
nShield Security World

CodeSafe 5 v13.4.5
Developer Guide
20 March 2024

Table of Contents
1. Introduction . 1

2. Overview of CodeSafe 5 . 2

2.1. Applications as container images . 2

2.2. Easy and fast network connectivity. 2

2.3. 'Secure by default' client communication. 2

2.4. Better language support . 3

2.5. Developer authentication. 3

3. Install the CodeSafe 5 SDK on Linux. 4

4. Install the CodeSafe 5 SDK on Windows . 5

4.1. Prerequisites . 5

4.2. Install the Security World Software. 5

4.3. Install CodeSafe 5 . 5

5. nShield 5c Codesafe 5 Configuration . 7

6. Build CodeSafe 5 SDK apps . 8

6.1. General SDK use . 8

6.2. Prerequisites. 8

6.3. SDK file structure overview. 8

6.4. Building new SEE machines with SEElib . 11

6.5. The compatibility layer and legacy SEE machines . 14

6.6. Compatibility layer use . 15

7. Sign and deploy CodeSafe 5 SDK apps using csadmin. 20

7.1. Signing CodeSafe images. 20

7.2. The csadmin utility tool . 20

7.3. Example CodeSafe developer process . 26

8. Build and sign example SEE machines on Linux . 30

8.1. Build module-side C examples . 30

8.2. Building Host Side C Examples . 30

8.3. Build CS5 Images for Python Examples . 31

8.4. Sign CodeSafe Images . 31

8.5. Run NetSEE examples . 33

8.6. Run NetSEE examples via SSH tunnel . 35

8.7. Run CSEE examples via SSH tunnel. 39

9. Build and sign example SEE machines on Windows . 51

9.1. Prerequisites. 51

9.2. Building Windows CodeSafe C, CSEE, and NETSEE examples. 51

9.3. CS5 images for Python examples . 52

9.4. Sign CodeSafe images . 53

10. Debug CodeSafe 5 SEE machines . 56

10.1. config log set enabled . 56

10.2. config log set disabled . 56

10.3. log get . 57

10.4. log clear. 57

11. Uninstall the CodeSafe 5 SDK . 58

12. Port existing CodeSafe application to CodeSafe 5 . 60

12.1. The compatibility layer . 60

12.2. Required module-side changes for porting . 62

12.3. Required host-side changes for porting . 62

12.4. Rebuilding and Recompiling . 65

13. Supporting legacy CodeSafe Direct . 66

13.1. Legacy CodeSafe Direct . 66

13.2. CodeSafe 5 . 66

14. SEE API documentation. 67

14.1. Why CodeSafe 5 needs a compatibility layer . 67

14.2. SEElib functions. 69

14.3. About the SEElib compatibility layer. 73

14.4. SEE machine module side compatibility layer. 73

14.5. Compatibility layer API Host side. 78

15. System calls allowed by CodeSafe 5 SEE machines. 82

1. Introduction
CodeSafe is a runtime on the Entrust nShield HSM that allows third-party

developers to run their own code within the secure boundary of the module. Using

the CodeSafe Developer Kit, developers write their own CodeSafe Apps, cross-

compile them and package them to run on the HSM. While on the HSM, the

CodeSafe App is segregated from the actual keys loaded onto the module,

including the keys the App uses. This means that CodeSafe can be used without

affecting the FIPS 140 validation of the module it runs on.

Where the HSMs provide security controls on key usage, CodeSafe provides

control over application code. Depending on the runtime used, you are either

sending nCore commands to the HSM, or designing your own protocol to send

data and commands back and forth.

The CodeSafe Developer Kit includes the Secure Execution Engine (SEE)

technology. The CodeSafe product comprises a suite of cross-compilers and

support tools that allow you to develop SEE machines.

With CodeSafe, you can build and deploy Trusted Agents to perform application-

specific security functions on your behalf on unattended servers, or in

unprotected environments where the operation of the system is outside of your

direct control. Examples of Trusted Agents include digital meters, authentication

agents, timestamp servers, audit loggers, digital signature agents and custom

encryption processes.

Traditionally, HSMs have protected cryptographic keys within a defined security

boundary; SEE allows you to extend that security boundary to include code that

utilizes those protected keys. The code itself is signed to provide additional

protection.

Chapter 1. Introduction

CodeSafe 5 v13.4.5 Developer Guide 1/84

2. Overview of CodeSafe 5

2.1. Applications as container images

In CodeSafe 5, the application is a container image, meaning a complete

filesystem image that can contain multiple executables, libraries, scripts, and data

files.

This has the following benefits:

• Data files can be written to the local filesystem and persisted over container

shutdown and restart.

• The application can comprise multiple co-operating processes. This can

enhance security by separating memory spaces and reliability by allowing

individual processes to be restarted if they crash or leak memory.

• Third-party or pre-existing Linux source code can be built and run without

modification.

• Standalone tools can be executed as subprocesses.

• Dynamically-loaded libraries work in a regular way. Code architectures that

make use of plug-in modules make code development easier and reduce the

attack surface by excluding unwanted code.

2.2. Easy and fast network connectivity

nShield 5 HSMs and CodeSafe 5 containers are logically connected via TCP/IP

networking. The container running the SEE Machine can receive incoming

connections from the host side app, establishing two-way communication

between host side app and SEE machine. Existing software that makes use of

incoming or outgoing network connections can run with little or no modifications.

Kernel-implemented networking provides good performance both for throughput

and for latency.

2.3. 'Secure by default' client communication

The CodeSafe 5 execution environment includes both a configurable firewall and

an SSH server. The firewall is set according to configuration in the signed

CodeSafe 5 application package so that only the network ports required by the

application are allowed. The SSH server allows a secure tunnel to be established to

Chapter 2. Overview of CodeSafe 5

CodeSafe 5 v13.4.5 Developer Guide 2/84

the CodeSafe 5 application. The client credentials required to access this tunnel

can be configured using the support tools.

This means that applications, including applications ported from older CodeSafe

SEE machines, can benefit from strong authentication of their clients and

protection from unauthorized network traffic without additional code.

2.4. Better language support

The CodeSafe 5 SDK supports:

• C and C++

• Python 3.8

The nfpython module provides easy access to nCore API commands.

The container environment has a regular Linux filesystem and supports system

calls for network and file I/O, so a wide range of standard and third-party

Python modules can be used without modification.

CodeSafe applications can be written using mixed languages with the usual range

of IPC and calling mechanisms available to the developer.

2.5. Developer authentication

CodeSafe 5 uses Entrust X.509 certificates to link the CodeSafe application to a

real-world developer identity through code signing.

This allows the administrator of an HSM to, for example, restrict the HSM to

authorized in-house applications or to those provided by trusted development

partners.

Chapter 2. Overview of CodeSafe 5

CodeSafe 5 v13.4.5 Developer Guide 3/84

3. Install the CodeSafe 5 SDK on Linux
1. Make sure that the following nShield ISO images are available locally:

◦ SecWorld_Lin64-13.x.y.iso

◦ Codesafe_Lin64-13.x.y.iso

Where <x.y> are the same versions for Security World and CodeSafe.

2. Create a mount directory for each ISO:

mkdir ~/secworld_iso_mountpoint
mkdir ~/codesafe_iso_mountpoint

3. Mount the ISO images to their respective directories:

sudo mount <PATH_TO>/SecWorld_Lin64-13.x.y.iso ~/secworld_iso_mountpoint/
sudo mount <PATH_TO>/Codesafe_Lin64-13.x.y.iso ~/codesafe_iso_mountpoint/

The nShield CodeSafe 5 hostside is located in tarballs under:

ls ~/codesafe_iso_mountpoint/linux/amd64/
csdref.tar.gz csd.tar.gz

The nShield Security World hostside is located in tarballs under:

ls ~/secworld_iso_mountpoint/linux/amd64/
ctd.tar.gz devref.tar.gz javasp.tar.gz ncsnmp.tar.gz
ctls.tar.gz hwsp.tar.gz jd.tar.gz raserv.tar.gz

4. Untar the tarballs into the root directory:

tar -zxvf ~/codesafe_iso_mountpoint/linux/amd64/csd.tar.gz -C /
tar -zxvf ~/codesafe_iso_mountpoint/linux/amd64/csdref.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/ctd.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/devref.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/javasp.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/ncsnmp.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/ctls.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/hwsp.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/jd.tar.gz -C /
tar -zxvf ~/secworld_iso_mountpoint/linux/amd64/raserv.tar.gz -C /

This installs the nShield CodeSafe 5 SDK to /opt/nfast/c/csd5 and the nShield

CodeSafe 5 SDK Python files to /opt/nfast/python3/csd5.

Chapter 3. Install the CodeSafe 5 SDK on Linux

CodeSafe 5 v13.4.5 Developer Guide 4/84

4. Install the CodeSafe 5 SDK on
Windows

4.1. Prerequisites

Make sure that the following nShield ISO images are available locally:

• SecWorld_Windows-13.x.y.iso

• Codesafe_Windows-13.x.y.iso

Where <x.y> are the same versions for Security World and CodeSafe.

4.2. Install the Security World Software

1. Log in as Administrator or as a user with local administrator rights.

2. Mount the Security World Software ISO image and navigate into the mounted

directory.

3. Launch setup.msi.

4. Follow the on-screen instructions.

5. Accept the license terms and select Next to continue.

6. Specify the installation directory and select Next to continue.

7. Select Install.

8. Select Finish to complete the installation.

4.3. Install CodeSafe 5

1. Mount the CodeSafe 5 SDK ISO image and navigate into the mounted

directory.

2. Launch setup.msi.

3. Follow the on-screen instructions.

4. Accept the license terms and select Next to continue.

5. Specify the installation directory and select Next to continue.

6. Select Install.

7. Select Finish to complete the installation.

This installs the nShield CodeSafe 5 SDK C:\Program Files\nCipher\nfast\c\csd5

Chapter 4. Install the CodeSafe 5 SDK on Windows

CodeSafe 5 v13.4.5 Developer Guide 5/84

and the nShield CodeSafe 5 SDK Python files to C:\Program

Files\nCipher\nfast\python3\csd5.

Chapter 4. Install the CodeSafe 5 SDK on Windows

CodeSafe 5 v13.4.5 Developer Guide 6/84

5. nShield 5c Codesafe 5 Configuration
To use CodeSafe 5 with a nShield 5c you must generate and exchange launcher

service keys between the client and the nShield 5c. These keys are essential for

secure communication and access to the launcher service on the module. For

information on how to do this see Codesafe setup for the nShield 5c in the nShield

5c User Guide.

Chapter 5. nShield 5c Codesafe 5 Configuration

CodeSafe 5 v13.4.5 Developer Guide 7/84

n5c-ug:codesafe.pdf#n5csetup

6. Build CodeSafe 5 SDK apps

6.1. General SDK use

The CodeSafe 5 SDK provides the tools necessary to build and run SEE machines

on nShield 5 HSMs. The CodeSafe 5 SEE machines are containerized. The SDK

provides the structure of the container, including a root file system, libraries

required for communication with the nCore API, and libraries to enable

communication between the SEE machine and the host. The SDK provides

libraries for development, libraries built for maintaining backwards compatibility

for legacy applications, a root file system with libraries useful for development of

new applications, such as libglib and libc, and useful binaries including touch, cat,

grep.

6.2. Prerequisites

GCC 8.x or later.

6.3. SDK file structure overview

6.3.1. SDK location

The default installation location of the CodeSafe 5 SDK is:

• Linux: /opt/nfast/c/csd5/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\

Some tools required for SEE machine operations might be found elsewhere in the

main install. For example, csadmin, which enables loading, starting, and stopping

SEE machines, is installed in the following default locations:

• Linux: /opt/nfast/bin/csadmin

• Windows: C:\Program Files\nCipher\nfast\bin\csadmin (Windows)

These cases are described in the following sections as required.

6.3.2. Container root file system

The container root file system is located in:

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 8/84

• Linux: /opt/nfast/c/csd5/rootfs/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\rootfs\

This root file system contains two main parts: binary files and libraries.

6.3.2.1. Binaries

rootfs/bin/ (Linux) or rootfs\bin\ (Windows) contains many useful common Linux

binaries that you might need within the container such as cat, grep, and touch.

rootfs/sbin/ (Linux) or rootfs\sbin\ (Windows) contains the init script for the

container.

6.3.2.2. Libraries

rootfs/lib/ and rootfs/usr/lib/ (Linux) or rootfs\lib\ and rootfs\usr\lib\

(Windows) contain various useful libraries a developer might need, such as libglib

and libc. Some of these libraries are also essential for the proper running of the

container and execution of various examples.

6.3.3. CMake

The SDK installs a directory which includes CMake toolchains used for building

example SEE machines:

• Linux: /opt/nfast/c/csd5/cmake

• Windows: C:\Program Files\nCipher\nfast\c\csd5\cmake

These toolchains can serve as examples themselves for creating custom

toolchains.

6.3.4. Include directories

The SDK provides two directories with header files that can be included along

with their respective libraries to provide additional functionality in SEE machines.

These headers are stored in:

• Linux:

◦ /opt/nfast/c/csd5/gcc/*

◦ /opt/nfast/c/csd5/include-see/*

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 9/84

• Windows:

◦ C:\Program Files\nCipher\nfast\c\csd5\gcc*

◦ C:\Program Files\nCipher\nfast\c\csd5\include-see*

6.3.5. SEE specific libraries

The C libraries which are specific to SEE machines, including seelib.a and

librtusr.a, are located in:

• Linux: /opt/nfast/c/csd5/lib-ppc64-linux-musl/*

• Windows: C:\Program Files\nCipher\nfast\c\csd5\lib-ppc64-linux-musl*

These libraries must be included to enable critical SEE machine functionality such

as communication with the nCore API.

The Python module specific to SEE machines is seeapi.py. This module is located

under Python site packages in nshield.ipcdaemon.seeapi. This must be imported as

SEEAPI to enable critical SEE machine functionality such as communication with

the nCore API.

6.3.6. Legacy compatibility

The CodeSafe 5 SDK and nShield 5 HSMs are sufficiently different from previous

implementations that legacy applications cannot run with the CodeSafe 5 SDK.

For ease of use, the CodeSafe 5 SDK supplies a compatibility layer in the form of

headers, files, and libraries to enable legacy applications to be used in nShield 5

HSMs.

Legacy applications require recompilation with new libraries to run on nShield 5

HSMs. The module-side compatibility library liblegacy_compatibility.a is in the

SDK under:

• Linux: lib-ppc64-linux-musl/

• Windows: lib-ppc64-linux-musl\

Host-side compatibility files and headers are in the SDK under:

• Linux: include-see/legacy-compatibility-host/*

• Windows: include-see\legacy-compatibility-host*

This compatibility layer is described here.

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 10/84



Do not use these compatibility layer libraries, files, and headers

to create new SEE machines. They are only supplied to allow

legacy applications to be quickly re-compiled and run on nShield

5 HSMs.

6.4. Building new SEE machines with SEElib

An SEE machine is a container image with a complete filesystem which can be

loaded onto an CodeSafe 5-enabled HSM as part of a container. The SEElib library

enables SEE machines to interface with the nCore API via the IPC daemon.

Source code is compiled using one of the GCC cross-compilers supplied with the

CodeSafe SDK. For details of required compiler options, toolchains, makefiles and

so on, see the CMake files supplied with the examples, as well as Build and sign

example SEE machines on Linux and Build and sign example SEE machines on

Windows.

The container image must be signed using the csadmin utility tool.

6.4.1. Developer authentication

CodeSafe 5 requires a signed CodeSafe image to run SEE machines on the HSM.

The CodeSafe developer needs to request a developer ID certificate by sending a

Certificate Signing Request (CSR) to Entrust support. The tool used to create the

CSR is integrated into the HSM software as a subcommand of csadmin utility.

For security purposes, a developer keypair must be created and stored within the

HSM. In addition, the keypair must be OCS protected to provide authorization

control on its use. The developer keypair will be created by csadmin if it does not

already exist.

After the certificates are received, they are installed on the HSM and are used to

sign CodeSafe application images with the csadmin tool.

The implementation of this is described in more detail in Sign and deploy

CodeSafe 5 SDK apps using csadmin.

6.4.2. Deploying SEE machines

After the code has been compiled, built, and signed, the csadmin utility tool is used

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 11/84

to deploy the SEE machine. It is used to load the signed CodeSafe application

image and then to start the SEE machine. The SEE machine then runs the

entrypoint including the main() function.

For more information on the csadmin utility, see Sign and deploy CodeSafe 5 SDK

apps using csadmin.

6.4.3. SEE machine initialization requirements

An SEE machine must initialize the SEElib before making use of any of the SEElib

functionality. This is done by calling SEElib_init(). It is recommended that this call

is made immediately within the main() function of an SEE machine.

6.4.4. SEElib Functions

After initialization, SEElib functions can be used to communicate with the nCore

API via the IPC daemon. These methods call functions identically to previous

CodeSafe versions although the underlying methodology has changed.

6.4.4.1. SEElib_Transact()

To send a command to the nCore API and block waiting for a reply:

int SEElib_Transact(struct M_Command *cmd, struct M_Reply *reply)

This sends the cmd command to the nCore API and waits for the reply to be written

to reply.

6.4.4.2. SEElib_Submit() / SEElib_Query()

To send a non-blocking command to the nCore API:

int SEElib_Submit(M_Command *cmd, M_Reply *reply, PEVENT ev, SEElib_ContextHandle tctx)

The cmd command is submitted to the nCore API. The transaction listener thread

will call EventSet ev, if ev is non-NULL when the reply returns for this command.

The reply is unmarshalled into reply and tctx is returned to the caller with

SEElib_Query(M_Reply **replyp, SEElib_ContextHandle *tctx_r).

Before using the SEElib_Submit() method, SEElib_StartTransactListener() must

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 12/84

have been called to start the transaction listener.


Unlike SEElib_SubmitCoreJob(), SEElib_Submit() does not block and

wait for all other calls to SEElib_Transact() to complete.

6.4.4.3. SEElib_SubmitCoreJob / SEElib_GetCoreJobEx()

To submit a job to the nCore API:

extern int SEElib_SubmitCoreJob(const unsigned char *data, unsigned int len)

To receive a job from the nCore API:

extern int SEElib_GetCoreJobEx(unsigned char *buf, M_Word *len_io, unsigned flags)

SEElib_SubmitCoreJob() is blocking. It waits for the job to be submitted, which

includes waiting for existing calls made to SEElib_Transact() to be completed. The

same is true for SEElib_GetCoreJobEx().

For non-blocking calls, consider using SEElib_Submit().

6.4.4.4. Other SEElib methods

For a comprehensive list of all functionality provided via the SEElib, see: SEE API

documentation.

6.4.5. Host/SEE machine communication

The newest CodeSafe 5 implementation simplifies the host/SEE machine

connection. Host/SEE machine communication does not need to use SEEJobs or

pass through the hardserver and nCore API. Communication between the host-

side app and SEE machine is done via TCP/IPv6 networking.


The ncoreapi service can only connect to one CodeSafe container

at a time.

6.4.5.1. Update Connects running in an IPv4 context

The host side of the CodeSafe 5 examples will only be able to communicate over

IPv6. Connects running in an IPv4 context will not be able to run examples without

changing how CodeSafe 5 is configured on the Connect. To set things up on a

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 13/84

Connect, see section CodeSafe setup for the nShield 5c in the nShield 5c User

Guide.

6.5. The compatibility layer and legacy SEE machines

The CodeSafe 5 SDK provides libraries for developing new SEE machines. It also

provides libraries, files, and headers designed for maintaining backwards

compatibility with legacy CodeSafe SEE machines.



This section describes changes between previous

implementations of the CodeSafe SDK and the CodeSafe 5 SDK.

Compatibility layer documentation is only relevant for

developers who need to update legacy applications to use the

CodeSafe 5. Do not use it as a guide for building new SEE

machines.

6.5.1. Major changes

The requirement for a compatibility layer arises from changes made to the overall

structure of how CodeSafe 5 SEE machines interact with both the host and with

the nCore API.

6.5.1.1. Host-SEE machine communication

In legacy CodeSafe implementations, for older HSMs, communication between a

host-side application and an SEE machine would be done via the nCore API using

SEEJobs. Using the nCore API to relay SEEJobs between the host-side and the SEE

machine is no longer supported.

Communication via the nCore API has been replaced with direct communication

between the host and SEE machine using TCP/UDP socket connections.

Optionally, communication can be over an SSH tunnel for security. This allows

greater control of the creation, management, and use of connections between the

host and SEE machine for developers. It also improves performance as SEEJobs no

longer have to be sent to the nCore API before being forwarded to the SEE

machine.

6.5.1.2. SEE machine - nCore API communication

Communication between the host and SEE machine no longer requires the nCore

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 14/84

API as an intermediary. Communication intended to be exclusively between the

SEE machine and the nCore API has also changed with the addition of the

container IPC daemon. The IPC daemon is provided by Entrust, exists within the

container, and maintains connections between the container and the nCore API.

The IPC daemon forwards commands to the nCore API sent using the SEElib.

Outside of the addition of the intermediary forwarder, the communication

between the SEE machine and the nCore API remains functionally unchanged.


The ncoreapi service can only connect to one CodeSafe container

at a time.

6.6. Compatibility layer use

The compatibility layer contains two main parts: * liblegacy_compatibility.a, the

module-side library. * include-see/legacy-compatibility-host/*, the host-side

compatibility interface.

6.6.1. Module-side compatibility layer

The module-side compatibility layer provides the methods necessary to connect

the SEE machine to the host-side application via network connection.

The module-side compatibility layer comprises the liblegacy_compatibility.a

library. Its install location is:

• Linux: /opt/nfast/c/csd5/lib-ppc64-linux-musl/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\lib-ppc64-linux-musl\

Legacy SEE machines must be built with liblegacy_compatibility.a. When

initialized, the module-side compatibility layer opens and maintains a connection

between the host-side application and the SEE machine. This allows legacy

applications to continue using SEElib_AwaitJob() and SEElib_ReturnJob() to accept

incoming jobs and return them to the host-side application when completed.

6.6.2. Host-side compatibility layer

The host-side compatibility layer provides the methods necessary to connect the

host-side application to the SEE machine via network connection.

The host-side compatibility layer comprises the following files:

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 15/84

• legacy-csee-host-side-compatibility.h contains all necessary function

declarations.

• legacy-csee-host-side-compatibility.c contains required host-side function

definitions required to connect to and maintain the connection to legacy SEE

machines.

Their install location is:

• Linux: /opt/nfast/c/csd5/examples/csee/utils/hostside/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\examples\csee\utils\hostside\

Legacy host-side applications must be built with legacy-csee-host-side-

compatibility.h and legacy-csee-host-side-compatibility.c. This is done by

emulating the connection which was previously created and managed by the

hardserver and the nCore API.

legacy-csee-host-side-compatibility.c is compiled and added to the libutil.a

library. Applications should link to it if they need to connect to legacy SEE

machines.

6.6.3. Initialize module-side compatibility

Initialize the module-side compatibility layer:

extern void SEElib_Legacy_Support_Init(const char* PORT)

See Classic SEE (CSEE) examples in Port existing CodeSafe application to

CodeSafe 5 for how the module-side legacy support can be initialized to open a

socket connection at port PORT to communicate between host-side and SEE

machines.

6.6.4. Use module-side compatibility

Legacy applications expect incoming messages from the host to be piped from

the host to the nCore API via the hardserver. From there, they eventually become

accessible within the SEE machine via calls to SEElib_AwaitJob() and

SEElib_ReturnJob(). After the module-side compatibility layer is initialized (see

Initialize module-side compatibility), these functions will work exactly as they have

in previous CodeSafe applications. No further changes are necessary.

Initializing the compatibility layer functionality via the SEElib_Legacy_Support_Init()

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 16/84

call allows the compatibility layer to handle incoming and outgoing jobs as would

previously have been done by the nCore API. The Classic SEE (CSEE) examples

show that the only change made to the SEE machines to allow for backwards

compatibility is the initialization of the compatibility layer.


The compatibility layer only supports one client connection at a

time while the hardserver can support many.

6.6.5. Initialize host-side application compatibility

Initialize the host-side legacy application to allow connection to the SEE machine,

communicating to the host via PORT:

netsee_initialize_legacy_seejob_support(const char * cseeContainerMachineIPv6, const char *
cseeContainerMachinePort)`

Here, cseeContainerMachinePort must match the PORT initialized by the SEE machine.

cseeContainerMachineIPv6 is the container’s IPv6 address. See the execution of

CSEE examples in Port existing CodeSafe application to CodeSafe 5 for more

information on passing in the IPv6 address of the container.

netsee_initialize_legacy_seejob_support() establishes a connection to the SEE

machine’s container at port cseeContainerMachinePort. The compatibility layer

maintains this connection and handles the sending of SEEJobs between the host

and module SEE machine.

6.6.6. Use host-side application compatibility

The compatibility layer allows host-side application calls to interact with the SEE

machine to remain largely unchanged. Some changes to calls are, however,

required. These changes, rather than changing how the functions operate, largely

serve to remove no longer required elements, such as NFastApp_Connection.

• netsee_transact_legacy_seejob(const M_Command *command, M_Reply *reply,

struct NFast_Transaction_Context *tctx)

replaces:

NFastApp_Transact(NFastApp_Connection conn, struct NFast_Call_Context *cctx,

const M_Command *command, M_Reply *reply, struct NFast_Transaction_Context

*tctx)

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 17/84


The NFastApp_Connection and NFast_Call_Context are no

longer required and should not be passed in.

• netsee_simple_transact_legacy_seejob(const M_Command *cmd, M_Reply *reply,

int fatal)

replaces:

simple_transact (NFastApp_Connection nc, M_Command *pcmd, M_Reply *preply,

int fatal)


The NFastApp_Connection is no longer required and should

not be passed in.

• netsee_submit_legacy_seejob(const M_Command *cmd, M_Reply *reply, struct

NFast_Transaction_Context *tctx)

replaces:

NFastApp_Submit(NFastApp_Connection conn, struct NFast_Call_Context *cctx,

const M_Command *command, M_Reply *reply, struct NFast_Transaction_Context

*tctx)


The NFastApp_Connection and NFast_Call_Context are no

longer required and should not be passed in.

• netsee_wait_legacy_seejob(M_Reply **replyp, struct NFast_Transaction_Context

**tctx)

replaces:

NFastApp_Wait(NFastApp_Connection conn, struct NFast_Call_Context *cctx,

M_Reply **replyp, struct NFast_Transaction_Context **tctx_r)


The NFastApp_Connection and NFast_Call_Context are no

longer required and should not be passed in.

With these changes implemented, legacy host-side applications, when run in

conjunction with an SEE machine properly initialized with

liblegacy_compatibility.a, should function identically to when run in previous

implementations of CodeSafe.



This section demonstrated how to use the compatibility layer to

quickly bring legacy applications into the new CodeSafe 5

environment. New applications should never be written with the

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 18/84

compatibility layer. It is advised that, when possible, a user

defined TCP/IPv6 network connection between the host-side

application and the SEE machine is implemented, rather than

using the compatibility layer to transact jobs. However, the

compatibility layer does perform this job when no such custom

implementation can be made.

Chapter 6. Build CodeSafe 5 SDK apps

CodeSafe 5 v13.4.5 Developer Guide 19/84

7. Sign and deploy CodeSafe 5 SDK apps
using csadmin

7.1. Signing CodeSafe images

All CodeSafe images must be signed before they can be loaded on to an HSM.

Entrust recommends that you have two signing keys: one that you use to sign

CodeSafe images that are still under development, and one that you only use for

signing tested CodeSafe images that are ready for deployment. In this guide, the

two recommended keys are referred to as the development signing key and the

production signing key, however you can name these keys as required by your

particular development organisation.



Signed CodeSafe images can be loaded to an HSM if the

certificate associated with the signing key is also loaded to that

HSM. Therefore you must ensure that the certificates associated

with development signing keys are never distributed outside of

your development organisation. If you develop CodeSafe images

for customers who are not part of your development

organisation, you should only send them CodeSafe images that

have been signed by, and certificates that are associated with, a

production signing key.

You can create as many signing keys as you require. This allows you to use

different signing keys to group your CodeSafe images based on whatever criteria

you require. For example, you could use different signing keys based on the

intended customer or on the functionality of the CodeSafe image.

You must keep track of which key has been used to sign which image and ensure

that the end user receives the correct matching certificate and does not receive

certificates that they do not require.

The following sections describe the commands used to create the signing keys

and certificates followed by a worked example showing the entire process of

building, signing, loading, and running a CodeSafe image.

7.2. The csadmin utility tool


The following examples use a Linux machine for the deployment

of CodeSafe applications. The same commands can be applied

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.4.5 Developer Guide 20/84

to a Windows machine.

The csadmin tool is used to manage CodeSafe images throughout the development

and deployment process. It is available as part of the Security World ISO. It must

be installed as instructed in Install the CodeSafe 5 SDK on Linux and Install the

CodeSafe 5 SDK on Windows.

You must be logged in as an Administrator or a user with local administrator rights

to execute csadmin commands.

You must have /opt/nfast/bin in your PATH environment variable to use csadmin.

Executing csadmin displays the available subcommands:

To view the help text included here while using csadmin, run a command or sub-

command with the -h|--help option.



The csadmin tool covers CodeSafe application deployment from

both the perspective of a CodeSafe application developer and a

CodeSafe application user. The help text displays the complete

set of commands available. This document details the

commands that are specific to CodeSafe developers. See the

User Guide for your HSM to see an overview of the csadmin tool

and details of the other commands available.

7.2.1. Generate loadable images

CS5 images are generated with csadmin image generate. Before generating an

image, the CodeSafe 5 SDK must be previously installed. This includes an

installation of Python and nfpython suitable to run on the HSM. To display the

generate operation’s usage, execute it with the --help option :

$ csadmin image generate --help
usage: csadmin image generate [-h] --package-name PACKAGE_NAME --version-str VERSION_STR --entry-point
ENTRY_POINT --network-conf NETWORK_CONF
--packages-conf PACKAGES_CONF --rootdir ROOTDIR [--verbose] CS5FILE

positional arguments:
 CS5FILE The cs5 file to be handled

optional arguments:
 -h, --help show this help message and exit
 --package-name PACKAGE_NAME
 Short name describing the product contents
 --version-str VERSION_STR
 Version number of this package contents
 --entry-point ENTRY_POINT
 Full path, within the container, to the entry point application to be executed upon start
 --network-conf NETWORK_CONF

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.4.5 Developer Guide 21/84

 Full path, outside the container, to the network config file to be copied into the
container meta data
 --packages-conf PACKAGES_CONF
 Full path, outside the container, to the extra packages config file used to copy
additional packages into container rootfs
 --rootdir ROOTDIR Directory where the contents of the new container are located
 --verbose Print verbose logs

Generating an image requires the name of the CS5 file and the use of the

following mandatory command-line arguments:

• --package-name

• --version-str

• --entry-point

• --network-conf

• --packages-conf

• --rootdir

The following items are also required:

• A container directory (not necessarily named "container") that points to what

would be the SEE machine’s root directory.

This directory must include any files used by the application, including the

entry point program, for example:

container/
├── home
└── usr
 └── bin
 └── entrypoint

The container directory can be located anywhere in the host file system.

Ensure you pass the full path to the generate command via the --rootdir

argument, as specified in the command usage.

• An entry point program.

This is the program that runs when the SEE container is started (on launcher

start). It must be made executable so it can be launched accordingly. In the

previous example, the entry point program is in container/usr/bin/entrypoint.

• A network configuration file. (See Example network-conf.json file.)

The valid range for container_port is 1024 - 65535.

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.4.5 Developer Guide 22/84

• A file with extra packages information. (See Example extra-packages-conf.json

file)

7.2.1.1. Example csadmin image generate operation

$ csadmin image generate --package-name "MyCodeSafeApp" --entry-point /usr/bin/entrypoint --network-conf network-
conf.json --packages-conf extra-packages-conf.json --version-str 1.0 --rootdir container/ myapp.cs5
INFO: creating content package
INFO: Creating content tar ball
INFO: Creating copy of source file: network-conf.json into dest: cs5_build/meta/network-conf.json
INFO: Creating copy of source file: extra-packages-conf.json into dest: cs5_build/meta/extra-packages-conf.json
INFO: Creating compressed tar ball cs5_build/extra-packages.tar.gz out of cs5_build/extra-packages
INFO: Creating compressed tar ball cs5_build/container.tar.gz out of container/
INFO: Creating uncompressed tar ball content.tar out of cs5_build
INFO: creating cs5 file myapp.cs5
INFO: adding content hash to the package

INFO: File myapp.cs5 was created successfully!

--entry-point points to the full path of the executable program relative to the

container’s root.

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.4.5 Developer Guide 23/84

7.2.1.2. Example extra-packages-conf.json file

{
 "packages": [{
 "package": "python",
 "description": "python 3.8 binaries",
 "host_path": "python3/csd5/ppc64/usr/bin",
 "machine_path": "usr/bin",
 "exclude": ""
 },
 {
 "package": "python",
 "description": "python 3.8 libraries",
 "host_path": "python3/csd5/ppc64/usr/lib/python3.8",
 "machine_path": "python3",
 "exclude": ""
 },
 {
 "package": "binaries",
 "description": "binaries for script support 1.0.0",
 "host_path": "c/csd5/rootfs/bin",
 "machine_path": "bin",
 "exclude": ""
 }
]
}

7.2.1.3. Example network-conf.json file

{
 "incoming" : {
 "tcp" : {
 "protos" : ["ipv6"], "ports" : [8000, 8001, 8888]
 }
 },
 "outgoing" : {
 "udp" : {
 "protos" : ["ipv4"], "ports" : [53]
 }
 },
 "ssh_tunnel" : {
 "container_port" : 8000
 }
}

7.2.1.4. Example entry point script

#!/bin/sh
export PYTHONHOME=/usr/bin
export PYTHONPATH=/usr/lib/python3.8/:/usr/lib/python3.8/lib-dynload:/usr/lib/python3.8/site-packages
python -m http.server --directory / --bind :: 8888

7.2.2. Sign images

CodeSafe images are signed with csadmin image sign. A signing key must be

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.4.5 Developer Guide 24/84

created before the CS5 file is signed, because signing must be done using HSM-

protected keys.

csadmin image sign --help
usage: csadmin image sign [-h] --askeyname ASKEYNAME --devkeyname DEVKEYNAME --devcert DEVCERT [--startdate
STARTDATE] [--expirydate EXPIRYDATE]
 [--out OUT] [--verbose]
 CS5FILE

positional arguments:
 CS5FILE The cs5 file to be signed

options:
 -h, --help show this help message and exit
 --askeyname ASKEYNAME
 Name (ident) of the application signing key
 --devkeyname DEVKEYNAME
 Name (ident) of the developer signing key
 --devcert DEVCERT The signed developer certificate PEM file
 --startdate STARTDATE
 Start of validity period for the signed ASK cert in Unix time (default: no start date)
 --expirydate EXPIRYDATE
 End of validity period for the signed ASK cert in Unix time (default: no expiration date)
 --out OUT Name of the output file. If not specified, the cs5 file is overwritten.
 --verbose Print verbose logs

For more information, see Signing CodeSafe images.

7.2.3. Create a developer ID certificate

Developer ID certificates are created with csadmin ids create. This command

generates a developer ID key with the given name (if it doesn’t exist already) and

a certificate signing request so a certificate can be generated (see Signing

CodeSafe images):

$ csadmin ids create --help
usage: csadmin ids create [-h] --keyname KEYNAME [-m MODULE] --x509cname COMMON_NAME [--x509country COUNTRY]
 [--x509province STATE_OR_PROVINCE] [--x509locality LOCALITY] --x509org ORGANIZATION [--
x509orgunit ORGANIZATIONAL_UNIT] [--verbose]

options:
 -h, --help show this help message and exit
 --keyname KEYNAME Name for the certificate's key.
 -m MODULE, --module MODULE
 Module to generate the key with.
 --x509cname COMMON_NAME
 The CN part of the key's DN.
 --x509country COUNTRY
 The C part of the key's DN.
 --x509province STATE_OR_PROVINCE
 The ST part of the key's DN.
 --x509locality LOCALITY
 The L part of the key's DN.
 --x509org ORGANIZATION
 The O part of the key's DN.
 --x509orgunit ORGANIZATIONAL_UNIT
 The OU part of the key's DN.

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.4.5 Developer Guide 25/84

 --verbose Print verbose logs

7.3. Example CodeSafe developer process

The examples in this chapter show how various csadmin commands can be used to

create a signed CodeSafe image for deployment. For details of the csadmin tool

(See The csadmin utility tool)

7.3.1. Create developer ID keys

To sign CodeSafe images, you must create a developer ID for your development

organisation and obtain a matching certificate from Entrust. You can obtain a

certificate by creating a Certificate Signing Request (CSR) file and sending it to

Entrust Support who will process the CSR and return a signed certificate to you.



Entrust strongly recommend that you create at least two

developer IDs: a 'development' ID for signing CodeSafe images

that are still in development, and a 'production' ID for signing

images that are ready to be deployed.

The csadmin ids create command provides the functionality to generate a

developer ID key if it does not already exist, as well as the CSR file in a single step.



Keep track of which certificate matches each developer ID key.

When you send a signed CodeSafe image to a customer you will

need to also send them the matching certificate for them to be

able to load the image on their HSM.

The developer ID keys only need to be created once. The certificates matching

them have a limited validity period and will need to be refreshed before they

expire.



When you refresh a certificate you must send it to anyone who

received a copy of a SEE machine that is signed by the key

matching that certificate. Users of SEE machines require a valid

certificate every time they start the SEE machine.

To refresh a certificate, use the csadmin ids create command with an existing key.

This creates a CSR file for the existing key, which should be sent to Entrust

Support who will process the CSR and return a new signed certificate.

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.4.5 Developer Guide 26/84

The integrity of the signing process relies on the procedural steps being followed

to secure a CodeSafe application image.

For this reason, developer ID keys are OCS protected and therefore to sign a

CodeSafe application a quorum of OCS cards and associated passphrases must be

available for the signing.


Only use your 'production' developer ID key to sign fully tested

CodeSafe images that you know to be ready for deployment.

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.4.5 Developer Guide 27/84

7.3.1.1. Generate an HSM-protected developer ID key and CSR

csadmin ids create --keyname developerid --x509cname developer.entrust.com --x509country US --x509province
Minnesota --x509locality Shakopee --x509org "CodeSafe App Development" --x509orgunit "Entrust CodeSafe"

Generate key 'testdeveloperkey' ...

Loading `TestOCS':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: empty
Card reading complete.

OK
Generate a CSR in 'testdeveloperkey.csr' ...
OK
Created CSR file 'testdeveloperkey.csr'. Please send it to Entrust Support


This creates the CSR file in the location where the command was

run.



keyname must conform with character set restrictions. For more

information, see the ident entry in the Key properties table in the

Key generation options and parameters chapter of the User

Guide for your nShield 5 HSM.


This developer ID creation was done with TestOCS, quorum of 1/1.

Exact output might vary slightly with different OCS quorums.

Send the resulting CSR to customer support to be signed by Entrust.

7.3.2. Load your certificate

When you receive your signed certificate chain back from Entrust Support, load

the developer ID certificate chain in the HSM using csadmin ids add.

You can use csadmin ids list to view the loaded certificate.

$ csadmin ids add entrust_developerid_cert_chain.pem
FEDC-BA09-8765 SUCCESS
$ csadmin ids list
FEDC-BA09-8765 SUCCESS
Certificates:
{'serialNumber': '1', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust CodeSafe,
Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'abcdef12345678900987654321fedcbaabcdef12', 'authKeyid': '0987654321fedcbaabcdef123456789009876543', 'notBefore':
'2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}
{'serialNumber': '2', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust CodeSafe,
Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'1234567890abcdeffedcba098765432112345678', 'authKeyid': 'fedcba09876543211234567890abcdeffedca098', 'notBefore':
'2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.4.5 Developer Guide 28/84

7.3.2.1. Generate an Application Signing Key (ASK) with nFast generatekey

This generates a simple ECDSA NIST521P key.

The following example specifies the key to be protected with an OCS.

/opt/nfast/bin/generatekey --batch --module=1 simple type=ECDSA curve=NISTP521 ident=ask plainname=ask
protect=token

7.3.2.2. Sign the CodeSafe image

This example signs a CodeSafe application called hello.cs5:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out ~/hello-
signed.cs5 ~/hello.cs5

Chapter 7. Sign and deploy CodeSafe 5 SDK apps using csadmin

CodeSafe 5 v13.4.5 Developer Guide 29/84

8. Build and sign example SEE machines
on Linux

8.1. Build module-side C examples

1. Create an empty directory to build the module side examples into, for

example:

mkdir ~/buildmodule/

2. Navigate to the empty directory:

cd ~/buildmodule/

3. Build the module side examples with cmake using the following commands:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd5/cmake/codesafe-toolchain-nshield5-csee.cmake
/opt/nfast/c/csd5/examples/

cmake --build .

Successful builds create .cs5 images for each example. For example, the classic

SEE Hello example has a .cs5 image at

~/buildmodule/n5/csee/hello/module/hello.cs5.

8.2. Building Host Side C Examples

1. Create an empty directory to build the host-side clients for the SEE machines,

for example:

mkdir ~/buildhost/

2. Navigate to the directory where the host-side examples will be built:

cd ~/buildhost/

3. Build the host-side examples with cmake using the following commands:

cmake /opt/nfast/c/csd5/examples/

cmake --build .

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 30/84

Successful builds create executable host-side clients for each example. For

example, the classic SEE Hello example has an executable program at

~/buildhost/n5/csee/hello/host/hello.

8.3. Build CS5 Images for Python Examples

1. Create an empty directory to build the Python examples into, for example:

mkdir ~/build_python

2. Navigate to the empty directory:

cd ~/build_python/

3. Build the examples with cmake using the following commands:

cmake /opt/nfast/python3/csd5/examples

cmake --build .

Successful builds create .cs5 images and executable host-side clients for each

example. For example, the hello_tcp example has a .cs5 image at

~/build_python/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp.cs5 and the

executable program is located at

~/build_python/n5/netsee/helloworld_tcp/hostside/helloworld_host_tcp.py.

8.4. Sign CodeSafe Images

1. Use csadmin ids create to generate the developer ID key, if it does not already

exist, as well as the CSR file in a single step. If the key already exists, it only

generates the CSR.

csadmin ids create --keyname developerid --x509cname developer.entrust.com --x509country US --x509province
Minnesota --x509locality Shakopee --x509org "Entrust CodeSafe" --x509orgunit "Entrust CodeSafe"

Generate key 'testdeveloperkey' ...

Loading `TestOCS':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: empty
Card reading complete.

OK
Generate a CSR in 'testdeveloperkey.csr' ...
OK

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 31/84

Created CSR file 'testdeveloperkey.csr'. Please send it to Entrust Support



This creates the CSR file in the location where the command

was run. This developer ID creation was done with TestOCS,

quorum of 1/1. Exact output might vary slightly with different

OCS quorums.

2. Send the CSR to customer support to be signed by Entrust. You must obtain

the signed developer ID certificate in order to sign and load an application.


For more detailed information on Developer IDs and CSRs,

see Sign and deploy CodeSafe 5 SDK apps using csadmin.

3. Use nfast generatekey to generate a simple ECDSA NIST521P application

signing key (ASK). The following example specifies the key to be protected by

the module. However, end users are encouraged to protect the key with an

OCS.

/opt/nfast/bin/generatekey --batch --module=1 simple type=ECDSA curve=NISTP521 ident=ask plainname=ask
protect=module

4. Sign the CodeSafe image, for example:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out
/tmp/hello-signed.cs5 ~/ca/hello.cs5

Additional examples are provided later in this chapter.

5. Use csadmin ids add to install the developer ID certificate chain from Entrust.

You can use csadmin ids list to view the loaded certificate.

$ csadmin ids add entrust_developerid_cert_chain.pem
FEDC-BA09-8765 SUCCESS
$ csadmin ids list
FEDC-BA09-8765 SUCCESS
Certificates:
{'serialNumber': '1', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'abcdef12345678900987654321fedcbaabcdef12', 'authKeyid': '0987654321fedcbaabcdef123456789009876543',
'notBefore': '2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}
{'serialNumber': '2', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'1234567890abcdeffedcba098765432112345678', 'authKeyid': 'fedcba09876543211234567890abcdeffedca098',
'notBefore': '2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 32/84

8.5. Run NetSEE examples

NetSEE examples communicate between the client and SEE machine directly

through a TCP/IPv6 network connection to the container, unlike legacy

applications, such as for Solo XC or Solo+, which communicate through the

hardserver to the nCore API.

8.5.1. helloworld_tcp

To execute the helloworld TCP example that opens a socket within the container

and uses the connection to transact a "helloworld" message:

1. Sign the .cs5 image using devcert and askeys:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-signed.cs5
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp.cs5

2. Load the signed .cs5 image using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-
signed.cs5



The output of csadmin load contains the UUID of the loaded

container. This UUID will be required for starting the

container. The UUID can always be retrieved from the output

of csadmin list.

3. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef



csadmin list lists the UUIDs of all containers. The IPv6

address of the started container appears in the output of the

csadmin start command. It can also be found in the output of

csadmin list and csadmin stats.

4. Run the host-side application.

The host-side application takes three positional arguments, the IPv6 address

of the container, the port number, and the message to send to the container.

The port number used by this example is 8888 by default. The message can

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 33/84

be any string of valid characters.

~/buildhost/n5/netsee/helloworld_tcp/hostside/helloworld_host_tcp ffff::fff:ffff:ffff:ffff%nshield0 8888
hello_module

Expected output:

nseeContainerMachineIPv6=ffff::fff:ffff:ffff:ffff%nshield0
nseeContainerMachinePort=8888
mesg=hello_module
Successful Connection to Socket...
Host>Sending TCP Message-->hello_module
Host>Hello World From HSM!


The IPv6 address is link-local and requires the zone index to

be appended (typically %nshield0).

8.5.2. helloworld_udp

To execute the helloworld UDP example that opens a socket within the container

and uses the connection to transact a "helloworld" message:

1. Sign the .cs5 image using devcert and askeys:

csadmin image sign --askeyname ask --devkeyname developerid --devcert ~/ca/developerid_cert.pem --out
~/buildmodule/n5/netsee/helloworld_udp/module/helloworld_mod_udp-signed.cs5
~/buildmodule/n5/netsee/helloworld_udp/module/helloworld_mod_udp.cs5

2. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/netsee/helloworld_udp/module/helloworld_mod_udp-
signed.cs5

Example output:

FEDC-BA09-8765: Uploading ~/buildmodule/n5/netsee/helloworld_udp/module/helloworld_mod_udp-signed.cs5
FEDC-BA09-8765: creating machine
FEDC-BA09-8765 SUCCESS
UUID: fedcba09-8765-4321-1234-567890abcdef



The output of csadmin load contains the UUID of the loaded

container. This UUID will be required for starting the

container. The UUID can always be retrieved from the output

of csadmin list.

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 34/84

3. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
IP ADDRESS: ffff::fff:ffff:ffff:ffff



csadmin list will list the UUIDs of all containers. The IPv6

address of the started container appears in the output of the

csadmin start command. It can also be found in the output of

csadmin list and csadmin stats.

4. Run the host-side application.

The host-side application takes three positional arguments, the IPv6 address

of the container, the port number, and the message to send to the container.

The port number used by this example is 8888 by default. The message can

be any string of valid characters.

~/buildhost/n5/netsee/helloworld_udp/hostside/helloworld_host_udp ffff::fff:ffff:ffff:ffff%nshield0 8888
hello_module

Example output:

nseeContainerMachineIPv6=ffff::fff:ffff:ffff:ffff%nshield0
nseeContainerMachinePort=8888
mesg=hello_module
Successful Connection to Socket...
Host>Sending UDP Message-->hello_module
Host>Hello World From HSM!


The IPv6 address is link-local and requires the zone index to

be appended (typically %nshield0).

8.6. Run NetSEE examples via SSH tunnel

NetSEE examples communicate between the client and SEE machine directly

through a TCP/IPv6 network connection to the container, unlike legacy

applications, such as for Solo XC or Solo+, which communicate through the

hardserver to the nCore API.

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 35/84

8.6.1. helloworld_tcp via SSH Tunnel

To execute the helloworld TCP example via an SSH Tunnel that opens a socket

within the container and uses the connection to transact a "helloworld" message:

1. Create an SSHD key for the hello example:

mkdir ~/examplekeys/
ssh-keygen -t ecdsa -f ~/examplekeys/helloworld_tcp_ecdsa_key

2. Modify the network-conf.json of the helloworld_tcp example to support SSH

tunneling, for example:

cat ~/buildmodule/n5/netsee/helloworld_tcp/module/network-conf.json
{
 "incoming": {
 "tcp":
 {
 "protos": ["ipv6"],
 "ports": [8888]
 }
 },
 "outgoing" : {
 "tcp" :
 {
 "protos": ["ipv6"],
 "ports": []
 }
 },
 "ssh_tunnel" : {
 "container_port" : 8888
 }
}

When the container server app accepts a client connection on the specified

incoming port (for example 8888), it designates and responds to the client on

an ephemeral port in the range [32768-60999] as the outgoing port. This port

does not have to be defined in the network-conf.json.

3. Rebuild the .cs5 image with the updated network-conf.json so the loaded

container will allow SSH tunneling:

sudo /opt/nfast/bin/csadmin image generate --package-name "helloworld_tcp" --entry-point
/usr/bin/entrypoint --network-conf ~/buildmodule/n5/netsee/helloworld_tcp/module/network-conf.json
--packages-conf ~/buildmodule/n5/netsee/helloworld_tcp/module/extra-packages-conf.json --version-str 1.0
--rootdir ~/buildmodule/n5/netsee/helloworld_tcp/module/container/
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp.cs5

Most paths used in generating the new image are paths to the file locations on

the host that is building the image However, the --entry-point path is the

absolute path to the entrypoint file within the container and should be

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 36/84

/usr/bin/entrypoint, not

~/buildmodule/n5/netsee/helloworld_tcp/module/container/usr/bin/entrypoint.

4. Sign the new .cs5 image using devcert and askeys:

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-signed.cs5
~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp.cs5

5. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/netsee/helloworld_tcp/module/helloworld_mod_tcp-
signed.cs5

The output of csadmin load contains the UUID of the loaded container. This

UUID will be required for starting the container and managing the SSHD keys

of the container. The UUID can always be retrieved from the output of csadmin

list.

6. Load the public key created earlier (helloworld_tcp_ecdsa_key) to the container

using csadmin sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba09-8765-4321-1234-567890abcdef --keyfile
~/examplekeys/helloworld_tcp_ecdsa_key.pub

7. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
SSHD PORT: 6789
LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa

The output of sshd state enable contains the SSHD Port number and the

listening address of the container SSHD.

8. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef

csadmin list lists the UUIDs of all containers. The IPv6 address of the started

container appears in the output of the csadmin start command. It can also be

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 37/84

found in the output of csadmin list and csadmin stats.

9. Setup the SSH tunnel on the host:

Run csadmin sshd state get and collect the following information:

◦ Container tunnel address (ffff::fff:ffff:ffff:ffff)

◦ Container port (8888)

◦ SSHD port (6789)

◦ SSHD listening address (aaaa::aa:aaaa:aaaa:aaaa)


On nShield Connect the SSHD listening address may be an

IPv4 or IPv6 address

Next, choose a local IP address and port number through which to access the

tunnel. Typically localhost is chosen as the local IP address (127.0.0.1 or [::1])

The SSH tunnel command is formatted as follows:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_IP:[TUNNEL_ADDRESS%lxcbr0]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr0]:8888 -f -N -p
6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshield0


When using nShield 5s the IPv6 address is link-local and

requires the zone index to be appended (typically %nshield0).

10. Run the host-side application.

The host-side application takes three positional arguments, the IPv6 address

set up in the forwarding step [::1], the port number, and the message to send

to the container. The port number used by this example is 8888 by default.

The message can be any string of valid characters.

~/buildhost/n5/netsee/helloworld_tcp/hostside/helloworld_host_tcp ::1 8888 hello_module

Expected Output:

nseeContainerMachineIPv6=::1
nseeContainerMachinePort=8888
mesg=hello_module
Successful Connection to Socket...

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 38/84

Host>Sending TCP Message-->hello_module
Host>Hello World From HSM!

8.7. Run CSEE examples via SSH tunnel

The Classic SEE (CSEE) examples are legacy examples modified to run with

CodeSafe 5 to demonstrate use of the compatibility layer. These examples are

identical to examples provided with previous iterations of nShield HSMs and

CodeSafe. This section describes running the CSEE examples using an SSH Tunnel

8.7.1. hello via SSH Tunnel

This section describes executing the legacy hello example using the compatibility

layer via an SSH Tunnel. The CSEE hello example operates functionally identically

to previous hello examples for Solo XC and Solo+.

The hello example sends a string from the host to the module. The module

converts the string to uppercase and returns the string to the host.

1. Generate an input file containing a character string to be sent to the module.

echo UPPERCASElowercase > ~/inputfile

This input file has both uppercase and lowercase characters.

2. Generate an SSHD key for the hello example:

mkdir ~/examplekeys/
ssh-keygen -t ecdsa -f ~/examplekeys/hello_ecdsa_key

3. Modify the network-conf.json of the hello example to configure SSH tunneling,

for example:

cat ~/buildmodule/n5/csee/hello/module/network-conf.json
{
 "incoming": {
 "tcp":
 {
 "protos": ["ipv6"],
 "ports": [8888]
 }
 },
 "outgoing" : {
 "tcp" :
 {
 "protos": ["ipv6"],
 "ports": []

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 39/84

 }
 },
 "ssh_tunnel" : {
 "container_port" : 8888
 }
}



When the container server app accepts a client connection

on the specified incoming port (for example 8888), it

designates and responds to the client on an ephemeral port

in the range [32768-60999] as the outgoing port. This port

does not have to be defined in the network-conf.json.

4. Rebuild the .cs5 image with the updated network-conf.json so the loaded

container will allow SSH tunneling:

sudo /opt/nfast/bin/csadmin image generate --package-name "hello" --entry-point /usr/bin/entrypoint
--network-conf ~/buildmodule/n5/csee/hello/module/network-conf.json --packages-conf
~/buildmodule/n5/csee/hello/module/extra-packages-conf.json --version-str 1.0 --rootdir
~/buildmodule/n5/csee/hello/module/container/ ~/buildmodule/n5/csee/hello/module/hello.cs5

Most paths used in generating the new image are paths to the file locations on

the host that is building the image. However, the --entry-point path is the

absolute path to the entrypoint file within the container and should be

/usr/bin/entrypoint, not

~/buildmodule/n5/csee/hello/module/container/usr/bin/entrypoint.

5. Sign the .cs5 image using devcert and askeys:

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/csee/hello/module/hello-signed.cs5
~/buildmodule/n5/csee/hello/module/hello.cs5

6. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/csee/hello/module/hello-signed.cs5

Example output:

FEDC-BA09-8765: Uploading ~/buildmodule/n5/csee/hello/module/hello-signed.cs5
FEDC-BA09-8765: creating machine
FEDC-BA09-8765 SUCCESS
UUID: fedcba09-8765-4321-1234-567890abcdef

The output of csadmin load contains the UUID of the loaded container. This

UUID will be required for starting the container and managing the SSHD keys

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 40/84

of the container. The UUID can always be retrieved from the output of csadmin

list.

7. Load the public key created earlier (hello_ecdsa_key) to the container using

csadmin sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba09-8765-4321-1234-567890abcdef --keyfile
~/examplekeys/hello_ecdsa_key.pub

8. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
SSHD PORT: 6789
LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa

The output of sshd state enable contains the SSHD port number and the

listening address of the container SSHD.

9. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
IP ADDRESS: ffff::fff:ffff:ffff:ffff

csadmin list lists the UUIDs of all containers. The IPv6 address of the started

container appears in the output of the csadmin start command. It can also be

found in the output of csadmin list and csadmin stats.

10. Setup the SSH tunnel on the host:

Run csadmin sshd state get and collect the following information:

◦ Container tunnel address (ffff::fff:ffff:ffff:ffff)

◦ Container port (8888)

◦ SSHD port (6789)

◦ SSHD listening address (aaaa::aa:aaaa:aaaa:aaaa)

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 41/84


On nShield Connect the SSHD listening address may be an

IPv4 or IPv6 address

Next, choose a local IP address and port number through which to access the

tunnel. Typically localhost is chosen as the local IP address (127.0.0.1 or [::1])

The SSH tunnel command is formatted as follows:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_IP:[TUNNEL_ADDRESS%lxcbr0]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr0]:8888 -f -N -p
6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshield0


When using nShield 5s the IPv6 address is link-local and

requires the zone index to be appended (typically %nshield0).

11. Run the host-side application.

The host-side application takes one required positional argument, and three

required optional arguments. The required optional arguments are the IPv6

address set up in the forwarding step [::1] (--ipv6), the UUID of the container

(--uuid), and the file path to the signed container image (--cs5). The required

positional argument is the input file containing a string to convert to

uppercase on the module.

~/buildhost/n5/csee/hello/hostside/hello --uuid fedcba09-8765-4321-1234-567890abcdef --ipv6 ::1 --cs5
~/buildmodule/n5/csee/hello/module/hello-signed.cs5 ~/inputfile

Example output:

Worldid: 0x1234abcd
UPPERCASELOWERCASE

The module has received the input string UPPERCASElowercase and has

converted and returned it as a fully uppercase string UPPERCASELOWERCASE.

8.7.2. tickets via SSH tunnel

This section describes executing the legacy tickets example using the

compatibility layer via an SSH Tunnel. The CSEE tickets example operates

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 42/84

functionally identically to previous tickets examples for Solo XC, Solo+. The tickets

example serves to demonstrate cryptographic functionality by encrypting and

having the module decrypt a user-provided string.

1. Generate a simple RSA key to encrypt with:

sudo /opt/nfast/bin/generatekey --module=1 simple type=RSA pubexp=3 ident=encryptionkeytickets
plainname=encryptionkeytickets protect=module nvram=no size=2048

2. Generate an SSHD key for the tickets example:

mkdir ~/examplekeys/
ssh-keygen -t ecdsa -f ~/examplekeys/tickets_ecdsa_key

3. Modify the network-conf.json of the tickets example to configure SSH

tunneling, for example:

cat ~/buildmodule/n5/csee/tickets/module/network-conf.json
{
 "incoming": {
 "tcp":
 {
 "protos": ["ipv6"],
 "ports": [8888]
 }
 },
 "outgoing" : {
 "tcp" :
 {
 "protos": ["ipv6"],
 "ports": []
 }
 },
 "ssh_tunnel" : {
 "container_port" : 8888
 }
}



When the container server app accepts a client connection

on the specified incoming port (for example 8888), it

designates and responds to the client on an ephemeral port

in the range [32768-60999] as the outgoing port. This port

does not have to be defined in the network-conf.json.

4. Rebuild the .cs5 image with the updated network-conf.json:

sudo /opt/nfast/bin/csadmin image generate --package-name "tickets" --entry-point /usr/bin/entrypoint
--network-conf ~/buildmodule/n5/csee/tickets/module/network-conf.json --packages-conf
~/buildmodule/n5/csee/tickets/module/extra-packages-conf.json --version-str 1.0 --rootdir
~/buildmodule/n5/csee/tickets/module/container/ ~/buildmodule/n5/csee/tickets/module/seetickets.cs5

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 43/84

Most paths used in generating the new image are paths to the file locations on

the host that is building the image. However, the --entry-point path is the

absolute path to the entrypoint file within the container and should be

/usr/bin/entrypoint, not

~/buildmodule/n5/csee/tickets/module/container/usr/bin/entrypoint.

5. Sign the .cs5 image using devcert and askeys:

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5
~/buildmodule/n5/csee/tickets/module/seetickets.cs5

6. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5

Example output:

FEDC-BA09-8765: Uploading ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5
FEDC-BA09-8765: creating machine
FEDC-BA09-8765 SUCCESS
UUID: fedcba09-8765-4321-1234-567890abcdef

The output of csadmin load contains the UUID of the loaded container. This

UUID will be required for starting the container and managing the SSHD keys

of the container. The UUID can also be retrieved from the output of csadmin

list.

7. Load the public key created earlier (tickets_ecdsa_key) to the container using

csadmin sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba09-8765-4321-1234-567890abcdef --keyfile
~/examplekeys/tickets_ecdsa_key.pub

8. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
SSHD PORT: 6789
LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 44/84

The output of sshd state enable contains the SSHD Port number and the

listening address of the container sshd.

9. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
IP ADDRESS: ffff::fff:ffff:ffff:ffff


The IPv6 address of the started container appears in the

output of the csadmin start command. It can also be found in

the output of csadmin list and csadmin stats.

10. Setup the SSH tunnel on the host:

Run csadmin sshd state get and collect the following information:

◦ Container tunnel address (ffff::fff:ffff:ffff:ffff)

◦ Container port (8888)

◦ SSHD port (6789)

◦ SSHD listening address (aaaa::aa:aaaa:aaaa:aaaa)


On nShield Connect the SSHD listening address may be an

IPv4 or IPv6 address

Next, choose a local IP address and port number through which to access the

tunnel. Typically localhost is chosen as the local IP address (127.0.0.1 or [::1])

The SSH tunnel command is formatted as follows:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_IP:[TUNNEL_ADDRESS%lxcbr0]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr0]:8888 -f -N -p
6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshield0


When using nShield 5s the IPv6 address is link-local and

requires the zone index to be appended (typically %nshield0).

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 45/84

11. Run the host-side application.

The host-side application takes three required optional arguments. The

required optional arguments are the IPv6 address set up in the forwarding

above [::1] (--ipv6), the UUID of the container (--uuid), and the file path of

the signed .cs5 image (--cs5). The host-side also accepts the encryption key

created earlier as an optional argument (--key).

~/buildhost/n5/csee/tickets/hostside/hosttickets --uuid fedcba09-8765-4321-1234-567890abcdef --ipv6 ::1
--cs5 ~/buildmodule/n5/csee/tickets/module/seetickets-signed.cs5 --key simple,encryptionkeytickets

12. When prompted, enter a string to encrypt (for example, testencryption) and

press Return:

Enter string to be encrypted (256 characters maximum): testencryption

The host encrypts the message then the module decrypts it and returns it in

plain text format.

Example output:

HostSide> Loading security world key (simple,encryptionkeytickets)
HostSide> Creating World: init status was 0 (OK)
HostSide> Sending ticket for private RSA key to module
HostSide> Generating AES session key and creating blob under public RSA key
HostSide> Sending key blob to module
HostSide> Sending cipher-text to module
HostSide> decrypted cipher text received from SEE machine:
"testencryption"
HostSide> Thank you for watching. The end.

8.7.3. benchmark via SSH tunnel

This section describes executing the legacy benchmark example using the

compatibility layer via an SSH tunnel. The CSEE benchmark example operates

functionally identically to previous benchmark examples for Solo XC and Solo+.

The benchmark example will transact asynchronously with the module running

multiple threads processing transactions. The benchmark example will output

transactions/second data every second.

1. Generate a simple key for signing a ticket in the bm-machine on the module:

sudo /opt/nfast/bin/generatekey --module=1 simple type=RSA pubexp=3 ident=signingkeybenchmark
plainname=signingkeybenchmark protect=module nvram=no size=2048

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 46/84

2. Generate an SSHD key for the benchmark example:

mkdir ~/examplekeys/
ssh-keygen -t ecdsa -f ~/examplekeys/benchmark_ecdsa_key

3. Modify the network-conf.json of the benchmark example to configure SSH

tunneling, for example:

cat ~/buildmodule/n5/csee/benchmark/module/network-conf.json
{
 "incoming": {
 "tcp":
 {
 "protos": ["ipv6"],
 "ports": [8888]
 }
 },
 "outgoing" : {
 "tcp" :
 {
 "protos": ["ipv6"],
 "ports": []
 }
 },
 "ssh_tunnel" : {
 "container_port" : 8888
 }
}



When the container server app accepts a client connection

on the specified incoming port (8888), it designates and

responds to the client on an ephemeral port in the range

[32768-60999] as the outgoing port. This port does not have

to be defined in the network-conf.json.

4. Rebuild the .cs5 image with the updated network-conf.json:

sudo /opt/nfast/bin/csadmin image generate --package-name "bm-machine" --entry-point /usr/bin/entrypoint
--network-conf ~/buildmodule/n5/csee/benchmark/module/network-conf.json --packages-conf
~/buildmodule/n5/csee/benchmark/module/extra-packages-conf.json --version-str 1.0 --rootdir
~/buildmodule/n5/csee/benchmark/module/container/ ~/buildmodule/n5/csee/benchmark/module/bm-machine.cs5

Most paths used in generating the new image are paths to the file locations on

the host that is building the image. However, the --entry-point path is the

absolute path to the entrypoint file within the container and should be

/usr/bin/entrypoint, not

~/buildmodule/n5/csee/benchmark/module/container/usr/bin/entrypoint.

5. Sign the .cs5 image using devcert and askeys:

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 47/84

sudo /opt/nfast/bin/csadmin image sign --askeyname ask --devkeyname developerid --devcert
~/ca/developerid_cert.pem --out ~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5
~/buildmodule/n5/csee/benchmark/module/bm-machine.cs5

6. Load the signed container using csadmin load:

sudo /opt/nfast/bin/csadmin load ~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5

Example output:

FEDC-BA09-8765: Uploading ~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5
FEDC-BA09-8765: creating machine
FEDC-BA09-8765 SUCCESS
UUID: fedcba09-8765-4321-1234-567890abcdef

The output of csadmin load contains the UUID of the loaded container. This

UUID will be required for starting the container and managing the SSHD keys

of the container. The UUID can always be retrieved from the output of csadmin

list.

7. Load the public key created earlier (benchmark_ecdsa_key) to the container

using csadmin sshd setclient:

sudo /opt/nfast/bin/csadmin sshd keys setclient --uuid fedcba09-8765-4321-1234-567890abcdef --keyfile
~/examplekeys/benchmark_ecdsa_key.pub

8. Enable SSH tunneling on the container:

sudo /opt/nfast/bin/csadmin sshd state enable --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

FEDC-BA09-8765 SUCCESS
SSHD PORT: 6789
LISTENING ADDRESS: aaaa::aa:aaaa:aaaa:aaaa


The output of sshd state enable contains the SSHD port

number and the listening address of the container SSHD.

9. Start the container using csadmin start:

sudo /opt/nfast/bin/csadmin start --uuid fedcba09-8765-4321-1234-567890abcdef

Example output:

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 48/84

FEDC-BA09-8765 SUCCESS
IP ADDRESS: ffff::fff:ffff:ffff:ffff

The IPv6 address of the started container appears in the output of the csadmin

start command. It can also be found in the output of csadmin list and csadmin

stats.

10. Setup the SSH tunnel on the host:

Run csadmin sshd state get and collect the following information:

◦ Container tunnel address (ffff::fff:ffff:ffff:ffff)

◦ Container port (8888)

◦ SSHD port (6789)

◦ SSHD listening address (aaaa::aa:aaaa:aaaa:aaaa)


On nShield Connect the SSHD listening address may be an

IPv4 or IPv6 address

Next, choose a local IP address and port number through which to access the

tunnel. Typically localhost is chosen as the local IP address (127.0.0.1 or [::1])

The SSH tunnel command is formatted as follows:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L LOCAL_IP:LOCAL_IP:[TUNNEL_ADDRESS%lxcbr0]:CONTAINER_PORT
-f -N -p SSHD_PORT launcher@LISTENING_ADDRESS

Using the example data:

ssh -i ~/examplekeys/helloworld_tcp_ecdsa_key -L [::1]:8888:[ffff::fff:ffff:ffff:ffff%lxcbr0]:8888 -f -N -p
6789 launcher@aaaa::aa:aaaa:aaaa:aaaa%nshield0


When using nShield 5s the IPv6 address is link-local and

requires the zone index to be appended (typically %nshield0).

11. Run the host-side application.

The host-side application takes three required optional arguments and two

positional arguments. The required optional arguments are the IPv6 address

set up in the forwarding above [::1] (--ipv6), the UUID of the container (

--uuid), and the path to the signed .cs5 image (--cs5). The required positional

arguments are the simple signing key created earlier.

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 49/84

~/buildhost/n5/csee/benchmark/hostside/bm-test --uuid fedcba09-8765-4321-1234-567890abcdef --ipv6 ::1 --cs5
~/buildmodule/n5/csee/benchmark/module/bm-machine-signed.cs5 simple signingkeybenchmark

Example output:

Worldid: 0x1234abcd
1 759 759.00
2 1522 761.00
3 2361 787.00
4 3324 831.00
5 4238 847.60
6 5124 854.00
7 5948 849.71
8 6723 840.38
9 7579 842.11
10 8408 840.80

Chapter 8. Build and sign example SEE machines on Linux

CodeSafe 5 v13.4.5 Developer Guide 50/84

9. Build and sign example SEE machines
on Windows

9.1. Prerequisites

• Visual Studio 2017 buildtools

• CMAKE version 3.9 or newer

• Ninja build system latest version

• Visual Studio 2017 workload-vctools

9.2. Building Windows CodeSafe C, CSEE, and
NETSEE examples

1. Start the Developer Command Prompt for VS 2017 as Administrator from the

Start menu.

2. Navigate to the following directory:

cd "c:\Program Files (x86)\Microsoft Visual Studio\2017\BuildTools\Common7\Tools"

3. Install the MSVC C and C++ compiler cl.exe.

4. Execute VsDevCmd.bat:

VsDevCmd.bat

5. Run cl:

cl

6. Because the default is 32bit mode, the version displayed will show x86.

Change to 64bit cl Compiler:

cd "c:\Program Files (x86)\Microsoft Visual Studio\2017\BuildTools\VC\Auxiliary\Build"

7. Execute vcvars64.bat:

vcvars64.bat

Chapter 9. Build and sign example SEE machines on Windows

CodeSafe 5 v13.4.5 Developer Guide 51/84

8. Run cl and verify that the x64 version is displayed:

cl

you can build the following examples in the same VS2017 Command window:

9.2.1. Host-side examples

c:\>mkdir examples\host

c:\>cd c:\examples\host\

c:\examples\host>cmake -G Ninja -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=cl "c:\Program
Files\nCipher\nfast\c\csd5\examples"

c:\examples\host>ninja

9.2.2. Module-side examples

c:\>mkdir examples\module

c:\>cd c:\examples\module\

c:\examples\module>cmake -G "Ninja" -DCMAKE_TOOLCHAIN_FILE="c:\Program Files\nCipher\nfast\c\csd5\cmake\codesafe-
toolchain-nshield5-csee.cmake" "c:\Program Files\nCipher\nfast\c\csd5\examples"

c:\examples\module>ninja

9.3. CS5 images for Python examples

Build the following images in the VS2017 Command window configured in Building

Windows CodeSafe C, CSEE, and NETSEE examples. You do not need to build

host-side and module-side Python examples separately. They are both built into

examples\python\n5\netsee\<example>\.

c:\>mkdir examples\python

c:\>cd c:\examples\python\

c:\examples\python>cmake -G "Ninja" "c:\Program Files\nCipher\nfast\python3\csd5\examples"

c:\examples\python>ninja

For example:

c:\examples\python\n5\netsee\tickets>dir
Volume in drive C is OS

Chapter 9. Build and sign example SEE machines on Windows

CodeSafe 5 v13.4.5 Developer Guide 52/84

Volume Serial Number is 582A-CFB6 Directory of c:\examples\python\n5\netsee\tickets 03/21/2023 12:32 PM <DIR>
.
03/21/2023 12:32 PM <DIR> ..
03/21/2023 12:32 PM <DIR> hostside
03/21/2023 12:32 PM <DIR> module
 0 File(s) 0 bytes
 4 Dir(s) 906,165,829,632 bytes free

9.4. Sign CodeSafe images


Signing CodeSafe Images requires a Security World and

Operator Card Set (OCS).

1. Insert the OCS card.

2. Create a certificate signing request (CSR) that should be sent to Entrust to be

signed:

c:\ca_ids\>csadmin ids create --keyname testdeveloperkey --x509cname developer.entrust.com --x509country US
--x509province FL --x509locality Shakopee --x509org Entrust --x509orgunit "Entrust CodeSafe"
Generate key 'testdeveloperkey' ...

Loading `TestOCS':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: empty
Card reading complete.

OK
Generate a CSR in 'testdeveloperkey.csr' ...
OK
Created CSR file 'testdeveloperkey.csr'. Please send it to Entrust Support


The developer ID creation in this example was done with

TestOCS, quorum of 1/1. Exact output may vary slightly with

different OCS quorums.

3. Send the resulting CSR to customer support to be signed by Entrust. You

must obtain the signed developer ID certificate in order to sign and load an

application.

For more detailed information on Developer IDs and CSRs, see Sign and

deploy CodeSafe 5 SDK apps using csadmin.

4. Create the ASK on the HSM (the name of the key in this example is test-ask).

The following example specifies the key to be protected by the module.

However, end users are encouraged to protect the key with an OCS:

c:\ca_ids>C:\Progra~1\nCipher\nfast\bin\generatekey.exe --module=1 simple type=ECDSA curve=NISTP521
ident=test-ask plainname=test-ask
protect: Protected by? (token, module) [token] > module

Chapter 9. Build and sign example SEE machines on Windows

CodeSafe 5 v13.4.5 Developer Guide 53/84

nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application simple
 protect Protected by module
 verify Verify security of key yes
 type Key type ECDSA
 ident Key identifier test-ask
 plainname Key name test-ask
 nvram Blob in NVRAM (needs ACS) no
 curve Elliptic curve NISTP521
Key successfully generated.
Path to key: C:\ProgramData\nCipher\Key Management Data\local\key_simple_test-ask

5. Confirm that the keys were created in the previous step:

c:\ca_ids>nfkminfo -k
Key list - 2 keys
 AppName simple Ident test-ask
 AppName simple Ident testdeveloperkey

6. Sign the netsee\tickets example. You need the signed cert.pem from customer

support for this step and the OCS card must be inserted for signing.

c:\examples\module\n5\netsee\tickets_netsee\module>csadmin image sign --askeyname test-ask --devkeyname
testdeveloperkey --devcert c:\ca_ids\testdeveloperid_cert.pem --out seetickets_netsee-signed-with-hsm.cs5
seetickets_netsee.cs5
INFO: Reading CS5 file contents...
INFO: Getting key handle from HSM...

INFO: Signing the Application Signing Key...
INFO: hashing contents using 'SHA512Hash'
INFO: Obtaining public key data from HSM...
INFO: Storing public key data on CS5 file...
INFO: Getting key handle from HSM...
INFO: Requesting signature from HSM...
INFO: Saving CS5 file to disk...
INFO: file 'seetickets_netsee.cs5' was signed successfully!

Directory of c:\examples\module\n5\netsee\tickets_netsee\module

02/16/2023 03:53 PM 27,167,860 seetickets_netsee-signed-with-hsm.cs5
 1 File(s) 27,167,860 bytes
 0 Dir(s) 775,613,321,216 bytes free

7. Install the developer ID certificate chain from Entrust using csadmin ids add:

csadmin ids add entrust_developerid_cert_chain.pem
FEDC-BA09-8765 SUCCESS

csadmin ids list
FEDC-BA09-8765 SUCCESS
Certificates:
{'serialNumber': '1', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':
'abcdef12345678900987654321fedcbaabcdef12', 'authKeyid': '0987654321fedcbaabcdef123456789009876543',
'notBefore': '2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}
{'serialNumber': '2', 'subject': 'Common Name: developer.entrust.com, Organizational Unit: Entrust
CodeSafe, Organization: Entrust, Locality: Shakopee, State/Province: Minnesota, Country: US', 'keyid':

Chapter 9. Build and sign example SEE machines on Windows

CodeSafe 5 v13.4.5 Developer Guide 54/84

'1234567890abcdeffedcba098765432112345678', 'authKeyid': 'fedcba09876543211234567890abcdeffedca098',
'notBefore': '2023-01-01 12:34:56+00:00', 'notAfter': '2024-01-01 12:34:56+00:00'}

8. Execute netsee\tickets:

c:\examples\module\n5\netsee\tickets_netsee\module>csadmin load seetickets_netsee-signed-with-hsm.cs5
FEDC-BA09-8765: Uploading seetickets_netsee-signed-with-hsm.cs5
FEDC-BA09-8765: creating machine
FEDC-BA09-8765 SUCCESS
UUID: fedcba09-8765-4321-1234-567890abcdef

c:\examples\module\n5\netsee\tickets_netsee\module>cd c:\examples\host\n5\netsee\tickets_netsee\hostside

c:\examples\host\n5\netsee\tickets_netsee\hostside>nopclearfail -aO
Module 1, command ClearUnitEx: OK

c:\examples\host\n5\netsee\tickets_netsee\hostside>csadmin start -u fedcba09-8765-4321-1234-567890abcdef
FEDC-BA09-8765 SUCCESS
IP ADDRESS: ffff::fff:ffff:ffff:ffff

c:\examples\host\n5\netsee\tickets_netsee\hostside>csadmin list
FEDC-BA09-8765
UUID State Name IP Address
--
fedcba09-8765-4321-1234-567890abcdef RUNNING seetickets_netsee ffff::fff:ffff:ffff:ffff

c:\examples\host\n5\netsee\tickets_netsee\hostside>hosttickets_netsee.exe -p 8888 -U fedcba09-8765-4321-
1234-567890abcdef -i ffff::fff:ffff:ffff:ffff%10 -c
c:\examples\module\n5\netsee\tickets_netsee\module\seetickets_netsee-signed-with-hsm.cs5
WSAStartup() Success.
HostSide>Enter string to be encrypted (8 characters maximum): hello
HostSide>Reading Identities from container
HostSide>Generating RSA keypair
HostSide>Creating World: init status was 0 (OK)
HostSide>Sending ticket for private RSA key to module
HostSide>Sending key blob to module
HostSide>Sending cipher-text to module
HostSide>decrypted cipher text received from SEE machine:
"hello"
HostSide>Thank you for watching. The end.

Chapter 9. Build and sign example SEE machines on Windows

CodeSafe 5 v13.4.5 Developer Guide 55/84

10. Debug CodeSafe 5 SEE machines
csadmin exposes several commands you can use to manage SEE application

logging.

The following SEE logging-related commands are supported by the csadmin utility.

10.1. config log set enabled

The config log set enabled command should be issued before the start command.

It uses the following format:

/opt/nfast/bin/csadmin config set log enabled -u <SEE-machine-UUID> --esn <host-ESN>

• <SEE-machine-UUID> is the UUID of the SEE machine created by the load

command.

• <host-ESN> is the ESN of the HSM hosting the SEE Machine.

For example:

/opt/nfast/bin/csadmin config set log enabled -u fedcba09-8765-4321-1234-567890abcdef --esn FEDC-BA09-8765

When successful, the command returns with no error.

10.2. config log set disabled

The config log set disabled command should be issued while the SEE machine is

not running. It uses the following format:

/opt/nfast/bin/csadmin config set log disabled -u <SEE-machine-UUID> --esn <host-ESN>

• <SEE-machine-UUID> is the UUID of the SEE machine created by the load

command.

• <host-ESN> is the ESN of the HSM hosting the SEE Machine.

For example:

/opt/nfast/bin/csadmin config set log disabled -u fedcba09-8765-4321-1234-567890abcdef --esn FEDC-BA09-8765

When successful, the command returns with no error.

Chapter 10. Debug CodeSafe 5 SEE machines

CodeSafe 5 v13.4.5 Developer Guide 56/84

10.3. log get

The get command returns the current SEE log contents, if any. It uses the following

format:

/opt/nfast/bin/csadmin log get -u <SEE-machine-UUID>

<SEE-machine-UUID> is the UUID of the SEE machine created by the load command.

For example:

/opt/nfast/bin/csadmin log get -u fedcba09-8765-4321-1234-567890abcdef
FEDC-BA09-8765 SUCCESS
Success: Started ipcdaemon

10.4. log clear

The clear command deletes the current SEE log file if present. It uses the following

format:

/opt/nfast/bin/csadmin log clear -u <SEE-machine-UUID>

<SEE-machine-UUID> is the UUID of the SEE machine created by the load command.

For example:

/opt/nfast/bin/csadmin log clear -u fedcba09-8765-4321-1234-567890abcdef
FEDC-BA09-8765 SUCCESS
log: log cleared

Chapter 10. Debug CodeSafe 5 SEE machines

CodeSafe 5 v13.4.5 Developer Guide 57/84

11. Uninstall the CodeSafe 5 SDK



Do not uninstall Security World or CodeSafe 5 software unless

you are certain it is no longer required or you are going to

upgrade it.

If you are using CodeSafe 5 with an nShield 5s HSM, you must

back up its sshadmin keys by running hsmadmin keys backup before

you uninstall Security World or CodeSafe 5.

The uninstaller only removes files that were created during the installation. To

remove key data or Security World data, navigate to the installation directory and

delete the files in the %NFAST_KMDATA% folder.

If you intend to remove your Security World before uninstalling the Security World

Software, Entrust recommends that you erase the OCS before you erase the

Security World or uninstall the Security World Software. Except where Remote

Administration cards are used, after you have erased a Security World, you can no

longer erase any cards that belonged to it.

1. Log in to the host computer as Administrator or as a user with local

administrator rights.

2. Run the following command to erase the OCS:

createocs -m# -s0 --erase

Where # is the module number.

3. Uninstall the Security World and CodeSafe software:

◦ Linux:

Run the following command:

/opt/nfast/sbin/install -u

◦ Windows:

1. Navigate to the Windows Control Panel, and select Programs and
Features.

2. Select the Security World Software entry, then select Uninstall to
remove the software.

If required, you can safely remove the nShield module after shutting down all

Chapter 11. Uninstall the CodeSafe 5 SDK

CodeSafe 5 v13.4.5 Developer Guide 58/84

connected hardware.

Chapter 11. Uninstall the CodeSafe 5 SDK

CodeSafe 5 v13.4.5 Developer Guide 59/84

12. Port existing CodeSafe application to
CodeSafe 5
Follow the steps in this chapter if you need to port an existing legacy SEE

machine to run on CodeSafe 5.

The porting of legacy CodeSafe application examples in this chapter assumes the

perspective of a CodeSafe application developer. CodeSafe users wanting to port

legacy third party CodeSafe applications to nShield 5 might need to have the third

party issuer of said legacy CodeSafe applications port the applications and sign

the ported applications.

CodeSafe users porting third party applications should ensure that the third party

CodeSafe developer is a trusted party, and should verify that the ported CodeSafe

image has a genuine certificate issued by the trusted developer. After a third party

CodeSafe application is ported and signed, the application user can skip to the

"Load the signed container" step in the following examples and continue the

procedures from there.

Full examples of legacy SEE machines that have been ported with use of the

compatibility layer can be found in Build and sign example SEE machines on

Linux. These Classic SEE "CSEE" examples are legacy examples that have been

modified to run with CodeSafe 5 specifically to demonstrate use of the

compatibility layer. In all other ways, these examples are identical to examples

provided with previous iterations of nShield HSMs and CodeSafe.


It is assumed that an ASK and developer ID key have already

been generated, and that required certificates have already been

obtained from Entrust and installed into the target HSM.

12.1. The compatibility layer

Legacy CodeSafe transacted data between host application and module SEE

machines using SEEJobs. SEEJobs were sent from the host-side application to the

nCore API which then passed the jobs on to the SEE machine, and vice versa.

CodeSafe 5 removes the need to communicate with SEE machines via the nCore

API using SEEJobs.

Instead, CodeSafe 5 allows a network connection to be established directly

between a host-side application and an SEE machine. As such, support for

transacting SEEJobs, and all related methods has been removed from CodeSafe 5.

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.4.5 Developer Guide 60/84

The compatibility layer provides support for SEEJobs. All methods that dealt with

transacting exist in the compatibility layer, but instead of passing SEEJobs to the

nCore API and having the nCore API forward them, the Compatibility layer creates

a network connection between the SEE machine and host application.

The methods function similarly, but the mechanism for data transaction has been

updated. The compatibility layer is split into two parts: the module-side

compatibility layer, and the host-side compatibility layer. Both parts work together

to provide support for legacy SEE machines.



The module-side SEE machine and corresponding host-side

application must both be ported successfully for them to

function on CodeSafe 5. It is not sufficient to port one side but

not the other.

12.1.1. Module-side compatibility layer

The module-side compatibility layer provides the methods necessary to connect

the SEE machine to the host-side application via network connection.

The module-side compatibility layer comprises the liblegacy_compatibility.a

library. Its install location is:

• Linux: /opt/nfast/c/csd5/lib-ppc64-linux-musl/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\lib-ppc64-linux-musl\

12.1.2. Host-side compatibility layer

The host-side compatibility layer provides the methods necessary to connect the

host-side application to the SEE machine via network connection.

The host-side compatibility layer comprises the following files:

• legacy-csee-host-side-compatibility.h

• legacy-csee-host-side-compatibility.c

Their install location is:

• Linux: /opt/nfast/c/csd5/examples/csee/utils/hostside/

• Windows: C:\Program Files\nCipher\nfast\c\csd5\examples\csee\utils\hostside\

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.4.5 Developer Guide 61/84

12.2. Required module-side changes for porting

To port a legacy SEE machine to CodeSafe 5, only a single line change is required

in code.

Initialize the compatibility layer by calling SEElib_Legacy_Support_Init() after

SEElib_Init() is called but before any legacy methods such as SEElib_AwaitJob()

are called. This waits for a compatible host-side application to connect before

proceeding.

An example SEE machine main() properly initializing the compatibility layer:

int main(void) {

 /* initialize the SEE environment */
 SEElib_init();

 /* initialize legacy SEE support */
 SEElib_Legacy_Support_Init("8888");

 /* The compatibility layer is initialized
 carry on with SEE machine operation */
 Perform_SEE_Machine_Tasks();
 return 0;
}



By default, all provided example SEE machines communicate

through port 8888. You can use any port when initializing the

compatibility layer, however you must ensure that the host-side

application compatibility layer is passed and attempts to

connect to the same port number as the one initialized on the

module-side.

After the compatibility layer has been initialized, all SEEJob-related methods, such

as SEElib_ReturnJob() or SEElib_AwaitJob(), will work. No further changes in code

are required for legacy SEE machines to run using CodeSafe 5.


A full list of methods the compatibility layer provides support for

can be found in the "SEE Machine Module Side Compatibility

Layer" section of SEE API documentation.

12.3. Required host-side changes for porting

Porting host-side applications to CodeSafe 5 requires changes to some method

calls, in addition to the initialization.

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.4.5 Developer Guide 62/84

12.3.1. Initialization

Initialize the host-side compatibility layer using the following command:

netsee_initialize_legacy_seejob_support(const char * cseeContainerMachineIPv6, const char *
cseeContainerMachinePort)`

It takes two arguments:

• The SEE machine container IP, which can be found using csadmin list

• The SEE machine port number

The port number must match the port number passed on to the module-side

compatibility layer when the module-side compatibility layer is initialized.

The container IP must be passed to the host-side application. You can pass it in as

a command line argument, as in the classic SEE examples described in Build and

sign example SEE machines on Linux, however the exact implementation is the

decision of the porting developer.

12.3.2. Replacing SEEJob-related method calls

Unlike the module-side compatibility layer, which allows all SEEJob-related

method calls to be called without changes, porting the host-side requires certain

method calls to be updated.

This is because the compatibility layer’s replacement methods need to replace the

role of the nCore API and send SEEJobs to and from the SEE machine’s module-

side compatibililty layer.

The methods specific to the nCore API that host-side applications previously used

to transact SEEJobs still exist to communicate with the nCore API, but no longer

support SEEJobs.


Only nCore API calls for SEEJobs need to be updated. Other

unrelated calls to the nCore API do not need to be modified.

Host-side compatibility calls no longer require the NFastApp_Connection and

NFast_Call_Context arguments to be passed in, as demonstrated in the following

examples.

For more detailed descriptions of these methods, see the "Compatibility layer API

Host-side" section of SEE API documentation.

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.4.5 Developer Guide 63/84

12.3.2.1. NFastApp_Submit()

Replace SEEJob calls to NFastApp_Submit() with calls to

netsee_submit_legacy_seejob().

For example:

NFastApp_Submit(nc, NULL, &cmd, &reply, &tctx);

Becomes:

netsee_submit_legacy_seejob(&cmd, &reply, &tctx);

12.3.2.2. NFastApp_Wait()

Replace SEEJob calls to NFastApp_Wait() with calls to netsee_wait_legacy_seejob().

For example:

NFastApp_Wait(conn, NULL, &replyp, &tctxp);

Becomes:

netsee_wait_legacy_seejob(&replyp, &tctxp);

12.3.2.3. NFastApp_Transact()

Replace SEEJob calls to NFastApp_Transact() with calls to

netsee_transact_legacy_seejob().

For example:

NFastApp_Transact(conn, NULL, &cmd, &reply, &tctx);

Becomes:

netsee_transact_legacy_seejob(&cmd, &reply, &tctx);

12.3.2.4. simple_transact()

Replace SEEJob calls to simple_transact() with calls to

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.4.5 Developer Guide 64/84

netsee_simple_transact_legacy_seejob().

For example:

simple_transact(conn, NULL, &cmd, &reply, 1);

Becomes:

netsee_simple_transact_legacy_seejob(&cmd, &reply, 1);

12.4. Rebuilding and Recompiling

After the host-side application and module-side SEE machine compatibility layers

have been properly initialized, and all host-side SEEJob method replacements

have been made in the code, both the host-side application and the module-side

SEE machine should be rebuilt with their respective compatibility layers properly

linked and included.

The provided Classic SEE examples are practical examples of how the

compatibility layer should be implemented, and how the compatibility layer

libraries and files should be linked the build chain creating the SEE machine.

12.4.1. Rebuilding host-side

Include legacy-csee-host-side-compatibility.h in host-side application scripts that

are being ported. Recompile host-side applications so that legacy-csee-host-side-

compatibility.c is included in the source.

12.4.2. Rebuilding Module Side

Link the compatibility layer library liblegacy_compatibility.a to the module-side

SEE machine after the changes to the SEE machine source code have been made

to initialize the compatibility layer.

Chapter 12. Port existing CodeSafe application to CodeSafe 5

CodeSafe 5 v13.4.5 Developer Guide 65/84

13. Supporting legacy CodeSafe Direct
CodeSafe Direct is no longer available in CodeSafe 5. The following sections

describe the usage of legacy CodeSafe Direct and how similar functionality is

accomplished via CodeSafe 5.

13.1. Legacy CodeSafe Direct

Originally, the application would connect to the HSM through the Security World

hardserver. With legacy CodeSafe Direct, the nShield Connect could be configured

to receive direct socket connections to the SEE machine via see-sock-serv,

removing the need for a client machine. You could do this by specifying

postload_prog and postload_args in the load_seemachine section of the nShield

Connect hardserver configuration file, located in NFAST_KMDATA/hsm-<ESN>, where

<ESN> is the Electronic Serial Number of the HSM.

13.2. CodeSafe 5

The CodeSafe 5 modern architectural approach provides a container which has an

IPC daemon (UNIX domain socket) that is used to send and receive nCore API

commands and replies. The communication between the host application and

CodeSafe 5 container is provided by a secure SSH daemon making use of port

forwarding.

The Cmd_SEEJob nCore API command is no longer supported by the nCoreAPI

service. Instead, the command is now requested directly from the client

application on the host to the SEE machine using a direct TCP connection. A

support library is needed to support this new connection, and this is part of the

compatibility layer.

Containers listening on a specific port via the secure channel is a 'CodeSafe Direct'

replacement.

There are cli commands using the 'csadmin' utility that can establish the secure

SSHD port forwarding on the host client machine. The cs5-port-monitor will

validate and then forward the ports specified in network-conf.json. See Build and

sign example SEE machines on Linux for examples of using an SSH tunnel to

communicate between the client and SEE machine directly through a TCP/IPv6

network connection to the container. Containers can be configured to listen to

ports using the network-conf.json file.

Chapter 13. Supporting legacy CodeSafe Direct

CodeSafe 5 v13.4.5 Developer Guide 66/84

14. SEE API documentation
SEElib is an API that enables an SEE machine to execute nCore API commands.

Historically, the SEElib also provided the functionality which connected SEE

machines to their host-side applications via the nCore API. In CodeSafe 5, SEElib

still provides the methods necessary to execute nCore API commands, but

communication between the SEE machine and the host-side application is

expected to be done using TCP/IPv6 network connections which are managed

directly by the SEE machine. To allow for a more seamless integration of legacy

SEE machines, which previously transacted with their host-side application via the

nCore API, a compatibility layer has been created to automatically manage these

legacy transactions.


The SEElib API is provided as a library seelib.a that can be found

in the rootfs after install. Its install location is

/opt/nfast/c/csd5/lib-ppc64-linux-musl/seelib.a on Linux.

14.1. Why CodeSafe 5 needs a compatibility layer

The compatibility layer allows pre-existing CodeSafe users to port legacy SEE

machines that were developed for nShield XC or Solo+ HSMs to the CodeSafe 5

environment.

CodeSafe 5 has a Launcher service for managing the SEE container, instead of

using nCore API commands. All requests related to container (SEE machine)

management, for example to load a new SEE machine onto the HSM or to start,

stop, or destroy a SEE machine, are made directly to the new Launcher service.

Legacy SEElib applications previously allocated memory by the Cmd_CreateSEEWorld

nCore API command. In CodeSafe 5, launcher receive, launcher create, and

launcher start requests are made to the Launcher service in combination with a

new Cmd_CreateSeeConnection command to the nCore API service to get a SEE

machine running and able to communicate with the nCore API service.

For CodeSafe 5 applications, the nCore API service does not support the

Cmd_SEEJob nCore API command. Instead, the command is requested directly from

the client application on the host to the SEE machine using a direct TCP/IPv6

network connection. The compatibility layer provides support for this new

connection method.

CodeSafe 5 does not use the concept of UserData. A developer can include any

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 67/84

files, using any directory structure, in the container image that is installed in the

HSM.

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 68/84

14.2. SEElib functions

14.2.1. SEElib_init

extern void SEElib_init(void);

This function initializes the SEElib library.

 This function does not return on error.

14.2.2. SEElib_ReadUserData

extern int SEElib_ReadUserData (M_Word offset, unsigned char *buf, M_Word len);

This function reads selected bytes from the UserData block, starting at offset bytes

in and continuing for len bytes. It returns an M_Status value.

UserData in CodeSafe 5 is a file located inside the container (

/etc/codesafe.userdata) and must be added when the image is constructed.

14.2.3. SEElib_ReleaseUserData

extern void SEElib_ReleaseUserData(void);

In CodeSafe 5 this function does not do anything. It is only present to satisfy the

linker.

14.2.4. SEElib_InitComplete

extern void SEElib_InitComplete(M_Word status);

In CodeSafe 5 this function does not do anything. It is only present to satisfy the

linker.

14.2.5. SEElib_StartTransactListener

extern void SEElib_StartTransactListener(void);

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 69/84

This function starts the thread that listens for SEElib_Transact calls and dispatches

them. This function must be called before any use is made of SEElib_Transact.

14.2.6. SEElib_Transact

extern int SEElib_Transact(struct M_Command *cmd, struct M_Reply *buf);

This function marshals a command, submits it, waits for the response, and

unmarshals it into a reply structure.

14.2.7. SEElib_MarshalSendCommand

extern int SEElib_MarshalSendCommand(M_Command *cmd);

This function marshals a command and places it on the input queue for processing

by the nShield core.

The command takes a reference to an M_Command structure, as described in the

nCore CodeSafe API Documentation.

The SEE machine can submit any of the nCore API commands listed in the Basic

commands and Key-Management commands sections of the nCore CodeSafe API

Documentation except:

• RetryFailedModule

• GetWhichModule

• MergeKeyIDs.

If the SEE machine attempts to submit one of these commands, the nShield core

returns a response with the status code NotAvailable.

The SEElib_MarshalSendCommand function returns an M_Status value. This value is OK if

the command was marshalled and transferred to the nShield core correctly.


Do not mix calls to SEE_Transact() and

SEElib_MarshalSendCommand() and SEElib_GetUnmarshalResponse(),

because the replies may be misdirected.

14.2.8. SEElib_GetUnmarshalResponse

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 70/84

extern int SEElib_GetUnmarshalResponse(M_Reply *buf);

If there is a reply in the input queue for this SEE world, this function returns the

first job in the queue. Otherwise, it blocks and waits for the nShield core to return

a job.

On return, M_Reply contains the unmarshalled reply.

The SEElib_GetUnmarshalResponse function returns an M_Status value. This value is OK

if the reply was unmarshalled successfully. The return of this value does not

necessarily mean that the command was completed successfully, only that the

reply was unmarshalled. You must also check the M_Status within the reply.

14.2.9. SEElib_FreeCommand

extern int SEElib_FreeCommand(struct M_Command *cmd);

This function frees a command structure and is equivalent to the generic stub

function NFastApp_FreeCommand (described in the nCore CodeSafe API

Documentation).

14.2.10. SEElib_FreeReply

extern int SEElib_FreeReply(struct M_Reply *reply);

This function frees a reply structure and is equivalent to the generic stub function

NFastApp_FreeReply (described in the nCore CodeSafe API Documentation).

14.2.11. SEElib_SubmitCoreJob

extern int SEElib_SubmitCoreJob(const unsigned char *data, unsigned int len);

This function puts a job on the input queue for processing by the core. The byte

block is passed in data and len. It should be a full marshalled M_Command with a valid

tag at the start.

This function returns an M_Status, which is typically OK or BufferFull (if len is too

big).

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 71/84

14.2.12. SEElib_GetCoreJob

extern int SEElib_GetCoreJob (unsigned char *buf, M_Word *len_io);

This function blocks and waits for a job submitted to the core to be returned. On

entry, buf points to a buffer of length (*len_io) max. On exit, if successful, *len_io is

the length of bytes returned.

This function returns an M_Status, which is typically OK or BufferFull (if len_io is too

big).

14.2.13. SEElib_GetUserDataLen

extern M_Word SEElib_GetUserDataLen (void);

In CodeSafe 5, this function gets the length in bytes of the /etc/userdata.codesafe

file in the filesystem of the container.

If this data has been discarded because SEElib_ReleaseUserData() has been called,

this function returns 0.

14.2.14. SEElib_Submit

extern int SEElib_Submit(M_Command *cmd, M_Reply *reply, PEVENT ev, SEElib_ContextHandle tctx);

This function submits the command specified in cmd. The transaction listener

thread calls EventSet ev, if ev is non-NULL, when the reply returns for this

command. The reply is unmarshalled into reply and tctx is returned to the caller in

SEElib_Query.

Unlike SEElib_SubmitCoreJob this function can be called at the same time as another

thread is blocking in SEElib_Transact.

SEElib_StartTransactListener must have been called before this function is called.

14.2.15. SEElib_Query

extern int SEElib_Query(M_Reply **replyp, SEElib_ContextHandle *tctx_r);

This function is called to receive a reply that is being held by the transaction

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 72/84

listener thread. It is typically called after having been woken from EventWait as a

result of the transaction listener thread posting to the event passed in to

SEElib_Submit.

If *replyp is NULL, SEElib_Query accepts any returned reply, and *replyp is changed

to point to that reply. If *replyp is not NULL, the function accepts the reply

specified; other replies are queued internally.

tctx_r can be NULL. If it is not, the tctx used when submitting the reply is stored

in *tctx_r. SEElib_Query can return, in addition to the usual return values,

TransactionNotYetComplete if the reply (or any reply if *replyp was NULL) has not

come back from the core yet.

SEElib_StartTransactListener must have been called before this function is called.

14.3. About the SEElib compatibility layer

The compatibility layer is provided to help port existing SEE machines and their

host-side applications to the new CodeSafe 5 architecture. The compatibility layer

provides support for legacy methods that dealt with the host-side application/SEE

machine connection (sending SEEJobs between the two and their supporting

methods). Because the new CodeSafe 5 architecture has removed the need to

send SEEJobs between the host-side application and the SEE machine by using

the nCore API as an intermediary, these methods are no longer found in the

CodeSafe 5 SEElib API.

For detailed examples of the SEElib compatibility layer’s use, refer to the provided

"CSEE" or "Classic SEE" examples. These examples are legacy SEE machine

examples that have been ported using the compatibility layer.

14.4. SEE machine module side compatibility layer

The module-side compatibility layer provides a small API to emulate the

deprecated CSEE methods while using the CodeSafe 5 architecture and TCP/IPv6

network connections underneath.

To continue to use legacy methods within an SEE machine, the SEE machine must

be recompiled with the compatibility layer library: liblegacy_compatibility.a. The

default install location is /opt/nfast/c/csd5/lib-ppc64-linux-

musl/liblegacy_compatibility.a on Linux. This library provides support for the

legacy SEElib methods described below.

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 73/84

There is only a one-line change that needs to be made within an SEE machine’s

source to initialize the compatibility layer. A call to SEElib_Legacy_Support_Init().

This call must be made before any of the legacy SEElib calls are made, typically in

main() after SEElib_init(). After this call is made, all legacy methods operate

functionally identically to legacy versions of CodeSafe, while using TCP/IPv6

network connections behind the scenes.


Do not write new applications using the compatibility layer. The

compatibility layer is provided to simplify the porting of existing

legacy applications to CodeSafe 5.

CodeSafe 5 allows the use of TCP/IPv6 network connections to connect the host-

side application to an SEE machine, simplifying the communication between the

two, and expanding the functionality of the communication between the two. The

compatibility layer allows legacy applications to run using the old style of

SEEJobs, but doing so with new applications is not advised.

14.4.1. SEElib_Legacy_Support_Init


This function is provided by the compatibility layer to ease

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

extern void SEElib_Legacy_Support_Init(const char* PORT);

This function initializes the compatibility layer for legacy SEE machines for use

with CodeSafe 5. This method must be called before any other legacy methods.

This method initializes all the support required for legacy SEE machines to

function properly.

14.4.2. SEElib_AwaitJob


This function is provided by the compatibility layer to ease

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

extern int SEElib_AwaitJob(M_Word *tag_out, unsigned char *buf, M_Word *len_io);

This function blocks and waits for the next SEEJob to come in from the host-side

application. On entry, *buf and *len_io give the base and length of a buffer area to

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 74/84

receive the job. On return, *len_io is set to the length delivered (if the job is

received successfully). This buffer is a copy of the seeargs field of the SEEJob that

was sent by the host-side application.

The *tag_out value is the tag for this command. Each transaction must have a

unique tag when sent from the host-side application to ensure transactions are

returned to their required caller. The generation of unique tags is handled by the

host-side compatibility layer. The tag must be returned in the SEElib_ReturnJob so

that the host-side compatibility layer associates the reply with this transaction.

The SEElib_AwaitJob function returns an M_Status, which is OK on success and

normally, but not always, BufferFull on failure.


If you use SEElib_StartProcessorThreads(), these function calls are

done automatically and you should not call this function yourself.

14.4.3. SEElib_AwaitJobEx

extern void SEElib_AwaitJobEx(M_Word *tag_out, unsigned char *buf, M_Word *len_io, unsigned flags);

Block on the socket waiting for a SEEJob command from the host.

The output parameters are filled with information obtained from the message

itself. On entry, *buf and *len_io give the base and length of a buffer area to

receive the job. On return, *len_io is set to the length delivered (if the job is

received successfully). This buffer is a copy of the seeargs field of the SEEJob

command. The *tag_out value is the tag for this command.

14.4.4. SEElib_ReturnJob


This function is provided by the compatibility layer to ease

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

extern void SEElib_ReturnJob(M_Word tag, const unsigned char *data, unsigned int len);

This function returns an SEEJob reply to the host-side application. It is sent in a way

that the host-side compatibility layer can interpret and write into the

corresponding reply struct on the host-side.

 If you use the SEElib_StartProcessorThreads() function, it calls

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 75/84

SEElib_ReturnJob() for you.

The tag field must match the tag supplied in the SEElib_AwaitJob() call that created

the job.

The given data is copied away and forms the seereply field of the SEEJob reply on

the host-side application.

14.4.5. SEElib_StartProcessorThreads


This function is provided by the compatibility layer to ease

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

struct ProcessThreadCtx; /* User-defined */
typedef struct SEElib_ProcessContext
{
 struct ProcessThreadCtx *uc;

 unsigned char *iobuf;
 int iobuf_maxlen;
}
 SEElib_ProcessContext;

typedef struct ProcessThreadCtx * (*SEEJobInitFn) (SEElib_ProcessContext *pC);

/* Function called during thread initialisation */
typedef int (*SEEJobFn) (SEElib_ProcessContext *pC, M_Word tag, int in_len);

/* Function to process an SEEJob; data is sent in & out via pC->iobuf.
Returns length being returned.
*/
extern int SEElib_StartProcessorThreads(int nthreads, int stacksize, SEEJobInitFn
pfnInit, SEEJobFn pfnProcess);

This function causes the SEE compatibility layer to start a number of processing

threads. Each thread has its own SEElib_ProcessContext allocated, which remains

constant throughout the life of the thread.

A working buffer for a given thread is allocated; the iobuf member points to this

buffer and iobuf_maxlen is set to the size. Data for the SEEJob is passed in and out

through this buffer.

For each thread, the supplied SEEJobInitFn is called first, and the ProcessThreadCtx

pointer it returns is stored in the SEElib_ProcessContext structure. This structure is

typically a convenient thread-local storage. The pointer may be NULL if it is not

required.

When a job arrives for the given thread, the supplied SEEJobFn is called. It is passed

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 76/84

the SEElib_ProcessContext pointer pC, a tag, and a length (in_len). The SEEJob data is

at pC→iobuf, length in_len. The tag is for information only. The function processes

the data and leave a reply at pC→iobuf. The return value from the function

indicates the number of bytes to be returned from this buffer.

14.4.6. SEElib_StartSEEJobListener


This function is provided by the compatibility layer to ease

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

extern int SEElib_StartSEEJobListener(PEVENT ev);

This function starts the SEEJob listener thread which blocks calling SEElib_AwaitJob,

caches the new job and then sets the event ev if ev is non-NULL.

Use SEElib_QuerySEEJob to receive any SEEJobs that have been cached by this

listener thread, followed by SEElib_ReturnJob to reply to the SEEJob, then followed

by SEElib_ReleaseSEEJob to free the buffer.

It is safe to call this function multiple times, however calls after the first call have

no effect.

14.4.7. SEElib_QuerySEEJob


This function is provided by the compatibility layer to ease

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

extern M_Status SEElib_QuerySEEJob(M_Word *tag_out, unsigned char **buf, M_Word *len);

This function is called to receive a SEEJob that is being held by the SEEJob listener

thread. It is typically called after having been woken from EventWait as a result of

the SEEJob listener thread setting the event passed in to SEElib_StartSEEJobListener.

buf is set to the buffer containing the SEEJob, len is set to the length of the data

contained in buf.

This function returns TransactionNotYetComplete if there were no outstanding

SEEJobs.

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 77/84

14.4.8. SEElib_ReleaseSEEJob


This function is provided by the compatibility layer to ease

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

extern void SEElib_ReleaseSEEJob(unsigned char **buf);

This function is called to release a buffer which was returned from

SEElib_QuerySEEJob. It must be called after the buffer specified by buf in a call to

SEElib_QuerySEEJob has been finished with. This function is safe to call even if *buf is

NULL. In addition, it sets *buf to NULL on completion.

14.5. Compatibility layer API Host side

Legacy host-side applications need to be modified to use the network interface to

talk the SEE machine instead of the nCore API. The bulk of this work is handled

automatically by including the host-side compatibility layer and recompiling.

However, all calls to the nCore API which use CMD_SEEJob need to be modified

slightly to reference the new CodeSafe 5 compatible methods. The compatibility

layer provides support to emulate the use cases of the Cmd_SEEJob message

interface. The compatible calls and the methods they replace are described below.

All other calls by the host-side application to the nCore API will remain

unchanged.

14.5.1. netsee_initialize_legacy_seejob_support


This function is provided by the compatibility layer to ease

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

extern int netsee_initialize_legacy_seejob_support(const char * cseeContainerMachineIPv6, const char *
cseeContainerMachinePort);

This function initializes host-side application compatibility layer to support legacy

CodeSafe SEEJob commands. netsee_initialize_legacy_seejob_support() must be

called to initialize legacy support for CodeSafe 5. The call creates all necessary

processor threads, initializes all values and fields required to process SEEJob

M_Commands, and creates a connection to the SEE machine via TCP/IPv6 networking.

This call must be made before any of the other methods described below are

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 78/84

called.

14.5.2. netsee_submit_legacy_seejob


This function is provided by the compatibility layer to ease

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

extern int netsee_submit_legacy_seejob(const M_Command *cmd, M_Reply *reply, struct NFast_Transaction_Context
*tctx);

This function transmits a SEEJob command to the SEE application.

Replaces NFastApp_Submit().

The compatibility layer strips the relevant SEEJob information from the M_Command,

issues a unique tag, and marshals this information to a form the compatibility layer

compiled SEE machine understands. It then sends the command to the module

directly via a TCP/IPv6 connection initialized by the compatibility layer.

14.5.3. netsee_wait_legacy_seejob


This function is provided by the compatibility layer to ease

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

extern int netsee_wait_legacy_seejob(M_Reply **replyp, struct NFast_Transaction_Context **tctx);

This function waits to receive a reply from the SEE machine.

Replaces NFastApp_Wait().

The compatibility layer reads an incoming reply from the module, parses the

information, and writes it to the correct M_Reply corresponding to the tag the

command was sent with. It does not proceed beyond the call until this reply has

been processed. After a reply is received and marshaled by the compatibility layer,

netsee_wait_legacy_seejob() will return with the correct reply.

14.5.4. netsee_transact_legacy_seejob

 This function is provided by the compatibility layer to ease

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 79/84

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

extern int netsee_transact_legacy_seejob(const M_Command *command, M_Reply *reply, struct
NFast_Transaction_Context *tctx);

This function transacts a SEEJob command and waits until a reply is received and

written to *reply.

Replaces NFastApp_Transact().

The compatibility layer strips the relevant SEEJob information from the M_Command,

issues a unique tag, and marshals this information to a form the compatibility layer

compiled SEE machine understands. It then sends the command to the module

SEE machine directly via a TCP/IPv6 connection initialized by the compatibility

layer.

After sending the command, it waits for a reply from the SEE machine via the

established network connection. The compatibility layer reads the incoming reply

from the module, parses the information, and writes it to the correct M_Reply

corresponding to the tag the command was sent with.

After a reply is received and marshaled by the compatibility layer,

netsee_transact_legacy_seejob() returns with the correct M_Reply having been

written to *reply.

14.5.5. netsee_simple_transact_legacy_seejob


This function is provided by the compatibility layer to ease

porting applications from Solo XC to nShield 5. Do not use it for

new applications.

extern int netsee_simple_transact_legacy_seejob(const M_Command *cmd, M_Reply *reply, int fatal);

Transact a SEEJob command and wait until a reply is received and written to *reply.

If fatal is true, and an error occurs, exit(4).

Replaces simple_transact().

The compatibility layer strips the relevant SEEJob information from the M_Command,

issues a unique tag, and marshals this information to a form the compatibility layer

compiled SEE machine will understand. It then sends the command to the module

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 80/84

SEE machine directly via a TCP/IPv6 connection initialized by the compatibility

layer. Then, it waits for a reply from the SEE machine via the established network

connection. The compatibility layer reads the incoming reply from the module,

parses the information, and writes it to the correct M_Reply corresponding to the

tag the command was sent with. Once a reply is received and marshaled by the

compatibility layer, netsee_simple_transact_legacy_seejob() will return with the

correct M_Reply having been written to *reply.

Chapter 14. SEE API documentation

CodeSafe 5 v13.4.5 Developer Guide 81/84

15. System calls allowed by CodeSafe 5
SEE machines
SEE machines are restricted to a subset of Linux system calls they can execute.

An SEE machine that attempts to execute a system call that is not allowed will be

immediately terminated by a safeguarding process.

The whitelisted system calls are given in the following table, with their number and

name.

Whitelisted System Calls

1 __NR_exit 2 __NR_fork

3 __NR_read 4 __NR_write

5 __NR_open 6 __NR_close

7 __NR_waitpid 8 __NR_creat

9 __NR_link 10 __NR_unlink

11 __NR_execve 12 __NR_chdir

13 __NR_time 15 __NR_chmod

19 __NR_lseek 20 __NR_getpid

21 __NR_mount 22 __NR_umount

24 __NR_getuid 29 __NR_pause

33 __NR_access 36 __NR_sync

37 __NR_kill 38 __NR_rename

39 __NR_mkdir 40 __NR_rmdir

41 __NR_dup 42 __NR_pipe

45 __NR_brk 47 __NR_getgid

49 __NR_geteuid 50 __NR_getegid

54 __NR_ioctl 55 __NR_fcntl

60 __NR_umask 63 __NR_dup2

64 __NR_getppid 65 __NR_getpgrp

Chapter 15. System calls allowed by CodeSafe 5 SEE machines

CodeSafe 5 v13.4.5 Developer Guide 82/84

Whitelisted System Calls

66 __NR_setsid 78 __NR_gettimeofday

83 __NR_symlink 85 __NR_readlink

88 __NR_reboot 90 __NR_mmap

91 __NR_munmap 94 __NR_fchmod

99 __NR_statfs 102 __NR_socketcall

106 __NR_stat 107 __NR_lstat

108 __NR_fstat 114 __NR_wait4

119 __NR_sigreturn 120 __NR_clone

122 __NR_uname 125 __NR_mprotect

140 __NR_llseek 141 __NR_getdents

145 __NR_readv 146 __NR_writev

160 __NR_sched_get_priority_min 162 __NR_nanosleep

163 __NR_mremap 167 __NR_poll

172 __NR_rt_sigreturn 173 __NR_rt_sigaction

174 __NR_rt_sigprocmask 175 __NR_rt_sigpending

176 __NR_rt_sigtimedwait 177 __NR_rt_sigqueueinfo

178 __NR_rt_sigsuspend 179 __NR_pread64

181 __NR_chown 182 __NR_getcwd

185 __NR_sigaltstack 190 __NR_ugetrlimit

195 __NR_stat64 196 __NR_lstat64

197 __NR_fstat64 202 __NR_getdents64

204 __NR_fcntl64 205 __NR_madvise

207 __NR_gettid 221 __NR_futex

229 __NR_io_getevents 232 __NR_set_tid_address

234 __NR_exit_group 246 __NR_clock_gettime

250 __NR_tgkill 252 __NR_statfs64

281 __NR_ppoll 286 __NR_openat

Chapter 15. System calls allowed by CodeSafe 5 SEE machines

CodeSafe 5 v13.4.5 Developer Guide 83/84

Whitelisted System Calls

300 __NR_set_robust_list 326 __NR_socket

327 __NR_bind 328 __NR_connect

329 __NR_listen 330 __NR_accept

331 __NR_getsockname 332 __NR_getpeername

333 __NR_socketpair 334 __NR_send

335 __NR_sendto 336 __NR_recv

337 __NR_recvfrom 338 __NR_shutdown

339 __NR_setsockopt 340 __NR_getsockopt

341 __NR_sendmsg 342 __NR_recvmsg

343 __NR_recvmmsg 344 __NR_accept4

349 __NR_sendmmsg 359 __NR_getrandom

Chapter 15. System calls allowed by CodeSafe 5 SEE machines

CodeSafe 5 v13.4.5 Developer Guide 84/84

	nShield Security World: CodeSafe 5 v13.4.5 Developer Guide
	Table of Contents
	1. Introduction
	2. Overview of CodeSafe 5
	2.1. Applications as container images
	2.2. Easy and fast network connectivity
	2.3. 'Secure by default' client communication
	2.4. Better language support
	2.5. Developer authentication

	3. Install the CodeSafe 5 SDK on Linux
	4. Install the CodeSafe 5 SDK on Windows
	4.1. Prerequisites
	4.2. Install the Security World Software
	4.3. Install CodeSafe 5

	5. nShield 5c Codesafe 5 Configuration
	6. Build CodeSafe 5 SDK apps
	6.1. General SDK use
	6.2. Prerequisites
	6.3. SDK file structure overview
	6.4. Building new SEE machines with SEElib
	6.5. The compatibility layer and legacy SEE machines
	6.6. Compatibility layer use

	7. Sign and deploy CodeSafe 5 SDK apps using csadmin
	7.1. Signing CodeSafe images
	7.2. The csadmin utility tool
	7.3. Example CodeSafe developer process

	8. Build and sign example SEE machines on Linux
	8.1. Build module-side C examples
	8.2. Building Host Side C Examples
	8.3. Build CS5 Images for Python Examples
	8.4. Sign CodeSafe Images
	8.5. Run NetSEE examples
	8.6. Run NetSEE examples via SSH tunnel
	8.7. Run CSEE examples via SSH tunnel

	9. Build and sign example SEE machines on Windows
	9.1. Prerequisites
	9.2. Building Windows CodeSafe C, CSEE, and NETSEE examples
	9.3. CS5 images for Python examples
	9.4. Sign CodeSafe images

	10. Debug CodeSafe 5 SEE machines
	10.1. config log set enabled
	10.2. config log set disabled
	10.3. log get
	10.4. log clear

	11. Uninstall the CodeSafe 5 SDK
	12. Port existing CodeSafe application to CodeSafe 5
	12.1. The compatibility layer
	12.2. Required module-side changes for porting
	12.3. Required host-side changes for porting
	12.4. Rebuilding and Recompiling

	13. Supporting legacy CodeSafe Direct
	13.1. Legacy CodeSafe Direct
	13.2. CodeSafe 5

	14. SEE API documentation
	14.1. Why CodeSafe 5 needs a compatibility layer
	14.2. SEElib functions
	14.3. About the SEElib compatibility layer
	14.4. SEE machine module side compatibility layer
	14.5. Compatibility layer API Host side

	15. System calls allowed by CodeSafe 5 SEE machines

