the seeargs field of the SEEJob that was sent by the host-side applica-
tion.

The *tag_out value is the tag for this command. Each transaction must have a unique tag
when sent from the host-side application to ensure transactions are returned to their
required caller. The generation of unique tags is handled by the host-side compatibility
layer. The tag must be returned in the SEE1ib_ReturnJob so that the host-side compatibility
layer associates the reply with this transaction.

The SEETib_AwaitJob function returns an M_Status, which is 0K on success and normally, but
not always, BufferFull on failure.

6 If you use SEE1ib_StartProcessorThreads(), these function calls are
done automatically and you should not call this function yourself.

15.4.3. SEElib_AwaitJobEx

extern void SEElib_AwaitJobEx(M_Word *tag_out, unsigned char *buf, M_Word *1len_io, unsigned flags);

CodeSafe 5 v13.6.11 Developer Guide 76/86

Chapter 15. SEE API documentation

Block on the socket waiting for a SEEJob command from the host.

The output parameters are filled with information obtained from the message itself. On
entry, *buf and *len_io give the base and length of a buffer area to receive the job. On
return, *len_io is set to the length delivered (if the job is received successfully). This buffer
is a copy of the seeargs field of the SEEJob command. The *tag_out value is the tag for this
command.

15.4.4. SEElib_ReturnJob

o This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

extern void SEElib_ReturnJob(M_Word tag, const unsigned char *data, unsigned int len);

This function returns an SEEJob reply to the host-side application. It is sent in a way that the
host-side compatibility layer can interpret and write into the corresponding reply struct on
the host-side.

0 If you use the SEE1ib_StartProcessorThreads() function, it calls SEE1-
ib_ReturnJob() for you.

The tag field must match the tag supplied in the SEE1ib_AwaitJob() call that created the
job.

The given data is copied away and forms the seereply field of the SEEJab reply on the host-
side application.

15.4.5. SEElib_StartProcessorThreads

o This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

struct ProcessThreadCtx; /* User-defined */
typedef struct SEELlib_ProcessContext
{

struct ProcessThreadCtx *uc;

unsigned char *iobuf;
int iobuf_maxlen;

}
SEE1ib_ProcessContext;

typedef struct ProcessThreadCtx * (*SEEJobInitFn) (SEElib_ProcessContext *pC);

CodeSafe 5 v13.6.11 Developer Guide 77/86

Chapter 15. SEE API documentation

/* Function called during thread initialisation */
typedef int (*SEEJobFn) (SEELlib_ProcessContext *pC, M_Word tag, int in_len);

/* Function to process an SEEJob; data is sent in & out via pC->iobuf.

Returns length being returned.

*/

extern int SEElib_StartProcessorThreads(int nthreads, int stacksize, SEEJobInitFn
pfnInit, SEEJobFn pfnProcess);

This function causes the SEE compatibility layer to start a number of processing threads.
Each thread has its own SEE1ib_ProcessContext allocated, which remains constant through
out the life of the thread.

A working buffer for a given thread is allocated; the iobuf member points to this buffer and
iobuf_maxlen is set to the size. Data for the SEEJob is passed in and out through this buffer.

For each thread, the supplied SEEJobInitFn is called first, and the ProcessThreadCtx pointer
it returns is stored in the SEETib_ProcessContext structure. This structure is typically a con-
venient thread-local storage. The pointer may be NULL if it is not required.

When a job arrives for the given thread, the supplied SEEJobFn is called. It is passed the SEE1
ib_ProcessContext pointer pC, a tag, and a length (in_len). The SEEJob data is at pC—>iobuf,
length in_len. The tag is for information only. The function processes the data and leave a
reply at pC—>1iobuf. The return value from the function indicates the number of bytes to be
returned from this buffer.

15.4.6. SEElib_StartSEEJobListener

o This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

extern int SEElib_StartSEEJobListener (PEVENT ev);
This function starts the SEEJab listener thread which blocks calling SEE1ib_AwaitJob, caches
the new job and then sets the event ev if ev is non-NULL.

Use SEE11b_QuerySEEJob to receive any SEEJobs that have been cached by this listener
thread, followed by SEE1ib_ReturnJ]ob to reply to the SEEJob, then followed by SEE1ib_Re-
leaseSEEJob to free the buffer.

It is safe to call this function multiple times, however calls after the first call have no effect.

15.4.7. SEElib_QuerySEEJob

CodeSafe 5 v13.6.11 Developer Guide 78/86

Chapter 15. SEE API documentation

o This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

extern M_Status SEE1ib_QuerySEEJob(M_Word *tag_out, unsigned char **buf, M_Word *1len);

This function is called to receive a SEEJob that is being held by the SEEJob listener thread. It
is typically called after having been woken from EventWait as a result of the SEEJob listener
thread setting the event passed in to SEE1ib_StartSEEJobListener.

buf is set to the buffer containing the SEEJob, len is set to the length of the data contained
in buf.

This function returns TransactionNotYetComplete if there were no outstanding SEEJobs.

15.4.8. SEElib_ReleaseSEEJob

e This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

extern void SEElib_ReleaseSEEJob(unsigned char **buf);

This function is called to release a buffer which was returned from SEE1ib_QuerySEEJob. It
must be called after the buffer specified by buf in a call to SEE1ib_QuerySEEJob has been fin
ished with. This function is safe to call even if *buf is NULL. In addition, it sets *buf to NULL
on completion.

15.5. Compatibility layer APl Host side

Legacy host-side applications need to be modified to use the network interface to talk the
SEE machine instead of the nCore API. The bulk of this work is handled automatically by
including the host-side compatibility layer and recompiling. However, all calls to the nCore
API which use CMD_SEEJob need to be modified slightly to reference the new CodeSafe 5
compatible methods. The compatibility layer provides support to emulate the use cases of
the Cmd_SEEJob message interface. The compatible calls and the methods they replace are
described below. All other calls by the host-side application to the nCore API will remain
unchanged.

15.5.1. netsee_initialize_legacy_seejob_support

CodeSafe 5 v13.6.11 Developer Guide 79/86

Chapter 15. SEE API documentation

o This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

extern int netsee_initialize_legacy_seejob_support(const char * cseeContainerMachineIPvb, const char *
cseeContainerMachinePort);

This function initializes host-side application compatibility layer to support legacy Code-
Safe SEEJob commands. netsee_initialize_legacy_seejob_support() must be called to
initialize legacy support for CodeSafe 5. The call creates all necessary processor threads, ini
tializes all values and fields required to process SEEJob M_Commands, and creates a connec-
tion to the SEE machine via TCP/IPv6 networking. This call must be made before any of the
other methods described below are called.

15.5.2. netsee_submit_legacy_seejob

o This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

extern int netsee_submit_legacy_seejob(const M_Command *cmd, M_Reply *reply, struct NFast_Transaction_Context
*tetx);

This function transmits a SEEJob command to the SEE application.
Replaces NFastApp_Submit().

The compatibility layer strips the relevant SEEJob information from the M_Command, issues a
unique tag, and marshals this information to a form the compatibility layer compiled SEE
machine understands. It then sends the command to the module directly via a TCP/IPv6
connection initialized by the compatibility layer.

15.5.3. netsee_wait_legacy_seejob

o This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

extern int netsee_wait_legacy_seejob(M_Reply **replyp, struct NFast_Transaction_Context **tctx);

This function waits to receive a reply from the SEE machine.

Replaces NFastApp_Wait().

CodeSafe 5 v13.6.11 Developer Guide 80/86

Chapter 15. SEE API documentation

The compatibility layer reads an incoming reply from the module, parses the information,
and writes it to the correct M_Reply corresponding to the tag the command was sent with.
It does not proceed beyond the call until this reply has been processed. After a reply is
received and marshaled by the compatibility layer, netsee_wait_legacy_seejob() will return
with the correct reply.

15.5.4. netsee_transact_legacy_seejob

o This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

extern int netsee_transact_legacy_seejob(const M_Command *command, M_Reply *reply, struct
NFast_Transaction_Context *tctx);

This function transacts a SEEJob command and waits until a reply is received and written to
*reply.

Replaces NFastApp_Transact().

The compatibility layer strips the relevant SEEJob information from the M_Command, issues a
unique tag, and marshals this information to a form the compatibility layer compiled SEE
machine understands. It then sends the command to the module SEE machine directly via a
TCP/IPv6 connection initialized by the compatibility layer.

After sending the command, it waits for a reply from the SEE machine via the established
network connection. The compatibility layer reads the incoming reply from the module,
parses the information, and writes it to the correct M_Reply corresponding to the tag the
command was sent with.

After a reply is received and marshaled by the compatibility layer, netsee_transact_lega-
cy_seejob() returns with the correct M_Reply having been written to *reply.

15.5.5. netsee_simple_transact_legacy_seejob

o This function is provided by the compatibility layer to ease porting appli
cations from Solo XC to nShield 5. Do not use it for new applications.

extern int netsee_simple_transact_legacy_seejob(const M_Command *cmd, M_Reply *reply, int fatal);

Transact a SEEJob command and wait until a reply is received and written to *reply. If fatal
is true, and an error occurs, exit(4).

CodeSafe 5 v13.6.11 Developer Guide 81/86

Chapter 15. SEE API documentation

Replaces simple_transact().

The compatibility layer strips the relevant SEEJob information from the M_Command, issues a
unique tag, and marshals this information to a form the compatibility layer compiled SEE
machine will understand. It then sends the command to the module SEE machine directly
via a TCP/IPv6 connection initialized by the compatibility layer. Then, it waits for a reply
from the SEE machine via the established network connection. The compatibility layer
reads the incoming reply from the module, parses the information, and writes it to the cor-
rect M_Reply corresponding to the tag the command was sent with. Once a reply is received
and marshaled by the compatibility layer, netsee_simple_transact_legacy_seejob() will
return with the correct M_Reply having been written to *reply.

CodeSafe 5 v13.6.11 Developer Guide 82/86

Chapter 16. System calls allowed by CodeSafe 5 SEE machines

16. System calls allowed by CodeSafe 5 SEE

machines

SEE machines are restricted to a subset of Linux system calls they can execute.

Attempting to execute any other system call will return -1 and set errno to ENOSYS.

1 __NR_exit

3 __NR_read
5__NR_open

7 __NR_waitpid
9 __NRL_link

11 __NR_execve
13 __NR_time

16 __NR_Ichown
20 __NR_getpid
27 __NR_alarm
30 __NR_utime
34 __NR_nice

37 __NRL_Kkill

39 __NR_mkdir
41 __NR_dup

43 __NR_times
47 __NR_getgid
50 __NR_getegid
55 __NR_fcntl
60 __NR_umask
64 __NR_getppid
66 __NR_setsid
77 __NR_getrusage

80 __NR_getgroups

Allowed system calls

2 __NR_fork

4 __NR_write

6 __NR_close

8 __NR_creat

10 __NR_unlink
12 __NR_chdir

15 __NR_chmod
19 __NR_Iseek
24 __NR_getuid
29 __NR_pause
33 __NR_access
36 __NR_sync

38 __NR_rename
40 __NR_rmdir
42 __NR_pipe

45 __NR_brk

49 __NR_geteuid
54 __NR_ioctl

57 __NR_setpgid
63 __NR_dup2
65 __NR_getpgrp
75 __NR_setrlimit
78 __NR_gettimeofday

83 __NR_symlink

CodeSafe 5 v13.6.11 Developer Guide

83/86

Chapter 16. System calls allowed by CodeSafe 5 SEE machines

85 __NR_readlink

90 __NR_mmap

92 __NR_truncate
94 __NR_fchmod

96 __NR_getpriority
99 __NR_statfs

102 __NR_socketcall
105 __NR_getitimer
107 __NR_Istat

114 __NR_wait4

118 __NR_fsync

122 __NR_uname
132 __NR_getpgid
140 __NR__lIseek
142 __NR__newselect
144 __NR_msync
146 __NR_writev
148 __NR_fdatasync
162 __NR_nanosleep

167 __NR_poll

Allowed system calls

88 __NR_reboot

91 __NR_munmap
93 __NR_ftruncate
95 __NR_fchown
97 __NR_setpriority
100 __NR_fstatfs
104 __NR_setitimer
106 __NR_stat

108 __NR_fstat

117 __NR_ipc

120 __NR_clone
125 __NR_mprotect
133 __NR_fchdir
141 __NR_getdents
143 __NR_flock

145 __NR_readv
147 __NR_getsid
158 __NR_sched_yield
163 __NR_mremap

172 __NR_rt_sigreturn

173 __NR_rt_sigaction 174 __NR_rt_sigprocmask

175 __NR_rt_sigpending 176 __NR_rt_sigtimedwait

177 __NR_rt_sigqueueinfo 178 __NR_rt_sigsuspend

179 __NR_pread64 180 __NR_pwrite64
181 __NR_chown 182 __NR_getcwd
185 __NR_sigaltstack 186 __NR_sendfile

190 __NR_ugetrlimit 202 __NR_getdents64
205 __NR_madvise 207 __NR_gettid

208 __NR_tkill 221 __NR_futex

CodeSafe 5 v13.6.11 Developer Guide 84/86

Chapter 16. System calls allowed by CodeSafe 5 SEE machines

232 __NR_set_tid_address
236 __NR_epoll_create
238 __NR_epoll_wait
247 __NR_clock_getres
250 __NR_tgkill

252 __NR_statfs64

272 __NR_waitid

281 __NR_ppoll

287 __NR_mkdirat

291 __NR_newfstatat
293 __NR_renameat
295 __NR_symlinkat
297 __NR_fchmodat
303 __NR_epoll_pwait
307 __NR_eventfd

315 __NR_epoll_createl
317 __NR_pipe2

321 __NR_pwritev

325 __NR_prlimit64
327 __NR_bind

329 __NR_listen

331 __NR_getsockname
333 __NR_socketpair
335 __NR_sendto

337 __NR_recvfrom
339 __NR_setsockopt
341 __NR_sendmsg
343 __NR_recvmmsg

348 __NR_syncfs

Allowed system calls
234 __NR_exit_group
237 __NR_epoll_ctl
246 __NR_clock_gettime
248 __NR_clock_nanosleep
251 __NR_utimes
253 __NR_fstatfs64
280 __NR_pselect6
286 __NR_openat
289 __NR_fchownat
292 __NR_unlinkat
294 __NR_linkat
296 __NR_readlinkat
298 __NR_faccessat
304 __NR_utimensat
309 __NR_fallocate
316 __NR_dup3
320 __NR_preadv
322 __NR_rt_tgsigqueueinfo
326 __NR_socket
328 __NR_connect
330 __NR_accept
332 __NR_getpeername
334 __NR_send
336 __NR_recv
338 __NR_shutdown
340 __NR_getsockopt
342 __NR_recvmsg
344 __NR_accept4

349 __NR_sendmmsg

CodeSafe 5 v13.6.11 Developer Guide

85/86

Chapter 16. System calls allowed by CodeSafe 5 SEE machines

Allowed system calls
357 __NR_renameat2 362 __NR_execveat
365 __NR_membarrier 380 __NR_preadv2

381 __NR_pwritev2 383 __NR_statx

o getrandom is not implemented in nShield 5. Use either /dev/random or
the Cmd_GenerateRandom nCore command instead.

CodeSafe 5 v13.6.11 Developer Guide

86/86

	nShield Security World: CodeSafe 5 v13.6.11 Developer Guide
	Table of Contents
	1. Introduction
	2. Overview of CodeSafe 5
	2.1. Applications as container images
	2.2. Easy and fast network connectivity
	2.3. 'Secure by default' client communication
	2.4. Better language support
	2.5. Developer authentication

	3. Install the CodeSafe 5 SDK on Linux
	4. Install the CodeSafe 5 SDK on Windows
	4.1. Prerequisites
	4.2. Install the Security World Software
	4.3. Install CodeSafe 5

	5. nShield 5c Codesafe 5 Configuration
	6. Build CodeSafe 5 SDK apps
	6.1. General SDK use
	6.2. Prerequisites
	6.3. SDK file structure overview
	6.3.1. SDK location
	6.3.2. Container root file system
	6.3.3. CMake
	6.3.4. Include directories
	6.3.5. SEE specific libraries
	6.3.6. Legacy compatibility

	6.4. Building new SEE machines with SEElib
	6.4.1. Developer authentication
	6.4.2. Deploying SEE machines
	6.4.3. SEE machine initialization requirements
	6.4.4. SEElib Functions
	6.4.5. Host/SEE machine communication

	6.5. Compatibility layer for legacy SEE machines
	6.5.1. Module-side compatibility layer
	6.5.2. Host-side compatibility layer
	6.5.3. Initialize module-side compatibility
	6.5.4. Use module-side compatibility
	6.5.5. Initialize host-side application compatibility
	6.5.6. Use host-side application compatibility

	7. Sign and deploy CodeSafe 5 SDK apps using csadmin
	7.1. Signing CodeSafe images
	7.2. The csadmin utility tool
	7.2.1. Generate loadable images
	7.2.2. Sign images
	7.2.3. Create a developer ID certificate

	7.3. Example CodeSafe developer process
	7.3.1. Create developer ID keys
	7.3.2. Load your certificate

	8. Build and sign example SEE machines on Linux
	8.1. Build module-side C examples
	8.2. Building Host Side C Examples
	8.3. Build CS5 Images for Python Examples
	8.4. Sign CodeSafe Images
	8.5. Run NetSEE examples
	8.5.1. helloworld_tcp
	8.5.2. helloworld_udp

	8.6. Run NetSEE examples via SSH tunnel
	8.6.1. helloworld_tcp via SSH Tunnel

	8.7. Run CSEE examples via SSH tunnel
	8.7.1. hello via SSH Tunnel
	8.7.2. tickets via SSH tunnel
	8.7.3. benchmark via SSH tunnel

	9. Build and sign example SEE machines on Windows
	9.1. Prerequisites
	9.2. Building Windows CodeSafe C, CSEE, and NETSEE examples
	9.2.1. Host-side examples
	9.2.2. Module-side examples

	9.3. CS5 images for Python examples
	9.4. Sign CodeSafe images

	10. Build and run Java examples
	10.1. Prerequisites
	10.2. The Java interface
	10.3. Build the examples
	10.4. Run the examples
	10.4.1. BenchMark5
	10.4.2. Echo5
	10.4.3. HelloWorld5
	10.4.4. HostTickets5

	11. Debug CodeSafe 5 SEE machines
	11.1. config log set enabled
	11.2. config log set disabled
	11.3. log get
	11.4. log clear

	12. Uninstall the CodeSafe 5 SDK
	13. Port existing CodeSafe application to CodeSafe 5
	13.1. The compatibility layer
	13.1.1. Module-side compatibility layer
	13.1.2. Host-side compatibility layer

	13.2. Required module-side changes for porting
	13.3. Required host-side changes for porting
	13.3.1. Initialization
	13.3.2. Replacing SEEJob-related method calls

	13.4. Rebuilding and Recompiling
	13.4.1. Rebuilding host-side
	13.4.2. Rebuilding Module Side

	14. Supporting legacy CodeSafe Direct
	14.1. Legacy CodeSafe Direct
	14.2. CodeSafe 5

	15. SEE API documentation
	15.1. Why CodeSafe 5 needs a compatibility layer
	15.2. SEElib functions
	15.2.1. SEElib_init
	15.2.2. SEElib_ReadUserData
	15.2.3. SEElib_ReleaseUserData
	15.2.4. SEElib_InitComplete
	15.2.5. SEElib_StartTransactListener
	15.2.6. SEElib_Transact
	15.2.7. SEElib_MarshalSendCommand
	15.2.8. SEElib_GetUnmarshalResponse
	15.2.9. SEElib_FreeCommand
	15.2.10. SEElib_FreeReply
	15.2.11. SEElib_SubmitCoreJob
	15.2.12. SEElib_GetCoreJob
	15.2.13. SEElib_GetUserDataLen
	15.2.14. SEElib_Submit
	15.2.15. SEElib_Query

	15.3. About the SEElib compatibility layer
	15.4. SEE machine module side compatibility layer
	15.4.1. SEElib_Legacy_Support_Init
	15.4.2. SEElib_AwaitJob
	15.4.3. SEElib_AwaitJobEx
	15.4.4. SEElib_ReturnJob
	15.4.5. SEElib_StartProcessorThreads
	15.4.6. SEElib_StartSEEJobListener
	15.4.7. SEElib_QuerySEEJob
	15.4.8. SEElib_ReleaseSEEJob

	15.5. Compatibility layer API Host side
	15.5.1. netsee_initialize_legacy_seejob_support
	15.5.2. netsee_submit_legacy_seejob
	15.5.3. netsee_wait_legacy_seejob
	15.5.4. netsee_transact_legacy_seejob
	15.5.5. netsee_simple_transact_legacy_seejob

	16. System calls allowed by CodeSafe 5 SEE machines

