@

ENTRUST

nShield Security World

PKCS 11 v13.3 Reference
Guide

05 April 2024

© 2024 Entrust Corporation. All rights reserved.

Table of Contents

L Introduction 1
11. Read this guide if... 2
1.2. Model numbers 2
1.3. Security World Software default directories. 3
1.4. Utility help options. 5
1.5. Further information 5
1.6. Security adVvisories. 5
1.7. Contacting Entrust nShield Support. 6
2. nShield Architecture 7
2.1. Security World Software modules 7
2.2. Security World Software server 7
2.3. Stubs and interface libraries 8
2.4. Using an interface library. 8
2.5. Writing a custom application 9
2.6. Acceleration-only or key management. 9
3. PKCS #11 Developer libraries. N
3.1. PKCS #11 security assurance mechanism I
4. PKCS #11 with load sharing mode 13
A0, LOGOiNg IN. . .o 13
4.2. Session objects. 14
4.3. Module failure. 14
4.4, Compatibility 14
4.5, Restrictions on function calls in load-sharing mode 14
5. PKCS #11 with HSM Pool mode 16
51. Module failure 16
5.2. Module recovery. 16
5.3. Restrictions on function calls in HSM Pool mode 16
6. Generating and deleting NVRAM-stored keys with PKCS #11. 18
6.1. Generating NVRAM-stored keys 18
6.2. Deleting NVRAM-stored keys 19
7. PKCS #11 with key reloading. 21
71. Usage under preload. 21
7.2. Supported function calls 22
7.3. Retrying key reloads 22
7.4. Adding new HSMSs . . . 23
8. PKCS #11 without load-sharing or HSM Poolmodes 24

8.1. K/N support for PKCS #11. 24

9. PKCS #11 Security Officer 26

10. nShield-specific PKCS #11 APl extensions. 27
10.1. C_LoginBegin 27
10.2. C_LoginNext 27
10.3. C_LoginENnd 28

N. Compiling and linking 29
ML WINAOWS - o 29
T2, LINUX . 30

12. Objects 31
12.1. Certificate Objects and Data Objects 31
12.2. Key Objects 31
12.3. Card passphNrases. 32

13. Mechanisms. 33
13.0. Footnote 1. . . . 39
13.2. Footnote 2. 39
13.3. Footnote 3. 39
13.4. Footnote 4 . . . 39
13.5. Footnote 5. 39
13.6. Footnote 6 39
13.7. FOotnote 7. . . 40
13.8. Footnote 8 40
13.9. Footnote O 41
13.10. Footnote 1O 41
1301 Footnote 11, . . 41
13.12. Footnote 12 42
13.13. Footnote 13 . . . 42
13.14. Footnote 14 . . 42
13.05. Footnote 15 42

14. Vendor annotations on P11 mechanisms. 43
14.1. CKM_RSA_PKCS_OAEP 43
14.2. CKM_RSA_PKCS_PSS and CKM_SHA*_RSA_PKCS_PSS 43

15. Vendor-defined mechanisms 45
15.0. CKM_SEED_ECB_ENCRYPT_DATA and
CKM_SEED_CBC_ENCRYPT_DATA . . . 45
15.2. CKM_CAC_TK_DERIVATION 45
15.3. CKM_SHA*_HMAC and CKM_SHA*_HMAC_GENERAL. 46
15.4. CKM_NC_ECKDF_HYPERLEDGER 47
15.5. CKM_HAST60 48

15.6. CKM_PUBLIC_FROM_PRIVATE 49

15.7. CKM_NC_AES_CMAC 49
15.8. CKM_NC_AES_CMAC_KEY_DERIVATION and

CKM_NC_AES_CMAC_KEY_DERIVATION_SCPO3., 50
15.9. CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS. 51
15.10. CKM_COMPOSITE_EMV_T_ARQC, CKM_WATCHWORD_PINT and
CKM_WATCHWORD_PIN2 . .. 51
1501 CKM_NC_ECIES 52
1512. CKM_NC_MILENAGE_OPC. 53
15.13. CKM_NC_MILENAGE, CKM_NC_MILENAGE_AUTS,
CKM_NC_MILENAGE_RESYNC 53
15104. CKM_NC_TUAK_TOPC 55
15.15. CKM_NC_TUAK, CKM_NC_TUAK_AUTS, CKM_NC_TUAK_RESYNC . .. 56
16. KISAAlgorithm mechanisms 59
16.1. KCDSA KEYS . . o 59
16.2. Pre-hashing 59
16.3. CKM_KCDSA_SHA1, CKM_KCDSA_HAS160, CKM_KCDSA_RIPEMD160 . 60
16.4. CKM_KCDSA_KEY_PAIR_GEN. 60
16.5. CKM_KCDSA_PARAMETER_GEN 61
16.6. CKM_HASIBO0 61
16.7. SEED secret Keys. 61
17. Attributes. . . 63
170, CKA_SENSITIVE . . 63
17.2. CKA_PRIVATE. . . 63
17.3. CKA_EXTRACTABLE. 63
17.4. CKA_ENCRYPT, CKA_DECRYPT, CKA_SIGN, CKA_VERIFY 64
17.5. CKA_WRAP, CKA_UNWRAP. 64
17.6. CKA_WRAP_TEMPLATE, CKA_UNWRAP_TEMPLATE. 65
17.7. CKA_SIGN_RECOVER 66
17.8. CKA_VERIFY_RECOVER 66
17.9. CKA_DERIVE. . . 67
1710. CKA_ALLOWED_MECHANISMS 67
1711, CKA_MODIFIABLE. 68
1712. CKA_TOKEN 68
1713. CKA_START_DATE, CKA_END_DATE, 68
1714. CKA_TRUSTED and CKA_WRAP_WITH_TRUSTED 68
1715. CKA_COPYABLE and CKA_DESTROYABLE 69
1716. RSA Kkey values 70
1707. DSA Key values 70

17.18. Vendor specific error codes 70

18. Utilities . . . 72

18.1. ckdes3gen 72
18.2. CKINfO . . . 72
18.3. cKlist . . . 72
18.4. ckmechinfo 73
18.5. CKIrsagen 73
18.6. cksotool 73
10, FUNCLIONS . .« oo 74
20. General purpose functions 75
20.0. C_Finalize 75
20.2. C_GetInfo 75
20.3. C_GetFunctionList 75
20.4. C_Initialize 75
21. Slot and token management functions., .. 77
210, C_GetSlotInfo. 77
21.2. C_GetTokenlInfo 77
21.3. C_GetMechanismlList. 77
21.4. C_GetMechanismiInfo 77
21.5. C_GetSlotList 77
21.6. C_InitToken 78
21.7. C_INitPIN 78
21.8. C_SetPIN . . 79
22. Standard session management functions 80
221. C_OpenSessSioN 80
22.2. C_CloseSesSioN. 80
22.3. C_CloseAllSesSioNS 80
22.4. C_GetOperationState 80
22.5. C_SetOperationState. 80
22.6. C_LOgiN . . . 81
22.7. C_Logout 81
23. nShield session management functions. 82
231. C_LoginBegin 82
23.2. C_LoginNext 82
23.3. C_LoginENd 82
23.4. C_GetSessionInfo 82
23.5. nShield session management functionnotes 82
24. Object management functions 84
241. C_CreateObject 84

24.2. C_CopyObject. 85

25.

26.

27.

28.

29.

30.

24.3. C_DestroyObject. 85

24.4. C_GetObjectSize 85
24.5. C_GetAttributeValue 86
24.6. C_SetAttributeValue 86
24.7. C_FindObjectsInit. 86
24.8. C_FindObjects. 86
24.9. C_FindObjectsFinal 86
Encryption functions 87
251. C_EncryptInit 87
25.2. C_Encrypt. . .. 87
25.3. C_EncryptUpdate 87
25.4. C_EncryptFinal 87
Decryption functions. 88
26.1. C_Decryptinit 88
26.2. C_Decrypt ... 88
26.3. C_DecryptUpdate. 88
26.4. C_DecryptFinal. 88
Message digesting functions 89
270, C_Digestlnit. 89
27.2. C_Digest 89
27.3. C_DigestUpdate 89
27.4. C_DigestFinal. 89
Signing and MACing functions 90
28.1. C_Signlnit 90
28.2. C_SIgN. « 90
28.3. C_SignRecoverInit 90
28.4. C_SignRecover 90
28.5. C_SignUpdate. 90
28.6. C_SignFinal. 91
Functions for verifying signatures and MACs. 92
29.0. C_VerifyInit . .. 92
29.2. C_Verify . 92
29.3. C_VerifyRecover 92
29.4. C_VerifyRecoverlnit 92
29.5. C_VerifyUpdate. 92
29.6. C_VerifyFinal 93
Dual-purpose cryptographic functions 94
30.1. C_DigestEncryptUpdate 94

30.2. C_DecryptDigestUpdate. 94

30.3. C_SignEncryptUpdate. 94

30.4. C_DecryptVerifyUpdate 94
31. Key-management functions 96
310 C_GenerateKey 96
31.2. C_GenerateKeyPair 96
31.3. C_WrapKey 96
31.4. C_UnwrapKey. 96
31.5. C_DeriveKey 96
32. Random number functions. 98
321. C_GenerateRandom 98
32.2. C_SeedRandom 98
33. Parallel function management functions. 99
33.1. C_GetFunctionStatus 99
33.2. C_CancelFunction 99

34. Callback functions 100

Chapter 1. Introduction

1. Introduction

This guide is for application developers who are writing PKCS #11 applications.

For an introduction to the PKCS #11 user library, including information about the
environment variables and utilities available, see the User Guide for your HSM.

Before using the nShield PKCS #11 libraries, we recommend that you read
http://docs.oasis-open.org/pkcs1l/pkesli-base/v2.40/pkcsll-base-v2.40.html.

The following diagram illustrates the way that an nShield PKCS #11 library works
with the nShield APIs.

nShield PKCS#11
library

PECS#11-compliant application
Functionality limited by

PKCS#11 |
- -

."/.-- ‘ -\'u

NFKM library key

management functions

Custom C application
. Full functionality
R |

C Generic Stub Java Generic Stub
Y
hardserver ‘
e This guide does not address how the nShield PKCS #11 libraries
map PKCS #11 functions to nCore API calls within the library.

This guide describes the nShield PKCS #11 library supplied by Entrust Security to
help developers write applications that use nShield modules.

This toolkit, like the application plug-ins supplied by Entrust, uses the Security
World paradigm for key storage. For an introduction to Security Worlds, see the

PKCS 11 v13.3 Reference Guide 1/100

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html

Chapter 1. Introduction

User Guide.

1.1. Read this guide if...

Read this guide if you want to build an application that uses an nShield key-
management module to accelerate cryptographic operations and protect
cryptographic keys through a standard interface rather than the full nCore API.

This guide assumes that you are familiar with the concept of the Security World,
described in the User Guide. It is intended for experienced programmers and
assumes that you are familiar with the following documentation:

 The nCore Developer Tutorial, which describes how to write applications using
an nShield module.

 The nCore APl Documentation (supplied as HTML), which describes the nCore
API.

1.2. Model numbers

Model numbering conventions are used to distinguish different nShield hardware
security devices. In the following table, n represents any single-digit integer.

Model number Used for

NH2047 nShield Connect 6000
NH2040 nShield Connect 1500
NH2033 nShield Connect 500
NH2068 nShield Connect 6000+
NH2061 nShield Connect 1500+
NH2054 nShield Connect 500+
NH2075-B nShield Connect XC Base
NH2075-M nShield Connect XC Medium
NH2075-H nShield Connect XC High
NH2075-B nShield 5c Base
NH2075-M nShield 5¢ Medium

PKCS 11 v13.3 Reference Guide 2/100

Chapter 1. Introduction

Model number

NH2075-H

NH2082

NH2089-B

NH2089-M

NH2089-H

NH3003-B

NH3003-M

NH3003-H

nC2021E-000, NCE2023E-000

nC3nnnE-nnn, nC4nnnE-nnn

nC30n5E-nnn, nC40n5E-nnn

nC30nnU-10, nC40nnU-10

NC5536E-B

NC5536E-M

NC5536E-H

Used for

nShield 5¢c High

nShield Connect XC SCAP

nShield Connect XC Base - Serial Console
nShield Connect XC Mid - Serial Console
nShield Connect XC High - Serial Console
nShield Connect CLX Base - Serial Console
nShield Connect CLX Mid - Serial Console

nShield Connect CLX High - Serial Console

nToken PCle

nShield Solo PCle

nShield Solo XC PCle

nShield Edge

nShield 5s Base

nShield 5s Medium

nShield 5s High

1.3. Security World Software default directories

The default locations for Security World Software and program data directories on
English-language systems are summarized in the following table:

Directory Name Environment

Variable
nShield NFAST_HOME
Installation
Key NFAST_KMDATA
Management
Data

Dynamic Feature NFAST_CERTDIR
Certificates

Windows Server 2016

C:\Program Files\nCipher\nfast

C:\ProgramData\nCipher\Key
Management Data

C:\ProgramData\nCipher\Feature
Certificates

Linux

/opt/nfast/

/opt/nfast/kmdata/

/opt/nfast/femcerts/

PKCS 11 v13.3 Reference Guide

3/100

Chapter 1. Introduction

Directory Name Environment Windows Server 2016 Linux
Variable
Static Feature C:\ProgramData\nCipher\Features /opt/nfast/kmdata/features
Certificates /
Log Files NFAST_LOGDIR C:\ProgramData\nCipher\Log Files /opt/nfast/log/

By default, the Windows %NFAST_KMDATA% directories are hidden
o directories. To see these directories and their contents, you must

enable the display of hidden files and directories in the View
settings of the Folder Options.

Dynamic feature certificates must be stored in the directory
stated in the default directories table.

The directory shown for static feature certificates is an example
0 location. You can store those certificates in any directory and
provide the appropriate path when using the Feature Enable
Tool. However, you must not store static feature certificates in
the dynamic features certificates directory. For more information
about feature certificates, see the User Guide for your HSM.

The absolute paths to the Security World Software installation directory and
program data directories on Windows platforms are stored in the indicated
nShield environment variables at the time of installation. If you are unsure of the
location of any of these directories, check the path set in the environment
variable.

The instructions in this guide refer to the locations of the software installation and
program data directories by their names (for example, Key Management Data) or:

* For Windows, nShield environment variable names enclosed in percent signs
(for example, SNFAST_KMDATA%).

* For Linux, absolute paths (for example, /opt/nfast/kmdata/).
NFAST_KMDATA cannot be a symbolic link.
If the software has been installed into a non-default location:

 For Windows, ensure that the associated nShield environment variables are re-
set with the correct paths for your installation.

* For Linux, you must create a symbolic link from /opt/nfast/ to the directory
where the software is actually installed. For more information about creating

PKCS 11 v13.3 Reference Guide 4/100

Chapter 1. Introduction

symbolic links, see your operating system’s documentation.

1.4. Utility help options

Unless noted, all the executable utilities provided in the bin subdirectory of your
nShield installation have the following standard help options:

-h|--help displays help for the utility
-v|--version displays the version number of the utility

-u|--usage displays a brief usage summary for the utility.

1.5. Further information

This guide forms one part of the information and support provided by Entrust.

The nCore APl Documentation is supplied as HTML files installed in the following
locations:

* Windows:
o API| reference for host: $NFAST_HOME%\document\ncore\html\index.html
> API| reference for SEE: $NFAST_HOME%\document\csddoc\html\index.html
* Linux:
> API reference for host: /opt/nfast/document/ncore/html/index.html
- API reference for SEE: /opt/nfast/document/csddoc/html/index.html

The Java Generic Stub classes, nCipherKM JCA/JCE provider classes, and Java
Key Management classes are supplied with HTML documentation in standard
Javadoc format, which is installed in the appropriate nfast\java or nfast/java
directory when you install these classes.

1.6. Security advisories

If Entrust becomes aware of a security issue affecting nShield HSMs, Entrust will
publish a security advisory to customers. The security advisory will describe the
issue and provide recommended actions. In some circumstances the advisory may
recommend you upgrade the nShield firmware and or image file. In this situation
you will need to re-present a quorum of administrator smart cards to the HSM to
reload a Security World. Because of this, you should consider the procedures and

PKCS 11 v13.3 Reference Guide 5/100

Chapter 1. Introduction

actions required to upgrade devices in the field when deploying and maintaining
your HSMs.

o The Remote Administration feature supports remote firmware
upgrade of nShield HSMs, and remote ACS card presentation.

We recommend that you monitor the Announcements & Security Notices section
on Entrust nShield, https:/nshieldsupport.entrust.com, where any announcement
of nShield Security Advisories will be made.

1.7. Contacting Entrust nShield Support

To obtain support for your product, contact Entrust nShield Support,
https://nshieldsupport.entrust.com.

PKCS 11 v13.3 Reference Guide 6/100

https://nshieldsupport.entrust.com
https://nshieldsupport.entrust.com

Chapter 2. nShield Architecture

2. nShield Architecture

This chapter provides a brief overview of the Security World Software
architecture. The following diagram provides a visual representation of nShield
architecture and the documentation that relates to it.

e ™ e ™ e ™
nShield KSP for nShield PKCS#11 Java Key Management Jgi}gg‘g 'é’gp
MS CNG library Classes e [t
CNG-compliant application. PKCS#11-compliant application. Custom Java application. et '“’Tirl'p I'.’"”. . adplg 'C?CTE”
Functionality limited by M5 CNG. Functionality limited by PKCS#11. Full functionality. un '”';?ch{'tég'ufe i
A v A vy A vy

{ L (S]

| |]
' I
nShield CSP for NFKM library key
MS CAPI management functions
CAPI-compliant application. Custom C application.
Functionality limited by MS CAPI. Full functionality.
A S
¥ Y ¥
C Generic Stub Java Generic Stub
' ™
Shaded items are
documented in the hardserver
nShield API integrations
guides.
AN S

2.1. Security World Software modules

nShield modules provide a secure environment to perform cryptographic
functions. Key-management modules are fitted with a smart card interface that
enables keys to be stored on removable tokens for extra security. nShield modules
are available for PCI buses and also as network-attached Ethernet modules
(nShield Connect).

2.2. Security World Software server

The Security World Software server, often referred to as the hardserver, accepts
requests by means of an interprocess communication facility (for example, a
domain socket on Linux or named pipes or TCP/IP sockets on Windows).

The Security World Software server receives requests from applications and

PKCS 11 v13.3 Reference Guide 7/100

Chapter 2. nShield Architecture

passes these to the nShield module(s). The module handles these requests and
returns them to the server. The server ensures that the results are returned to the
correct calling program.

You only need a single Security World Software server running on your host
computer. This server can communicate with multiple applications and multiple
nShield modules.

2.3. Stubs and interface libraries

An application can either handle its own cryptographic functions or it can use a
cryptographic library:

* If the application uses a cryptographic library that is already able to
communicate with the Security World Software server, then no further
modification is necessary. The application can automatically make use of the
nShield module.

* If the application uses a cryptographic library that has not been modified to
be able to communicate with the Security World Software server, then either
Entrust or the cryptographic library supplier need to create adaption
function(s) and compile them into the cryptographic library. The application
users then must relink their applications using the updated cryptographic
library.

If the application performs its own cryptographic functions, you must create
adaption function(s) that pass the cryptographic functions to the Security World
Software server. You must identify each cryptographic function within the
application and change it to call the nShield adaption function, which in turn calls
the generic stub. If the cryptographic functions are provided by means of a DLL or
shared library, the library file can be changed. Otherwise, the application itself
must be recompiled.

2.4. Using an interface library

Entrust supplies the following interface libraries:

* Microsoft Cryptography API: Next Generation (CNG)
* Microsoft CryptoAPI (CAPI)

* PKCS #11

» nCipherkKM JCA/JCE CSP

PKCS 11 v13.3 Reference Guide 8/100

Chapter 2. nShield Architecture

Third-party vendors may supply nShield-aware versions of their cryptographic
libraries.

The functionality provided by these libraries is the intersection of the functionality
provided by the nCore API and the functionality provided by the standard for that
library.

Most standard libraries offer fewer key-management options than are available in
the nCore API. However, the nShield libraries do not include any extensions to
their standards. If you want to make use of features of the nCore API that are not
offered in the standard, you should convert your application to work directly with
the generic stub.

On the other hand, many standard libraries include functions that are not
supported on the nShield module, such as support for IDEA or Skipjack. If you
require a feature that is not supported on the nShield module, contact Support
because it may be possible to add the feature in a future release. However, in
many cases, features are not present on the module for licensing reasons, as
opposed to technical reasons, and Entrust cannot offer them in the interface
library.

2.5. Writing a custom application

If you choose not to use one of the interface libraries, you must write a custom
application. This gives you access to all the features of the nCore API. For this
purpose, Entrust provides generic stub libraries for C and Java. If you want to use
a language other than C orJava, you must write your own wrapper functions in
your chosen programming language that call the C generic stub functions.

Entrust supplies several utility functions to help you write your application.

2.6. Acceleration-only or key management

You must also decide whether you want to use key management or whether you
are writing an acceleration-only application.

Acceleration-only applications are much simpler to write but do not offer any
security benefits.

The Microsoft CryptoAPI, Java JCE, PKCS #11, as well as the application plug-ins,
use the Security World paradigm for key storage.

PKCS 11 v13.3 Reference Guide 9/100

Chapter 2. nShield Architecture

If you are writing a custom application, you have the option of using the Security
World mechanisms, in which case your users can use either KeySafe or the
command-line utilities supplied with the module for many key-management
operations. This means you do not have to write these functions yourself.

The NFKM library gives you access to all the Security World functionality.

PKCS 11 v13.3 Reference Guide 10/100

Chapter 3. PKCS #11 Developer libraries

3. PKCS #11 Developer libraries

The nShield PKCS #11 libraries, libcknfast.so and libcknfast.a (nShield tools only)
on Linux, and cknfast.1ib and cknfast.d11l on Windows are provided so that you
can integrate your PKCS #11 applications with the nShield hardware security
modules.

The nShield PKCS #11 libraries:

e Provide the PKCS #11 mechanisms listed in Mechanisms

» Help you to identify potential security weaknesses, enabling you to create
secure PKCS #11 applications more easily.

3.1. PKCS #11 security assurance mechanism

It is possible for an application to use the PKCS #11 API in ways that can introduce
potential security weaknesses. For example, it is a requirement of the PKCS #11
standard that the nShield PKCS #11 libraries are able to generate keys that are
explicitly exportable in plain text. An application could use this ability in error
when a secure key would be more appropriate.

The nShield PKCS #11 libraries are provided with a configurable security assurance
mechanism (SAM). SAM helps prevent PKCS #11 applications from performing
operations through the PKCS #11 API that may compromise the security of
cryptographic keys. Operations that reveal questionable behavior by the
application fail by default with an explanation of the cause of failure.

If you decide that some operations that carry a higher security risk are acceptable
to you, then you can reconfigure the nShield PKCS #11 library to permit these
operations by means of the environment variable
CKNFAST_OVERRIDE_SECURITY_ASSURANCES. You must think carefully, however, before
permitting operations that could compromise the security of cryptographic keys.
For more information about the environment variable and its parameters, see the
User Guide for your HSM.

It is your responsibility as a security developer to familiarize

0 yourself with the PKCS #11 standard and to ensure that all
cryptographic operations used by your application are
implemented in a secure manner.

If no parameters are supplied to the environment variable, the nShield PKCS #11

PKCS 11 v13.3 Reference Guide 11/100

Chapter 3. PKCS #11 Developer libraries

library fails and issues a warning, with an explanation, when the following
operations are detected:

* Short term session keys created as long term objects

» Keys that can be exported as plain text are created

» Keys are imported from external sources

* Wrapping keys are created or imported

* Unwrapping keys are created or imported

» Keys with weak algorithms (for example, DES) are created

» Keys with short key length are created.

PKCS 11 v13.3 Reference Guide 12/100

Chapter 4. PKCS #11 with load sharing mode

4. PKCS #11 with load sharing mode

The behavior of the nShield PKCS #11 library varies depending on which of load-
sharing mode, HSM Pool mode or neither or these is enabled. If you have enabled
load-sharing mode, the nShield PKCS #11 library creates one virtual slot for each
OCS and, optionally, also creates one slot for the HSM or HSMs. Softcards appear
as additional virtual slots once enabled.

o Load-sharing mode must be enabled in PKCS #11 in order to use
softcards.

Whether or not load-sharing mode is enabled is determined by the state of the
CKNFAST _LOADSHARING environment variable.

Load-sharing mode enables you to load a single PKCS #11 token onto several
nShield HSMs to improve performance. To enable successful load-sharing with an
OCS protected key:

* You must have an Operator Card from the OCS inserted into every slot from
the same 1/N card set

» All the Operator Cards must have the same passphrase.

The nShield-specific API calls, C_LoginBegin, C_LoginNext, and C_LoginEnd do not
function in load-sharing mode. K/N support for card sets in load-sharing mode is
only available if you first use preload to load the logical token.

4.1. Logging in

If you call C_Login without a token present, it fails (as expected) unless you are
using a persistent token with preload or using only module-protected keys.
Therefore, your application should prompt users to insert tokens before logging in.

The nShield PKCS #11 library removes the nShield logical token when you call
C_Logout, whether or not there is a smart card in the reader.

If there are any cards from the OCS present when you call C_Logout, the PKCS #11
token remains present but not logged-in until all cards in the set are removed. If
there are no cards present, the PKCS #11 token becomes not present.

The CKNFAST_NONREMOVABLE environment variable is only available for persistent
tokens. When the variable is set, the rules for recognizing new cards are
overridden, and the only way to invoke a new token is to call C_Finalize or

PKCS 11 v13.3 Reference Guide 13/100

Chapter 4. PKCS #11 with load sharing mode

C Initialize.

4.2. Session objects

Session objects are loaded on all modules.

4.3. Module failure

If a subset of the modules fails, the nShield PKCS #11 library handles commands
using the remaining modules. If a module fails, the single cryptographic function
that was running on that module will fail, and the nShield PKCS #11 library will
return a PKCS #11 error. Subsequent cryptographic commands will be run on other
modules.

4.4. Compatibility

Before the implementation of load-sharing, the nShield PKCS #11 library puts the
electronic serial number in both the slotinfo.slotDescription and
tokeninfo.serialNumber fields. If you have enabled load-sharing, the
tokeninfo.serialNumber field displays the hash of the OCS.

4.5. Restrictions on function calls in load-sharing
mode

The following function calls are not supported in load-sharing mode:

* C_LoginBegin (nShield-specific call to support K/N card sets)
* C_LoginNext (nShield-specific call to support K/N card sets)
* C_LoginEnd (nShield-specific call to support K/N card sets).

The following function calls are supported in load-sharing mode only when using
softcards:

* C_InitToken
* C_InitPIN
* (_SetPIN.

o ‘ To use C_InitToken, C_InitPIN, or C_SetPIN in load-sharing mode,

PKCS 11 v13.3 Reference Guide 14/100

Chapter 4. PKCS #11 with load sharing mode

you must have created a softcard with the command ppmk -n
before selecting the corresponding slot.

o The C_InitToken function is not supported for use in non-load-
sharing FIPS 140 Level 3 Security Worlds.

PKCS 11 v13.3 Reference Guide 15/100

Chapter 5. PKCS #11 with HSM Pool mode

5. PKCS #11 with HSM Pool mode

If HSM Pool mode is enabled, the nShield PKCS #11 library exposes a single pool of
HSMs and a single virtual slot for a fixed token with the label accelerator. This
accelerator slot can be used to create module protected keys and to support
session objects.

HSM Pool mode supports module protected keys but does not support token-
protected keys. If your application only uses module protected keys, you can use
HSM Pool mode as an alternative to using load-sharing mode. HSM Pool mode
supports returning or adding a hardware security module to the pool without
restarting the system.

Whether or not HSM Pool mode is enabled is determined by the state of the
CKNFAST_HSM_POOL environment variable.

In FIPS 140 Level 3 Security Worlds, keys cannot be created in HSM Pool mode,
however keys created outside HSM Pool mode can be used in HSM Pool mode.

5.1. Module failure

If a subset of the modules in the HSM pool fail, the nShield PKCS #11 library
handles commands using the remaining modules. When a module fails, any
cryptographic functions that were running on that module are restarted on one of
the remaining modules. If all of the modules in the HSM pool fail, the nShield PKCS
#11 library will return a PKCS #11 error.

5.2. Module recovery

If a failed module recovers and remains part of the Security World, it is
automatically returned to the HSM Pool and the nShield PKCS #11 library can use it
for new commands. If a new module is added to the system that is accessible to
the host running the PKCS #11 application, then once the Security World has been
loaded onto this HSM, then it is automatically added to the HSM Pool and the
nShield PKCS #11 library can use it for new commands.

5.3. Restrictions on function calls in HSM Pool mode

The following function calls are not supported in HSM Pool mode:

PKCS 11 v13.3 Reference Guide 16/100

Chapter 5. PKCS #11 with HSM Pool mode

* C_LoginBegin
e C_LoginNext
e C_LoginEnd
C_InitToken
C_InitPIN
C_SetPIN

PKCS 11 v13.3 Reference Guide 17/100

Chapter 6. Generating and deleting NVRAM-stored keys with PKCS #11

©.

Generating and deleting NVRAM-

stored keys with PKCS #11

You can use the nShield PKCS #11 library to generate keys stored in nonvolatile

memory (up to a maximum of 12 keys) if you have set the
CKNFAST_NVRAM_KEY_STORAGE environment variable.

6.1. Generating NVRAM-stored keys

To generate NVRAM-stored keys with the nShield PKCS #11 library:

1.

8.

Load (or reload) the ACS using the preload command-line utility. Open a
command-line window and give the command:

preload --admin=NV pause

After loading the ACS, remove the Administrator Cards from the module.

Ensure that the CKNFAST _NVRAM_KEY_ STORAGE environment variable is set. If this
variable is not set, the keys generated are not stored in NVRAM.

Open a second command-line window, and give the command:

preload --cardset-name=<name> <pkcs11app>

where <name> is the cardset name and <pkcs11app> is the name of your PKCS #11
application.

Generate the NVRAM-stored keys that you need (up to a maximum of 12 keys)
as normal.

Stop or close <pkes11app>.

Return to the command-line window you opened in step 1 and terminate the
preload --admin=NV pause process.

Do not allow the preload --admin=NV pause process to run
continuously. Run this process only when generating or
0 deleting NVRAM-stored keys. As usual, remove the
Administrator Cards when they are not in use and store

them safely.

Unset the CKNFAST_NVRAM_KEY STORAGE environment variable.

PKCS 11 v13.3 Reference Guide 18/100

Chapter 6. Generating and deleting NVRAM-stored keys with PKCS #11

9. Restart <pkcs11app>.

You can use the newly generated NVRAM-stored keys in the same way as
other PKCS #11 keys. You can also generate any number of standard keys (not
stored in NVRAM) in the usual way.

6.2. Deleting NVRAM-stored keys
To delete NVRAM-stored keys with the nShield PKCS #11 library:

1. Load (or reload) the ACS using the preload command-line utility. Open a
command-line window and give the command:

preload --admin=NV pause

2. After loading the ACS, remove the Administrator Cards from the module.
Ensure that the CKNFAST_NVRAM_KEY_STORAGE environment variable is set.

If you attempt to delete NVRAM-stored keys without the
CKNFAST_NVRAM_KEY_STORAGE environment variable set, only the
key blob stored on hard disk is deleted. The keys remain in
e NVRAM on the module. Use the nvram-sw command-line
utility to fully remove the NVRAM-stored keys. For more

information, see the User Guide.

3. Open a second command-line window, and give the command:

preload --cardset-name=<name> -M <pkcs11app>

where <name> is the cardset name and <pkcs11app> is the name of the PKCS #11
application that you use to delete the keys.

4, Delete the NVRAM-stored keys as you would delete normal keys.

5. Stop or close <pkcs1lapp>.

6. Return to the command-line window you opened in step 1 and terminate the
preload --admin=NV pause process.

Do not allow the preload --admin=NV pause to run
continuously. Run this process only when generating or
e deleting NVRAM-stored keys. As usual, remove the
Administrator Cards when they are not in use and store

PKCS 11 v13.3 Reference Guide 19/100

Chapter 6. Generating and deleting NVRAM-stored keys with PKCS #11

them safely.

7. Unset the CKNFAST_NVRAM_KEY_STORAGE environment variable.

PKCS 11 v13.3 Reference Guide 20/100

Chapter 7. PKCS #11 with key reloading

/. PKCS #11 with key reloading

The nShield PKCS #11 library is capable of reloading keys to nShield HSMs after a
PKCS #11 application has started. The PKCS #11 library will attempt to reload the
keys to all HSMs from which keys have been unloaded after the application was
started, for example, if the HSM was cleared. This also means that if an application
uses HSMs that became unusable during runtime, the PKCS #11 library will re-add
these HSMs into the group of HSMs in a single Security World when they become
usable again. The PKCS #11 library will also attempt to reload the keys on new
HSMs that become usable after the application has started, for example if you
enroll a new HSM into the Security World. The application can then use the HSM
for key operations.

The default behavior without PKCS #11 key reloading is that when an HSM is
removed from the group of HSMs in a Security World, it is not re-added for PKCS
#11 until the user’s application is restarted.

The CKNFAST_RELOAD_KEYS environment variable determines whether key reloading
mode is enabled.

Load-sharing mode must be enabled in PKCS #11 to use key
o reloading mode. If load-sharing is not enabled, it is enabled
automatically if CKNFAST_RELOAD_KEYS is enabled.

Key reloading is not supported for session keys.

7.1. Usage under preload

PKCS #11 key reloading only reloads keys. It must also operate under a preload
session during which preload is reloading tokens that protect the keys used by
PKCS #11, in high availability mode. When the PKCS #11 application is using a
token-protected key, preload should first be run to reload the token while PKCS #11
is reloading the key. For information on running preload for PKCS #11 key reloading,
see section PKCS #11 and JCE in the User Guide for your HSM.

PKCS #11 key reloading is also supported for module-protected
keys, but the PKCS #11 application must still be run under a
preload application which is reloading tokens for another key.

Either run the PKCS #11 application as a subprocess of preload, or in a separate
command window ensuring the preload file set for preload matches the one set

PKCS 11 v13.3 Reference Guide 21/100

Chapter 7. PKCS #11 with key reloading

for PKCS #11. See section nShield PKCS #I1 library with the preload utility in the
User Guide for your HSM.

The application will attempt to reload keys when supported functions are called,
see Supported function calls.

7.1.1. Persistent preload files

The preload file persists on disk after the preload process has terminated.
Therefore, a PKCS #11 application in key reloading mode should not be run with an
NFAST_NFKM_TOKENSFILE that points to a preload file from an old (non-running)
preload process.

7.2. Supported function calls

Key reloading is attempted whenever a key is used for a cryptographic operation.
For signing, verifying, encrypting, and decrypting, the functions are as follows:

e C_SignInit

e C_VerifyInit
* C_Encryptlnit
e C_Decryptlnit

On a call to any of these functions, the PKCS #11 library will do the following:

1. Checks if preload has reloaded any token objects on any HSMs since the last
time one of the above functions was called. This is done by checking if the
preload file has been modified. If not, there is nothing to reload.

2. If reload is required, reloads any keys that are protected by the newly-loaded
tokens on all usable HSMs in the group.

7.3. Retrying key reloads

PKCS #11 can fail to reload a key due to transient or genuine errors. An example for
a transient error is when an HSM has not finished reinitializing in time for a key to
be reloaded. An example for a genuine error is when the key is invalid. In case of a
failure, PKCS #11 will attempt to reload the key every time one of the functions in
Supported function calls is called for a further 5 minutes before abandoning the
key reload on that HSM.

PKCS 11 v13.3 Reference Guide 22/100

Chapter 7. PKCS #11 with key reloading

7.4. Adding new HSMs

With key reloading enabled using the CKNFAST_RELOAD_KEYS environment variable,
the PKCS #11 library can add new HSMs to its internal list of usable modules. HSMs
are new if they were not present when PKCS #11 applications were initialized.
When key reloading is not enabled, PKCS #11 applications must be restarted
before the new HSMs can be used.

The PKCS #11 library supports a maximum of 32 HSMs. If you have already reached
32 HSMs and you add a new HSM, then the PKCS #11 library will not be able to add
this module. If an HSM is removed from the Security World or otherwise becomes

unusable, it is still counted towards this limit. The application must be restarted to

remove the removed or unusable HSM from the list.

PKCS 11 v13.3 Reference Guide 23/100

Chapter 8. PKCS #11 without load-sharing or HSM Pool modes

8. PKCS #11 without load-sharing or HSM
Pool modes

The nShield PKCS #11 library makes each nShield module appear to your PKCS #11
application as two or more PKCS #11 slots.

The first slot represents the module itself. This token:

* Appears as a non-removable hardware token and has the flag CKF_REMOVABLE
not set

* Has the flag CKF_LOGIN_REQUIRED not set (C_Login always fails on this flag).

Applications can ignore this slot, but you can use the slot to

o store public session objects or for functions that do not use
objects (such as C_GenerateRandom) even when the smart-card is
not present.

The second slot represents the smart-card reader. This token:

* appears as a PKCS #11 slot, potentially containing a removable hardware token
that has the flag CKF_REMOVABLE set

* is marked as removed if the smart card is removed from the physical slot
* has the flag CKF_LOGIN_REQUIRED

» allows the creation of token objects.

o To use softcards with PKCS #11, load-sharing mode must be
enabled.

A PKCS #11 token can support multiple concurrent sessions on multiple
applications. However, by default, only one token may be logged in to a given slot
at a given time (see K/N support for PKCS #11). By default, when you insert a new
card into a slot, the nShield PKCS #11 library automatically logs out any token that
had been logged in to the slot previously.

The C_InitToken function is not supported for use in non-load-
sharing FIPS 140 Level 3 Security Worlds.

8.1. K/N support for PKCS #11

If you use the nShield PKCS #11 library without load-sharing mode or HSM Pool
mode, you can implement K/N card set support in two ways:

PKCS 11 v13.3 Reference Guide 24/100

Chapter 8. PKCS #11 without load-sharing or HSM Pool modes

* By using the nShield-specific API calls, C_LoginBegin, C_LoginNext, and
C_LoginEnd

* By using the preload command-line utility to load the logical token first.

PKCS 11 v13.3 Reference Guide 25/100

Chapter 9. PKCS #11 Security Officer

9. PKCS #11 Security Officer

The PKCS #11 Security Officer is a role that is created and managed by the
cksotool utility. The utility creates a softcard and key, which are used to perform
operations within the nShield PKCS #11 library as the Security Officer. The idents of
the generated softcard and key are ncipher-pkcs11-so-softcard and ncipher-pkesi11-
so-key, respectively. They are used during Security Officer operations to provide
the cryptographic security.

ncipher-pkes11-so-softcard does not appear in the result of
o C_GetSlotList and therefore cannot be used to create PKCS #11
keys, or have its PIN changed using C_SetPIN.

To act as the Security Officer within the nShield PKCS #11 library, the Security
Officer token and key must be preloaded using the preload utility:

preload -s ncipher-pkes11-so-softcard pause

The PKCS #11 session must also be logged in as the user CKU_SO. preload is used so
that virtual-slots in load-sharing can be logged into using the usual PKCS #11 API.
This allows Security Officer operations to be performed on keys protected by any
token.

It is strongly advised that operations that require loading the PKCS #11 Security
Officer token are performed by a dedicated tool, and not integrated into a main
application.

PKCS 11 v13.3 Reference Guide 26/100

Chapter 10. nShield-specific PKCS #11 API extensions

10. nShield-specific PKCS #11 API
extensions

nShield K/N card sets use nShield-specific API calls. These calls can be used by
the application in place of the standard C_Login to provide log-in to a card set with
a K parameter greater than 1. The API calls include three functions, C_LoginBegin,
C_LoginNext and C_LoginEnd.

o ‘ The login sequence must occur in the same session.

You cannot use the API calls in load-sharing mode. To use K/N

o card sets in load-sharing mode, use preload to load the logical
token first. The API calls also work in a non-load-sharing FIPS
140 Level 3 Security Worlds.

10.1. C_LoginBegin

Similar to C_Login, this function initiates the log-in process, ensures that the
session is valid, and ensures that the user is not in load-sharing mode.

The pulK and pulN return values provide the caller with the number of card
requests required. An example of the use of (_LoginBegin is shown here:

C_LoginBegin (CK_SESSION_HANDLE hSession, /* the session's handle */
CK_USER_TYPE userType, /* the user type */
CK_ULONG_PTR pulK, /* cards required to load logical token*/
CK_ULONG_PTR pulN /* Number of cards in set */)

10.2. C_LoginNext

C_LoginNext is called K times until the required number of cards (for the given card
set) have been presented. This function checks the Security World info to ensure
that the card has changed each time. It also checks for the correct passphrase
before loading the card share. pulSharesLeft allows the user application to assess
the number of cards loaded to the number of cards required.

CK_RV gives various values that allow the user to access the application state using
standard PKCS #11 return values (such as CKR_TOKEN _NOT_RECOGNIZED). These values
reveal such information as whether the card is the same, whether the card is
foreign or blank, and whether the passphrase was incorrect.

PKCS 11 v13.3 Reference Guide 27/100

Chapter 10. nShield-specific PKCS #11 API extensions

An example of the use of C_LoginNext is shown here:

C_LoginNext (CK_SESSION_HANDLE hSession, /* the session's handle */
CK_USER_TYPE userType, /* the user type*/
CK_CHAR_PTR pPin, /* the user's PIN*/
CK_ULONG ulPinLen, /* the length of the PIN */
CK_ULONG_PTR pulSharesLeft /* Number of shares still needed */)

10.3. C_LoginEnd

C_LoginEnd is called after all the shares are loaded. It constructs the logical token
from the presented shares and then loads the private objects protected by the
card set that are available to it:

C_LoginEnd (CK_SESSION_HANDLE hSession, /* the session's handle */
CK_USER_TYPE userType /* the user type*/)

There must be no other calls between the functions, in that or
any other session on the slot. In particular, a call that updates the
Security World while using a card that has been removed at the
o time (for example, because a second card from the set is about
to be inserted) returns CKR_DEVICE_REMOVED in the same way that it
would for a single card. All sessions are then closed and the log-

in process is aborted.

If other functions are accidentally called during the log-in cycle, then
slot.loadcardsetstate is checked before updating the Security World. If the log-in
process has not been completed, other functions return CKR_FUNCTION_FAILED and
allow you to continue with the log-in process.

PKCS 11 v13.3 Reference Guide 28/100

Chapter 11. Compiling and linking

11. Compiling and linking

The following options are available if you want to integrate the nShield PKCS #11
library with your application. Depending on how your application integrates with
PKCS #11 libraries, you can:

e statically link the nShield PKCS #11 library directly into your application
e dynamically link the nShield PKCS #11 library into your application

» create a plug-in shared library that contains the nShield position-independent
code object files together with your own adaptation facilities.

You may freely supply your users with the compiled library files linked into your
application or into a plug-in library used for your application.

The nShield PKCS #11 library includes the PKCS #11 header files pkcs11.h, pkes11t.h,
and pkes11f.h from the RSA Data Security, Inc. Cryptoki Cryptographic Token
Interface. Any work based on this interface is bound by the following terms of RSA
Data Security, Inc. Licence, which states:

License is also granted to make and use derivative works provided that such
works are identified as derived from the RSA Data Security, Inc. Cryptoki
Cryptographic Token Interface in all material mentioning or referencing the
derived work.

For more information about using the available libraries, see the

o Include Paths and Linking section in the nCore AP/
Documentation on the Security World Software installation
media.

11.1. Windows

All versions are built with Visual Studio 2017. Entrust supplies the following files:

e %NFAST_HOME%\bin\cknfast.d11l and %NFAST_HOME%\toolkits\pkcs11\cknfast.d1l: a
dynamically linked library

0 ‘ Both files are identical.

* %NFAST_HOME%\c\ctd\1lib\cknfast.lib: a stub for applications that link to
cknfast.dll

* %SNFAST_HOME%\c\ctd\1lib\libcknfast.1lib: a static library with position-
independent code

PKCS 11 v13.3 Reference Guide 29/100

Chapter 11. Compiling and linking

11.2. Linux

Entrust supplies the following libraries:

e libcknfast.so, libcknfast.so.a, or libcknfast.so: a standard, dynamically linked,
shared library that can be used to create applications that must be
dynamically linked with the nShield libraries at run time. On platforms where
thread safety requires programs to be compiled differently from non-threaded
programs, these libraries are compiled thread-safe.

* libcknfast.a: a standard, non-shared library used to statically link an
application.

e libcknfast_thrpic.a: a non-shared library, compiled as threadsafe position-
independent code.

On the Developer installation media, each library is provided with a corresponding
set of header files. All the header files for each version are very similar, but some
header files (particularly those that contain information about compiler and
configuration options) differ by version.

These types of library are provided compiled with the following C compilers for
Linux 1ibc6.11:

Library Type Build Notes
/opt/nfast/c/ctd/gecc/1ib This type of library is built with gcc 4.9.2 in 32-bit mode.
/opt/nfast/c/csd/gce/1ib This type of library is built with gcc 4.9.2 in 64-bit mode.

PKCS 11 v13.3 Reference Guide 30/100

Chapter 12. Objects

12. Objects

Token objects are not stored in the nShield module. Instead, they are stored in an
encrypted and integrity-protected form on the hard disk of the host computer.
The key used for this encryption is created by combining information stored on
the smart card with information stored in the nShield module and with the card
passphrase.

Session keys are stored on the nShield module, while other session objects are
stored in host memory. Token objects on the host are created in the kmdata
directory. In order to access token objects, the user must have:

e the smart card

the passphrase for the smart card

* an nShield module containing the module key used to create the token

the host file containing the nShield key blob protecting the token object.

The nShield PKCS #11 library can be used to manipulate Data Objects, Certificate
Objects, and Key Objects.

12.1. Certificate Objects and Data Objects
The nShield PKCS #11 library does not parse Certificate Objects or Data Objects.

The size of Data Objects is limited by what can be fitted into a single command
(under most circumstances, this limit is 8192 bytes).

12.2. Key Objects

The following restrictions apply to keys:

Key types Restrictions

RSA Modulus greater than or equal to 1024.

The nShield PKCS #11 library requires all of the attributes for an RSA key object
to be supplied, as listed in Table 26: "RSA Private Key Object Attributes” of
PKCS #11 Cryptographic Token Interface Standard version 2.40.

DSA Modulus greater than or equal to 1024 in multiples of 8 bits.

Diffie-Hellman Modulus greater than or equal to 1024.

PKCS 11 v13.3 Reference Guide 31/100

Chapter 12. Objects

12.3. Card passphrases

All passphrases are hashed using the SHA-1 hash mechanism and then combined

with a module key to produce the key used to encrypt data on the nShield

physical or software token. The passphrase supplied can be of any length.

The ckinittoken program imposes a 512-byte limit on the
passphrase.

C_GetTokenInfo reports MaxPinLen as 256 because some
applications may have problems with a larger value.

When C_Login is called, the passphrase is used to load private objects protected by

that card set on to all modules with cards from that set. Public objects belonging

to that set are loaded on to all the modules. C_Login fails if any logical token fails to

load. All cards in a card set must have the same passphrase.

The functions C_SetPIN, C_InitPIN, and C_InitToken are supported
in load-sharing mode only when using softcards. To use these
functions in load-sharing mode, you must have created a
softcard with the command ppmk -n before selecting the
corresponding slot.

The C_InitToken function is not supported for use in non-load-
sharing FIPS 140 Level 3 Security Worlds.

PKCS 11 v13.3 Reference Guide 32/100

Chapter 13. Mechanisms

13. Mechanisms

The following table lists the mechanisms currently supported by the nShield PKCS
#11 library and the functions available to each one. Entrust also provides vendor-
supplied mechanisms, described in Vendor-defined mechanisms.

Some mechanisms may be restricted from use in Security
0 Worlds conforming to FIPS 140 Level 3. See the User Guide for
your HSM for more information.

Mechanism Encrypt & Sign & SR & VR Digest Gen. Wrap & Derive
Decrypt Verify Key/Key Unwrap Key
Pair
CKM_AES_CBC_ENCRYPT_D — - — - — — Y
ATA
CKM_AES_CBC_PAD Y - — — — Y _
CKM_AES_CBC Y — — — — \2 —
CKM_AES_CMAC_GENERAL — Y — — — — _
CKM_AES_CMAC — Y — — — _ _
CKM_AES_CTR Y — - — — X —
CKM_AES_ECB_ENCRYPT_D — - - — — - Y
ATA
CKM_AES_ECB Y — — — — Y! _
CKM_AES_GCM Y — — — _ VE _
CKM_AES_KEY_GEN — — — — Y — —
CKM_AES_KEY_WRAP — — — — — Y _
CKM_AES_KEY_WRAP_PAD? Y — — — — Y -
CKM_AES_KEY_WRAP_KWP Y - - — — Y _
CKM_AES_MAC_GENERAL — Y — — — _ _
CKM_AES_MAC — Y — — — — —
CKM_CONCATENATE_BASE_ — - — — _ _ Ve
AND_KEY
CKM_DES_CBC_ENCRYPT_D — - - — — - Y
ATA

PKCS 11 v13.3 Reference Guide 33/100

Chapter 13. Mechanisms

Mechanism Encrypt & Sign & SR & VR Digest Gen. Wrap & Derive
Decrypt Verify Key/Key Unwrap Key
Pair

CKM_DES_CBC_PAD Y — _ — _ v _

CKM_DES_CBC Y — — — - v _

I
|
|
I
[
[
<

CKM_DES_ECB_ENCRYPT_D
ATA

CKM_DES_ECB Y — — — _ v _

CKM_DES_KEY_GEN — — - — Y — —

|
_<
|
I
I
I
I

CKM_DES_MAC_GENERAL
CKM_DES_MAC — Y — — — — —
CKM_DES2_KEY_GEN — — — — Y — —

CKM_DES3_CBC_ENCRYPT_ — — - — — — Y
DATA

CKM_DES3_CBC_PAD Y — — — _ v _
CKM_DES3_CBC Y — _ _ _ v _

CKM_DES3_ECB_ENCRYPT_ — — - — — - Y
DATA

CKM_DES3_ECB Y - — — — Y! —
CKM_DES3_KEY_GEN - - — — Y — —
CKM_DES3_MAC_GENERAL — Y - — — — —
CKM_DES3_MAC — Y — — — — —

CKM_DH_PKCS_DERIVE - - - — — — Y

I

I

|

I
<

I

I

CKM_DH_PKCS_KEY_PAIR_
GEN

I

I

|

I
<

I

I

CKM_DSA_KEY_PAIR_GEN
CKM_DSA_PARAMETER_GEN — - — — Y - —
CKM_DSA_SHA1 - Y - — — — —
CKM_DSA — Y4 - — — — —

CKM_EC_EDWARDS_KEY_PA — - — — Y? - —
IR_GEN

PKCS 11 v13.3 Reference Guide 34/100

Chapter 13. Mechanisms

Mechanism Encrypt & Sign & SR & VR Digest Gen. Wrap & Derive
Decrypt Verify Key/Key Unwrap Key
Pair
CKM_EC_KEY_PAIR_GEN — — — — Yé — —
CKM_EC_MONTGOMERY_KEY — - — — & — —
_PAIR_GEN
CKM_ECDH1_DERIVE — — — — — - Y’
CKM_ECDSA_SHA1 — Y — — — — —
CKM_ECDSA_SHA224 — Y — — — — —
CKM_ECDSA_SHA256 — Y — — — — —
CKM_ECDSA_SHA384 — Y — — — — —
CKM_ECDSA_SHA512 — Y — — — — —
CKM_ECDSA_SHA3_224 — Y — — — — —
CKM_ECDSA_SHA3_256 — Y — — — — —
CKM_ECDSA_SHA3_384 — Y — — — — —
CKM_ECDSA_SHA3_512 — Y — — — — —
CKM_EDDSA — Y48 — — — — —
CKM_ECDSA — & — — — — —
CKM_GENERIC_SECRET_KE — — — — Y — —
Y_GEN
CKM_MD5_HMAC_GENERAL — Y — — — — —
CKM_MD5_HMAC — Y — — — — —
CKM_MD5 — — — Y — — —
CKM_NC_ECIES — — — — — Yo —
CKM_NC_MD5_HMAC_KEY_G — - — — Y — —
EN
CKM_NC_MILENAGE — Y4» — — — — —
CKM_NC_MILENAGE_AUTS — Y4 — — — — —
CKM_NC_MILENAGE_RESYN — Y4 — — — — —
C

PKCS 11 v13.3 Reference Guide 35/100

Chapter 13. Mechanisms

Mechanism Encrypt & Sign & SR & VR Digest Gen. Wrap & Derive
Decrypt Verify Key/Key Unwrap Key
Pair

CKM_NC_MILENAGE_OPC

I

I

|

I

I

I
<

CKM_NC_MILENAGEOP_KEY — - — — Y - —
_GEN

CKM_NC_MILENAGERC_KEY — - — — Y - —
_GEN

|
|
|
I
<
I

I

CKM_NC_MILENAGESUBSCR
IBER_KEY_GEN

CKM_NC_TUAK — Y4 — — — — —
CKM_NC_TUAK_AUTS — Y4 — — — — —
CKM_NC_TUAK_RESYNC — Y4 — — — — —
CKM_NC_TUAK_TOPC — — — — - — Y

CKM_NC_TUAKSUBSCRIBER — — — - Y — —
_KEY_GEN

CKM_NC_TUAKTOP_KEY_GE — — — _ v _ _
N

CKM_PBE_MD5_DES_CBC — - — — Y - —
CKM_RIPEMD160 — — — Y — — —
CKM_RSA_9796 - & \& — — — —
CKM_RSA_AES_KEY_WRAP — — — — — & —

CKM_RSA_PKCS_KEY_PAIR — — — - Y — -
_GEN

CKM_RSA_PKCS_OAEP Y — — - — Y —
CKM_RSA_PKCS_PSS" Y Y — — — — —
CKM_RSA_PKCS Y4 & \a — — Y —
CKM_RSA_X_509 Y4 Y4 Y4 — — X —

CKM_RSA_X9_31_KEY_PAI — - - — Y — —
R_GEN

CKM_SHA_1_HMAC_GENERA — Y'© - - - — —
L

CKM_SHA_1_HMAC - Y'© - — — — —

PKCS 11 v13.3 Reference Guide 36/100

Chapter 13. Mechanisms

Mechanism Encrypt & Sign & SR & VR Digest Gen. Wrap & Derive

Decrypt Verify Key/Key Unwrap Key
Pair

CKM_SHA_1 — - — Y — — _

CKM_SHA1_RSA_PKCS_PSS — Y — — — — —

1

CKM_SHA1_RSA_PKCS — Y — — — _ _

CKM_SHA224 _HMAC_GENER — Y'© — — — — —

AL

CKM_SHA224 _HMAC — 4 — — — — —

CKM_SHA224_RSA_PKCS_P — Y — — — — _

SSH

CKM_SHA224_RSA_PKCS — Y — — — — _

CKM_SHA224 — - — Y — — _

CKM_SHA256_HMAC_GENER — Y'© — — — — —

AL

CKM_SHA256_HMAC — Y'"°© — — — — —

CKM_SHA256_RSA_PKCS_P — Y — — — — _

SS"

CKM_SHA256_RSA_PKCS — Y — — — — _

CKM_SHA256 — - — Y — — _

CKM_SHA384 _HMAC_GENER — Y'"© — — — — —

AL

CKM_SHA384 _HMAC — Y'™° — — — — —

CKM_SHA384_RSA_PKCS_P — Y — — — — _

SSH

CKM_SHA384_RSA_PKCS — Y — — — — _

CKM_SHA384 - - — Y — — _

CKM_SHA512_HMAC_GENER — Y'"© — — — — —

AL

CKM_SHA512_HMAC — Y'™° — — — — —

CKM_SHA512_RSA_PKCS_P — Y — — — — _

SST\

PKCS 11 v13.3 Reference Guide 37/100

Chapter 13. Mechanisms

Mechanism Encrypt & Sign & SR & VR Digest Gen. Wrap & Derive
Decrypt Verify Key/Key Unwrap Key
Pair

CKM_SHA512_RSA_PKCS — Y — — — _ _
CKM_SHA512 — — - Y — — —
CKM_SHA3_224 - — — Y — — _
CKM_SHA3_224_RSA_PKCS — Y — — — — —
_Pss™

CKM_SHA3_224_RSA_PKCS — Y — — — — —
CKM_SHA3_256 - — - Y — — —
CKM_SHA3_256_RSA_PKCS — Y — — — — _
_Pss™

CKM_SHA3_256_RSA_PKCS — Y — — — — _
CKM_SHA3_384 — — — Y — — —
CKM_SHA3_384_RSA_PKCS — Y — — — — _
_Pss"

CKM_SHA3_384_RSA_PKCS — Y — — — — _
CKM_SHA3_512 — — — Y — — _
CKM_SHA3_512_RSA_PKCS — Y — — — — —
_Pss™

CKM_SHA3_512_RSA_PKCS — Y — — — — —
CKM_XOR_BASE_AND_DATA — — — - — — Y2

The nShield library supports some mechanisms that are defined in versions of the
PKCS #11 standard later than 2.01, although the nShield library does not fully
support versions of the PKCS #11 standard later than 2.01.

In the table above:

« Empty cells indicate mechanisms that are not supported by the PKCS #11
standard.

 The entry Y indicates that a mechanism is supported by the nShield PKCS #11
library.

* The entry X indicates that a mechanism is not supported by the nShield PKCS
#11 library.

PKCS 11 v13.3 Reference Guide 38/100

Chapter 13. Mechanisms

In the table above, annotations with the following numbers indicate:

13.1. Footnote 1

Wrap secret keys only (private key wrapping must use CBC_PAD).

13.2. Footnote 2

CKM_AES_KEY_WRAP_PAD has been deprecated and replaced by CKM_AES_KEY_WRAP_KWP.

13.3. Footnote 3

Before you can create a key for use with the derive mechanism
CKM_CONCATENATE_BASE_AND_KEY, you must specify the CKA_ALLOWED_MECHANISMS attribute
in the template with the CKM_CONCATENATE_BASE_AND_KEY set. Specifying the
CKA_ALLOWED_MECHANISMS in the template enables the setting of the nCore level ACL,
which enables the key in this derive key operation. For more information about the
CKA_ALLOWED_MECHANISMS attribute, see Attributes.

13.4. Footnote 4

Single-part operations only.

13.5. Footnote 5

CKA_EC_PARAMS is a DER-encoded PrintableString curve25519.

13.6. Footnote 6

If no capabilities are specified in the template, for example the CKA_DERIVE, CKA_SIGN
and CKA_UNWRAP attributes are omitted, then the default capability is sign/verify.

Key generation does calculate its own curves but, as shown in the PKCS #11
standard, takes the CKA_PARAMS, which contains the curve information (similar to
that of a discrete logarithm group in the generation of a DSA key pair).
CKA_EC_PARAMS is a Byte array which is DER-encoded of an ANSI X9.62 Parameters
value. It can take both named curves and custom curves.

PKCS 11 v13.3 Reference Guide 39/100

Chapter 13. Mechanisms

The following PKCS #11-specific flags describe which curves are supported:

CKF_EC_P: prime curve supported

CKF_EC_2M: binary curve supported

CKF_EC_PARAMETERS: supplying your own custom parameters is supported

CKF_EC_NAMECURVE: supplying a named curve is supported

CKF_EC_UNCOMPRESS: supports uncompressed form only, compressed form not
supported.

13.7. Footnote 7

The CKM_ECDH1T_DERIVE mechanism is supported. However, the mechanism only takes
a CK_ECDH1_DERIVE_PARAMS struct in which CK_EC_KDF_TYPE can be one of the following:

* CKD_NULL

CKD_SHA1_KDF, CKD_SHA1_KDF_SP800
CKD_SHA224 _KDF, CKD_SHA224_KDF_SP800
CKD_SHA256_KDF, CKD_SHA256_KDF_SP800
CKD_SHA384_KDF, CKD_SHA384_KDF_SP800
CKD_SHA512_KDF, CKD_SHA512_KDF_SP800

For more information on CK_ECDHT _DERIVE PARAMS, see the PKCS #11 standard.

For the pPublicData* parameter, a raw octet string value (as defined in section
A.5.2 of ANSI X9.62) and DER-encoded ECPoint value (as defined in section E.6 of
ANSI X9.62 or, in the case of CKK_EC_MONTGOMERY, RFC 7748) are now accepted.

13.8. Footnote 8

Both the Ed25519 and Ed25519ph signature schemes are supported, The Ed25519
scheme requires either no CK_EDDSA_PARAMS to be passed or if it is passed it should
have the following set:

* phFlag to CK_FALSE
* ulContextDatalen to 0.

The Ed25519ph signature scheme requires CK_EDDSA_PARAMS to have the following set:

* phFlag to CK_TRUE

PKCS 11 v13.3 Reference Guide 40/100

Chapter 13. Mechanisms

* ulContextDatalen to 0.

13.9. Footnote 9

Wrap secret keys only.

13.10. Footnote 10

This mechanism depends on the vendor-defined key generation mechanism
CKM_NC_SHA_1_HMAC_KEY_GEN, CKM_NC_SHA224_HMAC_KEY_GEN, CKM_NC_SHA256_HMAC_KEY_GEN,
CKM_NC_SHA384_HMAC_KEY_GEN, or CKM_NC_SHA512_HMAC_KEY_GEN. For more information,
see Vendor-defined mechanisms.

13.11. Footnote 11

The hashAlg and the mgf that are specified by the CK_RSA_PKCS_PSS_PARAMS must have
the same SHA hash size. If they do not have the same hash size, then the signing
or verify fails with a return value of CKR_MECHANISM_PARAM_INVALID.

The slLen value is expected to be the length of the message hash. If this is not the
case, then the signing or verify again fails with a return value of
CKR_MECHANISM_PARAM_INVALID. The Security World Software implementation of
RSA_PKCS_PSS salt lengths are as follows:

Mechanism Salt-length
SHA-1 160-bit
SHA-224 224-bit
SHA-256 256-bit
SHA-384 384-bit
SHA-512 512-bit
SHA3-224 224-bit
SHA3-256 256-bit
SHA3-384 384-bit
SHA3-512 512-bit

PKCS 11 v13.3 Reference Guide 41/100

Chapter 13. Mechanisms

13.12. Footnote 12

The base key and the derived key are restricted to DES, DES3, CAST5 or Generic,
though they may be of different types.

13.13. Footnote 13

For wrap and unwrap with CKM_AES_GCM, the IV supplied in the CKM_GCM_PARAMS
structure must be 12 bytes. For wrap the IV must be all zeroes. This will be
overwritten by the actual value used when the wrap command has completed
successfully. For unwrap the IV must be the value returned by the corresponding
wrap.

13.14. Footnote 14

In order to create an unwrapping key for use with the mechanism
CKM_RSA_AES_KEY_WRAP where CKA_UNWRAP_TEMPLATE is also set, you must:

* Specify the CKA_ALLOWED_MECHANISMS attribute in the template with
CKM_RSA_AES_KEY_WRAP set as an allowed mechanism.

e Override the Security Assurance Mechanisms (SAMs) to permit use of
CKA_UNWRAP_TEMPLATE with the mechanism CKM_RSA_AES_KEY_WRAP.

Specifying the CKA_ALLOWED_MECHANISMS attribute in the template and overriding the
SAMs enables use of the CKA_UNWRAP_TEMPLATE attribute with the unwrapping key.

Keys with CKA_WRAP_WITH_TRUSTED set cannot be wrapped with the mechanism
CKM_RSA_AES_KEY_WRAP. The C_WrapKey operation will return CKR_KEY_NOT_WRAPPABLE for
such keys.

For more information about the SAMs, see PKCS #11 security assurance
mechanism. For more information about the CKA_ALLOWED _MECHANISMS attribute, see
Attributes.

13.15. Footnote 15

Sign only.

PKCS 11 v13.3 Reference Guide 42/100

Chapter 14. Vendor annotations on P11 mechanisms

14. Vendor annotations on P11
mechanisms

Vendor notes on PKCS #11 mechanisms to complement the specification.

14.1. CKM_RSA_PKCS_OAEP

The hashAlg and the mgf values specified by CK_RSA_PKCS_OAEP_PARAMS must have the
same SHA hash size. If they do not have the same hash size, then the encryption
or decryption fails with a return value of CKR_MECHANISM_PARAM_INVALID. The
supported pairs of values are as follows:

hashAlg mgf

CKM_SHA_1 CKG_MGF1_SHAT
CKM_SHA224 CKG_MGF1_SHA224
CKM_SHA256 CKG_MGF1_SHA256
CKM_SHA384 (KG_MGF1_SHA384
CKM_SHA512 CKG_MGF1_SHA512
CKM_SHA3_224 CKG_MGF1_SHA3_224
CKM_SHA3_256 CKG_MGF1_SHA3_256
CKM_SHA3_384 CKG_MGF1_SHA3_384
CKM_SHA3_512 CKG_MGF1_SHA3_512

For a hash length h and RSA modulus length k in bytes, the longest message that
can be encrypted is k-2h-2 bytes long.

14.2. CKM_RSA_PKCS_PSS and
CKM_SHA*_RSA_PKCS_PSS

The hashAlg and the mgf values specified by CK_RSA_PKCS_PSS_PARAMS must have the
same SHA hash size. If they do not have the same hash size, then the signing or
verifying fails with a return value of CKR_MECHANISM_PARAM_INVALID.

The slLen value is expected to be the length of the message hash in bytes. If this is
not the case, then the signing or verify again fails with a return value of

PKCS 11 v13.3 Reference Guide 43/100

Chapter 14. Vendor annotations on P11 mechanisms

CKR_MECHANISM_PARAM_INVALID.

The supported sets of values for hashAlg, mgf and sLen are as follows:

hashAlg

CKM_SHA_1

CKM_SHA224

CKM_SHA256

CKM_SHA384

CKM_SHA512

CKM_SHA3_224

CKM_SHA3_256

CKM_SHA3_384

CKM_SHA3_512

mgf

CKG_MGF1_SHA1

CKG_MGF1_SHA224

(KG_MGF1_SHA256

CKG_MGF1_SHA384

CKG_MGF1_SHA512

CKG_MGF1_SHA3_224

CKG_MGF1_SHA3_256

CKG_MGF1_SHA3_384

CKG_MGF1_SHA3_512

sLen

20

28

32

48

64

28

32

48

64

To use a mechanism with SHA hash size n bits, the public modulus of the RSA key

must be at least 2n+2 bits long.

PKCS 11 v13.3 Reference Guide

44/100

Chapter 15. Vendor-defined mechanisms

15. Vendor-defined mechanisms

The following vendor-defined mechanisms are also available. The numeric values
of vendor-defined key types and mechanisms can be found in the supplied
pkcs1lextra.h header file.

Some mechanisms may be restricted from use in Security
0 Worlds conforming to FIPS 140 Level 3. See the User Guide for
your HSM for more information.

15.1. CKM_SEED_ECB_ENCRYPT_DATA and
CKM_SEED_CBC_ENCRYPT_DATA

This mechanism derives a secret key by encrypting plain data with the specified
secret base key. This mechanism takes as a parameter a
CK_KEY_DERIVATION_STRING_DATA structure, which specifies the length and value of the
data to be encrypted by using the base key to derive another key.

If no length or key type is provided in the template, the key produced by this
mechanism is a generic secret key. Its length is equal to the length of the data.

If a length, but no key type, is provided in the template, the key produced by this
mechanism is a generic secret key of the specified length.

If a key type, but no length, is provided in the template, the key type must have a
well-defined length. If the length is well defined, the key produced by this
mechanism is of the type specified in the template. If the length is not well
defined, a CKR_TEMPLATE _INCOMPLETE error is returned.

If both a key type and a length are provided in the template, the length must be
compatible with that key type, and CKR_TEMPLATE_INCONSISTENT is returned if it is not.

The key produced by the CKM_SEED_ECB_ENCRYPT_DATA or CKM_SEED_CBC_ENCRYPT_DATA
mechanisms is of the specified type and length.

15.2. CKM_CAC_TK_DERIVATION

This mechanism uses C_GenerateKey to perform an Import operation using a
Transport Key Component.

The mechanism accepts a template that contains three Transport Key
Components (TKCs) with following attribute types:

PKCS 11 v13.3 Reference Guide 45/100

Chapter 15. Vendor-defined mechanisms

* CKA_TKC1
* CKA_TKC2
* CKA_TKC3.

These attributes are all in the CKA_VENDOR_DEFINED range.

Each TKC should be the same length as the key being created. TKCs used for DES,
DES2, or DES3 keys must have odd parity. The mechanism checks for odd parity
and returns CKR_ATTRIBUTE _VALUE INVALID if it is not found.

The new key is constructed by an XOR of the three TKC components on the
module.

Although using C_GenerateKey creates a key with a known value rather than
generating a new one, it is used because (_CreateObject does not accept a
mechanism parameter.

CKA_LOCAL, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE are set to FALSE, as they
would for a key imported with C_CreateObject. This reflects the fact that the key
was not generated locally.

An example of the use of CKM_CAC_TK_DERIVATION is shown here:

CK_OBJECT_CLASS class_secret = CKO_SECRET_KEY;

CK_KEY_TYPE key_type_des2 = CKK_DES2;

CK_MECHANISM mech = { CKM_CAC_TK_DERIVATION, NULL_PTR, 0 };

CK_BYTE TKC1[16] = { ... };

CK_BYTE TKC2[16] = { ... };

CK_BYTE TKC3[16] = { ... };

CK_OBJECT_HANDLE kHey;

CK_ATTRIBUTE pTemplate[] = {
{ CKA_CLASS, &class_secret, sizeof(class_secret) },
{ CKA_KEY_TYPE, &key_type_des2, sizeof(key_type_des2) },
{ CKA_TKC1, TKC1, sizeof(TKC1) },
{ CKA_TKC2, TKC1, sizeof(TKC2) },
{ CKA_TKC3, TKC1, sizeof(TKC3) },
{ CKA_ENCRYPT, &true, sizeof(true) },

%

rv = C_GenerateKey(hSession, &mechanism, pTemplate,
(sizeof(pTemplate)/sizeof((pTemplate)[0])), &hKey);

15.3. CKM_SHA*_HMAC and
CKM_SHA*_HMAC_GENERAL

This version of the library supports the following mechanisms:

PKCS 11 v13.3 Reference Guide 46/100

Chapter 15. Vendor-defined mechanisms

* CKM_SHA_1_HMAC

* CKM_SHA_1_HMAC_GENERAL
* CKM_SHA224_HMAC

* CKM_SHA224_HMAC_GENERAL
* CKM_SHA256_HMAC

* CKM_SHA256_HMAC_GENERAL
* CKM_SHA384_HMAC

* CKM_SHA384_HMAC_GENERAL
¢ CKM_SHA512_HMAC

* CKM_SHA512_HMAC_GENERAL

For security reasons, the Security World Software supports these mechanisms
only with their own specific key type. Thus, you can only use an HMAC key with
the HMAC algorithm and not with other algorithms.

The key types provided for use with SHA<n> HMAC mechanisms are:

* CKK_SHA_1_HMAC

CKK_SHA224 _HMAC
CKK_SHA256_HMAC
CKK_SHA384 _HMAC
CKK_SHA512_HMAC

To generate the key, use the appropriate key generation mechanism (which does
not take any mechanism parameters):

* CKM_NC_MD5_HMAC_KEY_GEN

CKM_NC_SHA_1_HMAC_KEY_GEN
CKM_NC_SHA224 _HMAC_KEY_GEN
CKM_NC_SHA256_HMAC_KEY_GEN
CKM_NC_SHA384 _HMAC_KEY_GEN
CKM_NC_SHA512_HMAC_KEY_GEN

15.4. CKM_NC_ECKDF_HYPERLEDGER

This version of the library supports the vendor-defined CKM_NC_ECKDF_HYPERLEDGER
mechanism. This key derivation function is used in the user/client enrolment
process of a hyperledger system to generate transaction certificates by using the

PKCS 11 v13.3 Reference Guide 47/100

Chapter 15. Vendor-defined mechanisms

enrolment certificate as one of the inputs to the key derivation.

The parameters for the mechanism are defined in the following structure:

typedef struct CK_ECKDF_HYPERLEDGERCLIENT_PARAMS {
CK_OBJECT_HANDLE hKeyDF_Key;
CK_MECHANISM_TYPE HMACMechType;
CK_MECHANISM_TYPE TCertEncMechType;
CK_ULONG ulEksize;
CK_BYTE_PTR pEncTCertData;
CK_ULONG ulEvsize;
CK_ULONG ulEndian;
} CK_ECKDF_HYPERLEDGERCLIENT_PARAMS

Where:

* hKeyDF_key is KeyDF_Key

* HMACMechType is Hmac

* TCertEncMechType is Decrypt_Mech
* ulEksize is Eksize

* pEncTCertData is a pointer to encrypted data containing TCertindex together
with padding and IV

* ulEvsize is Evsize

* ulEndian is Big_Endian

The function is then called as follows:

C_DeriveKey(
hSession,
&mechanism_hyperledger,
EnrollPriv_Key,
TCertPriv_Key_template,
NUM(TCertPriv_Key_template,
&TCertPriv_Key);

A Template_Key will be used to supply key attributes for the resulting derived key.
The derived key can then be used in the normal way.

Derived keys can be exported and used outside the HSM only if the template key
was created with attributes which allow export of its derived keys.

15.5. CKM_HAS160

This version of the library supports the vendor-defined CKM_HAS160 hash (digest)
mechanism for use with the CKM_KCDSA mechanism. For more information, see
KISAAlgorithm mechanisms.

PKCS 11 v13.3 Reference Guide 48/100

Chapter 15. Vendor-defined mechanisms

CKM_HAS160 is a basic hashing algorithm. The hashing is done on the host machine.
This algorithm can be used by means of the standard digest function calls of the
PKCS #11 API.

15.6. CKM_PUBLIC_FROM_PRIVATE

CKM_PUBLIC_FROM_PRIVATE is a derive key mechanism that enables the creation of a
corresponding public key from a private key. The mechanism also fills in the public
parts of the private key, where this has not occurred.

CKM_PUBLIC_FROM_PRIVATE is an nShield specific nCore mechanism. The C_Derive
function takes the object handle of the private key and the public key attribute
template. The creation of the key is based on the template but also checked
against the attributes of the private key to ensure the attributes are correct and
match those of the corresponding key. If an operation that is not allowed or is not
set by the private key is detected, then CKR_TEMPLATE _INCONSISTANT is returned.

Before you can use this mechanism, the HSM must already
o contain the private key. You must use C_CreateObject, C_UnWrapKey,
or C_GenerateKeyPair to import or generate the private key.

If you use C_GenerateKeyPair, you always generate a public key at

the same time as the private key. Some applications delete

o public keys once a certificate is imported, but in the case of both
C_GenerateKeyPair and C_CreateObject you can use either the

CKM_PUBLIC_FROM_PRIVATE mechanism or the C_GetAttributeValue to

recreate a deleted public key.

15.7. CKM_NC_AES_CMAC

CKM_NC_AES_CMAC is based on the Mech_RijndaelCMAC nCore level mechanism, a
message authentication code operation that is used with both C_Sign and
C_SignUpdate, and the corresponding C_Verify and C_VerifyUpdate functions.

In a similar way to other AES MAC mechanisms, CKM_NC_AES_CMAC takes a plaintext
type of any length of bytes, and returns a M_Mech_Generic128MAC_Cipher standard
byte block. CKM_NC_AES_CMAC is a standard FIPS 140 Level 3 approved mechanism,
and is only usable with CKK_AES key types.

CKM_NC_AES_CMAC has a CK_MAC_GENERAL_PARAMS which is the length of the MAC
returned (sometimes called a tag length). If this is not specified, the signing

PKCS 11 v13.3 Reference Guide 49/100

Chapter 15. Vendor-defined mechanisms

operation fails with a return value of CKR_MECHANISM PARAM_INVALID.

15.8. CKM_NC_AES_CMAC_KEY_DERIVATION and
CKM_NC_AES_CMAC_KEY_DERIVATION_SCPO3

This mechanism derives a secret key by validating parameters with the specified
128-bit, 192-bit, or 256-bit secret base AES key. This mechanism takes as a
parameter a CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS structure, which specifies the
length and type of the resulting derived key.

CKM_NC_AES_CMAC_KEY_DERIVATION_SCP@3 is a variant of CKM_NC_AES_CMAC_KEY_DERIVATION:
it reorders the arguments in the CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS according to
payment specification SCP03, but is otherwise identical.

The standard key attribute behavior with sensitive and extractable attributes is
applied to the resulting key as defined in PKCS #11 standard version 2.20 and later.
The key type and template declaration is based on the PKCS #11 standard key
declaration for derive key mechanisms.

If no length or key type is provided in the template, the key produced by this
mechanism is a generic secret key. Its length is equal to the length of the data.

If a length, but no key type, is provided in the template, the key produced by this
mechanism is a generic secret key of the specified length.

If a key type, but no length, is provided in the template, the key type must have a
well-defined length. If the length is well defined, the key produced by this
mechanism is of the type specified in the template. If the length is not well
defined, a CKR_TEMPLATE _INCOMPLETE error is returned.

If both a key type and a length are provided in the template, the length must be
compatible with that key type, and CKR_TEMPLATE_INCONSISTENT is returned if it is not.

The key produced by the CKM_NC_AES _CMAC_KEY_DERIVATION mechanism is of the
specified type and length. If a DES, DES2, DES3, or CDMF key is derived with this
mechanism, the parity bits of the key are set properly. If the requested type of key
requires more bytes than are available by concatenating the original key values, an
error is generated.

This mechanism has the following rules about key sensitivity and extractability:

PKCS 11 v13.3 Reference Guide 50/100

Chapter 15. Vendor-defined mechanisms

Attribute If the attributes for the The attribute for the derived
original keys are... key is...

CKA_SENSITIVE CK_TRUE for either one CK_TRUE

CKA_EXTRACTABLE CK_FALSE for either one CK_FALSE

CKA_ALWAYS_SENSITIVE CK_TRUE for both CK_TRUE

CKA_NEVER_EXTRACTABLE CK_TRUE for both CK_TRUE

15.9.
CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS

typedef struct CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS {
CK_ULONG ulContextlLen;
CK_BYTE_PTR pContext;
CK_ULONG ulLabellen;
CK_BYTE_PTR pLabel;
} CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS;

The fields of the structure have the following meanings:

Argument Meaning
ulContextLen Context data: the length in bytes.
pContext Some data info context data (bytes to be CMAC’d).

ulContextlLen must be zero if pContext is not provided.

Having pContext as NULL will result in the same predictable key each
time not additional data to add to the mix when carrying out the

CMAC.
ulLabelLen The length in bytes of the other party EC public key
pLabel Key derivation label data: a pointer to the other label to identify new

key. ulLabellen must be zero if the pLabel is not provided.

15.10. CKM_COMPOSITE_EMV_T_ARQC,
CKM_WATCHWORD_PINT and
CKM_WATCHWORD_PIN2

These mechanisms allow the module to act as a SafeSign Cryptomodule (SSCM).
To obtain support for your product, visit https://nshieldsupport.entrust.com.

PKCS 11 v13.3 Reference Guide 51/100

https://nshieldsupport.entrust.com

Chapter 15. Vendor-defined mechanisms

15.11. CKM_NC_ECIES

This version of the library supports the vendor defined CKM_NC_ECIES mechanism.
This mechanism is used with C_WrapKey and C_UnwrapKey to wrap and unwrap
symmetric keys using the Elliptic Curve Integrated Encryption Scheme (ECIES).

The parameters for the mechanism are defined in the following structure:

typedef struct CK_NC_ECIES_PARAMS {
CK_MECHANISM_PTR <pAgreementMechanism>;
CK_MECHANISM_PTR <pSymmetricMechanism>;

CK_ULONG <ulSymmetricKeyBitLen>;
CK_MECHANISM_PTR <pMacMechanism>;
CK_ULONG <ulMacKeyBitLen>;

} CK_NC_ECIES_PARAMS;

Where:

* <pAgreementMechanism> is the key agreement mechanism, which must be
CKM_ECDH1_DERIVE or CKM_ECDH1_COFACTOR_DERIVE

* <pSymmetricMechanism> is the confidentiality mechanism, currently only
CKM_XOR_BASE_AND_DATA is supported

e <ulSymmetricKeyBitLen> is the confidentiality key length (in bits) and must be a
multiple of 8. For CKM_XOR_BASE_AND_DATA the key length is irrelevant and can be
set to zero

* <pMacMechanism> is the integrity mechanism, currently only
CKM_SHA<n>_HMAC_GENERAL is supported and <n> can be _1, 224, 256, 384 or 512

e <ulMacKeyBitLen> is the integrity key length (in bits) and must be a multiple of
8

The following example shows how to use CKM_NC_ECIES to wrap a symmetric key:

/* session represents an existing open session */
CK_SESSION_HANDLE session;

/* symmetric_key and wrapping_key represent existing keys. The code to import or
* generate them is not shown here. Note wrapping_key must be a public EC key

* with CKA_WRAP set to true */

CK_OBJECT_HANDLE symmetric_key;

CK_OBJECT_HANDLE wrapping_key;

CK_ECDH1_DERIVE_PARAMS ecdh1_params = { CKD_SHA256_KDF };
CK_MECHANISM agreement_mech = {

CKM_ECDH1_DERIVE,

&ecdh1_params,

sizeof (CK_ECDHT_DERIVE_PARAMS)
I
CK_MECHANISM symmetric_mech = { CKM_XOR_BASE_AND_DATA };
CK_MAC_GENERAL_PARAMS mac_params = 16;
CK_MECHANISM mac_mech = {

CKM_SHA256_HMAC_GENERAL,

PKCS 11 v13.3 Reference Guide 52/100

Chapter 15. Vendor-defined mechanisms

&mac_params,

sizeof (CK_MAC_GENERAL_PARANMS)
}
CK_NC_ECIES_PARAMS ecies_params = {

&agreement_mech,

&symmetric_mech,

0,

&mac_mech,

256
}
CK_MECHANISM ecies_mech = {

CKM_NC_ECIES,

&ecies_params,

sizeof (CK_NC_ECIES_PARAMS)
i

/* Typical convention is to call C_WrapKey with the pWrappedKey parameter set to
* NULL_PTR to determine the required size of the buffer - see Section 5.2 of
* the PKCS#11 Base Specification - but for brevity we allocate a 1KB buffer */
CK_BYTE wrapped_key[1000] = { @ };
CK_ULONG wrapped_len = sizeof(wrapped_key);
CK_RV rv = C_WrapKey(session, &ecies_mech, wrapping_key, symmetric_key,
wrapped_key, &wrapped_len);

15.12. CKM_NC_MILENAGE_OPC

Derive CKK_NC_MILENAGEOPC key from CKK_NC_MILENAGEOP and CKK_NC_MILENAGESUBSCRIBER
keys for use in the 3GPP mechanisms defined in ETSI TS 135 206 s4.1.

A C_DeriveKey function call is made. The function takes the
CKK_NC_MILENAGESUBSCRIBER key handle as the base key and the CKK_NC_MILENAGEOP key
handle as the mechanism parameter.

To generate the subscriber and OP keys, use the corresponding vendor-defined
key generation mechanisms (which do not take any mechanism parameters):

* CKM_NC_MILENAGESUBSCRIBER_KEY_GEN
* CKM_NC_MILENAGEOP_KEY_GEN

15.13. CKM_NC_MILENAGE,
CKM_NC_MILENAGE_AUTS,
CKM_NC_MILENAGE_RESYNC

3GPP mechanisms for 5G mobile networks as defined by ETSI TS 135 206. Used
with C_Signinit and C_Sign function calls. The parameters for these mechanisms
are defined in the following structure:

typedef struct CK_MILENAGE_SIGN_PARAMS {
CK_ULONG ulMilenageFlags;
CK_ULONG ulEncKilen; /* not used - must be 0 */

PKCS 11 v13.3 Reference Guide 53/100

Chapter 15. Vendor-defined mechanisms

CK_BYTE_PTR pEncKi; /* not used */

CK_ULONG ulEncOPcLen; /* not used - must be @ */

CK_BYTE_PTR pEncOPc; /* not used */

CK_OBJECT_HANDLE hSecondaryKey; /* CKK_NC_MILENAGE_OPC key handle */
CK_OBJECT_HANDLE hRCKey; /* optional CKK_NC_MILENAGE_RC key handle */
CK_BYTE sqn[6]; /* sequence number */

CK_BYTE amf[2]; /* authentication management field */

} CK_MILENAGE_SIGN_PARAMS;

ulMilenageFlags can consist of the following flags:

#define CKF_NC_MILENAGE_OPC 0x00000001 /* secondary key is OPC (not OP) */
#define CKF_NC_MILENAGE_OP_OBJECT 0x00000004 /* secondary key is supplied by object handle */
#define CKF_NC_MILENAGE _USER_DEFINED_RC 0x00000010 /* MilenageRC key is present (hRC) */

Both the CKF_NC_MILENAGE_OPC and CKF_NC_MILENAGE_OP_OBJECT flags must be present.
The nShield PKCS #11 library currently only supports passing the OPC key handle
to the mechanism.

If the CKF_NC_MILENAGE_USER_DEFINED_RC flag is set, hRCKey must point to a
CKK_NC_MILENAGE RC key object handle.

15.13.1. CKM_NC_MILENAGE

Computes the MILENAGE f1/f2/f3/f4/f5 functions as defined in ETSI TS 135 206
s4.1 and thus generates the Authentication Vector (AV) as defined in the ETSI
Authentication and Key Agreement (AKA) protocol. This single output vector is
the concatenated values RAND||XRES||CK]|IK|[XOR(SQN,AK)||AMF||IMAC.

The following example shows how to use CKM_NC_MILENAGE:

/* session represents an existing open session */
CK_SESSION_HANDLE session;

/* subscriber_key, opc_key and rc_key represent existing keys */
CK_OBJECT_HANDLE subscriber_key, opc_key, rc_key;

/* sqn, amf and rand represent existing byte arrays holding the sequence number,
* authentication management field and RAND challenge respectively

* rand is optional */

CK_BYTE sqn[6], amf[2], rand[16];

CK_MILENAGE_SIGN_PARAMS milenage_params;
milenage_params.ulMilenageFlags = CKF_NC_MILENAGE_OP_OBJECT | CKF_NC_MILENAGE_OPC;
milenage_params.hSecondaryKey = opc_key;
memcpy (&(milenage_params.sqn), sqn, 6);
memcpy (&(milenage_params.amf), amf, 2);

/* a user-defined RC key is optional */
milenage_params.ulMilenageFlags |= CKF_NC_MILENAGE_USER_DEFINED_RC;

milenage_params.hRCKey = rc_key;

CK_MECHANISM milenage_mech = {CKM_NC_MILENAGE, &milenage_params, sizeof(milenage_params)};

PKCS 11 v13.3 Reference Guide 54/100

Chapter 15. Vendor-defined mechanisms

/* Typical convention is to call C_Sign with the pData parameter set to

* NULL to determine the required size of the buffer - see Section 5.2 of

* the PKCS#11 Base Specification - but for brevity we allocate a 72 byte buffer
* since CKM_NC_MILENAGE output length is constant. */

CK_RV rv;

CK_BYTE milenage_result[72] = {0};

CK_ULONG milenage_len = sizeof(milenage_result);

rv = C_SignInit(session, &milenage_mech, subscriber_key);

if (rv != CKR_OK) return rv;

rv = C_Sign(session, rand, 16, milenage_result, &milenage_len);
if (rv != CKR_OK) return rv;

The RAND value passed to C_Sign is optional and can be left as NULL. A user-
defined RC key is also optional and can be omitted by removing the
CKF_NC_MILENAGE _USER_DEFINED RC flag and leaving hRCKey as NULL.

An RC key can be generated using CKM_NC_MILENAGERC_KEY_GEN or created using
custom values with C_CreateObject (see Object management functions for
details). If no RC key is supplied, the default values defined in ETSI TS 135 206 s4.1
will be used.

15.13.2. CKM_NC_MILENAGE_RESYNC

Performs part of the resynchronization procedure as described in the AKA
protocol. This computes the MILENAGE f1*/f5* functions as defined in ETSI TS 135
206 s4.1 and verifies AUTS (i.e. XOR(SQN_UE,AK)||IMAC-S). If successful, the
mechanism returns the sequence number SQN_UE.

The calls to C_Signlnit and C_Sign are the same as during authentication, except
the second argument passed to C_Sign is the concatenated vector RAND||AUTS
instead of RAND. The sqn value in the parameters structure for this mechanism is
not required and will be ignored.

15.13.3. CKM_NC_MILENAGE_AUTS (testing only)

This mechanism is only for testing the resynchronization operation. It computes
the MILENAGE f1*/f5* functions as defined in ETSI TS 135 206 s4.1 and returns
RAND||AUTS (required as an input to CKM_NC_MILENAGE RESYNC).

The calls to C_Signlnit and C_Sign are the same as during authentication. The
RAND value is optional.

15.14. CKM_NC_TUAK_TOPC

PKCS 11 v13.3 Reference Guide 55/100

Chapter 15. Vendor-defined mechanisms

Derive CKK_NC_TUAKTOPC key from CKK_NC_TUAKTOP and CKK_NC_TUAKSUBSCRIBER keys for
use in the 3GPP mechanisms defined in ETSI TS 135 231 s6.1.

A C_DeriveKey function call is made. The function takes the CKK_NC_TUAKSUBSCRIBER
key handle as the base key and the following structure as the mechanism
parameter:

typedef struct CK_NC_TUAK_DERIVE_PARAMS {

CK_OBJECT_HANDLE hTOPKey; /* CKK_NC_TUAK_TOP key handle */

CK_ULONG ulIterations; /* number of Keccak iterations (1 or 2) */
} CK_NC_TUAK_DERIVE_PARAMS;

To generate the subscriber and TOP keys, use the corresponding vendor-defined
key generation mechanisms (which do not take any mechanism parameters):

* CKM_NC_TUAKSUBSCRIBER_KEY_GEN
* CKM_NC_TUAKTOP_KEY_GEN

15.15. CKM_NC_TUAK, CKM_NC_TUAK_AUTS,
CKM_NC_TUAK_RESYNC

3GPP mechanisms for 5G mobile networks as defined by ETSI TS 135 231. Used
with C_Signlnit and C_Sign function calls. The parameters for these mechanisms
are defined in the following structure:

typedef struct CK_TUAK_SIGN_PARAMS {

CK_ULONG ulTuakFlags;

CK_ULONG ulEncKilen; /* not used - must be @ */

CK_BYTE_PTR pEncKi; /* not used */

CK_ULONG ULEncTOPcLen; /* not used - must be @ */

CK_BYTE_PTR pEncTOPc; /* not used */

CK_ULONG ullterations; /* number of Keccak iterations (1 or 2) */
CK_OBJECT_HANDLE hSecondaryKey; /* existing CKK_NC_TUAK_TOPC key handle */
CK_ULONG ulReslen; /* length of expected response (4, 8, 16 or 32 bytes) */
CK_ULONG ulMacALen; /* length of MAC (8, 16 or 32 bytes) */

CK_ULONG ulCkLen; /* length of crypto key CK (16 or 32 bytes) */
CK_ULONG ulIkLen; /* length of identity key IK (16 or 32 bytes) */
CK_BYTE sqn[6]; /* sequence number */

CK_BYTE amf[2]; /* authentication management field */

} CK_TUAK_SIGN_PARAMS;

The ulTuakFlags can consist of the following flags:

#define CKF_NC_TUAK_TOPC 0x00000001 /* secondary key is TOPC (not TOP) */
#define CKF_NC_TUAK_TOP_OBJECT 0x00000004 /* secondary key is supplied by object handle */

Both the CKF_NC_TUAK_TOPC and CKF_NC_TUAK_TOP_OBJECT flags must be present. The

PKCS 11 v13.3 Reference Guide 56/100

Chapter 15. Vendor-defined mechanisms

nShield PKCS #11 library currently only supports passing the TOPC key handle to
the mechanism.

15.15.1. CKM_NC_TUAK

Computes the TUAK f1/f2/f3/f4/f5 functions as defined in ETSI TS 135 231
$6.2/s6.4 and thus generates the Authentication Vector (AV) as defined in the
ETSI Authentication and Key Agreement (AKA) protocol. This single output vector
is the concatenated values RAND||XRES||CK]|IK||XOR(SQN,AK)||AMF|IMAC.

The following example shows how to use CKM_NC_TUAK:

/* session represents an existing open session */
CK_SESSION_HANDLE session;

/* subscriber_key and topc_key represent existing keys */
CK_OBJECT_HANDLE subscriber_key, topc_key;

/* sqn, amf and rand represent existing byte arrays holding the sequence number,
* authentication management field and RAND challenge respectively

* rand is optional */

CK_BYTE sqn[6], amf[2], rand[16];

CK_TUAK_SIGN_PARAMS tuak_params;
tuak_params.ulTuakFlags = CKF_NC_TUAK_TOP_OBJECT | CKF_NC_TUAK_TOPC;
tuak_params.hSecondaryKey = topc_key;

tuak_params.ullterations = 1; // 1 or 2
tuak_params.ulReslLen = 32; // 4, 8, 16 or 32
tuak_params.ulMacAlLen = 32; // 8, 16 or 32
tuak_params.ulCkLen = 32; // 16 or 32
tuak_params.ullklLen = 32; // 16 or 32

memcpy (&(tuak_params.sqn), sqn, 6);
memcpy (&(tuak_params.amf), amf, 2);

CK_MECHANISM tuak_mech = {CKM_NC_TUAK, &tuak_params, sizeof(tuak_params)};

/* Typical convention is to call C_Sign with the pData parameter set to
* NULL to determine the required size of the buffer - see Section 5.2 of
* the PKCS#11 Base Specification - but for brevity we allocate a 1KB buffer */

CK_RV rv;

CK_BYTE tuak_result[1000] = {0};

CK_ULONG tuak_len = sizeof(tuak_result);

rv = C_SignInit(session, &tuak_mech, subscriber_key);
if (rv != CKR_OK) return rv;

rv = C_Sign(session, rand, 16, tuak_result, &tuak_len);
if (rv != CKR_OK) return rv;

The RAND value passed to C_Sign is optional and can be left as NULL.

15.15.2. CKM_NC_TUAK_RESYNC

Performs part of the resynchronization procedure as described in the AKA
protocol. This computes the TUAK f1*/f5* functions as defined in ETSI TS 135 231

PKCS 11 v13.3 Reference Guide 57/100

Chapter 15. Vendor-defined mechanisms

$6.3/s6.5 and verifies AUTS (i.e. XOR(SQN_UE,AK)||MAC-S). If successful, the
mechanism returns the sequence number SQN_UE.

The calls to C_Signlnit and C_Sign are the same as during authentication, except
the second argument passed to C_Sign is the concatenated vector RAND||AUTS
instead of RAND. The sqn value in the parameters structure for this mechanism is
not required and will be ignored.

15.15.3. CKM_NC_TUAK_AUTS (testing only)

This mechanism is only for testing the resynchronization operation. It computes
the TUAK f1*/f5* functions as defined in ETSI TS 135 231 s6.3/s6.5 and returns
RAND||AUTS (required as an input to CKM_NC_TUAK_RESYNC).

The calls to C_Signlnit and C_Sign are the same as during authentication. The
RAND value is optional. Only the sqgn, amf, ulMacALen and ullterations parameters
are required. The remainder will be ignored.

PKCS 11 v13.3 Reference Guide 58/100

Chapter 16. KISAAlgorithm mechanisms

16. KISAAlgorithm mechanisms

If you are using version 1.20 or greater and you have enabled the KISAAlgorithms
feature, you can use the following mechanisms through the standard PKCS #11 API
calls.

16.1. KCDSA keys

The CKM_KCDSA mechanism is a plain general signing mechanism that allows you to
use a CKK_KCDSA key with any length of plain text or pre-hashed message. It can be
used with the standard single and multipart C_Sign and C_Verify update functions.

The CKM_KCDSA mechanism takes a CK_KCDSA_PARAMS structure that states which
hashing mechanism to use and whether or not the hashing has already been
performed:

typedef struct CK_KCDSA_PARAMS {
CK_MECHANISM_PTR digestMechanism;
CK_BBOOL datalsHashed;

The following digest mechanisms are available for use with the digestMechanism:

* CKM_SHA_1
* CKM_HAS160
* CKM_RIPEMD160

The datalsHashed flag can be set to one of the following values:

* 1 when the message has been pre-hashed (pre-digested)

* 0 when the message is in plain text.

The CK_KCDSA_PARAMS structure is then passed in to the mechanism structure.

16.2. Pre-hashing

If you want to provide a pre-hashed message to the C_Sign() or C_Verify()
functions using the CKM_KCDSA mechanism, the hash must be the value of h(z||m)
where:

e his the hash function defined by the mechanism

PKCS 11 v13.3 Reference Guide 59/100

Chapter 16. KISAAlgorithm mechanisms

e zis the bottom 512 bits of the public key, with the most significant byte first

* mis the message that is to be signed or verified.

The hash consists of the bottom 512 bits of the public key (most significant byte
first), with the message added after this.

If the hash is not formatted as described when signing, then incorrect signatures
are generated. If the hash is not formatted as described when verifying, then
invalid signatures can be accepted and valid signatures can be rejected.

16.3. CKM_KCDSA_SHA1, CKM_KCDSA_HASI160,
CKM_KCDSA_RIPEMD160

These older mechanisms sign and verify using a CKK_KCDSA key. They now work with
the C_Sign and C_Update functions, though they do not take the CK_KCDSA_PARAMS
structure or pre-hashed messages. These mechanisms can be used for single or
multipart signing and are not restricted as to message size.

16.4. CKM_KCDSA_KEY_PAIR_GEN

This mechanism generates a CKK_KCDSA key pair similar to that of DSA. You can
supply in the template a discrete log group that consists of the CKA_PRIME,
CKA_SUBPRIME, and CKA_BASE attributes. In addition, you must supply CKA_PRIME BITS,
with a value between 1024 and 2048, and CKA_SUBPRIME BITS, which must have a
value of 160. If you supply CKA_PRIME_BITS and CKA_SUBPRIME_BITS without a discrete
log group, the module generates the group. CKR_TEMPLATE _INCOMPLETE is returned if
CKA_PRIME_BITS and CKA_SUBPRIME_BITS are not supplied.

CKA_PRIME_BITS must have the same length as the prime and CKA_SUBPRIME-BITS must
have the same length as the subprime if the discrete log group is also supplied. If
either are different, PKCS #11 returns CKR_TEMPLATE INCONSISTENT.

You can use the C_GenerateKeyPair function to generate a key pair. If you supply
one or more parts of the discrete log group in the template, the PKCS #11 library
assumes that you want to supply a specific discrete log group.
CKR_TEMPLATE_INCOMPLETE is returned if not all parts are supplied. If you want the
module to calculate a discrete log group for you, ensure that there are no discrete
log group attributes present in the template.

A CKK_KCDSA private key has two value attributes, CKA_PUBLIC_VALUE and
CKA_PRIVATE_VALUE. This is in contrast to DSA keys, where the private key has only

PKCS 11 v13.3 Reference Guide 60/100

Chapter 16. KISAAlgorithm mechanisms

the attribute CKA_VALUE, the private value. The public key in each case contains only
the public value.

The standard key-pair attributes common to all key pairs apply. Their values are
the same as those for DSA pairs unless specified differently in this section.

16.5. CKM_KCDSA_PARAMETER_GEN

o For information about DOMAIN Objects, read the PKCS #11
specification v2.11.

Use this mechanism to create a CKO_DOMAIN_PARAMETERS object. This is referred to as
a KCDSAComm key in the nCore interface.

Use (_GenerateKey to generate a new discrete log group and initialization values.
The initialization values consist of a counter (CKA_COUNTER) and a hash (CKA_SEED)
that is the same length as CKA_PRIME_BITS, which must have a value of 160. The
CKA_SEED must be the same size as CKA_SUBPRIME BITS. If this not the case, the PKCS
#11 library returns CKR_DOMAIN_PARAMS_INVALID.

Optionally, you can supply the initialization values. If you supply the initialization
values with CKA_PRIME_BITS and CKA_SUBPRIME _BITS, you can reproduce a discrete log
group generated elsewhere. This allows you to verify that the discrete log group
used in key pairs is correct. If the initialization values are not present in the
template, a new discrete log group and corresponding initialization values are
generated. These initialization values can be used to reproduce the discrete log
group that has just been generated. The newly generated discrete log group can
then be used in a PKCS #11 template to generate a CKK_KCDSA key using
C_Generate_Key_Pair. DOMAIN keys can also be imported using the C_CreateObject call.

16.6. CKM_HAS160

CKM_HAS160 is a basic hashing algorithm. The hashing is done on the host machine.
This algorithm can be used by means of the standard digest function calls of the
PKCS #11 API.

16.7. SEED secret keys

16.7.1. CKM_SEED_KEY_GEN

PKCS 11 v13.3 Reference Guide 61/100

Chapter 16. KISAAlgorithm mechanisms

This mechanism generates a 128-bit SEED key. The standard secret key attributes
are required, except that no length is required since this a fixed length key type
similar to DES3. Normal return values apply when generating a CKK_SEED type key.

16.7.2. CKM_SEED_ECB, CKM_SEED_CBC,
CKM_SEED_CBC_PAD

These mechanisms are the standard mechanisms to be used when encrypting and
decrypting or wrapping with a CKK_SEED key. A CKK_SEED key can be used to wrap or
unwrap both secret keys and private keys. A CKK_KCDSA key cannot be wrapped by
any key type.

The CKM_SEED_ECB mechanism wraps only secret keys of exact multiples of the
CKK_SEED block size (16) in ECB mode. The CKM_SEED_CBC_PAD key wraps the same
keys in CBC mode.

The CKM_SEED_CBC_PAD key wraps keys of variable block size. It is the only
mechanism available to wrap private keys.

A CKK_SEED key can be used to encrypt and decrypt with both single and multipart
methods using the standard PKCS #11 API. The plain text size for multipart
cryptographic function must be a multiple of the block size.

16.7.3. CKM_SEED_MAC, CKM_SEED_MAC_GENERAL

These mechanisms perform both signing and verification. They can be used with
both single and multipart signing or verification using the standard PKCS #11 API.
Message size does not matter for either single or multipart signing and
verification.

PKCS 11 v13.3 Reference Guide 62/100

Chapter 17. Attributes

17. Attributes

The following sections describe how PKCS #11 attributes map to the Access
Control List (ACL) given to the key by the nCore API. nCore API ACLs are
described in the nCore AP/ Documentation (supplied as HTML).

17.1. CKA_SENSITIVE

In a FIPS 140 Level 2 world, CKA_SENSITIVE=FALSE creates a key with an ACL that
includes ExportAsPlain. Keys are exported using DeriveMech_EncryptMarshalled even
in a FIPS 140 Level 2 world. The presence of the ExportAsPlain permission makes
the status of the key clear when a FIPS 140 Level 2 ACL is viewed using GetACL.

CKA_SENSITIVE=FALSE always creates a key with an ACL that includes DeriveKey with
DeriveRole_BaseKey and DeriveMech_EncryptMarshalled.

See also CKA_UNWRAP_TEMPLATE.

17.2. CKA_PRIVATE

If CKA_PRIVATE is set to TRUE, keys are protected by the logical token of the OCS. If it
is set to FALSE, public keys are protected by a well-known module key, and other
keys and objects are protected by the Security World module key.

You must set CKA_PRIVATE to:

* FALSE for public keys

* TRUE for non-extractable keys on card slots.

17.3. CKA_EXTRACTABLE

CKA_EXTRACTABLE creates a key with an ACL including DeriveKey permissions listed in
the following table:

PKCS 11 v13.3 Reference Guide 63/100

Chapter 17. Attributes

Key Type Role Mechanism

Secret key DeriveRole_BaseKey DeriveMech_AESKeyWrap
DeriveMech_RawEncrypt
DeriveMech_RawEncryptZeroPad

DeriveMech_ECIESKeyWrap

Private key DeriveRole_BaseKey DeriveMech_PKCS8Encrypt

17.4. CKA_ENCRYPT, CKA_DECRYPT, CKA_SIGN,
CKA_VERIFY

These attributes create a key with ACL including Encrypt, Decrypt, Sign, or Verify
permission.

17.5. CKA_WRAP, CKA_UNWRAP

CKA_WRAP creates a key with an ACL including the DeriveKey permissions listed in the
following table:

Key Type Role Mechanism

Secret key DeriveRole_WrapKey DeriveMech_PKCS8Encrypt
Secret key (AES only) DeriveRole_WrapKey DeriveMech_AESKeyWrap
Secret key, public key (RSA only) DeriveRole_WrapKey DeriveMech_RawEncrypt

DeriveMech_RawEncryptZeroPad

Public key (elliptic curve only) DeriveRole_WrapKey DeriveMech_ECIESKeyWrap

CKA_UNWRAP creates a key with an ACL including the DeriveKey permissions listed in
the following table:

Key Type Role Mechanism
Secret key DeriveRole_WrapKey DeriveMech_PKCS8Decrypt

DeriveMech_PKCS8DecryptEx

Secret key (AES only) DeriveRole_WrapKey DeriveMech_AESKeyUnwrap

PKCS 11 v13.3 Reference Guide 64/100

Chapter 17. Attributes

Key Type Role Mechanism
Secret key, public key (RSA only) DeriveRole_WrapKey DeriveMech_RawDecrypt

DeriveMech_RawDecryptZeroPad

Public key (elliptic curve only) DeriveRole_WrapKey DeriveMech_ECIESKeyUnwrap

17.6. CKA_WRAP_TEMPLATE,
CKA_UNWRAP_TEMPLATE

CKA_WRAP_TEMPLATE and CKA_UNWRAP_TEMPLATE guard against non-compliance of keys
by specifying an attribute template.

The CKA_WRAP_TEMPLATE attribute applies to wrapping keys and specifies the
attribute template to match against any of the keys wrapped by the wrapping key.
Keys which do not match the attribute template will not be wrapped.

The CKA_UNWRAP_TEMPLATE attribute applies to wrapping keys and specifies the
attribute template to apply to any of the keys which are unwrapped by the
wrapping key. Keys will not be unwrapped if there is attribute conflict between the
CKA_UNWRAP_TEMPLATE and any user supplied template (pTemplate).

Nested occurrences of CKA_WRAP_TEMPLATE or CKA_UNWRAP_TEMPLATE are not supported.

If CKA_MODIFIABLE or CKA_SENSITIVE are defined within the CKA_UNWRAP_TEMPLATE, the
behavior is as follows:

CKA_MODIFIABLE (TRUE)

PKCS #11 Unwrap Template C_Unwrap Attribute Value Allowed
Attribute Types Attribute pTemplate Comparison
Attribute
All supported Defined Defined Equal Yes
Defined Defined Not Equal Yes
Undefined Defined N/A Yes
Defined Undefined N/A Yes

CKA_MODIFIABLE (FALSE)

PKCS 11 v13.3 Reference Guide 65/100

Chapter 17. Attributes

PKCS #11 Unwrap Template C_Unwrap Attribute Value Allowed
Attribute Types Attribute pTemplate Comparison
Attribute
All supported Defined Defined Equal Yes
Defined Defined Not Equal No
Undefined Defined N/A Yes
Defined Undefined N/A Yes
CKA_SENSITIVE (TRUE)
PKCS #11 Attribute C_Unwrap pTemplate C_Unwrap pTemplate Allowed
Types Attribute Attribute Value
CKA_SENSITIVE Defined FALSE No
CKA_EXTRACTABLE Defined FALSE No
CKA_SENSITIVE (FALSE)
PKCS #11 Attribute C_Unwrap pTemplate C_Unwrap pTemplate Allowed
Types Attribute Attribute Value
CKA_SENSITIVE Defined TRUE Yes
FALSE Yes
CKA_EXTRACTABLE Defined TRUE Yes
FALSE Yes

See also CKA_ALLOWED_MECHANISMS for more information about mechanism-specific
restrictions applying to the use of CKA_UNWRAP_TEMPLATE.

17.7. CKA_SIGN_RECOVER

C_SignRecover checks CKA_SIGN_RECOVER but is otherwise identical to C_Sign. Setting
CKA_SIGN_RECOVER creates a key with an ACL that includes Sign permission.

17.8. CKA_VERIFY_RECOVER

Setting CKA_VERIFY_RECOVER creates a public key with an ACL including Encrypt

permission.

PKCS 11 v13.3 Reference Guide

66/100

Chapter 17. Attributes

17.9. CKA_DERIVE

For Diffie-Hellman private keys, CKA_DERIVE creates a key with Decrypt permissions.

For secret keys, CKA_DERIVE creates a key with an ACL that includes
DeriveRole_BaseKey with one of DeriveMech_DESsp1litXOR, DeriveMech_DES2sp1itXOR,
DeriveMech_DES3splitXOR, DeriveMech_RandsplitXOR, or DeriveMech_CASTsplitXOR as
appropriate if the key is extractable, because this permission would effectively
allow the key to be extracted. The ACL includes DeriveMech_RawEncrypt whether or
not the key is extractable.

1710. CKA_ALLOWED_MECHANISMS

CKA_ALLOWED_MECHANISMS is available as a full attribute array for all key types. The
number of mechanisms in the array is the ulValueLen component of the attribute
divided by the size of CK_MECHANISM_TYPE.

The CKA_ALLOWED_MECHANISMS attribute is set when generating, creating and
unwrapping keys.

CKA_ALLOWED_MECHANISMS is an optional attribute and does not have to be set, except
when the key is intended for use with one of the mechanisms described below.
However, if CKA_ALLOWED_MECHANISMS is set, then the attribute is checked to see if the
mechanism you want to use is in the list of allowed mechanisms. If the mechanism
is not present, then an error occurs and a value of CKR_MECHANISM_INVALID is
returned.

1710.1. CKM_CONCATENATE_BASE_AND_KEY

You must set CKA_ALLOWED_MECHANISMS with the CKM_CONCATENATE_BASE_AND_KEY
mechanism when generating or creating both of the keys that are used in the
C_DeriveKey operation with the CKM_CONCATENATE_BASE_AND_KEY mechanism. If
CKA_ALLOWED_MECHANISMS is not set at creation time then the correct ConcatenateBytes
ACL is not set for the keys.

When CKM_CONCATENATE_BASE_AND_KEY is used with C_DeriveKey, CKA_ALLOWED_MECHANISMS
is checked. If CKM_CONCATENATE _BASE_AND_KEY is not present, then an error occurs and
a value of CKR_MECHANISM INVALID is returned.

1710.2. CKM_RSA_AES_KEY_WRAP

PKCS 11 v13.3 Reference Guide 67/100

Chapter 17. Attributes

You must set CKA_ALLOWED_MECHANISMS with the CKM_RSA_AES_KEY_WRAP mechanism
when generating or creating RSA keys that also have CKA_UNWRAP_TEMPLATE set on
the private half if they are to be used in the C_UnwrapKey operation with the
CKM_RSA_AES_KEY_WRAP mechanism.

When CKM_RSA_AES_KEY_WRAP is used with C_UnwrapKey, CKA_ALLOWED_MECHANISMS is
checked. If CKM_RSA_AES_KEY_WRAP is not present but the unwrapping key has
CKA_UNWRAP_TEMPLATE, then an error occurs and a value of CKR_MECHANISM_INVALID is
returned.

RSA private keys that have CKA_ALLOWED_MECHANISMS set with the
CKM_RSA_AES_KEY_WRAP mechanism cannot be copied if they also have both the
following attributes set:

* CKA_TOKEN with a value of CK_TRUE
* CKA_UNWRAP_TEMPLATE

The C_CopyObject operation returns CKR_ACTION_PROHIBITED for such keys.

17.11. CKA_MODIFIABLE

CKA_MODIFIABLE only restricts access through the PKCS #11 API: all PKCS #11 keys
have ACLs that include the ReduceACL permission.

See also CKA_UNWRAP_TEMPLATE.

1712. CKA_TOKEN

Token objects are saved as key blobs. Session objects only ever exist on the
module.

1713. CKA_START_DATE, CKA_END_DATE

These attributes are ignored, and the PKCS #11 standard states that these
attributes do not restrict key usage.

1714. CKA_TRUSTED and
CKA_WRAP_WITH_TRUSTED

PKCS 11 v13.3 Reference Guide 68/100

Chapter 17. Attributes

CKA_TRUSTED and CKA_WRAP_WITH_TRUSTED guard against a key being wrapped and
removed from the HSM by an untrusted wrapping key. A key with a
CKA_WRAP_WITH_TRUSTED attribute can only be wrapped by a wrapping key with a
CKA_TRUSTED attribute. A trusted key can only be given a CKA_TRUSTED attribute by
the PKCS #11 Security officer.

The CKA_WRAP_WITH_TRUSTED attribute gives a key an ACL whose DeriveRole_BaseKey
exists in a group protected by a certifier. The ACL therefore requires a certificate
generated by the PKCS #11 Security Officer to be able to wrap the key.

The CKA_TRUSTED attribute stores on a wrapping key a certificate signed by the
PKCS #11 Security Officer. This certificate can then be used to authenticate a
wrapping operation.

CKA_TRUSTED can only be set if the session is logged in as CKU_SO, and the Security
Officer’s token and key has been preloaded. If not, the operation will return
CKR_USER_NOT_LOGGED_IN.

CKA_WRAP_WITH_TRUSTED does not require the Security Officer token and key to be
preloaded, or to be logged in as CKU_SO, but it does require that the role exists. If
the role does not exist, the operation returns CKR_USER_NOT_LOGGED_IN. When
attributes have been set, the PKCS #11 Security Officer is not needed for C_WrapKey
to perform a trusted key wrapping.

If the PKCS #11 Security Officer is deleted, keys with existing
CKA_TRUSTED or CKA_WRAP_WITH_TRUSTED attributes continue to be
0 valid. If the PKCS #11 Security Officer is recreated, any new keys
that are given the CKA_TRUSTED attribute will not be trusted by
existing keys with CKA_WRAP_WITH_TRUSTED, and vice versa.

A CKO_CERTIFICATE object can also be given a CKA_TRUSTED attribute, and also
requires the PKCS #11 Security Officer to do so. This includes using ckcerttool with
the -T option, which sets CKA_TRUSTED to true.

1715. CKA_COPYABLE and CKA_DESTROYABLE

The CKA_COPYABLE and CKA_DESTROYABLE attributes indicate whether an object can be
copied using C_CopyObject or destroyed using (_DestroyObject. If the corresponding
function is attempted when the attribute is set to false, the function returns
CKR_ACTION_PROHIBITED.

CKA_COPYABLE and CKA_DESTROYABLE can be applied to objects through all interfaces

PKCS 11 v13.3 Reference Guide 69/100

Chapter 17. Attributes

that support setting attributes:

* C_GenerateKey and C_GenerateKeyPair
C_CreateObject
C_SetAttributeValue

* C_CopyObject

Existing and new objects have both attributes set to true by default. When
changing an attribute, CKA_COPYABLE cannot be changed from false to true.

17.16. RSA key values

CKA_PRIVATE_EXPONENT is not used when importing an RSA private key using
C_CreateObject. However, it must be in the template, since the PKCS #11 standard
requires it. All the other values are required.

The nCore API allows use of a default public exponent, but the PKCS #11 standard
requires CKA_PUBLIC_EXPONENT.

Except for very small keys, the nShield default is 65537, which as a PKCS #11 big
integer is CK_BYTEpublic_exponent[] ={ 1, 0, 1 };

1717. DSA key values

If CKA_PRIME is 1024 bits or less, then the KeyType_DSAPrivate_GenParams_flags_Strict
flag is used, because it enforces a 1024 bit limit.

The implementation allows larger values of CKA_PRIME, but in those cases the
KeyType_DSAPrivate_GenParams_flags_Strict flag is not used.

17.18. Vendor specific error codes
Security World Software defines the following vendor specific error codes:

CKR_FIPS_TOKEN_NOT_PRESENT

This error code indicates that an Operator Card is required even though the card
slot is not in use.

CKR_FIPS_MECHANISM_INVALID

This error code indicates that the current mechanism is not allowed in FIPS 140

PKCS 11 v13.3 Reference Guide 70/100

Chapter 17. Attributes

Level 3 mode.
CKR_FIPS_FUNCTION_NOT_SUPPORTED

This error code indicates that the function is not supported in FIPS 140 Level 3
mode (although it is supported in FIPS 140 Level 2 mode).

PKCS 11 v13.3 Reference Guide 71/100

Chapter 18. Utilities

18. Utilities

This section describes command-line utilities Entrust provides as aids to
developers.

18.1. ckdes3gen

ckdes3gen.exe [p|--pin-for-testing=<passphrase>] | [n|-nopin]

This utility is an example of Triple DES key generation using the nShield PKCS #11
library. The utility generates the DES3 key as a private object that can be used
both to encrypt and decrypt.

By default, the utility prompts for a passphrase. You can supply a passphrase on
the command line with the --pin-for-testing option, or suppress the passphrase
request with the --nopin option. The passphrase is displayed in the clear on the
command line, so this option is appropriate only for testing.

18.2. ckinfo

ckinfo.exe [r|--repeat-count=<COUNT>]

This utility displays C_GetInfo, C_GetSlotInfo and C_GetTokenInfo results. You can
specify a number of repetitions of the command with --repeat-count=<COUNT>. The
default is 1.

18.3. cklist

cklist.exe [-p|--pin-for-testing=<passphrase>] [-n|-nopin]

This utility lists some details of objects on all slots. It lists public and private
objects if invoked with a passphrase argument and public objects only if invoked
without a passphrase argument.

It does not output any potentially sensitive attributes, even if the object has
CKA_SENSITIVE set to FALSE.

By default, the utility prompts for a passphrase. You can supply a passphrase on

PKCS 11 v13.3 Reference Guide 72/100

Chapter 18. Utilities

the command line with the --pin-for-testing option, or suppress the passphrase
request with the --nopin option. The passphrase is displayed in the clear on the
command line, so this option is appropriate only for testing.

18.4. ckmechinfo

ckmechinfo.exe

The utility displays C_GetMechanismInfo results for each mechanism returned by
C_GetMechanismList.

18.5. ckrsagen

ckrsagen.exe [-p|--pin-for-testing=<passphrase>] | [-n|-nopin]

The ckrsagen utility is an example of RSA key pair generation using the nShield
PKCS #11 library. This is intended as a programmer’s example only and not for
general use. Use the key generation routines within your PKCS #11 application.

By default, the utility prompts for a passphrase. You can supply a passphrase on
the command line with the --pin-for-testing option, or suppress the passphrase
request with the --nopin option. The passphrase is displayed in the clear on the
command line, so this option is appropriate only for testing.

18.6. cksotool

cksotool.exe [-h] [--version] [-m MODULE] [-c | -p | -i | --delete]

The cksotool utility can be used to create and manage the PKCS #11 Security
Officer (SO). The SO consists of a token and an RSA key, and is necessary to be
able to perform any operations that require a Security Officer as defined by the
PKCS #11 specification. The utility can be used to view the current state of the SO
using the -i or --info option, which provides details of the existence and validity
of the underlying token and key.

The key and softcard created by cksotool is for Entrust internal use inside the
PKCS #11 library. It is not to be used directly in an application.

PKCS 11 v13.3 Reference Guide 73/100

Chapter 19. Functions

19. Functions

The following sections list the PKCS #11 functions supported by the nShield PKCS
#11 library. For a list of supported mechanisms, see Mechanisms.

o Certain functions are included in PKCS #11 version 2.40 for
compatibility with earlier versions only.

PKCS 11 v13.3 Reference Guide 74/100

Chapter 20. General purpose functions

20. General purpose functions

The following functions perform as described in the PKCS #11 specification:

20.1. C_Finalize

Function Supported in Security
World

C_Finalize tbc

20.1.1. Notes

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

The CKNFAST_NONREMOVABLE environment variable is only available for persistent

tokens. When the variable is set, the rules for recognizing new cards are

overridden, and the only way to invoke a new token is to call C_Finalize or

C_Initialize.

20.2. C_GetInfo

Function Supported in Security
World
C_GetInfo tbc

20.3. C_GetFunctionList

Function Supported in Security
World
C_GetFunctionlList tbc

20.4. C_Initialize

Function Supported in Security
World
C_Initialize Yes

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

75/100

Chapter 20. General purpose functions

20.4.1. Notes

The CKNFAST_NONREMOVABLE environment variable is only available for persistent
tokens. When the variable is set, the rules for recognizing new cards are
overridden, and the only way to invoke a new token is to call C_Finalize or

C Initialize.

If your application uses multiple threads, you must supply such functions as
CreateMutex (as stated in the PKCS #11 specification) in the CK_C_INITIALIZE_ARGS
argument.

PKCS 11 v13.3 Reference Guide 76/100

Chapter 21. Slot and token management functions

21. Slot and token management functions

The following functions perform as described in the PKCS #11 specification:

21.1. C_GetSlotInfo

Function Supported in Security
World
C_GetSlotInfo tbc

21.2. C_GetTokenInfo

Function Supported in Security
World
C_GetTokenInfo tbc

21.3. C_GetMechanismList

Function Supported in Security
World
C_GetMechanismList tbc

21.4. C_GetMechanisminfo

Function Supported in Security
World
C_GetMechanismInfo tbc

21.5. C_GetSlotList

Function Supported in Security
World
(_GetSlotlList tbc

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

77/100

Chapter 21. Slot and token management functions

21.5.1. Notes

This function returns an array of PKCS #11 slots. Within each module, the slots are
in the order:

1. module(s)
2. smart card reader(s)

3. software tokens, if present.
Each module is listed in ascending order by nShield ModulelID.

C_GetSlotList returns an array of handles. You cannot make any assumptions about
the values of these handles. In particular, these handles are not equivalent to the
slot numbers returned by the nCore APl command GetSlotList.

21.6. C_InitToken

Function Supported in Security Performs as in PKCS PKCS #11 spec version
World #11 spec

C_InitToken tbc Without modifications 2.40

21.6.1. Notes

C_InitToken sets the card passphrase to the same value as the current token’s
passphrase and sets the CKF_USER_PIN_INITIALIZED flag.

This function is supported in load-sharing mode only when using softcards. To use
C_InitToken in load-sharing mode, you must have created a softcard with the
command ppmk -n before selecting the corresponding slot.

The C_InitToken function is not supported for use in non-load-sharing FIPS 140
Level 3 Security Worlds.

21.7. C_InitPIN

Function Supported in Security Performs as in PKCS PKCS #11 spec version
World #11 spec

C_InitPin tbc Without modifications 2.40

PKCS 11 v13.3 Reference Guide 78/100

Chapter 21. Slot and token management functions

21.7.1. Notes

There is usually no need to call C_InitPIN, because C_InitToken sets the card
passphrase.

Because the nShield PKCS #11 library can only maintain a single passphrase,
C_InitPIN has the effect of changing the current token’s passphrase.

This function is supported in load-sharing mode only when using softcards. To use
C_InitPIN in load-sharing mode, you must have created a softcard with the
command ppmk -n before selecting the corresponding slot.

21.8. C_SetPIN

Function Supported in Security Performs as in PKCS PKCS #11 spec version
World #11 spec

C_SetPin tbc Without modifications 2.40

21.8.1. Notes

The card passphrase may be any value.

Because the nShield PKCS #11 library can only maintain a single passphrase,
C_SetPIN has the effect of changing the current token’s passphrase or, if called in a
Security Officer session, the card passphrase.

This function is supported in load-sharing mode only when using softcards. To use
C_SetPIN in load-sharing mode, you must have created a Softcard with the
command ppmk -n before selecting the corresponding slot.

PKCS 11 v13.3 Reference Guide 79/100

Chapter 22. Standard session management functions

22. Standard session management

functions

These functions perform as described in the PKCS #11 specification:

22.1. C_OpenSession

Function Supported in Security
World
C_OpenSession tbc

22.2. C_CloseSession

Function Supported in Security
World
C_CloseSession tbc

22.3. C_CloseAllSessions

Function Supported in Security
World
C_CloseAllSessions tbc

22.4. C_GetOperationState

Function Supported in Security
World
(_GetOperationState tbc

22.5. C_SetOperationState

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

80/100

Chapter 22. Standard session management functions

Function Supported in Security
World
C_SetOperationState tbc

22.6. C_Login

Function Supported in Security
World
C_Login tbc

22.7. C_Logout

Function Supported in Security
World
C_Logout tbc

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

81/100

Chapter 23. nShield session management functions

23. nShield session management

functions

The following are nShield-specific calls for K/N card set support:

23.1. C_LoginBegin

Function Supported in Security
World
C_LoginBegin tbc

23.2. C_LoginNext

Function Supported in Security
World
C_LoginNext tbc

23.3. C_LoginEnd

Function Supported in Security
World
C_LoginEnd tbc

23.4. C_GetSessionInfo

Function Supported in Security
World
C_GetSessionInfo tbc

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

23.5. nShield session management function notes

ulDeviceError returns the numeric value of the last status, other than Status_0K,

returned by the module. This value is never cleared. Status values are enumerated

in the header file messages-args-en.h on the nShield Developer’s installation media.

PKCS 11 v13.3 Reference Guide

82/100

Chapter 23. nShield session management functions

For descriptions of nShield status codes, see the nCore AP/ Documentation
(supplied as HTML).

PKCS 11 v13.3 Reference Guide 83/100

Chapter 24. Object management functions

24. Object management functions

These functions perform as described in the PKCS #11 specification:

24.1. C_CreateObject

Function Supported in Security Performs as in PKCS PKCS #11 spec version
World #11 spec
C_CreateObject tbc Without modifications 2.40

24.1.1. CKK_NC_MILENAGERC

The MILENAGE mechanisms support providing a custom set of values for
constants cl1-c5 and r1-r5 as defined by ETSI TS 135 206 s4.1. A
CKK_NC_MILENAGERC object must be created to store these custom values.

The key template passed to C_CreateObject in this case is a standard one for
secret keys with either of the two following ways of providing the c and r values as
attributes:

CK_BYTE cr_values[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c1 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c2 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c3 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c4 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c5 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 /* r1, r2, r3, r4, r5 */

}

CK_ATTRIBUTE rc_templatel[] = {
/* default secret key attributes */
{CKA_VALUE, &cr_values, sizeof(cr_values)}
}

CK_BYTE c1[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}

CK_BYTE c2[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}

CK_BYTE c3[] = {

PKCS 11 v13.3 Reference Guide 84/100

Chapter 24. Object management functions

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}

CK_BYTE c4[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}

CK_BYTE c5[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}

CKBYTE r1=0,r2=0,r3=0,r4=20,r5=20;

CK_ATTRIBUTE rc_template2[] = {

/* default secret key attributes */

{CKA_NC_MILENAGE_C1, &c1, sizeof(c1)},
{CKA_NC_MILENAGE_C2, &c2, sizeof(c2)},
{CKA_NC_MILENAGE_C3, &c3, sizeof(c3)},
{CKA_NC_MILENAGE_C4, &c4, sizeof(c4)},
{CKA_NC_MILENAGE_C5, &c5, sizeof(c5)},
{CKA_NC_MILENAGE_R1, &r1, sizeof(r1)},
{CKA_NC_MILENAGE_R2, &r2, sizeof(r2)},
{CKA_NC_MILENAGE_R3, &r3, sizeof(r3)},
{CKA_NC_MILENAGE_R4, &r4, sizeof(r4)},
{CKA_NC_MILENAGE_R5, &r5, sizeof(r5)},

24.2. C_CopyObject

Function Supported in Security
World
C_CopyObject tbc

24.3. C_DestroyObject

Function Supported in Security
World
C_DestroyObject tbc

24.4. C_GetObjectSize

Function Supported in Security
World
C_GetObjectSize tbc

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

85/100

Chapter 24. Object management functions

24.5. C_GetAttributeValue

Function Supported in Security
World
C_GetAttributeValue tbc

24.6. C_SetAttributeValue

Function Supported in Security
World
C_SetAttributeValue tbc

24.7. C_FindObjectsInit

Function Supported in Security
World
C_FindObjectsInit tbc

24.8. C_FindObjects

Function Supported in Security
World
C_FindObjects tbc

24.9. C_FindObjectsFinal

Function Supported in Security
World
C_FindObjectsFinal tbc

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

86/100

Chapter 25. Encryption functions

25. Encryption functions

These functions perform as described in the PKCS #11 specification:

25.1. C_Encryptinit

Function Supported in Security
World
C_EncryptInit tbc

25.2. C_Encrypt

Function Supported in Security
World
C_Encrypt tbc

25.3. C_EncryptUpdate

Function Supported in Security
World
C_EncryptUpdate tbc

25.4. C_EncryptFinal

Function Supported in Security
World
C_EncryptFinal tbc

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

87/100

Chapter 26. Decryption functions

26. Decryption functions

These functions perform as described in the PKCS #11 specification:

26.1. C_Decryptinit

Function Supported in Security
World
C_DecryptInit tbc

26.2. C_Decrypt

Function Supported in Security
World
C_Decrypt tbc

26.3. C_DecryptUpdate

Function Supported in Security
World
C_DecryptUpdate tbc

26.4. C_DecryptFinal

Function Supported in Security
World
C_DecryptFinal tbc

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

88/100

Chapter 27. Message digesting functions

27. Message digesting functions

The following functions are performed on the host computer:

27.1. C_Digestlnit

Function Supported in Security
World

C_DigestInit tbc

27.2. C_Digest

Function Supported in Security
World

C_Digest tbc

27.3. C_DigestUpdate

Function Supported in Security
World
C_DigestUpdate tbc

27.4. C_DigestFinal

Function Supported in Security
World
C_DigestFinal tbc

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

89/100

Chapter 28. Signing and MACing functions

28. Signing and MACing functions

The following functions perform as described in the PKCS #11 specification:

28.1. C_Signlnit

Function Supported in Security
World

C_SignInit tbc

28.2. C_Sign

Function Supported in Security
World

C_Sign tbc

28.3. C_SignRecoverlnit

Function Supported in Security
World
C_SignRecoverInit tbc

28.4. C_SignRecover

Function Supported in Security
World
C_SignRecover tbc

28.5. C_SignUpdate

Function Supported in Security
World
C_SignUpdate tbc

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

90/100

Chapter 28. Signing and MACing functions

28.5.1. Notes

This function is supported for:

* CKM_SHAT_RSA_PKCS
* CKM_MD5_RSA_PKCS

28.6. C_SignFinal

Function Supported in Security Performs as in PKCS
World #11 spec

C_SignFinal tbc Without modifications

28.6.1. Notes

This function is supported for:

* CKM_SHAT_RSA_PKCS
* CKM_MD5_RSA_PKCS

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

91/100

Chapter 29. Functions for verifying signatures and MACs

29. Functions for verifying signatures

and MACs

The following functions perform as described in the PKCS #11 specification:

29.1. C_VerifyInit

Function Supported in Security
World

C_VerifyInit tbc

29.2. C_Verify

Function Supported in Security
World

C_Verify tbc

29.3. C_VerifyRecover

Function Supported in Security
World
C_VerifyRecover tbc

29.4. C_VerifyRecoverlnit

Function Supported in Security
World
C_VerifyRecoverInit tbc

29.5. C_VerifyUpdate

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

92/100

Chapter 29. Functions for verifying signatures and MACs

Function Supported in Security
World

C_VerifyUpdate tbc

29.5.1. Notes

This function is supported for:

* CKM_SHAT_RSA_PKCS
* CKM_MD5_RSA_PKCS

29.6. C_VerifyFinal

Function Supported in Security
World

C_VerifyFinal tbc

29.6.1. Notes

This function is supported for:

* CKM_SHAT_RSA_PKCS
* CKM_MD5_RSA_PKCS

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

93/100

Chapter 30. Dual-purpose cryptographic functions

30. Dual-purpose cryptographic

functions

The following functions perform as described in the PKCS #11 specification:

30.1. C_DigestEncryptUpdate

Function Supported in Security Performs as in PKCS
World #11 spec
C_DigestEncryptUpdate tbc Without modifications

30.2. C_DecryptDigestUpdate

Function Supported in Security Performs as in PKCS
World #11 spec
C_DecryptDigestUpdate tbc Without modifications

30.3. C_SignEncryptUpdate

Function Supported in Security Performs as in PKCS

World #11 spec
C_SignEncryptUpdate tbc Without modifications
30.3.1. Notes

This function is supported for:

* CKM_SHAT_RSA_PKCS
* CKM_MD5_RSA_PKCS

30.4. C_DecryptVerifyUpdate

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

94/100

Chapter 30. Dual-purpose cryptographic functions

Function Supported in Security Performs as in PKCS

World #11 spec
C_DecryptVerifyUpdate tbc Without modifications
30.4.1. Notes

This function is supported for:

* CKM_SHAT_RSA_PKCS
* CKM_MD5_RSA_PKCS

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

95/100

Chapter 31. Key-management functions

31. Key-management functions

You can use the CKNFAST_OVERRIDE_SECURITY_ASSURANCES

including key-management functions, are used.

31.1. C_GenerateKey

Function Supported in Security
World
C_GenerateKey tbc

31.2. C_GenerateKeyPair

Function Supported in Security
World
C_GenerateKeyPair tbc

31.3. C_WrapKey

Function Supported in Security
World
C_WrapKey tbc

31.4. C_UnwrapKey

Function Supported in Security
World
C_UnwrapKey tbc

31.5. C_DeriveKey

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

environment variable to modify the way that some functions,

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

PKCS 11 v13.3 Reference Guide

96/100

Chapter 31. Key-management functions

Function Supported in Security Performs as in PKCS PKCS #11 spec version
World #11 spec
C_DeriveKey tbc Without modifications 2.40

PKCS 11 v13.3 Reference Guide 97/100

Chapter 32. Random number functions

32. Random number functions

The nShield module has an onboard, hardware random number generator to

handle random number functions. Because it has an onboard random number

generator, the nShield module does not use seed values.

32.1. C_GenerateRandom

Function Supported in Security
World
C_GenerateRandom tbc

32.2. C_SeedRandom

Function Supported in Security
World

C_SeedRandom tbc

32.2.1. Notes

Performs as in PKCS
#11 spec

Without modifications

Performs as in PKCS
#11 spec

Without modifications

PKCS #11 spec version

2.40

PKCS #11 spec version

2.40

The C_SeedRandom function returns CKR_RANDOM_SEED_NOT_SUPPORTED.

PKCS 11 v13.3 Reference Guide

98/100

Chapter 33. Parallel function management functions

33. Parallel function management
functions

33.1. C_GetFunctionStatus

Function Supported in Security Performs as in PKCS PKCS #11 spec version
World #11 spec

C_GetFunctionStatus tbc Without modifications 2.40

33.1.1. Notes

This function is supported in the approved fashion by returning the PKCS #11
status CKR_FUNCTION_NOT_PARALLEL.

33.2. C_CancelFunction

Function Supported in Security Performs as in PKCS PKCS #11 spec version
World #11 spec

C _CancelFunction tbc Without modifications 2.40

33.2.1. Notes

This function is supported in the approved fashion by returning the PKCS #11
status CKR_FUNCTION_NOT_PARALLEL.

PKCS 11 v13.3 Reference Guide 99/100

Chapter 34. Callback functions

34. Callback functions

There are no vendor-defined callback functions. Surrender callback functions are
never called.

PKCS 11 v13.3 Reference Guide 100/100

	nShield Security World: PKCS 11 v13.3 Reference Guide
	Table of Contents
	1. Introduction
	1.1. Read this guide if…​
	1.2. Model numbers
	1.3. Security World Software default directories
	1.4. Utility help options
	1.5. Further information
	1.6. Security advisories
	1.7. Contacting Entrust nShield Support

	2. nShield Architecture
	2.1. Security World Software modules
	2.2. Security World Software server
	2.3. Stubs and interface libraries
	2.4. Using an interface library
	2.5. Writing a custom application
	2.6. Acceleration-only or key management

	3. PKCS #11 Developer libraries
	3.1. PKCS #11 security assurance mechanism

	4. PKCS #11 with load sharing mode
	4.1. Logging in
	4.2. Session objects
	4.3. Module failure
	4.4. Compatibility
	4.5. Restrictions on function calls in load-sharing mode

	5. PKCS #11 with HSM Pool mode
	5.1. Module failure
	5.2. Module recovery
	5.3. Restrictions on function calls in HSM Pool mode

	6. Generating and deleting NVRAM-stored keys with PKCS #11
	6.1. Generating NVRAM-stored keys
	6.2. Deleting NVRAM-stored keys

	7. PKCS #11 with key reloading
	7.1. Usage under preload
	7.2. Supported function calls
	7.3. Retrying key reloads
	7.4. Adding new HSMs

	8. PKCS #11 without load-sharing or HSM Pool modes
	8.1. K/N support for PKCS #11

	9. PKCS #11 Security Officer
	10. nShield-specific PKCS #11 API extensions
	10.1. C_LoginBegin
	10.2. C_LoginNext
	10.3. C_LoginEnd

	11. Compiling and linking
	11.1. Windows
	11.2. Linux

	12. Objects
	12.1. Certificate Objects and Data Objects
	12.2. Key Objects
	12.3. Card passphrases

	13. Mechanisms
	13.1. Footnote 1
	13.2. Footnote 2
	13.3. Footnote 3
	13.4. Footnote 4
	13.5. Footnote 5
	13.6. Footnote 6
	13.7. Footnote 7
	13.8. Footnote 8
	13.9. Footnote 9
	13.10. Footnote 10
	13.11. Footnote 11
	13.12. Footnote 12
	13.13. Footnote 13
	13.14. Footnote 14
	13.15. Footnote 15

	14. Vendor annotations on P11 mechanisms
	14.1. CKM_RSA_PKCS_OAEP
	14.2. CKM_RSA_PKCS_PSS and CKM_SHA*_RSA_PKCS_PSS

	15. Vendor-defined mechanisms
	15.1. CKM_SEED_ECB_ENCRYPT_DATA and CKM_SEED_CBC_ENCRYPT_DATA
	15.2. CKM_CAC_TK_DERIVATION
	15.3. CKM_SHA*_HMAC and CKM_SHA*_HMAC_GENERAL
	15.4. CKM_NC_ECKDF_HYPERLEDGER
	15.5. CKM_HAS160
	15.6. CKM_PUBLIC_FROM_PRIVATE
	15.7. CKM_NC_AES_CMAC
	15.8. CKM_NC_AES_CMAC_KEY_DERIVATION and CKM_NC_AES_CMAC_KEY_DERIVATION_SCP03
	15.9. CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS
	15.10. CKM_COMPOSITE_EMV_T_ARQC, CKM_WATCHWORD_PIN1 and CKM_WATCHWORD_PIN2
	15.11. CKM_NC_ECIES
	15.12. CKM_NC_MILENAGE_OPC
	15.13. CKM_NC_MILENAGE, CKM_NC_MILENAGE_AUTS, CKM_NC_MILENAGE_RESYNC
	15.14. CKM_NC_TUAK_TOPC
	15.15. CKM_NC_TUAK, CKM_NC_TUAK_AUTS, CKM_NC_TUAK_RESYNC

	16. KISAAlgorithm mechanisms
	16.1. KCDSA keys
	16.2. Pre-hashing
	16.3. CKM_KCDSA_SHA1, CKM_KCDSA_HAS160, CKM_KCDSA_RIPEMD160
	16.4. CKM_KCDSA_KEY_PAIR_GEN
	16.5. CKM_KCDSA_PARAMETER_GEN
	16.6. CKM_HAS160
	16.7. SEED secret keys

	17. Attributes
	17.1. CKA_SENSITIVE
	17.2. CKA_PRIVATE
	17.3. CKA_EXTRACTABLE
	17.4. CKA_ENCRYPT, CKA_DECRYPT, CKA_SIGN, CKA_VERIFY
	17.5. CKA_WRAP, CKA_UNWRAP
	17.6. CKA_WRAP_TEMPLATE, CKA_UNWRAP_TEMPLATE
	17.7. CKA_SIGN_RECOVER
	17.8. CKA_VERIFY_RECOVER
	17.9. CKA_DERIVE
	17.10. CKA_ALLOWED_MECHANISMS
	17.11. CKA_MODIFIABLE
	17.12. CKA_TOKEN
	17.13. CKA_START_DATE, CKA_END_DATE
	17.14. CKA_TRUSTED and CKA_WRAP_WITH_TRUSTED
	17.15. CKA_COPYABLE and CKA_DESTROYABLE
	17.16. RSA key values
	17.17. DSA key values
	17.18. Vendor specific error codes

	18. Utilities
	18.1. ckdes3gen
	18.2. ckinfo
	18.3. cklist
	18.4. ckmechinfo
	18.5. ckrsagen
	18.6. cksotool

	19. Functions
	20. General purpose functions
	20.1. C_Finalize
	20.2. C_GetInfo
	20.3. C_GetFunctionList
	20.4. C_Initialize

	21. Slot and token management functions
	21.1. C_GetSlotInfo
	21.2. C_GetTokenInfo
	21.3. C_GetMechanismList
	21.4. C_GetMechanismInfo
	21.5. C_GetSlotList
	21.6. C_InitToken
	21.7. C_InitPIN
	21.8. C_SetPIN

	22. Standard session management functions
	22.1. C_OpenSession
	22.2. C_CloseSession
	22.3. C_CloseAllSessions
	22.4. C_GetOperationState
	22.5. C_SetOperationState
	22.6. C_Login
	22.7. C_Logout

	23. nShield session management functions
	23.1. C_LoginBegin
	23.2. C_LoginNext
	23.3. C_LoginEnd
	23.4. C_GetSessionInfo
	23.5. nShield session management function notes

	24. Object management functions
	24.1. C_CreateObject
	24.2. C_CopyObject
	24.3. C_DestroyObject
	24.4. C_GetObjectSize
	24.5. C_GetAttributeValue
	24.6. C_SetAttributeValue
	24.7. C_FindObjectsInit
	24.8. C_FindObjects
	24.9. C_FindObjectsFinal

	25. Encryption functions
	25.1. C_EncryptInit
	25.2. C_Encrypt
	25.3. C_EncryptUpdate
	25.4. C_EncryptFinal

	26. Decryption functions
	26.1. C_DecryptInit
	26.2. C_Decrypt
	26.3. C_DecryptUpdate
	26.4. C_DecryptFinal

	27. Message digesting functions
	27.1. C_DigestInit
	27.2. C_Digest
	27.3. C_DigestUpdate
	27.4. C_DigestFinal

	28. Signing and MACing functions
	28.1. C_SignInit
	28.2. C_Sign
	28.3. C_SignRecoverInit
	28.4. C_SignRecover
	28.5. C_SignUpdate
	28.6. C_SignFinal

	29. Functions for verifying signatures and MACs
	29.1. C_VerifyInit
	29.2. C_Verify
	29.3. C_VerifyRecover
	29.4. C_VerifyRecoverInit
	29.5. C_VerifyUpdate
	29.6. C_VerifyFinal

	30. Dual-purpose cryptographic functions
	30.1. C_DigestEncryptUpdate
	30.2. C_DecryptDigestUpdate
	30.3. C_SignEncryptUpdate
	30.4. C_DecryptVerifyUpdate

	31. Key-management functions
	31.1. C_GenerateKey
	31.2. C_GenerateKeyPair
	31.3. C_WrapKey
	31.4. C_UnwrapKey
	31.5. C_DeriveKey

	32. Random number functions
	32.1. C_GenerateRandom
	32.2. C_SeedRandom

	33. Parallel function management functions
	33.1. C_GetFunctionStatus
	33.2. C_CancelFunction

	34. Callback functions

