
nShield Security World

nCipherKM JCA JCE
CSP v13.3 Reference
Guide
05 April 2024

Table of Contents
1. Introduction . 1

1.1. Read this guide if… . 1

1.2. Model numbers . 1

1.3. Security World Software default directories. 2

1.4. Utility help options . 4

1.5. Further information . 4

1.6. Security advisories. 5

1.7. Contacting Entrust nShield Support . 5

2. nShield Architecture . 6

2.1. Security World Software modules . 6

2.2. Security World Software server . 6

2.3. Stubs and interface libraries . 7

2.4. Using an interface library. 7

2.5. Writing a custom application . 8

2.6. Acceleration-only or key management. 8

3. Installing the nCipherKM JCA/JCE CSP . 10

3.1. Prerequisites . 10

3.2. Installing the nCipherKM JCA/JCE CSP . 11

3.3. Testing the nCipherKM JCA/JCE CSP installation . 13

3.4. Named Modules in Java 11 and Java 17 . 15

4. System Properties . 17

4.1. JCECSP_DEBUG property values . 18

5. Compatibility . 20

6. Architecture . 21

6.1. Architecture . 21

7. Available Functions. 23

7.1. Available functions . 23

8. The KeyStore API . 29

9. Initialization . 30

10. Loading and Storing Keys. 31

11. keytool . 32

12. Using Keys. 34

1. Introduction
The nCipherKM JCA/JCE CSP (Cryptographic Service Provider) allows Java

applications and services to access the secure cryptographic operations and key

management provided by Entrust nShield hardware. This provider is used with the

standard JCE (Java Cryptographic Extension) programming interface.

This guide describes the nCipherKM JCA/JCE cryptographic service provider

toolkit supplied by Entrust Security to help developers write applications that use

nShield modules.

This toolkit, like the application plug-ins supplied by Entrust, uses the Security

World paradigm for key storage. For an introduction to Security Worlds, see the

User Guide.

1.1. Read this guide if…

Read this guide if you want to build an application that uses an nShield key-

management module to accelerate cryptographic operations and protect

cryptographic keys through a standard interface rather than the full nCore API.

This guide assumes that you are familiar with the concept of the Security World,

described in the User Guide. It is intended for experienced programmers and

assumes that you are familiar with the following documentation:

• The nCore Developer Tutorial, which describes how to write applications using

an nShield module.

• The nCore API Documentation (supplied as HTML), which describes the nCore

API.

1.2. Model numbers

Model numbering conventions are used to distinguish different nShield hardware

security devices. In the following table, n represents any single-digit integer.

Model number Used for

NH2047 nShield Connect 6000

NH2040 nShield Connect 1500

NH2033 nShield Connect 500

Chapter 1. Introduction

nCipherKM JCA JCE CSP v13.3 Reference Guide 1/34

Model number Used for

NH2068 nShield Connect 6000+

NH2061 nShield Connect 1500+

NH2054 nShield Connect 500+

NH2075-B nShield Connect XC Base

NH2075-M nShield Connect XC Medium

NH2075-H nShield Connect XC High

NH2075-B nShield 5c Base

NH2075-M nShield 5c Medium

NH2075-H nShield 5c High

NH2082 nShield Connect XC SCAP

NH2089-B nShield Connect XC Base - Serial Console

NH2089-M nShield Connect XC Mid - Serial Console

NH2089-H nShield Connect XC High - Serial Console

NH3003-B nShield Connect CLX Base - Serial Console

NH3003-M nShield Connect CLX Mid - Serial Console

NH3003-H nShield Connect CLX High - Serial Console

nC2021E-000, NCE2023E-000 nToken PCIe

nC3nnnE-nnn, nC4nnnE-nnn nShield Solo PCIe

nC30n5E-nnn, nC40n5E-nnn nShield Solo XC PCIe

nC30nnU-10, nC40nnU-10 nShield Edge

NC5536E-B nShield 5s Base

NC5536E-M nShield 5s Medium

NC5536E-H nShield 5s High

1.3. Security World Software default directories

The default locations for Security World Software and program data directories on

English-language systems are summarized in the following table:

Chapter 1. Introduction

nCipherKM JCA JCE CSP v13.3 Reference Guide 2/34

Directory Name Environment
Variable

Windows Server 2016 Linux

nShield

Installation
NFAST_HOME C:\Program Files\nCipher\nfast /opt/nfast/

Key

Management

Data

NFAST_KMDATA C:\ProgramData\nCipher\Key

Management Data

/opt/nfast/kmdata/

Dynamic Feature

Certificates
NFAST_CERTDIR C:\ProgramData\nCipher\Feature

Certificates

/opt/nfast/femcerts/

Static Feature

Certificates
C:\ProgramData\nCipher\Features /opt/nfast/kmdata/features

/

Log Files NFAST_LOGDIR C:\ProgramData\nCipher\Log Files /opt/nfast/log/



By default, the Windows %NFAST_KMDATA% directories are hidden

directories. To see these directories and their contents, you must

enable the display of hidden files and directories in the View
settings of the Folder Options.



Dynamic feature certificates must be stored in the directory

stated in the default directories table.

The directory shown for static feature certificates is an example

location. You can store those certificates in any directory and

provide the appropriate path when using the Feature Enable

Tool. However, you must not store static feature certificates in

the dynamic features certificates directory. For more information

about feature certificates, see the User Guide for your HSM.

The absolute paths to the Security World Software installation directory and

program data directories on Windows platforms are stored in the indicated

nShield environment variables at the time of installation. If you are unsure of the

location of any of these directories, check the path set in the environment

variable.

The instructions in this guide refer to the locations of the software installation and

program data directories by their names (for example, Key Management Data) or:

• For Windows, nShield environment variable names enclosed in percent signs

(for example, %NFAST_KMDATA%).

• For Linux, absolute paths (for example, /opt/nfast/kmdata/).

Chapter 1. Introduction

nCipherKM JCA JCE CSP v13.3 Reference Guide 3/34

NFAST_KMDATA cannot be a symbolic link.

If the software has been installed into a non-default location:

• For Windows, ensure that the associated nShield environment variables are re-

set with the correct paths for your installation.

• For Linux, you must create a symbolic link from /opt/nfast/ to the directory

where the software is actually installed. For more information about creating

symbolic links, see your operating system’s documentation.

1.4. Utility help options

Unless noted, all the executable utilities provided in the bin subdirectory of your

nShield installation have the following standard help options:

-h|--help displays help for the utility

-v|--version displays the version number of the utility

-u|--usage displays a brief usage summary for the utility.

1.5. Further information

This guide forms one part of the information and support provided by Entrust.

The nCore API Documentation is supplied as HTML files installed in the following

locations:

• Windows:

◦ API reference for host: %NFAST_HOME%\document\ncore\html\index.html

◦ API reference for SEE: %NFAST_HOME%\document\csddoc\html\index.html

• Linux:

◦ API reference for host: /opt/nfast/document/ncore/html/index.html

◦ API reference for SEE: /opt/nfast/document/csddoc/html/index.html

The Java Generic Stub classes, nCipherKM JCA/JCE provider classes, and Java

Key Management classes are supplied with HTML documentation in standard

Javadoc format, which is installed in the appropriate nfast\java or nfast/java

directory when you install these classes.

Chapter 1. Introduction

nCipherKM JCA JCE CSP v13.3 Reference Guide 4/34

1.6. Security advisories

If Entrust becomes aware of a security issue affecting nShield HSMs, Entrust will

publish a security advisory to customers. The security advisory will describe the

issue and provide recommended actions. In some circumstances the advisory may

recommend you upgrade the nShield firmware and or image file. In this situation

you will need to re-present a quorum of administrator smart cards to the HSM to

reload a Security World. Because of this, you should consider the procedures and

actions required to upgrade devices in the field when deploying and maintaining

your HSMs.


The Remote Administration feature supports remote firmware

upgrade of nShield HSMs, and remote ACS card presentation.

We recommend that you monitor the Announcements & Security Notices section

on Entrust nShield, https://nshieldsupport.entrust.com, where any announcement

of nShield Security Advisories will be made.

1.7. Contacting Entrust nShield Support

To obtain support for your product, contact Entrust nShield Support,

https://nshieldsupport.entrust.com.

Chapter 1. Introduction

nCipherKM JCA JCE CSP v13.3 Reference Guide 5/34

https://nshieldsupport.entrust.com
https://nshieldsupport.entrust.com

2. nShield Architecture
This chapter provides a brief overview of the Security World Software

architecture. The following diagram provides a visual representation of nShield

architecture and the documentation that relates to it.

2.1. Security World Software modules

nShield modules provide a secure environment to perform cryptographic

functions. Key-management modules are fitted with a smart card interface that

enables keys to be stored on removable tokens for extra security. nShield modules

are available for PCI buses and also as network-attached Ethernet modules

(nShield Connect).

2.2. Security World Software server

The Security World Software server, often referred to as the hardserver, accepts

requests by means of an interprocess communication facility (for example, a

domain socket on Linux or named pipes or TCP/IP sockets on Windows).

The Security World Software server receives requests from applications and

Chapter 2. nShield Architecture

nCipherKM JCA JCE CSP v13.3 Reference Guide 6/34

passes these to the nShield module(s). The module handles these requests and

returns them to the server. The server ensures that the results are returned to the

correct calling program.

You only need a single Security World Software server running on your host

computer. This server can communicate with multiple applications and multiple

nShield modules.

2.3. Stubs and interface libraries

An application can either handle its own cryptographic functions or it can use a

cryptographic library:

• If the application uses a cryptographic library that is already able to

communicate with the Security World Software server, then no further

modification is necessary. The application can automatically make use of the

nShield module.

• If the application uses a cryptographic library that has not been modified to

be able to communicate with the Security World Software server, then either

Entrust or the cryptographic library supplier need to create adaption

function(s) and compile them into the cryptographic library. The application

users then must relink their applications using the updated cryptographic

library.

If the application performs its own cryptographic functions, you must create

adaption function(s) that pass the cryptographic functions to the Security World

Software server. You must identify each cryptographic function within the

application and change it to call the nShield adaption function, which in turn calls

the generic stub. If the cryptographic functions are provided by means of a DLL or

shared library, the library file can be changed. Otherwise, the application itself

must be recompiled.

2.4. Using an interface library

Entrust supplies the following interface libraries:

• Microsoft Cryptography API: Next Generation (CNG)

• Microsoft CryptoAPI (CAPI)

• PKCS #11

• nCipherKM JCA/JCE CSP

Chapter 2. nShield Architecture

nCipherKM JCA JCE CSP v13.3 Reference Guide 7/34

Third-party vendors may supply nShield-aware versions of their cryptographic

libraries.

The functionality provided by these libraries is the intersection of the functionality

provided by the nCore API and the functionality provided by the standard for that

library.

Most standard libraries offer fewer key-management options than are available in

the nCore API. However, the nShield libraries do not include any extensions to

their standards. If you want to make use of features of the nCore API that are not

offered in the standard, you should convert your application to work directly with

the generic stub.

On the other hand, many standard libraries include functions that are not

supported on the nShield module, such as support for IDEA or Skipjack. If you

require a feature that is not supported on the nShield module, contact Support

because it may be possible to add the feature in a future release. However, in

many cases, features are not present on the module for licensing reasons, as

opposed to technical reasons, and Entrust cannot offer them in the interface

library.

2.5. Writing a custom application

If you choose not to use one of the interface libraries, you must write a custom

application. This gives you access to all the features of the nCore API. For this

purpose, Entrust provides generic stub libraries for C and Java. If you want to use

a language other than C orJava, you must write your own wrapper functions in

your chosen programming language that call the C generic stub functions.

Entrust supplies several utility functions to help you write your application.

2.6. Acceleration-only or key management

You must also decide whether you want to use key management or whether you

are writing an acceleration-only application.

Acceleration-only applications are much simpler to write but do not offer any

security benefits.

The Microsoft CryptoAPI, Java JCE, PKCS #11, as well as the application plug-ins,

use the Security World paradigm for key storage.

Chapter 2. nShield Architecture

nCipherKM JCA JCE CSP v13.3 Reference Guide 8/34

If you are writing a custom application, you have the option of using the Security

World mechanisms, in which case your users can use either KeySafe or the

command-line utilities supplied with the module for many key-management

operations. This means you do not have to write these functions yourself.

The NFKM library gives you access to all the Security World functionality.

Chapter 2. nShield Architecture

nCipherKM JCA JCE CSP v13.3 Reference Guide 9/34

3. Installing the nCipherKM JCA/JCE CSP

3.1. Prerequisites

To use the nCipherKM JCA/JCE CSP, you must install the nShield Java package

which includes the nShield Java jars and Keysafe.

For more information about the bundles and components supplied on your

Security World Software installation media, see the User Guide.

The following versions of Java have been tested to work with, and are supported

by, your nShield Security World Software:

• Java 8 (or Java 1.8x)

• Java 11

• Java 17

We recommend that you ensure Java is installed before you install the Security

World Software. The Java executable must be on your system path.

If you can do so, please use the latest Java version currently supported by Entrust

that is compatible with your requirements. Java versions before those shown are

no longer supported. If you are maintaining older Java versions for legacy reasons,

and need compatibility with current nShield software, please contact Entrust

nShield Support: https://nshieldsupport.entrust.com.

To install Java you may need installation packages specific to your operating

system, which may depend on other pre-installed packages to be able to work.

Suggested links from which you may download Java software as appropriate for

your operating system:

• http://www.oracle.com/technetwork/java/index.html

• http://www.oracle.com/technetwork/java/all-142825.html


Detailed documentation for the JCE interface can be found on

the Oracle Technology web page here.


Softcards are not supported for use with the nCipherKM

JCA/JCE CSP in Security Worlds that are compliant with FIPS

140 Level 3.

Chapter 3. Installing the nCipherKM JCA/JCE CSP

nCipherKM JCA JCE CSP v13.3 Reference Guide 10/34

https://nshieldsupport.entrust.com
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
https://docs.oracle.com/en/java/javase/11/security/java-cryptography-architecture-jca-reference-guide.html

3.2. Installing the nCipherKM JCA/JCE CSP

To install the nCipherKM JCA/JCE CSP:

1. In the hardserver configuration file, ensure that:

◦ priv_port (the port on which the hardserver listens for local privileged TCP

connections) is set to 9001.

◦ nonpriv_port (the port on which the hardserver listens for local

nonprivileged TCP connections) is set to 9000.

If you need to change either or both of these port settings, restart the

hardserver before continuing the nCipherKM JCA/JCE CSP installation

process. For more information, see the User Guide for your HSM.

2. For Java 8 only. Copy the nCipherKM.jar file to the extensions folder of your

local Java Virtual Machine installation from the following directory:

◦ %NFAST_HOME%\java\classes (Windows)

◦ /opt/nfast/java/classes (Linux)

The location of the extensions folder depends on the type of your local Java

Virtual Machine (JVM) installation:

JVM type Extensions folder
(Windows)

Extensions folder (Linux)

Java Developer Kit (JDK) %JAVA_HOME%\jre\lib\ext $JAVA_HOME/jre/lib/ext

Java Runtime Environment (JRE) %JAVA_HOME%\lib\ext $JAVA_HOME_/lib/ext

In these paths, %JAVA_HOME% (Windows) and $JAVA_HOME (Linux) are the home

directory of the Java installation (commonly specified in the JAVA_HOME

environment variable).

If you are using Java 11 or Java 17 you do not need to copy the jar file.

3. Add %JAVA_HOME%\bin (Windows) or $JAVA_HOME/bin (Linux) to your PATH system

variable.

4. For Java 8 only. Install the unlimited strength JCE jurisdiction policy files that

are appropriate to your version of Java. JDK 9 and later ship with, and use by

default, the unlimited policy files.

The Java Virtual Machine imposes limits on the cryptographic strength that

may be used by default with JCE providers. Replace the default policy

configuration files with the unlimited strength policy files.

Chapter 3. Installing the nCipherKM JCA/JCE CSP

nCipherKM JCA JCE CSP v13.3 Reference Guide 11/34

The Java Virtual Machine imposes limits on the cryptographic strength that

may be used by default with JCE providers. Replace the default policy

configuration files with unlimited strength policy files.

To install the unlimited strength JCE jurisdiction policy files:

a. If necessary, download the archive containing the Java Cryptography

Extension (JCE) Unlimited Strength Jurisdiction Policy Files from your

Java Virtual Machine vendor’s Web site. Be sure to download a file

appropriate for your version of Java.



The Java Cryptography Extension (JCE) Unlimited

Strength Jurisdiction Policy Files are covered and

controlled by U.S. Export Control laws and may be

subject to the export or import laws in other countries.

We recommend that you take legal advice before

downloading these files from your Java Virtual Machine

vendor.

b. Extract the files local_policy.jar and US_export_policy.jar from Java

Virtual Machine vendor’s Java Cryptography Extension (JCE) Unlimited

Strength Jurisdiction Policy File archive.

c. Copy the extracted files local_policy.jar and US_export_policy.jar into the

security directory for your local Java Virtual Machine (JVM) installation:

JVM type Extensions folder (Windows) Extensions folder (Linux)

Java Developer

Kit (JDK)
%JAVA_HOME%\jre\lib\security $JAVA_HOME/jre/lib/security

Java Runtime

Environment

(JRE)

%JAVA_HOME%\lib\security $JAVA_HOME_/lib/security

In these paths, %JAVA_HOME% (Windows) and $JAVA_HOME (Linux) are the

home directory of the Java installation (commonly specified in the

JAVA_HOME environment variable).


Copying the files local_policy.jar and

US_export_policy.jar into the appropriate folder must

overwrite any existing files with the same names.

5. Add the nCipherKM provider to the java.security file located in the security

directory for your local Java Virtual Machine (JVM) installation:

Chapter 3. Installing the nCipherKM JCA/JCE CSP

nCipherKM JCA JCE CSP v13.3 Reference Guide 12/34

security.provider.<n>=com.ncipher.provider.km.nCipherKM, where <n> is the

position in the list of providers, for example:

security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=com.sun.net.ssl.internal.ssl.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider
security.provider.6=com.sun.security.sasl.Provider
security.provider.7=com.ncipher.provider.km.nCipherKM

For Java 11 and Java 17 you do not need to specify the fully qualified class

name for the provider. Instead you can just use the provider name:

security.provider.<n>=nCipherKM.

The JVM uses this file to select the provider from which to request a

mechanism instance. If your JCE application does not request the nCipherKM

provider by name, or if it fails to load keys, you might need to move the

nCipherKM provider to the top of the list:

security.provider.1=com.ncipher.provider.km.nCipherKM. Do not change the

relative order of the other providers in the list.



Ensure you do not list multiple providers with the same

number (for example, ensure your list of providers does not

include two instances of security.provider.1, both

com.ncipher.provider.km.nCipherKM and another provider). If

you add the nCipherKM provider as security.provider.1,

ensure that the subsequent providers are re-numbered

correctly.

6. Save your updates to the file java.security.

When you have installed the nCipherKM JCA/JCE CSP, you must have created

a Security World before you can test or use it. For more information about

creating a Security World, see the User Guide.



If you have a Java Enterprise Edition Application Server

running, you must restart it before the installed nCipherKM

provider is loaded into the Application Server virtual

machine and ready for use.

3.3. Testing the nCipherKM JCA/JCE CSP installation

After installation, you can test that the nCipherKM JCA/JCE CSP is functioning

Chapter 3. Installing the nCipherKM JCA/JCE CSP

nCipherKM JCA JCE CSP v13.3 Reference Guide 13/34

correctly by running the command.

For Java 8:

java com.ncipher.provider.InstallationTest

For Java 11 and Java 17 (Windows):

java --module-path %NFAST_HOME%\java\classes com.ncipher.provider.InstallationTest

For Java 11 and Java 17 (Linux):

java --module-path /opt/nfast/java/classes com.ncipher.provider.InstallationTest


For these commands to work, you must have added %JAVA_HOME%

(Windows) or $JAVA_HOME (Linux) to your PATH system variable.

If the nCipherKM JCA/JCE CSP is functioning correctly, output from this command

has the following form:

Installed providers:
1: nCipherKM
2: SUN
3: SunRsaSign
4: SunJSSE
5: SunJCE
6: SunJGSS
7: SunSASL
Unlimited strength jurisdiction files are installed.
The nCipher provider is correctly installed.
nCipher JCE services:
Alg.Alias.Cipher.1.2.840.113549.1.1.1
Alg.Alias.Cipher.1.2.840.113549.3.4
Alg.Alias.Cipher.AES
Alg.Alias.Cipher.DES3
....

If the nCipherKM provider is installed but is not registered at the top of the

providers list in the java.security file, the InstallationTest command produces

output that includes the message:

The nCipher provider is installed, but is not registered at the top of the providers list in the java.security
file.
See the user guide for more information about the recommended system configuration.

In such a case, edit the java.security file (located in the security directory for your

local JVM installation) so that the nCipherKM provider is registered in the first

position in that file’s list of providers. For more information about the

Chapter 3. Installing the nCipherKM JCA/JCE CSP

nCipherKM JCA JCE CSP v13.3 Reference Guide 14/34

java.security file, see Installing the nCipherKM JCA/JCE CSP.

If the nCipherKM provider is not installed at all, or you have not created a Security

World, or if you have not configured ports correctly in the hardserver

configuration file, the InstallationTest command produces output that includes

the message:

The nCipher provider is not correctly installed.

In such case:

• Check that you have configured ports correctly, as described in Installing the

nCipherKM JCA/JCE CSP. For more information about hardserver

configuration file settings, see the User Guide.

• Check that you have created a Security World. If you have not created a

Security World, create a Security World. For more information, see the User

Guide.

• If you have already created a Security World, repeat the nCipherKM JCA/JCE

CSP installation process as described in Installing the nCipherKM JCA/JCE

CSP.

After making any changes to the nCipherKM JCA/JCE CSP installation, run the

InstallationTest command again and check the output.

Whether or not the nCipherKM provider is correctly installed, if the unlimited

strength jurisdiction files are not installed or (not correctly installed), the

InstallationTest command produces output that includes the message:

Unlimited strength jurisdiction files are NOT installed.


The InstallationTest command can only detect this situation if

you are using JRE/JDK version 1.6 or later.

This message means that, because the Java Virtual Machine imposes limits on the

cryptographic strength that you can use by default with JCE providers, you must

replace the default policy configuration files with the unlimited strength policy

files. For information about how to install the unlimited strength jurisdiction files,

see Installing the nCipherKM JCA/JCE CSP.

3.4. Named Modules in Java 11 and Java 17

Chapter 3. Installing the nCipherKM JCA/JCE CSP

nCipherKM JCA JCE CSP v13.3 Reference Guide 15/34

The nCipherKM Provider has been implemented as a named module. This means

that, for Java 11 and Java 17, if you have added the provider to your java.security

file, then you can run your application with the nCipherKM.jar on the module-path

and the Java ServiceLoader class will automatically find it, for example:

In Linux:

java --module-path /opt/nfast/java/classes com.ncipher.provider.InstallationTest

In Windows:

java --module-path %NFAST_HOME%\java\classes com.ncipher.provider.InstallationTest

Alternatively, you can specify the location of the nCipherKM jar on the classpath:

In Linux:

java --class-path /opt/nfast/java/classes/nCipherKM.jar com.ncipher.provider.InstallationTest

In Windows:

java --class-path %NFAST_HOME%\java\classes\nCipherKM.jar com.ncipher.provider.InstallationTest

Chapter 3. Installing the nCipherKM JCA/JCE CSP

nCipherKM JCA JCE CSP v13.3 Reference Guide 16/34

4. System Properties
You can use system properties to control the provider. You set system properties

when starting the Java Virtual Machine using a command such as:

java -D<property>=<value> <MyJavaApplication>

In this example command, <property> represents any system property, <value>

represents the value set for that property, and <MyJavaApplication> is the name of

the Java application you are starting. You can set multiple system properties in a

single command, for example:

java -Dprotect=module -DignorePassphrase=true MyJavaApplication

The available system properties and their functions as controlled by setting

different values for a property are described in the following table:

Property Function for different values

JCECSP_DEBUG This property is a bit mask for which different values specify different

debugging functions; the default value is 0. For details about the effects of

setting different values for this property, see JCECSP_DEBUG property

values.

JCECSP_DEBUGFILE This property specifies a path to the file to which logging output is to be

written. Set this property if the JCECSP_DEBUG property is set to a value

other than the default of 0. For details about the effects of setting

different values for this property, see JCECSP_DEBUG property values.

In a production environment, we recommend that you disable debug

logging to prevent sensitive information being made available to an

attacker.

CKNFAST_JCE_COMPATIBILI

TY

This property is included to allow the saving of objects when using Java

PKCS#11 providers.

protect This property specifies the type of protection to be used for key

generation and nCipherKM KeyStore instances. You can set the value of

this property to one of module, softcard:`IDENT or `cardset. OCS protection

(cardset) uses the card from the first slot of the first usable hardware

security module. To find the logical token hash IDENT of a softcard, run

the command nfkminfo --softcard-list.

module This property lets you override the default module and select a specific

module to use for module and OCS protection. Set the value of this

property as the ESN of the module you want to use.

Chapter 4. System Properties

nCipherKM JCA JCE CSP v13.3 Reference Guide 17/34

Property Function for different values

slot This property lets you override the default slot for OCS-protection and

select a specific slot to use. Set this the value of this property as the

number of the slot you want to use.

ignorePassphrase If the value of this property is set to true, the nCipherKM provider ignores

the passphrase provided in its KeyStore implementation. This feature is

included to allow the Oracle or IBM keytool utilities to be used with

module-protected keys. The keytool utilities require a passphrase be

provided; setting this property allows a dummy passphrase to be used.

seeintegname Setting the value of this property to the name of an SEE integrity key

causes the provider to generate SEE application keys. These keys may

only be used by an SEE application signed with the named key.

com.ncipher.provider.an

nouncemode

The default value for this property is auto, which uses firmware auto-

detection to disable algorithms in the provider that cannot be supported

across all installed modules. Setting the value of this property to on forces

the provider to advertise all mechanisms at start-up. Setting the value of

this property to off forces the provider to advertise no mechanisms at

start-up.

com.ncipher.provider.en

able

For the value of this property, you supply a comma-separated list of

mechanism names that are to be forced on, regardless of the announce

mode selected.

com.ncipher.provider.di

sable

For the value of this property, you supply a comma-separated list of

mechanism names that are to be forced off, regardless of the announce

mode selected. Any mechanism supplied in the value for the

com.ncipher.provider.disable property overrides the same mechanism if it

is supplied in the value for the com.ncipher.provider.enable property.

4.1. JCECSP_DEBUG property values

The JCECSP_DEBUG system property is a bit mask for which you can set different

values to control the debugging functions. The following table describes the

effects of different values that you can set for this property:

JCECSP_DEBUG value Function

0 If this property has no bits set, no debugging information is reported. This

is the default setting.

1 If this property has the bit 1 set, minimal debugging information (for

example, version information and critical errors) is reported.

Chapter 4. System Properties

nCipherKM JCA JCE CSP v13.3 Reference Guide 18/34

JCECSP_DEBUG value Function

2 If this property has the bit 2 set, comprehensive debugging information is

reported.

4 If this property has the bit 3 set, debugging information relating to

creation and destruction of memory and module resources is reported.

8 If this property has the bit 4 set, debugFunc and debugFuncEnd generate

debugging information for functions that call them.

16 If this property has the bit 5 set, debugFunc and debugFuncEnd display the

values for all the arguments that are passed in to them.

32 If this property has the bit 6 set, context information is reported with each

debugging message (for example, the ThreadID and the current time.

64 If this property has the bit 7 set, the time elapsed during each logged

function is calculated, and information on the number of times a function

is called and by which function it was called is reported.

128 If this property has the bit 8 set, debugging information for NFJAVA is

reported in the debugging file.

256 If this property has the bit 9 set, the call stack is printed for every debug

message.

To set multiple logging functions, add up the JCECSP_DEBUG values for the

debugging functions you want to set, and specify the total as the value for

JCECSP_DEBUG. For example, if you want to set the debugging to use both function

tracing (bit 4) and function tracing with parameters (bit 5), add the JCECSP_DEBUG

values shown in the table for these debugging functions (8 + 16 = 24) and specify

this total (24) as the value to use for JCECSP_DEBUG.

Chapter 4. System Properties

nCipherKM JCA JCE CSP v13.3 Reference Guide 19/34

5. Compatibility
The nCipherKM JCA/JCE CSP supports both module-protected keys and OCS-

protected keys. The CSP currently supports 1/N OCSs and a single protection type

for each nCipherKM JCE KeyStore.

You can use the nCipherKM JCA/JCE CSP with Security Worlds that comply with

FIPS 140 at either Level 2 or Level 3.


In a Security World that complies with FIPS 140 Level 3, it is not

possible to import keys generated by other JCE providers.

The nCipherKM JCA/JCE CSP supports load-sharing for keys that are stored in the

nCipherKM KeyStore. This feature allows a server to spread the load of

cryptographic operations across multiple connected modules, providing greater

scalability.



We recommend that you use load-sharing unless you have

existing code that is designed to run with multiple modules. To

share keys with load-sharing, you must create a 1/N OCS with at

least as many cards as you have modules. All the cards in the

OCS must have the same passphrase.

Keys generated or imported by the nCipherKM JCA/JCE CSP are not recorded into

the Security World until:

1. The key is added to an nCipherKM KeyStore (by using a call to setKeyEntry()

or setCertificateEntry()).

2. That nCipherKM KeyStore is then stored (by using a call to store()).

The passphrase used with the KeyStore must be the passphrase of the card from

the OCS that protects the keys in the KeyStore.

Chapter 5. Compatibility

nCipherKM JCA JCE CSP v13.3 Reference Guide 20/34

6. Architecture

6.1. Architecture

The nCipherKM JCA/JCE CSP implements its functionality using two underlying

nShield APIs:

• the KM Java library (kmjava)

• the Java Generic Stub (nfjava).

These libraries relay commands generated by the JCE provider to the underlying

hardserver and modules.

Chapter 6. Architecture

nCipherKM JCA JCE CSP v13.3 Reference Guide 21/34

Chapter 6. Architecture

nCipherKM JCA JCE CSP v13.3 Reference Guide 22/34

7. Available Functions

7.1. Available functions

The module firmware automatically detects which algorithms it can support.

These algorithms are advertised when the provider first starts up. The provider

conservatively advertises only those mechanisms that are supported by all

installed modules in the system.



Certain algorithms are not supported by older versions of

firmware. We recommend that you ensure that your module is

upgraded to the most recent version of firmware appropriate for

your environment.

The following table indicates the cipher modes available for each cipher.

Cipher CBC CFB CTR ECB OFB GCM

AESWrap X

ArcFour

CAST256 X X X X X

DES2 X X X X X

DES X X X X X

DESede X X X X X

DESedeWrap X

ECIES1

Rijndael X X X X X X

RSA X

In the table above, annotations with the following numbers indicate:

1 These ciphers support key wrap and unwrap only.

The following table indicates the padding types available for each cipher.

Chapter 7. Available Functions

nCipherKM JCA JCE CSP v13.3 Reference Guide 23/34

Cipher ANSI
X9.23

ISO
10126

ISO 7816 None OAEP PKCS #1 PKCS #5 Zero
byte

AESWrap X

ArcFour

CAST256 X X X X X X

DES2 X X X X X X

DES X X X X X X

DESede X X X X X X

DESedeWrap X

ECIES1

Rijndael X X X X X X

RSA X X

In the table above, annotations with the following numbers indicate:

1 These ciphers support key wrap and unwrap only.

Algorithm Key length
in bits for
generation
or signing

AESWrap Y

Arcfour 8, 16 to 2048 Y1 Y1

CAST256 128, 192, 256 Y1 Y1

DES 64 Y1 Y1

DESede 192 Y Y

DES2 128 Y Y

DESedeWra

p

Y

DH Y Y Y

Chapter 7. Available Functions

nCipherKM JCA JCE CSP v13.3 Reference Guide 24/34

Algorithm Key length
in bits for
generation
or signing

DSA 1024 Y Y

ECDH Y Y Y

ECDHwithSH

A1KDF

Y

ECDHwithSH

A224KDF

Y

ECDHwithSH

A256KDF

Y

ECDHwithSH

A384KDF

Y

ECDHwithSH

A512KDF

Y

ECDSA Y Y

EdDSA 256 Y1 Y1

Ed25519 256 Y1 Y1

Ed25519ph Y1

HmacMD5 Y1 Y1

HmacRIPEM

D160

8, 16 to 2048 Y1 Y1

HmacSHA1 8, 16 to 2048 Y Y

HmacSHA22

4

8, 16 to 2048 Y Y

HmacSHA25

6

8, 16 to 2048 Y Y

HmacSHA38

4

8, 16 to 2048 Y Y

Chapter 7. Available Functions

nCipherKM JCA JCE CSP v13.3 Reference Guide 25/34

Algorithm Key length
in bits for
generation
or signing

HmacSHA51

2

8, 16 to 2048 Y Y

HmacTiger 8, 16 to 2048 Y1 Y1

MD5 Y1

MD5andSHA

1withRSA

Y

MD5withRSA Y

nCipher.swor

ld

Y

Rijndael Y Y

RawRSA Y

RIPEMD160 Y1

RIPEMD160w

ithRSA

Y1

RIPEMD160w

ithRSAandM

GF1

322+ Y1

RNG Y

RSA 512+ Y Y Y

SHA1 Y

SHA1withDS

A

Y

SHA1withEC

DSA

Y

SHA1withRS

A

Y

Chapter 7. Available Functions

nCipherKM JCA JCE CSP v13.3 Reference Guide 26/34

Algorithm Key length
in bits for
generation
or signing

SHA1withRS

AandMGF1

322+ Y

SHA224 Y

SHA224with

DSA

Y

SHA224with

ECDSA

Y

SHA224with

RSA

Y

SHA224with

RSAandMGF

1

450+ Y

SHA256 Y

SHA256with

DSA

Y

SHA256with

ECDSA

Y

SHA256with

RSA

Y

SHA256with

RSAandMGF

1

514+ Y

SHA384 Y

SHA384with

DSA

Y

SHA384with

ECDSA

Y

SHA384with

RSA

Y

Chapter 7. Available Functions

nCipherKM JCA JCE CSP v13.3 Reference Guide 27/34

Algorithm Key length
in bits for
generation
or signing

SHA384with

RSAandMGF

1

770+ Y

SHA512 Y

SHA512with

DSA

Y

SHA512withE

CDSA

Y

SHA512with

RSA

Y

SHA512with

RSAand

MGF1

1026+ Y

Tiger 8, 16 to 256 Y Y Y1

In the table above, annotations with the following numbers indicate:

1 These algorithms are not supported in FIPS 140 Level 3 Security Worlds.

Chapter 7. Available Functions

nCipherKM JCA JCE CSP v13.3 Reference Guide 28/34

8. The KeyStore API
You can load and store nShield module-protected keys by using the standard

KeyStore API. This interface allows access to a KeyStore data file by means of a

passphrase and an InputStream or OutputStream.

nShield KeyStore data files contain only the name-space identifier of the keys

stored in them; the actual keys are stored in the Security World regardless of the

stream used. The name-space identifier is the hash of the root key of the individual

KeyStore. The ident of the KeyStore keys in the Security World begins with this

hash and is followed by key-specific characters. This naming hierarchy allows you

to identify the relevant key in Security World tools (such as KeySafe) and remove

keys from a KeyStore.


To use an existing KeyStore on another machine in the same

Security World, copy both its KeyStore data file and the Security

World’s Key Management Data directory to the other machine.

Chapter 8. The KeyStore API

nCipherKM JCA JCE CSP v13.3 Reference Guide 29/34

9. Initialization
You create a new KeyStore by passing a null InputStream to the KeyStore load

method. When you create a new KeyStore, the nCipherKM provider generates a

KeyStore key that is used to sign trusted public certificate entries. The relevant

signature is verified when public certificates in the KeyStore are used; this

functionality prevents an attacker inserting new certificates into a KeyStore

without the protection token that is needed to use the KeyStore key.

By default, the KeyStore protection key is OCS-protected. Ensure that the

passphrase argument used with the KeyStore interface matches the passphrase of

that OCS. When the KeyStore method is called, you must present a card with a

matching passphrase from the required OCS. You can use the protect system

property to change the protection type used for the KeyStore key; for more

information about the protect property, see System Properties.

An existing KeyStore file is not overwritten if the KeyStore store method is called

on an OutputStream directed at the same file path. Instead, the KeyStore at the

existing path is used to store the keys in the new KeyStore. This operation fails if

the passphrases for the two KeyStores do not match.

Chapter 9. Initialization

nCipherKM JCA JCE CSP v13.3 Reference Guide 30/34

10. Loading and Storing Keys
We recommend that separate KeyStores are used for separate purposes; for

example, you can use one KeyStore to hold private keys and a different KeyStore

for Certifying Authorities. With this approach, you need separate OCSs to operate

separate KeyStores. However, you can also use different OCSs to protect keys

within the same KeyStore.

You require a certificate chain to store private keys. The Virtual Machine JCE

implementation enforces this requirement, not the nCipherKM provider.

Chapter 10. Loading and Storing Keys

nCipherKM JCA JCE CSP v13.3 Reference Guide 31/34

11. keytool
You can use either the Oracle keytool utility or the IBM keytool utility to read and

edit an nShield KeyStore. These utilities are shipped with the Oracle and IBM

JVMs. You must specify the correct nCipher.sworld KeyStore type when you run

the keytool utility, and you must specify the correct package name for the Oracle

or IBM keytool utility.

To generate a new key in an OCS-protected KeyStore with the Oracle or IBM

keytool utility, run the appropriate command:

• Sun Microsystems keytool utility:

For Java 11 and Java 17, use the following command:

java --module-path /opt/nfast/java/classes sun.security.tools.keytool.Main -genkey -storetype
nCipher.sworld -keyalg RSA -sigalg SHA1withRSA -storepass <KeyStore_passphrase> -keystore <KeyStore_path>

For Java 8, use the following command:

java sun.security.tools.keytool.Main -genkey -storetype nCipher.sworld -keyalg RSA -sigalg SHA1withRSA
-storepass <KeyStore_passphrase> -keystore <KeyStore_path>

• IBM keytool utility:

java com.ibm.crypto.tools.KeyTool -genkey -storetype nCipher.sworld -keyalg RSA -
sigalg SHA1withRSA -storepass <KeyStore_passphrase> -keystore <KeyStore_path>

In these example commands, <KeyStore_passphrase> is the passphrase for the OCS

that protects the KeyStore and <KeyStore_path> is the path to that KeyStore.

To generate a new key in a module-protected KeyStore with the Oracle or IBM

keytool utility, run the appropriate command:

• Sun Microsystems keytool utility:

For Java 11 and Java 17, use the following command:

java --module-path /opt/nfast/java/classes -Dprotect=module -DignorePassphrase=true
sun.security.tools.keytool.Main -genkey -storetype nCipher.sworld -keyalg RSA -sigalg SHA1withRSA -keystore
<KeyStore_path>

For Java 8, use the following command:

java -Dprotect=module -DignorePassphrase=true sun.security.tools.KeyTool -genkey -storetype nCipher.sworld

Chapter 11. keytool

nCipherKM JCA JCE CSP v13.3 Reference Guide 32/34

-keyalg RSA -sigalg SHA1withRSA -keystore <KeyStore_path>

• IBM keytool utility:

java -Dprotect=module -DignorePassphrase=true com.ibm.crypto.tools.KeyTool -genkey -storetype
nCipher.sworld -keyalg RSA -sigalg SHA1withRSA -keystore <KeyStore_path>

In these example commands, <KeyStore_path> is the path to the KeyStore.

By default, the keytool utilities use the MD5withRSA signature algorithm to sign

certificates used with a KeyStore. This signature mechanism is unavailable on

modules with firmware version 2.33.60 or later.

Chapter 11. keytool

nCipherKM JCA JCE CSP v13.3 Reference Guide 33/34

12. Using Keys
Only the nCipherKM provider can use keys stored in an nShield KeyStore because

the underlying key material is held separately in the Security World.

You can always store nShield keys in an nShield KeyStore. You can also store keys

generated by a third-party provider into an nShield KeyStore if both of the

following conditions apply:

• the key type is known to the nCipherKM provider

• the Security World is not compliant with FIPS 140 Level 3.

When you generate an nShield key (or create it from imported key material), that

key is associated with an ACL (Access Control List). This ACL prevents the key

from being used for operations for which it is unsuited and enforces requirements

that certain tokens be presented; for example, the ACL can specify that signing

key cannot be used for encryption.

Chapter 12. Using Keys

nCipherKM JCA JCE CSP v13.3 Reference Guide 34/34

	nShield Security World: nCipherKM JCA JCE CSP v13.3 Reference Guide
	Table of Contents
	1. Introduction
	1.1. Read this guide if…​
	1.2. Model numbers
	1.3. Security World Software default directories
	1.4. Utility help options
	1.5. Further information
	1.6. Security advisories
	1.7. Contacting Entrust nShield Support

	2. nShield Architecture
	2.1. Security World Software modules
	2.2. Security World Software server
	2.3. Stubs and interface libraries
	2.4. Using an interface library
	2.5. Writing a custom application
	2.6. Acceleration-only or key management

	3. Installing the nCipherKM JCA/JCE CSP
	3.1. Prerequisites
	3.2. Installing the nCipherKM JCA/JCE CSP
	3.3. Testing the nCipherKM JCA/JCE CSP installation
	3.4. Named Modules in Java 11 and Java 17

	4. System Properties
	4.1. JCECSP_DEBUG property values

	5. Compatibility
	6. Architecture
	6.1. Architecture

	7. Available Functions
	7.1. Available functions

	8. The KeyStore API
	9. Initialization
	10. Loading and Storing Keys
	11. keytool
	12. Using Keys

