
nShield Security World

CodeSafe v13.3 User
Guide (Linux)
05 April 2024

Table of Contents
1. Introduction . 1

1.1. Read this guide if … . 1

1.2. Model numbers . 2

1.3. Security World Software. 3

1.4. Requirements . 4

1.5. Further information . 5

1.6. Security advisories. 6

1.7. Contacting Entrust nShield Support. 6

2. About the Secure Execution Engine SEE . 7

2.1. Why use the Secure Execution Engine?. 7

2.2. How SEE works . 11

2.3. SEE system architecture . 15

2.4. SEE and byte code. 17

2.5. SEE and userdata . 17

2.6. SEE and Security Worlds . 18

3. Designing SEE machines and SEE-ready HSMs . 20

3.1. Writing SEE machines - Solo XC. 20

3.2. Writing SEE machines - Solo PCIe . 31

4. Example SEE machines . 44

4.1. Examples for bsdlib library . 44

4.2. Examples for glibc library. 51

4.3. Examples for SEElib . 57

5. Debugging SEE machines . 88

5.1. Debugging settings and output . 88

5.2. Finding memory leaks with stattree. 91

5.3. Segment addresses for Solo . 92

5.4. Vulnerability test harness . 93

5.5. Troubleshooting guide. 94

6. Deploying SEE Machines . 97

6.1. About the Feature Enabling Mechanism (FEM). 97

6.2. Obtaining and using export certificates . 97

6.3. Automatically loading a SEE machine . 98

6.4. Configuring the nShield Connect to use CodeSafe Direct 102

6.5. Configuring a SEE machine using the front panel . 103

6.6. Remotely loading and updating SEE machines . 104

7. Utilities . 107

7.1. cpioc . 107

7.2. elftool . 108

7.3. loadmache. 109

7.4. loadsee-setup . 111

7.5. hsc_loadseemachine . 116

7.6. nfkmverify. 116

7.7. see-*-serv utilities . 120

7.8. stattree . 123

7.9. tct2 . 130

8. Environment variables . 136

9. Key generation options and parameters. 138

9.1. Key application type (<APPNAME>) . 138

9.2. Key properties (<NAME>=<VALUE>) . 140

9.3. Available key properties by action . 144

9.4. Available key properties by application . 146

10. SEElib functions . 148

10.1. SEElib_init. 148

10.2. SEElib_RecProcessThreads . 148

10.3. SEElib_StartProcessorThreads . 148

10.4. SEElib_GetUserDataLen. 149

10.5. SEElib_ReadUserData . 149

10.6. SEElib_ReleaseUserData . 149

10.7. SEElib_InitComplete . 150

10.8. SEElib_AwaitJob . 150

10.9. SEElib_StartTransactListener . 150

10.10. SEElib_Transact . 151

10.11. SEElib_MarshalSendCommand . 151

10.12. SEElib_GetUnmarshalResponse . 151

10.13. SEElib_FreeCommand . 152

10.14. SEElib_FreeReply . 152

10.15. SEElib_ReturnJob . 152

10.16. SEElib_SubmitCoreJob . 153

10.17. SEElib_GetCoreJob. 153

10.18. SEElib_GetUserDataLen . 153

10.19. SEElib_Submit . 154

10.20. SEElib_Query . 154

10.21. SEElib_StartSEEJobListener . 154

10.22. SEElib_QuerySEEJob . 155

10.23. SEElib_ReleaseSEEJob . 155

11. Differences between glibc and bsdlib (SoloXC only) . 156

11.1. glibc Compatibility exceptions . 156

12. SEE Machines Whitelist . 158

1. Introduction
CodeSafe is a runtime on the Entrust nShield HSM that allows third-party

developers to run their own code within the secure boundary of the module. Using

the CodeSafe Developer Kit, developers write their own CodeSafe Apps, cross-

compile them and package them to run on the HSM. While on the HSM, the

CodeSafe App is segregated from the actual keys loaded onto the module: even

the keys the App uses. This means that CodeSafe can be used without affecting

the FIPS 140 validation of the module it runs on.

Where the HSMs provide security controls on key usage, CodeSafe provides

control over application code. Depending on the runtime used, you’re either

sending nCore commands to the HSM, or designing your own protocol to send

data and commands back and forth.

The CodeSafe™ Developer Kit includes the Secure Execution Engine (SEE)

technology. The CodeSafe product comprises a suite of cross-compilers and

support tools that allow you to develop SEE machines.

With CodeSafe, you can build and deploy Trusted Agents to perform application-

specific security functions on your behalf on unattended servers, or in

unprotected environments where the operation of the system is outside of your

direct control. Examples of Trusted Agents include digital meters, authentication

agents, time-stamps, audit loggers, digital signature agents and custom

encryption processes.

Traditionally, HSMs have protected cryptographic keys within a defined security

boundary; SEE allows you to extend that security boundary to include code that

utilizes those protected keys. The code itself can be signed and encrypted to

provide additional protection.

This manual applies to both the nShield Solo XC and to the

nShield Solo PCIe.

1.1. Read this guide if …

Read this guide if you are writing and running SEE applications in C with a SEE-

Ready HSM.

This guide:

• Introduces the concept of the Secure Execution Engine (SEE)

Chapter 1. Introduction

CodeSafe v13.3 User Guide (Linux) 1/160

• Explains how to use the example SEE machines provided on the installation

media

• Describes how to write your own SEE applications in C using the CodeSafe

Developer Kit

• Describes how to run your secure SEE applications using a SEE-Ready HSM

• Describes how to obtain export certificates for SEE applications, if required

This guide assumes that you are familiar with the concept of Security World, as

described in the User Guide. It also assumes that you are familiar with the

following documentation:

• The Cryptographic API Integration Guide, which describes the use of hardware

security modules with third-party software products

• The nCore Developer Tutorial, which explains how to write applications using a

hardware security module

• The nCore API Documentation (supplied as HTML), which describes the nCore

C API.

Concepts and terminology introduced in the Cryptographic API

Integration Guide, nCore Developer Tutorial, and nCore API

Documentation are not explained in this guide.

1.2. Model numbers

Model numbering conventions are used to distinguish different nShield hardware

security devices. In the table below, n represents any single digit integer.

Model number Used for

NH2047 nShield Connect 6000

NH2040 nShield Connect 1500

NH2033 nShield Connect 500

NH2068 nShield Connect 6000+

NH2061 nShield Connect 1500+

NH2054 nShield Connect 500+

NH2075-B nShield Connect XC Base

NH2075-M nShield Connect XC Medium

Chapter 1. Introduction

CodeSafe v13.3 User Guide (Linux) 2/160

Model number Used for

NH2075-H nShield Connect XC High

NH2079-B nShield 5c Base

NH2079-M nShield 5c Medium

NH2079-H nShield 5c High

NH2082 nShield Connect XC SCAP

NH2089-B nShield Connect XC Base - Serial Console

NH2089-M nShield Connect XC Mid - Serial Console

NH2089-H nShield Connect XC High - Serial Console

NH3003-B nShield Connect CLX Base - Serial Console

NH3003-M nShield Connect CLX Mid - Serial Console

NH3003-H nShield Connect CLX High - Serial Console

nC2021E-000, NCE2023E-000 nToken PCIe

nC3nnnE-nnn, nC4nnnE-nnn nShield Solo PCIe

nC30n5E-nnn, nC40n5E-nnn nShield Solo XC PCIe

nC30nnU-10, nC40nnU-10 nShield Edge

NC5536E-B nShield 5s Base

NC5536E-M nShield 5s Medium

NC5536E-H nShield 5s High

1.3. Security World Software

The default locations for Security World Software and program data directories

are summarized in the following table:

Directory name Default path

nShield Installation /opt/nfast/

Key Management Data /opt/nfast/kmdata/

Dynamic Feature Certificates /opt/nfast/femcerts/

Chapter 1. Introduction

CodeSafe v13.3 User Guide (Linux) 3/160

Directory name Default path

Static Feature Certificates /opt/nfast/kmdata/hsm-ESN/features

Log Files /opt/nfast/log

User Log Files /home/<user>/nshieldlogs

Dynamic feature certificates must be stored in the directory

stated above. The directory shown for static feature certificates

is an example location. You can store those certificates in any

directory and provide the appropriate path when using the

Feature Enable Tool. However, you must not store static feature

certificates in the dynamic features certificates directory.

The instructions in this guide refer to the locations of the software installation and

program data directories by their names (for example, Key Management Data) or

absolute paths (for example /opt/nfast/kmdata). NFAST_KMDATA cannot be a symbolic

link.

If the software has been installed into a non-default location, you must create a

symbolic link from /opt/nfast/ to the directory where the software is actually

installed. For more information about creating symbolic links, see your operating

system’s documentation.

1.3.1. Utility help options

Unless noted, all the executable utilities provided in the bin subdirectory of your

nShield installation have the following standard help options:

• -h|--help displays help for the utility

• -v|--version displays the version number of the utility

• -u|--usage displays a brief usage summary for the utility.

1.4. Requirements

To write and run a SEE C application on the HSM, you need:

• A SEE-Ready hardware security module

To determine whether your HSM is SEE-Ready, refer to the

product data sheet for your HSM.

Chapter 1. Introduction

CodeSafe v13.3 User Guide (Linux) 4/160

Encrypted SEE machines are not currently supported for use

with nShield Connects. When the SEEMachine binary is

installed on the Connect itself for automated loading at

boot, the SEE Confidentiality key is not available. However,

when a client host loads a SEEMachine, it has access to the

SEE Confidentiality key and can cause the binary to be

decrypted. In this scenario, the Connect works fine with

encrypted SEEMachine binaries.

• A Feature Enable smart card for activating the SEE capabilities of your HSM

• The CodeSafe Developer Kit (supplied on this installation media)

• An appropriate GCC compiler (supplied on this installation media) for the

target HSM.

You must have installed your SEE-Ready HSM (as instructed in the Installation

Guide) and the necessary Security World for nShield for the CodeSafe Developer

Kit (as instructed in the User Guide). You must install at least the following

software component bundles included on the installation media:

• hwsp Hardware Support

• ctls Core Tools

• csd CodeSafe Developer

• gccsrc Prebuilt PowerPC GCC for Codesafe/C

When you have installed and configured your SEE-Ready HSM, to make full use of

SEE, you must create a Security World by using one of the following tools:

• The new-world utility

• KeySafe

• The front panel (nShield Connects only).

For detailed information about creating Security Worlds, see the User Guide.

1.5. Further information

This guide forms one part of the information and support provided by Entrust.

The nCore API Documentation is supplied as HTML files installed in the following

locations:

• API reference for host: /opt/nfast/document/ncore/html/index.html

Chapter 1. Introduction

CodeSafe v13.3 User Guide (Linux) 5/160

• API reference for SEE: /opt/nfast/document/csddoc/html/index.html

We recommend that you monitor the Announcements & Security

Notices section on Entrust nShield Support,

https://nshieldsupport.entrust.com, where any announcement of

Security advisories will be made.

1.6. Security advisories

If Entrust becomes aware of a security issue affecting nShield HSMs, Entrust will

publish a security advisory to customers. The security advisory will describe the

issue and provide recommended actions. In some circumstances the advisory may

recommend you upgrade the nShield firmware and or image file. In this situation

you will need to re-present a quorum of administrator smart cards to the HSM to

reload a Security World. As such, deployment and maintenance of your HSMs

should consider the procedures and actions required to upgrade devices in the

field.

The Remote Administration feature supports remote firmware

upgrade of nShield HSMs, and remote ACS card presentation.

We recommend that you monitor the Announcements & Security Notices section

on Entrust nShield, https://nshieldsupport.entrust.com, where any announcement

of nShield Security Advisories will be made.

1.7. Contacting Entrust nShield Support

To obtain support for your product, contact Entrust nShield Support,

https://nshieldsupport.entrust.com.

Chapter 1. Introduction

CodeSafe v13.3 User Guide (Linux) 6/160

https://nshieldsupport.entrust.com
https://nshieldsupport.entrust.com
https://nshieldsupport.entrust.com

2. About the Secure Execution Engine
SEE
The Secure Execution Engine (SEE) enables application code to run within the

secure environment of a SEE-Ready HSM.

To use SEE, you must order and enable it as described in the

User Guide. You must order the developer and user

environments separately. SEE machines cannot be loaded on

HSMs on which SEE is not enabled.

The CodeSafe Developer Kit includes the following:

• The CodeSafe Developer Libraries

• A built GCC compiler, plus source and makefile to customize your own version,

if required

• The CodeSafe Utilities (described in Utilities):

◦ tct2 (the Trusted Code Tool)

◦ elftool

◦ loadsee-setup

◦ loadmache (for use with SEElib)

◦ hsc_loadseemachine

◦ seessl-migrate.py

◦ a set of host utilities (for use with the Solo XC glibc-based/Solo PCIe

bsdlib-based SEE machines) that enable the standard IO and socket

connections:

▪ see-sock-serv

▪ see-stdoe-serv

▪ see-stdioe-serv

▪ see-stdioesock-serv.

2.1. Why use the Secure Execution Engine?

The main uses of cryptography are:

• Integrity

• Confidentiality

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 7/160

• Authentication

Using an HSM to protect your cryptographic keys provides all these advantages.

Your keys are only ever available in unencrypted form when they are loaded into

the HSM: when key blobs are stored on the host, their integrity is protected by a

Message Authentication Code (MAC). Access to the keys is controlled by using a

Security World or an Operator Card Set (OCS). For additional information about

the OCS, see the User Guide.

However, traditionally, the code that uses the keys remains on the server. This

means that the code is open to attack. It is possible that the code could be

modified in such a way as to leak important information or compromise your

business rules. For example, it could fail to enforce such rules as “the books must

balance” or “traders shall balance their positions by the close of trading”.

By implementing a solution with the SEE, you not only protect your cryptographic

keys but also extend the security boundary to include your security critical code

and data.

Using the techniques of code signing, data wrapping, and secure storage, the SEE

enables you to maintain the confidentiality and integrity of application code and

data and to bind them together so that only code in which you have confidence

has access to confidential data.

2.1.1. Code integrity

In many secure applications, the primary concern is for the code to execute the

correct sequence of operations and to not do anything else, such as leak

information or key data. You can use the supplied Trusted Code Tool (tct2) to sign

the HSM-side code and initialization data (if required) that make up a SEE

machine. Application authors can use signatures to delegate authority to use key

material and other resources.

2.1.2. Code confidentiality

When you use the SEE, the code that runs on an HSM can be stored in an

encrypted format. The encryption key can be either a Triple Data Encryption

Standard (Triple DES) or Advanced Encryption Standard (AES) key protected by

either a Security World or an OCS.

Encrypted SEE machines are not currently supported for use

with nShield Connects. When the SEEMachine binary is installed

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 8/160

on the Connect itself for automated loading at boot, the SEE

Confidentiality key is not available. However, when a client host

loads a SEEMachine, it has access to the SEE Confidentiality key

and can cause the binary to be decrypted. In this scenario, the

Connect works fine with encrypted SEEMachine binaries.

The Access Control List (ACL) entry, UseAsLoaderKey, enables a key to be used to

decrypt SEE objects on the HSM but that does not allow you to use it for standard

decryption where the answer is returned to the host. This ensures that the code

itself is not available “in the clear” outside of the HSM/SEE and; therefore, that any

intellectual property embodied in the code is protected.

To load encrypted code, the user must first load the encryption key. Therefore, if

the encryption key is protected by an OCS, only users with sufficient smart cards

from that OCS can load the code. Because this SEE confidentiality key does not

have decryption permissions (only the UseAsLoaderKey ACL entry), from a security

standpoint, it is not essential that it be protected by an OCS.

HSM-protected SEE confidentiality keys can be useful in

situations where the server or HSM is unexpectedly reset,

because, in such a case, the SEE machine can then be reloaded

without user intervention.

2.1.3. Data confidentiality

There are two main issues regarding data confidentiality:

• Transient confidentiality of data in the running system

• Long-term confidentiality of data when the code is not loaded.

The SEE protects the program’s information in the running system by enabling the

programmer to determine the interface by which data can come in and out of the

system and then rigorously enforce that interface.

Long-term confidentiality is preserved by using the non-volatile memory on the

HSM. The SEE program can access this storage by using nCore API commands.

Small quantities of highly sensitive information can be stored directly in the

nonvolatile random access memory (NVRAM). When the amount of information to

be stored exceeds the capacity of the NVRAM, data can be stored in an encrypted

blob with a much smaller key stored in the NVRAM. This functionality allows the

amount of secure storage to be limited only by the capacity of the host. For more

information, see the nCore Developer Tutorial.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 9/160

2.1.4. Data integrity

Confidential data is of little use if it can be changed by an attacker. Data stored in

the HSM’s NVRAM could only be altered if the Access Control List (ACL) were to

allow this to happen or if the physical security of the HSM were compromised.

When a large volume of data is made into a blob, a hash of that blob can be

stored in the NVRAM so that changes can be detected.

Another option for maintaining data that is not likely to change (such as root CA

keys) is to place it in the application initialization space and then use code

integrity techniques to protect the application initialization space.

2.1.5. Authentication and access control

A key feature of the SEE is the way that it can tie the integrity of the code to

access control of the resources that the code uses.

The key-management architecture controls access to objects such as keys by

means of ACLs. These lists specify sets of operations and verification keys that are

used to check the credentials authorizing these operations.

With SEE, you can create keys that can only be used to encrypt or sign SEE

machines (the SEE HSM-side code and, if required, its userdata). Encrypted

application code is effectively bound to the encryption key, thereby ensuring that

it can only be loaded onto an HSM on which you have already loaded the key. This

functionality effectively gives you OCS protection on application code.

Encrypted SEE machines are not currently supported for use

with nShield Connects. When the SEEMachine binary is installed

on the Connect itself for automated loading at boot, the SEE

Confidentiality key is not available. However, when a client host

loads a SEEMachine, it has access to the SEE Confidentiality key

and can cause the binary to be decrypted. In this scenario, the

Connect works fine with encrypted SEEMachine binaries.

SEE also extends the authorization credentials to include signatures on code. This

simple extension turns out to be very powerful. When a body of code issues a

command to use a resource that is controlled by an ACL, it may present a

certificate indicating that the signatures on the code should be examined by the

ACL checking system. If the signature on the code verifies with one of the keys

listed in the ACL, the operations delegated to that key can be carried out in that

command.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 10/160

Therefore, this extension of the authorization credentials means that you can

create keys that can only be used by the SEE-resident code. These keys can be

protected by the Security World or by OCSs.

The SEE code has access to the HSM’s NVRAM. Files stored in the HSM’s non-

volatile memory also have ACLs. These ACLs describe not only who can access

the file but what changes can be made to the file. For example, this feature

enables you to create secure counters that you know can never be zeroed or that

you know can be zeroed only by a trusted application running in the SEE.

2.2. How SEE works

A hardware security module maintains strict separation between

the nShield core functions and the user code.

The application starts with the code for a SEE machine stored in a file on the host.

A SEE machine is a binary executable of a type appropriate for the HSM. It

communicates with the nShield core by means of the interprocess communication
(IPC) for Solo XC and by means of the software interrupt (SWI) interface for Solo

PCIe. Applications may be written in C and compiled to form the SEE machine

itself. Alternatively, the SEE machine may consist of a language interpreter and the

HSM code supplied as a script or byte code by means of userdata. For more

information, see SEE and userdata

If a separate host-side program is required, you can write the host-side code in C,

using the nCore API. Alternatively, you can use the language of your choice.

Example utilities written in Java are provided in the component jhsee in the

directory /opt/nfast/java/examples.

These example utilities provide equivalent functionality to the C examples of

similar names. You can adapt them as required. See the supplied Javadocs for full

information about the Java example utilities.

The SEE machine can be signed, encrypted, or both, with the Trusted Code Tool

(tct2). For more information about this command-line utility, see Utilities.

Encrypted SEE machines are not currently supported for use

with nShield Connects. When the SEEMachine binary is installed

on the Connect itself for automated loading at boot, the SEE

Confidentiality key is not available. However, when a client host

loads a SEEMachine, it has access to the SEE Confidentiality key

and can cause the binary to be decrypted. In this scenario, the

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 11/160

Connect works fine with encrypted SEEMachine binaries.

The first step is to load the SEE machine onto the HSM. The hardserver software,

supplied on this installation media, automatically loads the SEE machine whenever

the HSM is reset, provided that:

• The HSM is SEE-Ready

To determine whether your HSM is SEE-Ready, refer to the

product data sheet for your HSM.

• The HSM sets the enquiry level 4 HasSEE flag

• A suitable machine image file is configured

• The load_seemachine section of the configuration file is configured to enable

the loading of SEE machines on startup.

You can perform this configuration with the loadsee-setup

command-line utility. See Utilities.

For development purposes, you can also load SEE machines manually by running

the loadmache command-line utility or, optionally, you can load SEE machines that

require support from a host-side see-*-serv utility by specifying the -M option

when you run the utility. See Utilities.

2.2.1. Code specifics

To use the functions provided by the SEE machine, the host application creates a

SEE World, supplying the initialization data, which includes the HSM resident

portion of the application code, initialization flags and any other SEE World

initialization information required. The functions provided by the HSM-resident

code can then be accessed by the SEE machine on command from the host-side

portion of the application. The SEE World is a private work space and has a

handle, an M_KeyID. As with other identifiers, this handle is associated with a

ClientID. A host application can only access a SEEWorld on the connection that

created the SEEWorld or on connections that have the same ClientID.

The CreateSEEWorld command takes a byte block called the SEE user data. This

block can be used to pass initialization data when a SEE machine is started. This

file also carries the signatures for the SEEWorld.

Refer to the nCore CodeSafe API Documentation for detailed

information about the CreateSEEWorld command.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 12/160

2.2.2. Security

When the SEE machine has been initialized, the host application can call the

functions that the SEE machine provides. These calls are sent using the nCore API

command SEEJob.

For example, if you write code to implement a custom algorithm, the host

application no longer calls the nCore API Encrypt command. Instead, it calls the

encrypt function of the SEE machine. The algorithm in the SEE machine then asks

the core for the key, uses the key to encrypt the message, and returns the result.

This is explained in detail for both the Solo XC and the Solo PCIe in Designing SEE

machines and SEE-ready HSMs.

The SEE machine can then make calls into the nShield core with the standard

nCore API. The replies are returned directly to the SEE machine without ever

leaving the protection of the HSM.

The SEE machine can access keys, or other objects that are

protected by the HSM, only by making nCore API calls to the

nShield core. HSM-side SEE code has the same privileges and

access to the cryptographic functionality of the HSM as that

given to the host-side programs using the nCore API. However, it

is possible to create SEE application keys that can be used only

by particular SEE applications and not by the host.

2.2.3. Internals

CodeSafe uses two command queues; The following diagram gives an overview of

how they function. The hardserver sends commands to the input queue. The input

queue looks at the commands and directs them to either the nCore API core or to

the SEEWorld.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 13/160

In this release you can only create a single SEEWorld for each HSM

at any one time.

The nCore API core takes commands from the input queue, processes them in

turn, and places them on the output queue. These commands may have come

from the server or from the SEEWorld.

The output queue receives the completed jobs from the core. It determines

whether the command was issued by the SEEWorld or the hardserver and sends the

result to the appropriate place.

While any command sent to the SEEWorld may cause a number of calls to the nCore

API core (and these calls circulate within the HSM), a given command only ever

produces a single reply that is returned to the server. After the SEEWorld has

completed the job, it returns a reply. The core returns this reply to the hardserver

and on to the application; this is the reply to the SEEJob command, handled in

exactly the same manner as for any other nCore API command.

The SEEJob reply is returned with Status_OK provided that the SEE machine returns

a reply to the nShield core. The return of this kind of reply does not mean that the

command itself was completed successfully in the SEE machine, only that

communication between the core and the SEE machine was completed

successfully. The SEE machine returns its own errors (if any) in the reply.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 14/160

The application running in the SEEWorld does not have direct access to the user

interface. Therefore, all interaction with the user must be performed by the host

application. In some cases, especially when loading tokens that are protected by

multiple smart cards, it can be useful to have the host application load an object

and then pass control to the application in the Status_OK. You cannot pass the

ObjectID because this is specific to the ClientID. Therefore, to pass control to the

application in the Status_OK, you must use key tickets.

Key tickets were introduced to the nCore API specifically for SEE, although they

can also be used to pass keys between different clients on the host. The client (or

SEE application) that creates a key asks for a ticket for the key. It passes the ticket

to the other client, which redeems the ticket for an ObjectID. There is only ever one

copy of the object, and all commands have to comply with the ACL.

2.3. SEE system architecture

There are different architectural strategies that you can use when designing a

CodeSafe SEE system, distinguished by the library they utilize:

Before designing your CodeSafe SEE system, decide which architecture best suits

your requirements:

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 15/160

• For Solo PCIe:

bsdlib: This architecture allows the use of standard TCP sockets and a

standard BSD C library in CodeSafe, making it possible to communicate with a

SEE machine using a generic approach. A design using this architecture is well

suited for SEE machines that implement applications such as Web servers and

proxies.

bsdlib provides a familiar programming environment compared to SEElib.

SEElib requires additional work on the host application to talk to SEE, whereas

bsdlib uses standard socket and standard IO interfaces.

If you are designing a CodeSafe Direct system, you must use

the bsdlib architecture. The SEElib library is not supported

for use with CodeSafe Direct.

If you are designing a CodeSafe SEE system using the bsdlib

library, you can use headers as normal for a Unix-based

system (for example, stdio.h, stdlib.h, pthread.h).

• For Solo XC:

glibc: This architecture allows the use of TCP sockets and a high performance

GNU C library in CodeSafe. This makes it possible to communicate with a SEE

machine using a generic approach.

glibc can only be used if you are using an nShield Solo XC module and

supports ISO C, POSIX, and System V standards.

A design using this architecture is well suited for SEE machines that

implement applications such as Web servers and proxies.

If you are designing a CodeSafe Direct system, you must use

the gblic architecture. The SEElib library is not supported for

use with CodeSafe Direct.

If you are designing a CodeSafe SEE system using the glibc

library, you can use headers as normal for a Unix-based

system (for example, stdio.h, stdlib.h, pthread.h).

• SEElib: A design using this legacy architecture is well suited to protecting

custom cryptography within a SEE machine. The A3A8 example program

provides a simple demonstration of how to achieve this; see Designing SEE

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 16/160

machines and SEE-ready HSMs for additional information.

If you are designing a CodeSafe SEE system using the SEElib

library, you can use the header file seelib.h, which contains

wrapper functions for the software interrupts, in addition to

a limited subset of the standard C library. See SEElib

functions for additional information.

Unless you have a specific reason to use the SEElib architecture, Entrust

recommend using the glibc/bsdlib architecture, as it provides a more familiar

standards-based programming environment using standard socket and standard

IO interfaces. Note that SEElib typically requires additional work on the host

application to interface to the SEE code. This is not required when using the

standards-based glibc/bsdlib approach.

2.4. SEE and byte code

All SEE machines must be compiled so they can run on the HSM. Additionally, SEE

machines that use the SEElib architecture must use the IPC/SWI to communicate

with the nShield core. (IPC Interface for the Solo XC and the SWI interface for Solo

PCIe.) Because these requirements make writing native SEE machines difficult,

SEE supports the concept of native SEE machines that are byte code interpreters.

Using a byte code interpreter has several advantages. Not only does it reduce

development effort, but each interpreter can load several different byte code

applications, each running in their own SEEWorld. The byte code for the application

is passed in the userdata with the CreateSEEWorld command.

To prevent attackers from replacing a good SEE machine with a malicious one, the

certificate for the byte code can specify that the SEE machine must be signed

with a specific key. This is done by including the hash of this key in the certificate

for the byte block. This certificate is created automatically by the Trusted Code

Tool (see tct2). You supply the hash of the key used to sign the SEE machine when

you sign your application. The Trusted Code Tool uses keys protected by an OCS

for signing operations.

2.5. SEE and userdata

2.5.1. What is userdata?

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 17/160

A userdata file can contain any data that is useful to the SEE machine. For

example, you can use a CPIO archive to supply many different data files in a single

directory structure (examples are provided in Designing SEE machines and SEE-

ready HSMs.

All SEE machines built with glibc/bsdlib must be provided with a

valid ASCII-format CPIO archive. This archive forms the base of

the file system available to your SEE machine. Even if your SEE

machine does not use this file system, you must still create and

supply it with dummy userdata as a place-holder.

2.5.2. Creating userdata suitable for loading into the HSM

You can create a userdata file suitable for loading into the HSM by turning it into a

SAR file with the tct2 command-line utility. Signing the userdata file in this way

offers improved security.

2.6. SEE and Security Worlds

Within a Security World, the following actions may be configured to require

authorization from the nShield Security Officer Key (KNSO) , or a key with authority

delegated from the KNSO:

• Allocation and forced freeing of nonvolatile memory

• Setting the real-time clock

• Enabling the run-time debugging options.

Each of these features can be enabled individually.

At Security World creation time, certificates may be created delegating authority

from KNSO to keys protected by logical tokens which are split amongst the

Administrator Card Set (ACS) in the usual way, but may require a different K/N

threshold to reassemble. For example, you may wish to require that only one of

five Administrator Cards be presented to set the real-time clock on an HSM, but

three of them to replace the ACS.

The tools that create these certificates are:

• KeySafe (version 2 and later)

• The new-world command-line utility

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 18/160

• The nShield Connect front panel.

For more information about these tools, see the User Guide.

A Security World created using some older tools does not have

any of these delegation certificates to support nonvolatile

memory and real-time clock operations or to allow debugging of

SEE applications. Therefore, such operations would require full

KNSO authorization.

To sign or encrypt the HSM-side code, the signing and encryption keys must

belong to the Security World to which the HSM belongs.

To test code outside a Security World, you can use the initunit command-line

utility to remove the HSM from the Security World. In this case you cannot sign or

encrypt your code, and the code cannot access keys protected by the Security

World.

If you use the initunit command-line utility to initialize the HSM,

any user can set the clock and create or free NVRAM files. This

means that any user can free an existing file and allocate another

file with the same name but with different contents or with a

different ACL. Most security policies forbid this.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.3 User Guide (Linux) 19/160

3. Designing SEE machines and SEE-
ready HSMs
This manual addresses SEE for both the Solo XC and the Solo PCIe.

For Solo XC, see Writing SEE machines - Solo XC

For Solo PCIe, see Writing SEE machines - Solo PCIe

3.1. Writing SEE machines - Solo XC

This chapter describes how to write a SEE machine for use on SEE-Ready HSMs.

An SEE machine is an executable binary file of a type appropriate for the HSM that

communicates with the nShield core (which runs in kernel mode) using a defined

set of software interrupts. These interrupts, and their wrapper functions, provide a

run-time environment that includes memory and thread management as well as an

interface for accepting and returning jobs and calling nCore API commands.

C source code is compiled using one of the GCC cross-compilers supplied with the

CodeSafe Developer Kit. For details of required compiler options; see Example

SEE machines and the makefiles supplied with the examples.

The compiled code can then be signed, packed, and encrypted by using the

Trusted Code Tool (tct2 utility) to produce a secure archive; see Utilities.

In CodeSafe versions prior to 13.3, the Solo XC only supports SEE

machines smaller than 70 MB. From 13.3 onwards, the Solo XC

can support SEE machines up to 800 MB.

3.1.1. Designing the glibc architecture

The GNU C library glibc is supplied together with libpthreads, librt and a system

call underlay for use with Codesafe SEE development.

A rich set of C function calls is available to use in SEE machine development.

Native support for Unix-based system calls is provided, only restricted by a

whitelist of the system calls (SEE Machines Whitelist) allowed in the SEE

environment.

A subset of the Unix-based system calls, implemented in terms of the inter-

process communication interface (IPC), allows access to the cryptographic HSM

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 20/160

kernel. The provided system calls include a virtual file system and associated set of

input and output devices with which you interact in the standard manner.

The virtual file system is supported as an extension to the file system.

Also provided are some link-time plug-ins that extend the virtual file system to

provide additional capabilities:

• hoststdioe.o: stdin, stdout, and stderr facility hooks; seestream_stdio(7see)

• hoststdoe.o: stdout and stderr facility hooks; seestream_stdio(7see)

• hostinetsocks.o: TCP socket facility hooks; seestream_inet(7see)

• hoststdioeinetsocks.o: TCP socket facility and stdin, stdout, and stderr facility

hooks; seestream_inet(7see)seestream_stdio(7see)

The link-time plug-in vulnerability.o is provided for the

purposes of debugging (see Vulnerability test harness). Entrust

recommends that you do not link vulnerability.o into a

production SEE machine.

3.1.2. Designing the SEElib architecture

This section describes how to design SEE machines using the SEElib architecture.

This kind of architecture requires host-side software to create the SEE World and

communicate with the HSM.

To start the SEE machine running with a particular SEE userdata, the host

application calls the nCore API command CreateSEEWorld. This command creates a

SEE World using data previously loaded into the HSM with the LoadBuffer

command from a buffer created with the CreateBuffer command. See the nCore

API Documentation (supplied as HTML) for information about the nCore API

commands.

You can also use or adapt the supplied example Java class SEEWorld to initialize the

SEE machine.

When the host application calls CreateSEEWorld, the HSM allocates memory for the

SEE World and sets up its input and output job queues. It then runs the SEE

machine’s main() function.

The SEE machine’s main() function must:

• Call SEElib_init() before any other SEE library function to initialize the SEE

library and to check that the HSM is running the expected version of the

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 21/160

library

• If the machine accepts userdata:

◦ call SEElib_GetUserDataLen to determine the length of the byte block that

was passed with CreateSEEWorld

◦ call SEElib_ReadUserData to load the byte block

◦ determine whether the byte block is valid

◦ initialize any required structures

• Start at least one thread which receives and processes commands (this thread

must call SEElib_AwaitJob)

The SEElib_StartProcessorThreads function can be used for

this purpose.

• Call SEElib_InitComplete and return a status.

The status passed to SEElib_InitComplete is returned to the calling application in

the reply to CreateSEEWorld The application can determine the status values, with

one exception: if the machine fails before calling SEElib_InitComplete(), the

CreateSEEWorld command returns a value of 1 (SEEInitStatus_MachineFailed) in this

field. You should therefore avoid choosing the value 1 to indicate successful

initialization.

When the application receives the reply to CreateSEEWorld with Status_OK and an

acceptable initstatus, it can start to submit jobs with the nCore API command

SEEJob.

You can also use or adapt the supplied example Java class SEEJob to submit jobs to

the SEE machine.

The SEEJob command takes a byte block, which is passed to the SEElib_AwaitJob

function without being interpreted in any way. It is up to the host application to

assemble this byte block and the SEE machine to interpret it.

After the job has been processed, assemble the reply into a byte block and call

SEElib_ReturnJob to return it using the nShield core.

The nShield core assembles this byte block into a reply and returns it to the host

application. Provided that the job is returned before the command times out, the

reply has the status OK. The SEE machine must include any necessary status

information within the byte block it returns. The calling application must

remember to check this status as well as the status of the SEEJob nCore API

function and the transport call, for example NFastApp_Transact().

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 22/160

The SEE machine can call nCore API functions with SEElib_Transact or

SEElib_MarshalSendCommand and SEElib_GetUnmarshalResponse. It may submit these as

part of its initialization, before it calls SEElib_InitComplete(). However, if it does not

call SEElib_InitComplete() within 30 seconds of start-up, the CreateSEEWorld

command returns SEEInitStatus_MachineFailed. For this reason, you should not

perform (for example) lengthy key generation operations during initialization.

SEElib_Transact has syntax equivalent to the NFastApp_Transact function in the C

generic stub. It takes a command structure and returns a reply structure.

SEElib_MarshalSendCommand takes a command structure and submits it.

SEElib_GetUnmarshalResponse reads a response from a buffer and returns a reply

structure.

SEElib_StartTransactListener must be called successfully before

you use SEElib_Transact to communicate with the nShield core.

3.1.3. SEE machines for new algorithms

In addition to being able to perform basic cryptographic operations, any SEE

machine that implements an algorithm must also be able to:

• Generate keys

• Import keys

• Store keys as key blobs.

The SEE machine can use the nCore API functions GenerateRandom and

GeneratePrime to acquire random numbers and random prime numbers from the

HSM’s hardware random number generator.

The SEE machine can perform its own multiprecision arithmetic. Otherwise, it can

use the nCore API BignumOp command to perform multiprecision arithmetic and the

ModExp and ModExpCrt commands to perform modular exponentiation.

If you are using keys as session keys, there is no requirement for them ever to be

placed in the nShield core. The only time that you need to transfer a key to the

core is if you need to create a key blob for long-term storage. However, if you

need to keep track of several keys, you may want to make use of the nShield

core’s object store rather than having to create a similar structure in your own

code.

For an example of how See machines can implement a non-standard algorithm,

see A3A8 example.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 23/160

3.1.3.1. Key type

The SEE machine stores keys using the random key type. This is a plain byte block

with no structure.

If the key contains several values, for example, exponent and modulus, the SEE

machine must implement its own routines for marshalling and unmarshalling the

byte block into the correct structure.

SEE machines using standard algorithms do not use the random

key type. Instead, they use standard nCore key types.

3.1.3.2. ACL

The ACL needs to be constructed so that the SEE machine and only the SEE

machine can access the key. To transfer a key from the nShield core to the SEE

machine, the key must have the ExportAsPlain flag set in its ACL. The permission

group with ExportAsPlain must be protected by a certifier so that this operation

can only be performed by the SEE machine.

Although one obvious solution is to use the key that was used to sign the SEE

machine, KInteg, as the certifier, using KInteg in this way means that whoever signed

the SEE machine could potentially access any key for this algorithm. A better

solution is to add an extra signature to the SEE machine by using a second key,

KAuth The KInteg signature proves that the code has not changed since it was signed.

The KAuth signature is then used to control access to keys.

You can use the generatekey command-line utility to generates keys for use as KAuth

and KInteg by specifying the seeinteg application as a key generation parameter.

The ACL must also have the correct MakeBlob permissions. If you want to use the

standard Security World tools for key management and recovery, the host

application can use these tools to create the ACL.

SEE machines using standard algorithms generally do not need

to get the key as plain text in the SEE machine.

3.1.3.3. Storage

For long-term storage, the key needs to be encapsulated in a key blob that is

protected by the Security World or an OCS. To provide OCS replacement and

recovery, you may also require additional key blobs protected by other card sets.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 24/160

You could write a function where your SEE machine calls MakeBlob and returns the

blob to the host. Alternatively, you could write a method that returns a key ticket

and have the host application create the key blobs.

If you are using a Security World, the host application can use nfkm library calls to

create and store the key blobs.

3.1.3.4. Loading stored keys

In general, it is easier for the host application to manage tokens, because it has

direct access to the user interface and can prompt the user to insert cards and

enter passphrases.

When the token has been loaded, the host application can load the key and pass a

key ticket to the SEE machine. The SEE machine can then redeem the key ticket

for a KeyID and use this to access the key. If you have several keys that are

protected by a token, it usually makes sense to pass a ticket for the KeyID of the

logical token, rather than passing tickets for each key.

You should also pass in a ticket for the logical token if the host application that

loads the token exits afterwards. When it exits, it destroys the logical token’s ID,

which invalidates all loaded keys that were using it. Passing the logical token’s ID

in to the SEE machine prevents its destruction when the application exits.

3.1.3.5. Run-time library

We supply a customized C run-time library (librtusr.a) and a corresponding set of

header files (in the include-see/module/rtlib subdirectory) for programs operating

in the SEE environment. This library contains most commonly used ANSI C

functions, with the addition of the following proprietary extensions:

• Thread creation and control functions documented in sys/threads.h

• Thread synchronization primitives (events, semaphores, spin-locks), also

documented in sys/threads.h

However, the librtusr.a library excludes:

• Any file or directory access functions

• User input functions (for example, stdin and scanf())

• Floating-point math library functions (in math.h), although basic floating-point

types and arithmetic are supported

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 25/160

• Time/date and locale-specific functions (time.h, locale.h).

Multiplexing is not available with the rtlib/SEElib runtime

library.

Access to the raw (IPC) interface between the SEE machine and the kernel is by

means of the SWIcall() function, documented in sys/swis.h. The comments in this

file are provided mainly for information, because all useful SWIs have C wrapper

functions presented in other header files.

See SEElib functions for reference information about glibc functions.

3.1.4. Signing userdata for additional security

Signing userdata files can help increase the security of CodeSafe SEE applications.

Both types of SEE machine architecture, using glibc and using SEElib, can take

advantage of the security benefits offered by signing userdata files.

For example, if your SEE machine is intended to perform some cryptography

functions using a given key, it would be advantageous to prevent that key from

being accessed by any unauthorized SEE machines. This can be achieved by

signing the userdata file for your SEE machine.

The following figure provides an overview diagram of the process of signing a SEE

machine’s userdata file.

The following sequence, in which an original SEE machine is represented by

machine.elf and an original userdata file is represented by userdata.bin,

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 26/160

demonstrates the process of signing a SEE machine’s userdata file:

1. Create the key Kseemach of type seeinteg to sign the SEE machine by running a

command similar to:

generatekey seeinteg plainname=seemach ...

2. Create the key Kuserdata of type seeinteg to sign the userdata by running a

command similar to:

generatekey seeinteg plainname=userdata ...

3. Run the generatekey command-line utility to create a key Kcrypto (the key with

which your SEE machine is to perform its cryptography functions), specifying

Kuserdata for its seeintegname:

generatekey simple plainname=crypto --seeintegname=userdata ...

This example assumes Kcrypto is being created as a Triple DES

key.

4. Run the tct2 command-line utility to sign the userdata file for your SEE

machine with the key Kuserdata, specifying Kseemach as the SEE machine key:

tct2 --sign --key=userdata --machine-key-ident=seemach --infile=userdata.bin --outfile=userdata.sar

For information about the tct2 command-line utility, see

tct2.

5. Run the tct2 command-line utility to sign the SEE machine with the key K

seemach:

tct2 --sign --key=seemach -- machine-type=PowerPCELF --is-machine --infile=machine.elf
--outfile=machine.sar

The result of the process demonstrated in this sequence of steps is that no SEE

machine can use the key Kcrypto unless at least one of the following conditions is

met:

• It has been signed by the correct Kseemach and is used in conjunction with the

correct userdata file

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 27/160

• You make use of the key recovery feature (see the User Guide).

3.1.5. Building your SEE machine and host-side application

The following steps provide an overview of the process you follow to use your

application with SEE:

1. If you want to sign or encrypt your application, generate code-signing and

confidentiality keys as applicable.

2. Compile and link the host application’s source files using the native compiler

on the host. See the diagram in the following step.

3. Compile and link the SEE machine source using the GCC cross compiler. See

the following diagram.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 28/160

4. If required, use the Trusted Code Tool (tct2) to sign the SEE machine with the

code-signing keys. See Utilities for additional information.

5. Use the Trusted Code Tool (tct2) to pack the HSM files and create a SAR file.

You must pack the binary file even if signatures are not required. See Utilities

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 29/160

for additional information.

6. Use the Trusted Code Tool (tct2) to pack (and, if required, sign with the code-

signing keys) the userdata file and create a SAR file. You must pack the

userdata file even if signatures are not required (unless you use one of the see-

*-serv host utilities with the --userdata-raw option. See Utilities for additional

information.

7. If required, use the Trusted Code Tool (tct2) to encrypt the userdata file, using

the confidentiality key.

8. Place the userdata SAR file and the host application in an appropriate location

to be used at runtime.

9. For SEE machines using the SEElib architecture, userdata file can either be

either loaded automatically or can be loaded by running the loadmache

command-line utility.

For SEE machines that require support from a host-side see-*-serv utility, the

host utility loads the userdata file automatically.

The following diagram shows these different methods for loading a SEE

machine.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 30/160

For more information, see Automatically loading a SEE machine.

3.2. Writing SEE machines - Solo PCIe

This chapter describes how to write an SEE machine for use on SEE-Ready HSMs.

An SEE machine is an executable binary file of a type appropriate for the HSM that

communicates with the nShield core (which runs in kernel mode) using a defined

set of software interrupts. These interrupts, and their wrapper functions, provide a

run-time environment that includes memory and thread management as well as an

interface for accepting and returning jobs and calling nCore API commands.

C source code is compiled using one of the GCC cross-compilers supplied with the

CodeSafe Developer Kit. For details of required compiler options, see Example

SEE machines and the Makefiles supplied with the examples.

The compiled code can then be signed, packed, and encrypted by using the

Trusted Code Tool (tct2 utility) to produce a secure archive; see Utilities.

3.2.1. Designing the bsdlib architecture

We supply the FreeBSD C library bsdlib and system call underlay for use with

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 31/160

CodeSafe SEE development.

Internally, bsdlib has three portions:

• A set of C library functions taken from the 4.6.x FreeBSD distribution

• A pthreads implementation that allows SEE machines built with the bsdlib

architecture to be both multithreading and multiplexing (select(2) and poll(2)

are available for multiplexing)

• A subset of the Unix-based system calls, both usable directly and used by the

FreeBSD C library, implemented in terms of the SWI to the cryptographic HSM

kernel. The provided subset of system calls includes a virtual file system and

associated set of input and output devices with which you interact in the

standard FreeBSD manner.

Also provided are some link-time plug-ins that extend the virtual file system to

provide additional capabilities:

• hoststdioe.o: stdin, stdout, and stderr facility hooks; seestream_stdio(7see)

• hoststdoe.o: stdout and stderr facility hooks; seestream_stdio(7see)

• hostinetsocks.o: TCP socket facility hooks; seestream_inet(7see)

• coredevrandom.o: /dev/random facility hooks; fs_random(7see)

• procfs.o: /proc file system that provides features and flags; fs_proc(7see)

• getrtctime.o: uses the HSM’s secure RTC to call settimeofday when the machine

starts up; time(7see)

The link-time plug-in vulnerability.o is provided for the

purposes of debugging (see Vulnerability test harness). Entrust

recommends that you do not link vulnerability.o into a

production SEE machine.

3.2.1.1. Host-side utilities for SEE machines using bsdlib

SEE machines that require the standard I/O streams or INET domain sockets must

be serviced by an appropriate host-side utility. Without the host-side utility, SEE

machine operations requiring any of these streams are blocked until the

appropriate service becomes available.

We supply 4 different host-side utilities, all of which have the capability to:

• Load the SAR file for the SEE machine

• Load the mandatory userdata file

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 32/160

• Provide different combinations of socket and I/O streams

These utilities are described below:

• see-sock-serv: Use this utility if your SEE machine requires only sockets, and if

you want to make use of the CodeSafe Direct feature. (See Configuring the

nShield Connect to use CodeSafe Direct for more information about CodeSafe

Direct.)

• see-stdoe-serv: Use this utility if your SEE only requires standard output and

error streams.

• see-stdioe-serv: Use this utility if your SEE machine requires only standard

input, output, and error streams.

• see-stdioesock-serv: Use this utility if your SEE machine requires sockets in

addition to standard input, output, and error streams.

Ensure that you select the appropriate utility for your SEE machine, because

running a host-side utility with more provisions than the SEE machine was linked

against causes the SEE machine to abort.

Generate the mandatory userdata file with the cpioc utility. This utility takes a

collection of files and packs them up into an archive file that the SEE machine can

use. To generate a userdata file, run a command of the form:

cpioc userdata.cpio <MyFile1> <MyFile2> <MyFile3> [...]

In this command, <MyFile1>, <MyFile2>, and <MyFile3> represent the files being

packed into the userdata.cpio file that is generated by the command. You can

specify as many files as appropriate. You can also specify one or more directories;

the command automatically packs their contents (including any subdirectories)

into the generated userdata.cpio file.

Typically, you run the host-side utilities with a command of the form:

see-*-serv --machine <MySEEMachine>.sar --userdata-raw <MyUserdataFile>

If the userdata file is signed (see Signing userdata for additional security), then run

these host-side utilities with a command of the form:

see-*-serv --machine <MySEEMachine>.sar --userdata-sar <MyUserdataFile>.sar

Although you cannot load an encrypted SEE machine with the

see-*-serv utilities, you can use them to start and service a

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 33/160

previously loaded encrypted SEE machine.

For more detailed information and examples of how to apply these utilities, see

Examples for bsdlib library and see-*-serv utilities.

3.2.2. Designing for the SEElib architecture

This section describes how to design SEE machines using the SEElib architecture.

This kind of architecture requires host-side software to create the SEE World and

communicate with the HSM.

To start the SEE machine running with a particular SEE userdata, the host

application calls the nCore API command CreateSEEWorld. This command creates an

SEE World using data previously loaded into the HSM with the LoadBuffer

command from a buffer created with the CreateBuffer command. See the nCore

API Documentation (supplied as HTML) for information about the nCore API

commands.

You can also use or adapt the supplied example Java class SEEWorld to initialize the

SEE machine.

When the host application calls CreateSEEWorld, the HSM allocates memory for the

SEE World and sets up its input and output job queues. It then runs the SEE

machine’s main() function.

The SEE machine’s main() function must:

• Call SEElib_init() before any other SEE library function to initialize the SEE

library and to check that the HSM is running the expected version of the

library

• If the machine accepts userdata:

◦ call SEElib_GetUserDataLen to determine the length of the byte block that

was passed with CreateSEEWorld

◦ call SEElib_ReadUserData to load the byte block

◦ determine whether the byte block is valid

◦ initialize any required structures

• Start at least one thread which receives and processes commands (this thread

must call SEElib_AwaitJob)

The SEElib_StartProcessorThreads function can be used for

this purpose.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 34/160

• Call SEElib_InitComplete and return a status.

The status passed to SEElib_InitComplete is returned to the calling application in

the reply to CreateSEEWorld. The application can determine the status values, with

one exception: if the machine fails before calling SEElib_InitComplete(), the

CreateSEEWorld command returns a value of 1 (SEEInitStatus_MachineFailed) in this

field. You should therefore avoid choosing the value 1 to indicate successful

initialization

When the application receives the reply to CreateSEEWorld with Status_OK and an

acceptable initstatus, it can start to submit jobs with the nCore API command

SEEJob.

You can also use or adapt the supplied example Java class SEEJob to submit jobs to

the SEE machine.

The SEEJob command takes a byte block, which is passed to the SEElib_AwaitJob

function without being interpreted in any way. It is up to the host application to

assemble this byte block and the SEE machine to interpret it.

After the job has been processed, assemble the reply into a byte block and call

SEElib_ReturnJob to return it using the nShield core.

The nShield core assembles this byte block into a reply and returns it to the host

application. Provided that the job is returned before the command times out, the

reply has the status OK. The SEE machine must include any necessary status

information within the byte block it returns. The calling application must

remember to check this status as well as the status of the SEEJob nCore API

function and the transport call, for example NFastApp_Transact().

The SEE machine can call nCore API functions with SEElib_Transact or

SEElib_MarshalSendCommand and SEElib_GetUnmarshalResponse. It may submit these as

part of its initialization, before it calls SEElib_InitComplete(). However, if it does not

call SEElib_InitComplete() within 30 seconds of start-up, the CreateSEEWorld

command returns SEEInitStatus_MachineFailed. For this reason, you should not

perform (for example) lengthy key generation operations during initialization.

SEElib_Transact has syntax equivalent to the NFastApp_Transact function in the C

generic stub. It takes a command structure and returns a reply structure.

SEElib_MarshalSendCommand takes a command structure and submits it.

SEElib_GetUnmarshalResponse reads a response from a buffer and returns a reply

structure.

 SEElib_StartTransactListener must be called successfully before

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 35/160

you use SEElib_Transact to communicate with the nShield core.

3.2.3. SEE machines for new algorithms

In addition to being able to perform basic cryptographic operations, any SEE

machine that implements an algorithm must also be able to:

• Generate keys

• Import keys

• Store keys as key blobs.

The SEE machine can use the nCore API functions GenerateRandom and

GeneratePrime to acquire random numbers and random prime numbers from the

HSM’s hardware random number generator.

The SEE machine can perform its own multiprecision arithmetic. Otherwise, it can

use the nCore API BignumOp command to perform multiprecision arithmetic and the

ModExp and ModExpCrt commands to perform modular exponentiation.

If you are using keys as session keys, there is no requirement for them ever to be

placed in the nShield core. The only time that you need to transfer a key to the

core is if you need to create a key blob for long-term storage. However, if you

need to keep track of several keys, you may want to make use of the nShield

core’s object store rather than having to create a similar structure in your own

code.

For an example of how an SEE machine can implement a non-standard algorithm,

see A3A8 example.

3.2.3.1. Key type

The SEE machine stores keys using the random key type. This is a plain byte block

with no structure.

If the key contains several values, for example, exponent and modulus, the SEE

machine must implement its own routines for marshalling and unmarshalling the

byte block into the correct structure.

SEE machines using standard algorithms do not use the random

key type. Instead, they use standard nCore key types.

3.2.3.2. ACL

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 36/160

The ACL needs to be constructed so that the SEE machine and only the SEE

machine can access the key. To transfer a key from the nShield core to the SEE

machine, the key must have the ExportAsPlain flag set in its ACL. The permission

group with ExportAsPlain must be protected by a certifier so that this operation

can only be performed by the SEE machine.

Although one obvious solution is to use the key that was used to sign the SEE

machine, KInteg, as the certifier, using KInteg in this way means that whoever signed

the SEE machine could potentially access any key for this algorithm. A better

solution is to add an extra signature to the SEE machine by using a second key,

KAuth. The KInteg signature proves that the code has not changed since it was signed.

The KAuth signature is then used to control access to keys.

You can use the generatekey command-line utility to generates keys for use as KAuth

and KInteg by specifying the seeinteg application as a key generation parameter.

The ACL must also have the correct MakeBlob permissions. If you want to use the

standard Security World tools for key management and recovery, the host

application can use these tools to create the ACL.

SEE machines using standard algorithms generally do not need

to get the key as plain text in the SEE machine.

3.2.3.3. Storage

For long-term storage, the key needs to be encapsulated in a key blob that is

protected by the Security World or an OCS. To provide OCS replacement and

recovery, you may also require additional key blobs protected by other card sets.

You could write a function where your SEE machine calls MakeBlob and returns the

blob to the host. Alternatively, you could write a method that returns a key ticket

and have the host application create the key blobs.

If you are using a Security World, the host application can use nfkm library calls to

create and store the key blobs.

3.2.3.4. Loading stored keys

In general, it is easier for the host application to manage tokens, because it has

direct access to the user interface and can prompt the user to insert cards and

enter passphrases.

When the token has been loaded, the host application can load the key and pass a

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 37/160

key ticket to the SEE machine. The SEE machine can then redeem the key ticket

for a KeyID and use this to access the key. If you have several keys that are

protected by a token, it usually makes sense to pass a ticket for the KeyID of the

logical token, rather than passing tickets for each key.

You should also pass in a ticket for the logical token if the host application that

loads the token exits afterwards. When it exits, it destroys the logical token’s ID,

which invalidates all loaded keys that were using it. Passing the logical token’s ID

in to the SEE machine prevents its destruction when the application exits.

3.2.3.5. Run-time library

We supply a customized C run-time library (librtusr.a) and a corresponding set of

header files (in the include-see/module/rtlib subdirectory) for programs operating

in the SEE environment. This library contains most commonly used ANSI C

functions, with the addition of the following proprietary extensions:

• Thread creation and control functions documented in sys/threads.h

• Thread synchronization primitives (events, semaphores, spin-locks), also

documented in sys/threads.h

However, the librtusr.a library excludes:

• Any file or directory access functions

• User input functions (for example, stdin and scanf())

• Floating-point math library functions (in math.h), although basic floating-point

types and arithmetic are supported

• Time/date and locale-specific functions (time.h, locale.h).

Multiplexing is not available with the rtlib/SEElib runtime

library.

Access to the raw (SWI) interface between the SEE machine and the kernel is by

means of the SWIcall() function, documented in sys/swis.h. The comments in this

file are provided mainly for information, because all useful SWIs have C wrapper

functions presented in other header files.

See SEElib functions for reference information about bsdlib functions.

3.2.4. Signing userdata for additional security

Signing userdata files can help increase the security of CodeSafe SEE applications.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 38/160

Both types of SEE machine architecture, using bsdlib and using SEElib, can take

advantage of the security benefits offered by signing userdata files.

For example, if your SEE machine is intended to perform some cryptography

functions using a given key, it would be advantageous to prevent that key from

being accessed by any unauthorized SEE machines. This can be achieved by

signing the userdata file for your SEE machine.

The following diagram illustrates the process of signing an SEE machine’s userdata

file.

The following sequence, in which an original SEE machine is represented by

machine.sxf and an original userdata file is represented by userdata.bin,

demonstrates the process of signing an SEE machine’s userdata file:

1. Create the key Kseemach of type seeinteg to sign the SEE machine by running a

command similar to:

generatekey seeinteg plainname=seemach ...

2. Create the key Kuserdata of type seeinteg to sign the userdata by running a

command similar to:

generatekey seeinteg plainname=userdata ...

3. Run the generatekey command-line utility to create a key Kcrypto (the key with

which your SEE machine is to perform its cryptography functions), specifying

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 39/160

Kuserdata for its seeintegname:

generatekey simple plainname=crypto --seeintegname=userdata ...

This example assumes Kcrypto is being created as a Triple DES

key.

4. Run the tct2 command-line utility to sign the userdata file for your SEE

machine with the key Kuserdata, specifying Kseemach as the SEE machine key:

tct2 --sign --key=userdata --machine-key-ident=seemach --infile=userdata.bin --outfile=userdata.sar

For information about the tct2 command-line utility, see

tct2.

5. Run the tct2 command-line utility to sign the SEE machine with the key K

seemach:

tct2 --sign --key=seemach -- machine-type=PowerPCSXF--is-machine --infile=machine.sxf --outfile=machine.sar

The result of the process demonstrated in this sequence of steps is that no SEE

machine can use the key Kcrypto unless at least one of the following conditions is

met:

• It has been signed by the correct Kseemach and is used in conjunction with the

correct userdata file

• You make use of the key recovery feature (see the User Guide).

3.2.5. Building your SEE machine and host-side application

The following steps provide an overview of the process you follow to use your

application with SEE:

1. If you want to sign or encrypt your application, generate code-signing and

confidentiality keys as applicable.

2. Compile and link the host application’s source files using the native compiler

on the host. See the diagram in the following step.

3. Compile and link the SEE machine source using the GCC cross compiler. See

the following diagram.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 40/160

4. Run the elftool command-line utility to convert the compiled SEE machine to

SXF format. See Utilities for additional information.

5. If required, use the Trusted Code Tool (tct2) to sign the SEE machine with the

code-signing keys. See Utilities for additional information.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 41/160

6. Use the Trusted Code Tool (tct2) to pack the HSM files and create a SAR file.

See Utilities for additional information. You must pack the binary file even if

signatures are not required.

7. Use the Trusted Code Tool (tct2) to pack (and, if required, sign with the code-

signing keys) the userdata file and create a SAR file. You must pack the

userdata file even if signatures are not required (unless you use one of the see-

*-serv host utilities with the --userdata-raw option.

8. If required, use the Trusted Code Tool (tct2) to encrypt the userdata file, using

the confidentiality key. See Utilities for additional information.

9. Place the userdata SAR file and the host application in an appropriate location

to be used at runtime.

10. For SEE machines using the SEElib architecture, userdata file can either be

either loaded automatically or can be loaded by running the loadmache

command-line utility.

For SEE machines that require support from a host-side see-*-serv utility, the

host utility loads the userdata file automatically.

The following diagram shows these different methods for loading an SEE

machine.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 42/160

For more information, see Automatically loading an SEE machine.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.3 User Guide (Linux) 43/160

4. Example SEE machines
This chapter documents the example SEE machines.

The supplied C examples consist of the source files and associated makefiles that

you can compile on your system and run to understand how different kinds of SEE

machines work. To run the compiled examples correctly, you must have the latest

version of the Security World for nShield and also version 2.22.34 or later of the

HSM firmware.

The latest versions of both the Security World for nShield and

HSM firmware are supplied on the installation media.

Encrypted SEE machines are not currently supported for use

with nShield Connects. When the SEEMachine binary is installed

on the Connect itself for automated loading at boot, the SEE

Confidentiality key is not available. However, when a client host

loads a SEEMachine, it has access to the SEE Confidentiality key

and can cause the binary to be decrypted. In this scenario, the

Connect works fine with encrypted SEEMachine binaries.

4.1. Examples for bsdlib library

This section is only relevant when using an nShield Solo+ or an nShield Connect+.

If you are using an nShield Solo XC or an nShield Connect XC, see Examples for

glibc library.

In default CodeSafe installations, the following C examples are supplied in

directories under the path /opt/nfast/c/csd/examples/:

Location Description

bsdsee/helloworld.c This example is a simple, introductory test program.

bsdsee/see-random.c This example demonstrates basic usage of the generic stub within SEE.

bsdsee/see-enquiry.c This example demonstrates host code running within SEE with no large

modifications.

bsdsee/tcp-proxy.c This example is a multithreaded TCP-TCP proxy that forwards all

connections on port 8080 to 127.0.0.1:80.

If the nShield Connect is configured to use see-sock-serv directly, any supplied

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 44/160

bsdlib examples that use see-sock-serv can be run directly on the nShield Connect,

rather than via a client machine.

The examples here show how to run a SEE machine from a command line.

Alternatively, if you wish to run a SEE machine directly, please see Deploying SEE

Machines.

If you are running see-sock-serv directly on an nShield Connect,

port numbers in the examples should be modified to bind to

ports within the range 8000-8999.

All supplied examples for bsdlib, both standard and SSL-related, require one of the

see-*-serv host-side utilities. For more information about these utilities, see see-*-

serv utilities.

4.1.1. Building the HSM-side code

1. Create a directory in your Documents location to contain the platform examples.

For example, create a directory called buildBSDmod, and enter this directory. For

example:

cd ~
mkdir buildBSDmod
cd buildBSDmod

2. Configure the module examples build using the command:

cmake -DCMAKE_TOOLCHAIN_FILE=<path to BSD tool chain> <path to BSD SEE examples>

Using the default locations for the tool chain and the BSD SEE examples the

command would be:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-linux-solo-bsdsee.cmake
/opt/nfast/c/csd/examples/

3. Build the module examples using the command:

cmake --build <build output location>

For example:

cmake --build .

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 45/160

Here, the . specifies the location where the build products should be placed,

in this case to the current directory.

This results in the creation of a directory, bsdsee, which contains all the

compiled examples. The build process will create two files per example, one

with a .sxf suffix and another with an .elf suffix.

~$ mkdir ~/buildBSDmod
~$ cd ~/buildBSDmod
~/buildBSDmod$ cmake ~DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-linux-solo-bsdsee.cmake
/opt/c/csd/examples/
~/buildBSDmod$ cmake --build .

4.1.2. Helloworld example

This example source code is a simple example of an SEE machine written in C. It is

not intended to be the basis for any real world applications. It is intended only to

demonstrate how to write SEE machines in C and the use of an appropriate host

utility to handle output to stdout and stderr.

4.1.2.1. Packing the SEE machine

Use the tct2 command-line utility to convert the SXF (Secure eXecution Format)

file into a SAR (Secure or SEE ARchive) file as follows:

tct2 --pack --infile=helloworld.sxf --outfile=helloworld.sar

You can also choose to set options in this command that sign or encrypt the file.

For more information, see tct2.

4.1.2.2. Creating a userdata file

All SEE machines built with the bsdlib C library must be provided

with a valid ASCII-format CPIO archive. This archive forms the

base of the file system available to your SEE machine. You can

use the cpioc command-utility that we provide to create CPIO

archives of the correct type.

Although the helloworld example does not use its file system,

you must still create and supply it with dummy userdata as a

place-holder.

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 46/160

Create a dummy userdata file as follows:

$echo dummy > dummy
$ cpioc userdata.cpio dummy
F dummy
Written 'userdata.cpio': 1 files, 0 directories, 0 errors
$

4.1.2.2.1. Running the example

To run the helloworld example on a PowerPC-based SEE machine, use the

following commands:

$ see-stdoe-serv --machine helloworld.sar --userdata-raw userdata.cpio
nC SEE bsdlib entering main
Hello world!
^C
$

If you are using an nShield Connect, you must also set the --no

-feature-check option when running the see-stdoe-serv utility.

Before rerunning this example, run the following command to clear all HSMs:

nopclearfail --clear --all

4.1.3. SEE-Random example

This example shows basic usage of the generic stub from within SEE. It requests

128 bytes of random material from the HSM and prints the result in hexadecimal.

Before running or rerunning this example, run the following command to clear all

HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the

compiled examples (both SXF and ELF files).

4.1.3.1. Packing the SEE machine

Use the tct2 command-line utility to convert the SXF (Secure eXecution Format)

file into a SAR (Secure or SEE ARchive) file:

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 47/160

tct2 --pack --infile=see-random.sxf --outfile=see-random.sar

For additional security, you can also set options in this command to sign or

encrypt the file. For more information, see tct2.

4.1.3.2. Running the example

To run the SEE-Random example on a PowerPC-based SEE machine, use the

following commands:

$ see-stdoe-serv --machine see-random.sar --userdata-raw userdata.cpio
nC SEE bsdlib entering main
52 D1 C4 73 28 49 79 62 CD E6 64 14 1C 3B E1 B2 70 3D 6B D5 DF DE CE 7F 47 50 70 06 B6
C0 52 7F 19 3A 0A 7D E4 73 83 D8 EB F4 E5 82 F3 53 38 45 2A E3 08 49 1A 58 77 35 5F 5C
7C D9 7B 57 4A A9 C4 F4 67 C7 30 91 4A CA 0C 15 1F A7 F2 E1 2B 61 E2 3A CE EF BD FF ED
49 07 68 7B 76 D2 AC 8B 98 AA 02 FD 30 01 68 60 49 4C 0F 7E 23 7F AC EC B5 6A DE 0B CD
45 72 89 96 DD E2 96 C2 B8 7B 97 AA
^C
$

If you are using an nShield Connect, you must also set the --no

-feature-check option when running the see-stdoe-serv utility.

4.1.4. SEE-Enquiry example

This example shows how to cross-compile example code, originally written for use

from the host environment, to be run within the SEE without any substantial

modifications.

Before running or rerunning this example, run the following command to clear all

HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the

compiled examples (both SXF and ELF files).

This example code is based on enquiry.c provided elsewhere in

the software distribution.

4.1.4.1. Packing the SEE machine

Use the tct2 command-line utility to convert the SXF (Secure eXecution Format)

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 48/160

file into a SAR (Secure or SEE ARchive) file:

tct2 --pack --infile=see-enquiry.sxf --outfile=see-enquiry.sar

For additional security, you can also set options in this command to sign or

encrypt the file. For more information, see tct2.

4.1.4.2. Running the example

To run the SEE-Enquiry example on a PowerPC-based SEE machine, use the

following commands:

$see-stdoe-serv --machine see-enquiry.sar --userdata-raw userdata.cpio
nC SEE bsdlib entering main
Server:
enquiry reply flags none
enquiry reply level Six
serial number 1BD7-DE7B-A370
mode operational
version 2.38.7
speed index 4240
rec. queue 35..152
[etc]^C
$

If you are using an nShield Connect, you must also set the --no

-feature-check option when running the see-stdoe-serv utility.

4.1.5. TCP proxy example

The TCP proxy example demonstrates how to set up a conduit between the local

host and a destination IP address.

Before running or rerunning this example, run the following command to clear all

HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the

compiled examples (both SXF and ELF files).

The default destination address is declared in the source code file tcp-proxy.c as

follows:

#define BACKEND_ADDR "127.0.0.1"

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 49/160

For the TCP proxy example to work correctly, you must change this default

destination address. You can replace the default address with the IP address of

any valid website.

By default, the example TCP proxy code sets the front end port to 8080 and the

back end port to 80. The remainder of this example assumes the use of these

values, but you can change them as necessary.

4.1.5.1. Re-building the HSM-side code

If the file tcp-proxy.c has been modified as described in TCP proxy example, then

the example needs to be rebuilt in order for the changes to take effect. The

example can be rebuilt by executing the cmake build command from within the

appropriate directory as described in Examples for bsdlib library for example:

$ cd ~/buildBSDmod
~/buildBSDmod$ cmake --build .

If the example has been rebuilt, before continuing ensure that

you are working in the directory that contains the compiled

examples. In this example, the directory path would be:

~/buildBSDmod/bsdsee

4.1.5.2. Packing the SEE machine

Use the tct2 command-line utility to convert the SXF (Secure eXecution Format)

file into a SAR (Secure or SEE ARchive) file:

tct2 --pack --infile=tcp-proxy.sxf --outfile=tcp-proxy.sar

For additional security, you can also set options in this command to sign or

encrypt the file. For more information, see tct2.

4.1.5.3. Running the example

Run the example on a PowerPC-based SEE machine as follows:

see-sock-serv --trace --machine tcp-proxy.sar --userdata-raw userdata.cpio

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 50/160

You can check that the example is working correctly by entering the URL

http://localhost:8080/ into any Web browser. If the example is working correctly,

the browser displays the Web page at the address specified in the tcp-proxy.c file.

4.2. Examples for glibc library

This section is only relevant when using an nShield Solo XC or an nShield Connect
XC. If you are using an nShield Solo+ or an nShield Connect+, see Examples for

bsdlib library.

In default CodeSafe installations, the following C examples are supplied in

directories under the path /opt/nfast/c/csd/examples/:

Location Description

glibsee/helloworld.c This example is a simple, introductory test program.

glibsee/see-random.c This example demonstrates basic usage of the generic stub within SEE.

glibsee/see-enquiry.c This example demonstrates host code running within SEE with no large

modifications.

glibsee/tcp-proxy.c This example is a multithreaded TCP-TCP proxy that forwards all

connections on port 8080 to 127.0.0.1:80.

If the nShield Connect is configured to use see-sock-serv directly, any supplied

glibc examples that use see-sock-serv can be run directly on the nShield Connect,

rather than via a client machine.

The examples here show how to run a SEE machine from a command line.

Alternatively, if you wish to run a SEE machine directly, please see Deploying SEE

Machines.

If you are running see-sock-serv directly on an nShield Connect,

port numbers in the examples should be modified to bind to

ports within the range 8000-8999.

All supplied examples for glibc, both standard and SSL-related, require one of the

see-*-serv host-side utilities. For more information about these utilities, see see-*-

serve utilities.

The SEE machine type must be specified as --machine

-type=PowerPCELF when running the tct2 tool.

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 51/160

http://localhost:8080/

4.2.1. Building the HSM-side code

1. Create a directory in your Documents location to contain the platform examples.

For example, to create and enter a directory called buildGLIBmod:

cd ~
mkdir buildGLIBmod
cd buildGLIBmod

2. Configure the module examples build using the command:

cmake -DCMAKE_TOOLCHAIN_FILE=<path to GLIB tool chain> <path to GLIB SEE examples>

Using the default locations for the tool chain and the GLIB SEE examples, the

command would be:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-linux-xc-glibsee.cmake
/opt/nfast/c/csd/examples/

3. Build the module examples using the command:

cmake --build <build output location>

For example:

cmake --build .

Here, the . specifies the location where the build products should be placed,

in this case to the current directory.

This results in the creation of a directory, glibsee, which contains all the

compiled examples. The build process will create a file for each example, with

an .elf suffix.

~$ mkdir ~/buildGLIBmod
~$ cd ~/buildGLIBmod
~/buildGLIBmod$ cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-linux-xc-glibsee.cmake
/opt/nfast/c/csd/examples/
~/buildGLIBmod$ cmake --build .

4.2.2. Helloworld example

This example source code is a simple example of an SEE machine written in C. It is

not intended to be the basis for any real world applications. It is intended only to

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 52/160

demonstrate how to write SEE machines in C and the use of an appropriate host

utility to handle output to stdout and stderr.

4.2.2.1. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable

Format) file into a SAR (Secure or SEE ARchive) file as follows:

tct2 --pack --machine-type=PowerPCELF --infile=helloworld.elf --outfile=helloworld.sar

For additional security, you can also choose to set options in this command that

sign or encrypt the file. For more information, see tct2.

4.2.2.2. Creating a userdata file

All SEE machines built with the glibc C library must be provided

with a valid ASCII-format CPIO archive. This archive forms the

base of the file system available to your SEE machine. You can

use the cpioc command-utility that we provide to create CPIO

archives of the correct type.

Although the helloworld example does not use its file system,

you must still create and supply it with dummy userdata as a

place-holder.

Create a dummy userdata file as follows:

>echo dummy > dummy
> cpioc userdata.cpio dummy
F dummy
Written 'userdata.cpio': 1 files, 0 directories, 0 errors
>

4.2.2.3. Running the example

To run the helloworld example on a PowerPC-based SEE machine, use the

following commands:

$ see-stdoe-serv --machine helloworld.sar --userdata-raw userdata.cpio
nC SEE glibc entering main
Hello world!
^C
$

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 53/160

If you are using a nShield Connect, you must also set the --no

-feature-check option when running the see-stdoe-serv utility.

Before rerunning this example, run the following command to clear all HSMs:

nopclearfail --clear --all

4.2.3. SEE-Random example

This example shows basic usage of the generic stub from within SEE. It requests

128 bytes of random material from the HSM and prints the result in hexadecimal.

Before running or rerunning this example, run the following command to clear all

HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the

compiled examples (both SXF and ELF files).

4.2.3.1. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable

Format) file into a SAR (Secure or SEE ARchive) file:

tct2 --pack --machine-type=PowerPCELF --infile=see-random.elf --outfile=see-random.sar

For additional security, you can also set options in this command to sign or

encrypt the file. For more information, see tct2.

4.2.3.2. Running the example

To run the SEE-Random example on a PowerPC-based SEE machine, use the

following commands:

$ see-stdoe-serv --machine see-random.sar --userdata-raw userdata.cpio
nC SEE glibc entering main
52 D1 C4 73 28 49 79 62 CD E6 64 14 1C 3B E1 B2 70 3D 6B D5 DF DE CE 7F 47 50 70 06 B6
C0 52 7F 19 3A 0A 7D E4 73 83 D8 EB F4 E5 82 F3 53 38 45 2A E3 08 49 1A 58 77 35 5F 5C
7C D9 7B 57 4A A9 C4 F4 67 C7 30 91 4A CA 0C 15 1F A7 F2 E1 2B 61 E2 3A CE EF BD FF ED
49 07 68 7B 76 D2 AC 8B 98 AA 02 FD 30 01 68 60 49 4C 0F 7E 23 7F AC EC B5 6A DE 0B CD
45 72 89 96 DD E2 96 C2 B8 7B 97 AA
^C

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 54/160

$

If you are using an nShield Connect, you must also set the --no

-feature-check option when running the see-stdoe-serv utility.

4.2.4. SEE-Enquiry example

This example shows how to cross-compile example code, originally written for use

from the host environment, to be run within the SEE without any substantial

modifications.

Before running or rerunning this example, run the following command to clear all

HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the

compiled examples (both SXF and ELF files).

This example code is based on enquiry.c provided elsewhere in

the software distribution.

4.2.4.1. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable

Format) file into a SAR (Secure or SEE ARchive file):

tct2 --pack --machine-type=PowerPCELF --infile=see-enquiry.elf --outfile=see-enquiry.sar

For additional security, you can also set options in this command to sign or

encrypt the file. For more information, see tct2.

4.2.4.2. Running the example

To run the SEE-Enquiry example on a PowerPC-based SEE machine, use the

following commands:

$see-stdoe-serv --machine see-enquiry.sar --userdata-raw userdata.cpio
nC SEE glibc entering main
Server:
 enquiry reply flags none
 enquiry reply level Six
 serial number 1BD7-DE7B-A370

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 55/160

 mode operational
 version 2.38.7
 speed index 4240
 rec.queue 35..152
 [etc]^C
$

If you are using an nShield Connect, you must also set the --no

-feature-check option when running the see-stdoe-serv utility.

4.2.5. TCP proxy example

The TCP proxy example demonstrates how to set up a conduit between the local

host and a destination IP address.

Before running or rerunning this example, run the following command to clear all

HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the

compiled examples (both SXF and ELF files).

The default destination address is declared in the source code file tcp-proxy.c as

follows:

#define BACKEND_ADDR "127.0.0.1"

For the TCP proxy example to work correctly, you must change this default

destination address. You can replace the default address with the IP address of

any valid website.

By default, the example TCP proxy code sets the front end port to 8080 and the

back end port to 80. The remainder of this example assumes the use of these

values, but you can change them as necessary.

4.2.5.1. Re-building the HSM-side code

If the file tcp-proxy.c has been modified as described in section TCP proxy

example, then the example needs to be rebuilt in order for the changes to be

effective. The example can be rebuilt by executing the cmake build command

from within the appropriate directory as described in section Examples for glibc

library for example:

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 56/160

$ cd ~/buildGLIBmod
~/buildGLIBmod$ cmake --build .

If the example has been rebuilt, before continuing ensure that

you are working in the directory that contains the compiled

examples. In this example the directory path would be:

~/buildGLIBmod/glibsee

4.2.5.2. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable

Format) file into a SAR (Secure or SEE ARchive) file:

tct2 --pack --machine-type=PowerPCELF --infile=tcp-proxy.elf --outfile=tcp-proxy.sar

You can also set options in this command to sign or encrypt the file. For more

information, see tct2.

4.2.5.3. Running the example

Run the example on a PowerPC-based SEE machine as follows:

see-sock-serv --trace --machine tcp-proxy.sar --userdata-raw userdata.cpio

You can check that the example is working correctly by entering the URL

http://localhost:8080/ into any browser. If the example is working correctly, the

browser displays the website at the address specified in the tcp-proxy.c file.

4.3. Examples for SEElib

In default CodeSafe installations, the following C examples are supplied in

directories under the path:

/opt/nfast/c/csd/examples/csee

Location Description

csee/hello/ This example source code demonstrates a simple SEE machine in C and

how you can use it from a C program on the host.

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 57/160

http://localhost:8080/

Location Description

csee/a3a8/ This example code demonstrates how to write an SEE machine in C code

and how to use it from a C program on the host.

csee/nvram/ This example shows the simple use of NVRAM in an SEE machine written

in C.

csee/rtc/ This example demonstrates the use of an SEE machine written in C that

implements a very simple timestamp service.

csee/tickets/ This example provides an API demonstration showing how an SEE

machine can be written in C.

csee/benchmark/ This example implements a very simple utility that uses an SEE machine

written in C to time stamp requests to benchmark the speed of response

to requests.

We also supply a Java version of the HelloWorld example. This consists of the

source files for host-side applications that you can run with the example SEE

machines written in C (or any other SEE machines written in any language) in

order to understand how simple SEE machines work, see About the Java example.

The nvram, rtc, and benchmark C examples can extract debugging information from

the SEE trace buffer in all Security Worlds. If the Security World has restricted or

authorized-only access to SEE debugging, the example prompts the user for the

number of Administrator Cards required to gain authorization. Therefore, to avoid

unnecessary exposure of the Administrator Cards, do not try to run these

examples on an HSM in a production Security World. Debugging information from

the trace buffer is not available for the A3A8 or tickets C examples.

4.3.1. Building Linux host examples

1. Create a directory in your home location to contain the host platform

examples. For example, create a directory called buildhost, and enter this

directory:

~$ mkdir ~/buildhost
~$ cd ~/buildhost

2. Configure the host platform examples using the command:

cmake <path to SEElib examples>

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 58/160

For example:

cmake /opt/nfast/c/csd/examples/

Here, the location of the examples is the default location,

/opt/nfast/c/csd/examples.

3. Build the host platform examples using the command:

cmake --build <build output location>

For example

cmake --build .

Here, the . specifies the location where the build products should be placed,

in this case to the current directory.

This results in the creation of a directory, csee, which contrains a subdirectory

for each of the examples. For example:

~/buildhost/csee/a3a8

4.3.2. Building Solo SEE module examples

1. Create a directory in your home location to contain the module examples. For

example, create a directory, buildSoloMod, and enter this directory.

2. Configure the module examples using the command:

cmake -DCMAKE_TOOLCHAIN_FILE=<path to Solo + module tool chain> <path to CSEE examples>

For example, using default locations for the Solo + module tool chain and the

CSEE examples:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-linux-solo-csee.cmake
/opt/nfast/c/csd/examples/

3. Build the module examples using the command:

cmake --build <build output location>

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 59/160

For example:

cmake --build .

Here the . specifies the location where the build products should be placed, in

this case to current directory.

This will result in the creation of a directory, csee, which contains a

subdirectory for each of the examples. Each example’s subdirectory contains a

directory, module, which contains the compiled module code.

For example:

~/buildSoloMod/csee/a3a8/module

The compiled module executables have the suffix sxf.

~$ mkdir ~/buildSoloMod
~$ cd ~/buildSoloMod
~/buildSoloMod$ cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-linux-xc-csee.cmake
/opt/nfast/c/csd/examples/
~/buildSoloMod$ cmake --build .

4.3.3. Building Solo XC SEE module examples

1. Create a directory in your home location to contain the module platform

examples. For example, create a directory buildXCmod, and enter this directory:

cd ~
mkdir buildXCmod
cd bukdXCmod

2. Configure the module examples build using the command:

cmake -DCMAKE_TOOLCHAIN_FILE=<path to Solo XC module tool chain> <path to SEElib examples>

For example, using the default locations for the Solo XC module tool chain

and the SEELib examples, the command would be:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-linux-xc-csee.cmake /opt/nfast/c/csd/examples/

3. Build the module examples using the command:

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 60/160

cmake --build <build output location>

For example:

cmake --build .

Here the . specifies the location where the build products should be placed, in

this case to current directory.

This will result in the creation of a directory, csee, which contains a

subdirectory for each of the examples. Each example’s subdirectory contains a

directory, module, which contains the compiled module code.

~/buildXCMod/csee/a3a8/module

The compiled module executables have the suffix .elf.

~$ mkdir ~/buildXCMod
~$ cd ~/buildXCMod
~/buildXCMod$ cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-linux-xc-csee.cmake
/opt/nfast/c/csd/examples/
~/buildXCMod$ cmake --build .

4.3.4. Example: Hello-World

This example source code demonstrates a simple SEE machine in C and how you

can use it from a C program on the host. The SEE machine examines the

characters in the SEE job passed to it and replaces each lowercase alphabetic

character with the corresponding uppercase character, returning the result as the

SEE job reply. Additionally, if the SEE World is created with a userdata file, any

characters found in the userdata file are replaced in the input SEE job with the

character X.

The Hello-World example is not intended to be the basis for any

real world applications. It is intended only to demonstrate how

to write SEE machines in C and host-side use of an SEE machine

by code written in C.

There is also an example of the host-side code written in Java,

supplied in the nCipherKM-SEE-Examples.jar found in the

/opt/nfast/java/examples directory.

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 61/160

4.3.4.1. Signing, packing, and loading the SEE machine

1. Generate a key with which to sign the SEE machine:

$ generatekey -m 1 seeinteg
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
plainname: Key name? [] > hellomachine
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application seeinteg
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 plainname Key name hellomachine
 nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.
Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_seeinteg_hellomachine

2. Change to the module directory.

For nShield Solo:

cd ~/buildSoloMod/csee/hello/module

For nShield Solo XC:

cd ~/buildSoloXC/csee/hello/module

3. Use the tct2 command line utility to convert the file into a SAR file.

For nShield Solo:

Convert the hello.sxf file to a SAR file:

$ tct2 --sign-and-pack --is-machine -i hello.sxf --machine-type=PowerPCSXF -o hello.sar -k hellomachine
Signing machine as `PowerPCSXF'

Loading `ocs-dev':
Module 1: 0 cards of 1 read
Module 1 slot 0: `ocs-dev' #1

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 62/160

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

For nShield Solo XC:

Convert the hello.elf file to a SAR file:

$ tct2 --sign-and-pack --is-machine -i hello.elf --machine-type=PowerPCELF -o hello.sar -k hellomachine
Signing machine as `PowerPCELF'

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card

Card reading complete.

 For more information about this command, see tct2.

4. Load the SEE machine into the HSM by running the command:

$ loadmache -m 1 hello.sar

This example describes how to load the SEE machine by

running the loadmache command-line utility. In a production

environment, you can choose to configure the

load_seemachine section of the host or client configuration file

so that an SEE machine is loaded automatically. See

Automatically loading an SEE machine.

4.3.4.2. Preparing example userdata

You do not need to create real userdata for this example. Instead, you can simply

pack a small text file with tct2 and pass the packed file to the SEE machine to

serve as userdata.

However, you can also choose to create and sign a real userdata file in the same

way as for the A3A8 example; see A3A8 example

When you run the Hello-World example, because the characters

in the userdata you supply are converted from lower case to

replaced by the character X in the output file, including a new

line sequence in the userdata can produce unexpected results.

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 63/160

4.3.4.3. Running the example

To run the C example change to the host application directory by running the

command:

cd ~/buildHost/csee/hello/hostside

Pack the desired user data in the SAR file suitable for loading onto the HSM.

Optionally, you could use the Trusted Code Tool (tct2) to create a signed and

packed SAR file for this step.

4.3.4.4. Usage

The hello example program has the following arguments:

hello <FILENAME> [<USERDATA>.sar]

FILENAME

This parameter is the name of the input file that contains the source string.

USERDATA

This optional parameter is the name of a file that contains letters to be

replaced by the ASCII character X in the output file.

4.3.4.4.1. What the code actually does

The host-side C code performs the following tasks:

1. It prompts the user to supply a file name and an optional USERDATA file.

2. It sends the string in the file, converted if necessary to standard output.

The HSM-side code awaits jobs from the host and performs the following:

1. It transforms the contents of the input file, capitalizing all input and replacing

any characters that appear in the optional USERDATA file with an ASCII

character X.

2. It sends the result as output.

4.3.5. A3A8 example

This example code demonstrates how to write an SEE machine in C code and how

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 64/160

to use it from a C program on the host.

The A3A8 example is not intended to be the basis for any real

world applications. The algorithm used, known as ACOMP128,

has been shown to be insecure and is not appropriate for

production use. It is used here only to demonstrate the

implementation of an algorithm in an SEE application, not to

endorse it in any way.

This example does not support debugging when the SEE debug

level is set to Generate Authorization Key.

The SEE machine is used to process data with the A3/A8 algorithm in conjunction

with a Triple-DES key as follows:

1. Data comes in the form of a sequence of 16-byte input values.

2. These values are split into two 8-byte halves that are each Triple-DES ECB

decrypted with the master key and reassembled to give a 16-byte key.

3. Then a 16-byte random value is generated and, along with the 16-byte key, is

fed into the A3/A8 algorithm to produce a 12-byte output value.

4. The output from the HSM consists of a sequence of 28-byte blocks comprising

the random value and the output value.

There is also an example of the host-side code written in Java,

supplied in the nCipherKM-SEE-Examples.jar found in the

opt/nfast/java/examples directory.

4.3.5.1. Signing, packing, and loading the SEE machine

To sign, pack, and load the SEE machine:

If you need to update this process, ensure you also update the Windows process

above.

1. Generate a key with which to sign the SEE machine:

$ generatekey -m 1 seeinteg
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
plainname: Key name? [] > a3a8machine
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 65/160

 application Application seeinteg
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 plainname Key name a3a8machine
 nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_seeinteg_a3a8machine

2. Change to the directory by running the command:

For nShield Solo

cd ~/buildSoloMod/csee/a3a8/module

For nShield Solo XC

cd ~/buildXCMod/csee/a3a8/module

3. Use the tc2 command line utility to convert the file into a SAR file.

For nShield Solo

Convert the a3a8mach.sxf file into a SAR file.

$ tct2 -m 1 --sign-and-pack --is-machine -i a3a8mach.sxf --machine-type=PowerPCSXF -o a3a8mach.sar -k
a3a8machine
Signing machine as `PowerPCSXF'

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card

Card reading complete.

For nShield Solo XC

Convert the a3a8mach.elf file into a SAR file.

$ tct2 -m 1 --sign-and-pack --is-machine -i a3a8mach.elf --machine-type=PowerPCELF -o a3a8mach.sar -k
a3a8machine

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 66/160

Signing machine as `PowerPCELF'

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card

Card reading complete.

 For more information about this command, see tct2

4. Load the SEE machine into the HSM by running the command:

$ loadmache -m 1 a3a8mach.sar

This example describes how to load the SEE machine by running

the loadmache command-line utility. In a production environment,

you can choose to configure the load_seemachine section of the

host or client configuration file so that an SEE machine is loaded

automatically. See Automatically loading an SEE machine.

4.3.5.2. Creating and signing userdata

To create and sign the userdata file:

1. Change to the host-side code directory by running the command:

$ cd ~/buildhost/csee/a3a8/hostside

2. Generate a key with which to sign a dummy userdata file for the example by

running the command:

+

$ generatekey -m 1 seeinteg
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
plainname: Key name? [] > a3a8userdata
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application seeinteg
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 67/160

 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 plainname Key name a3a8userdata
 nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_seeinteg_a3a8userdata

1. Create a dummy userdata file. Because the A3/A8 algorithm does not use the

initialization data, the dummy userdata need contain only one arbitrary

character to use as userdata.

2. Use the tct2 command-line utility to sign and pack a dummy userdata file for

the example:

For nShield Solo

$ tct2 --sign-and-pack --machine-type=PowerPCSXF --infile a3a8userdata --outfile=a3a8userdata.sar --machine
-key-ident=a3a8machine -k a3a8userdata

Loading `ocs-dev':
Module 1: 0 cards of 1 read
Module 1 slot 0: `ocs-dev' #1
Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.[sudo] password for XXX:

For nShield Solo XC:

$ tct2 --sign-and-pack --machine-type=PowerPCELF --infile a3a8userdata --outfile a3a8userdata.sar
--machine-key-ident=a3a8machine -k a3a8userdata

Loading `ocs-dev':
Module 1: 0 cards of 1 read
Module 1 slot 0: `ocs-dev' #1
Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

 For more information about this command, see tct2

4.3.5.2.1. Running and testing the example

The a3test example application takes the following arguments:

a3test [-m <MODULEID>] <USERDATA>.sar

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 68/160

-m <MODULEID>

This option specifies the ModuleID of the HSM to use.

<USERDATA>.sar

This parameter specifies a userdata file (packed as a SAR) to use.

Thus, you can run the a3test program created in this example with a command of

the form:

$./a3test -m 1 a3a8userdata.sar

The a3test example then processes data for approximately 20 seconds. If the

example program runs successfully, its final output is of the form:

Getting Sarfile info (400 bytes)....
Creating world: init status was 0 (OK)
Making Master Key:
Get ticket.......
Sending ticket to SEEWorld:
181000 triples, 21 sec
Releasing context
Thank you for watching. The end.

If the output from a3test takes any other form, this indicates an error. In case of an

error, use the enquiry command-line utility to check:

• Whether the correct firmware is installed

• Whether the correct server is running

• Whether the HSM is in the operational state.

4.3.5.3. NVRAM example

The NVRAM example shows the simple use of NVRAM in an SEE machine written in

C. It uses a file in NVRAM as a sort of postage meter. The contents of the file are

interpreted as a little-endian integer that determines how many 'stamps' can be

issued. Each time the host program is invoked, it requests one or more stamps

from the machine, and the NVRAM counter is decreased accordingly.

The NVRAM example is not intended to be the basis for any real world applications. It

is intended only to demonstrate how to write SEE machines in C that access the

HSM’s NVRAM.

4.3.5.3.1. Signing, packing, and loading the SEE machine

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 69/160

To sign, pack, and load the SEE machine:

1. Generate a key with which to sign the SEE machine:

$ generatekey -m 1 seeinteg
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
plainname: Key name? [] > nvrammachine
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application seeinteg
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 plainname Key name nvrammachine
 nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
Module 1: 0 cards of 1 read
Module 1 slot 0: `ocs-dev' #1
Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_seeinteg_nvrammachine

2. Change to the directory by running the command:

For nShield Solo

cd ~/buildSoloMod/csee/nvram/module

For nShield Solo XC

cd ~/buildXCMod/csee/nvram/module

3. Use the tct2 command line utility to convert the file.

For nShield Solo

Convert the nvram.sxf file into a SAR file.

$ tct2 --sign-and-pack --is-machine -i nvram.sxf --machine-type=PowerPCSXF -o nvram.sar -k nvrammachine
Signing machine as 'PowerPCSXF'.

Loading `ocs-dev':
Module 1: 0 cards of 1 read

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 70/160

Module 1 slot 0: `ocs-dev' #1
Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

For nShield Solo XC

Convert the nvram.elf file into a SAR file.

$ tct2 --sign-and-pack --is-machine -i nvram.elf --machine-type=PowerPCELF -o nvram.sar -k nvrammachine
Signing machine as 'PowerPCELF'.

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

 For more information about this command, see tct2.

4. Load the packed SEE machine into the HSM by running the command:

$ loadmache nvram.sar

This example describes how to load the SEE machine by

running the loadmache command-line utility. In a production

environment, you can choose to configure the

load_seemachine section of the host or client configuration file

so that an SEE machine is loaded automatically. For

information about configuration files, see the User Guide.

4.3.5.3.2. Creating NVRAM and userdata files

You must now use the setup example application to create:

• An NVRAM file

• A userdata file that contains only the exact name of the specified NVRAM file.

Change to the host-side application directory by running the command:

$ cd ~/buildhost/csee/nvram/hostside

Create these files by running the setup command with 'root' privileges:

$./setup nvramfile 100 nvramuserdata
Please insert the next administrator card and press enter.
Please enter card passphrase:

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 71/160

allocated NVRAM file `nvramfile'.

4.3.5.3.3. setup

The setup example application takes the following arguments:

setup [-k|--key <APPNAME>,<IDENT>] <nvram-filename> <stamp-count> <userdatafile>

-k|--key <APPNAME>,<IDENT>

This option specifies a signing key identified by APPNAME and IDENT.

Specifying a signing key creates an NVRAM file that can only be accessed with

authorization from that key (for example, by signing the userdata with the same

key). A signing key is optional.

<nvram-filename>

This parameter specifies the name of an NVRAM file to create. The name must

contain no more than 11 characters.

<tampcount>

This parameter specifies the number of stamps to issue.

<userdatafile>

This parameter specifies the name of the userdata SAR file created when the

setup example application is run.

You can also use the setup example application to delete an existing NVRAM file.

To delete a file, run setup with the --delete option, as follows:

setup --delete <nvram-filename>

In this case, setup deletes the NVRAM file specified by nvram-filename.

4.3.5.3.4. Signing and packing the userdata

Run the Trusted Code Tool (tct2) to sign and pack the created userdata file you

created with the setup example application:

$ tct2 -m 1 --pack --infile nvramuserdata --outfile nvramuserdata.sar

If the NVRAM file created by the setup example application is

bound to a key (that is, if you specified the -k|--key option when

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 72/160

running setup), use that same key when signing the userdata file

with tct2.

4.3.5.3.5. Running and testing the example

Run the nvram example application as follows:

./nvram ./nvramuserdata.sar 50
SEEJob: read 1 bytes...
Stamp Request Accepted.
SEEJob: read 1 bytes...
Stamp Request Accepted.
SEEJob: read 1 bytes...
.
.
.

4.3.5.3.6. nvram

The nvram example application takes the following arguments:

nvram <userdatafile>.sar [<iterations>]

<userdatafile>.sar

This parameter specifies the name of the userdata SAR file to use. Normally,

this file has been created by the setup example application (its name specified

by that utility’s userdatafile parameter).

<iterations>

This parameter specifies an integer that is the amount by which the nvram

example application is to decrease its counter (as it issues virtual stamps).

4.3.5.3.7. What the code actually does

The host-side code performs the following tasks in order:

1. It allocates an NVRAM file with an access control list that requires the

permission of a specified key for reading or writing.

2. It requests the name of a file to be loaded as a packed user data block and,

optionally, the number of virtual stamps to request.

The HSM-side code awaits jobs from the host and returns a single byte to indicate

whether or not a stamp has been issued.

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 73/160

4.3.6. Example: RTC

This source code provides an example of an SEE machine written in C that

implements a very simple timestamp service.

Your SEE-Ready HSM must have an onboard real-time clock for

this example to run correctly, and you must have set the clock

using the rtc command-line utility.

The rtc example code is deficient in a number of ways and is not intended to be

the basis for any real world applications. It is intended only to demonstrate some

important concepts in writing SEE machines in C to perform time-stamping.

4.3.6.1. Signing, packing, and loading the SEE machine

To sign, pack, and load the SEE machine:

1. Generate a key with which to sign the SEE machine:

$ generatekey -m 1 seeinteg
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
plainname: Key name? [] > rtccode
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application seeinteg
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 plainname Key name rtccode
 nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_seeinteg_rtccode

2. Change to the directory by running the command:

For nShield Solo:

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 74/160

cd ~/buildSoloMod/csee/rtc/module

For nShield Solo XC:

cd ~/build-XC/csee/rtc/module

3. Use the tct2 command-line utility to convert the file into a SAR file.

For nShield Solo

$ tct2 -m 1 --sign-and-pack --is-machine -i rtc.sxf --machine-type=PowerPCSXF -o rtc.sar -k rtccode
Signing machine as `PowerPCSXF'.

 Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

For nShield Solo XC:

$ tct2 -m 1 --sign-and-pack --is-machine -i rtc.elf --machine-type=PowerPCELF -o rtc.sar -k rtccode
Signing machine as `PowerPCELF'.

 Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

4. Load the packed SEE machine into the HSM by running the command:

$ loadmache rtc.sar

This example describes how to load the SEE machine by

running the loadmache command-line utility. In a production

environment, you can choose to configure the

load_seemachine section of the host or client configuration file

so that an SEE machine is loaded automatically. For

information about configuration files, see the User Guide.

4.3.6.1.1. rtc

The rtc example application takes the following arguments:

rtc [-y|--verify <file>] [-a|--userdata <SEEDATA>] <userdatafile> <APPNAME>,<IDENT>

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 75/160

-y|---verify

This option verifies the returned time-stamp for the file named file.

-a|---userdata <SEEDATA>

This option specifies use of the file SEEDATA for SEE userdata.

<userdatafile>

This parameter specifies a userdata file that contains at least one character.

<APPNAME>,<IDENT>

These parameters specify the APPNAME and IDENT of the key for the rtc

example application to use.

4.3.6.1.2. Running the example

1. Enter the host-side application directory by running the command:

$ cd ~/buildhost/csee/rtc/hostside/

2. Create the test userdata file to be time-stamped by running the command:

$ cp /opt/nfast/c/csd/examples/csee/rtc/host/rtc.c ./mytestuserdata

3. Generate an RSA key for the RTC example to use by running the command:

generatekey simple
protect: Protected by? (token, module) [token] >
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,HMACRIPEMD160, HMACSHA1,
HMACSHA256, HMACSHA384, HMACSHA512, HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
ident: Key identifier? [] > rtctest
plainname: Key name? [] > rtctest
OPTIONAL: seeintegname: SEE integrity key?
(a3a8machine, nvrammachine, a3a8userdata, hellomachine, rtccode) []
>
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
operation Operation to perform generate
application Application simple$./rtc mytestuserdata simple,rtctest >
mytestuserdata.stamp
Please insert the next operator card and press enter.
Please enter card passphrase:
rtc: timestamp issued.

protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 76/160

type Key type RSA
size Key size 2048
pubexp Public exponent for RSA key (hex)
ident Key identifier rtctest
plainname Key name rtctest
seeintegname SEE integrity key
nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_simple_rtctest

The rtc example application only supports the use of RSA

keys.

4. Run the RTC example by executing the following command:

$./rtc mytestuserdata simple,rtctest > mytestuserdata.stamp
Please insert the next operator card annvramd press enter.
Please enter card passphrase:
rtc: timestamp issued.

4.3.6.1.3. What the code actually does

The host-side code performs the following tasks in order:

1. It sends a session key to the HSM.

2. When a time-stamped command is returned, it verifies the time-stamp using

the session key.

The HSM-side code performs the following tasks in order:

1. It awaits a job from the host.

2. It time-stamps the contents of the job and signs the result with the session

key.

3. It returns the job to the host.

4.3.7. Example: Tickets

This example source code is an API demonstration showing how an SEE machine

can be written in C.

The Tickets example is not intended to be the basis for any real world applications.

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 77/160

In particular, it does not support the loading of keys protected by card sets with

the -k option. It is intended to demonstrate:

• How to write SEE machines in C

• Simple, custom-built marshalling and unmarshalling of jobs

• The use of tickets. See Internals for information about key tickets; also, for

information about the consumption of single ticket, see Loading stored keys.

4.3.7.1. Signing, packing, and loading the SEE machine

To sign, pack, and load the SEE machine:

1. Change to the module directory by running the command:

For nShield Solo

cd ~/buildSoloMod/csee/tickets/module

For nShield Solo XC

cd ~/buildXCMod/csee/tickets/module

2. Use the tc2 command line utility to convert the file into a SAR file.

For nShield Solo

Convert the armtickets.sxf file into a SAR file.

tct2 -m 1 --pack --infile armtickets.sxf --outfile armtickets.sar

For nShield Solo XC

Convert the armtickets.elf file into a SAR file.

tct2 -m 1 --pack --infile armtickets.elf --outfile armtickets.sar

3. Load the SEE machine into the HSM by running the command:

$ loadmache armtickets.sar

This example describes how to load the SEE machine by

running the loadmache command-line utility. In a production

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 78/160

environment, you can choose to configure the

load_seemachine section of the host or client configuration file

so that an SEE machine is loaded automatically. For

information about configuration files, see the User Guide

4. Generate a key for the example to use by running the command:

generatekey simple
protect: Protected by? (token, module) [token] >
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
HMACRIPEMD160, HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512,
HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
ident: Key identifier? [] > ticketkey
plainname: Key name? [] > ticketkey
OPTIONAL: seeintegname: SEE integrity key?
(a3a8machine, nvrammachine, a3a8userdata, hellomachine, rtccode) []
>
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
operation Operation to perform generate
application Application simple
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes
type Key type RSA
size Key size 2048
pubexp Public exponent for RSA key (hex)
ident Key identifier ticketkey
plainname Key name ticketkey
seeintegname SEE integrity key
nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_simple_ticketkey

4.3.7.2. hosttickets

The hosttickets example application takes the following arguments:

hosttickets [-f|--file <userdatafile>][-k|--key <APPNAME>,<IDENT>]

-k|--key <APPNAME>,<IDENT>

These options specify a Security World key.

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 79/160

For the public/private key pair, a Security World key can be specified with the

-k option. The specified Security World key must be an RSA key of the type

simple that is not tied to an SEE code-signing key. Otherwise, a fresh RSA key

pair is generated automatically.

-f|--file <userdatafile>

These options specify a file for the userdata block.

The option to load a file for the userdata block is included

only for example purposes.

4.3.7.3. Running the example application

1. Change to the host application directory by running the following command:

$ cd ~/buildhost/csee/tickets/hostside/

2. Run the hosttickets example application, specifying the simple key created

earlier:

$./hosttickets -k simple,ticketkey
Enter string to be encrypted (256 characters maximum): lskjfdljsdlfjsdlk
HostSide> Loading security world key (simple,ticketkey)

Please present the cardset protecting the key:
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

HostSide> Creating World: init status was 0 (OK)
HostSide> Sending ticket for private RSA key to module
HostSide> Generating AES session key and creating blob under public RSA key
HostSide> Sending key blob to module
HostSide> Sending cipher-text to module
HostSide> decrypted cipher text received from SEE machine:
"lskjfdljsdlfjsdlk"
HostSide> Thank you for watching. The end.

4.3.7.4. What the code actually does

The host-side code performs the following tasks in order:

1. It prompts the user for a string.

2. It acquires an RSA key pair, either freshly created or loaded from the Security

World (only HSM protected key pairs are supported).

3. It sends a ticket for the private half of the RSA key to the HSM-side code.

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 80/160

4. It generates a session key (DES3).

5. It encrypts the session key as a blob with the public half of the RSA key.

6. It sends the resulting blob to the HSM-side code.

7. It encrypts the string with the session key.

8. It sends the encrypted string to the HSM-side code.

9. It receives the decrypted string back from the HSM.

The HSM-side code awaits jobs from the host and performs the following tasks in

order:

1. It receives and redeems the ticket for the private RSA key.

2. It receives the session key blob and decrypts it with the private RSA key.

3. It receives the encrypted string and decrypts it with the session key.

4. It sends the decrypted string back to the HSM.

4.3.8. Example: Benchmark

This example source code implements a very simple utility that uses an SEE

machine written in C to time stamp requests to benchmark the speed of response

to requests. You can use it for benchmarking during the development of other SEE

machines or adapt it as required.

Your SEE-Ready HSM must have an onboard real-time clock for

this example to run correctly, and you must have set the clock

using the rtc command-line utility

 This utility does not accept encrypted user data.

4.3.8.1. bm-test

The bm-test example application takes the following arguments:

bm-test [-l|--log <LOGFILE>][-a|--userdata <userdatafile>] <APPNAME>,<IDENT>

-l|--log <LOGFILE>

These options specify a file name to which to write time-stamps. If no log file is

specified, no logging occurs.

-a|--userdata <userdatafile>

These options specify a file for an (optional) userdata block.

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 81/160

<APPNAME>,<IDENT>

These parameters specify the APPNAME and IDENT of a key that is to be into

the SEE machine (and that SEE machine thereafter uses for signing purposes).

This utility does not have the --slot or --debug standard options.

4.3.8.2. bm-verify

The bm-verify example application takes the following arguments:

bm-verify <LOGFILE>

The LOGFILE parameter specifies the name of the log file created by the bm-test

example application (specified by that application’s -l|--log option).

4.3.8.3. Packing and loading the SEE machine

To pack and load the SEE machine:

1. Change to the module directory by running the command:

For nShield Solo

cd ~/buildSoloMod/csee/benchmark/module

For nShield XC

cd ~/buildXCMod/csee/benchmark/module

2. Use the tct2 command line utility to convert the file into a SAR file.

For nShield Solo

Convert the bm-machine.sxf file into a SAR file.

tct2 -m 1 --pack --infile bm-machine.sxf --outfile bm-machine.sar

For nShield XC

Convert the bm-machine.elf file into a SAR file.

tct2 -m 1 --pack --infile bm-machine.elf --outfile bm-machine.sar

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 82/160

3. Load the SEE machine into the HSM by running the command:

$ loadmache bm-machine.sar

This example describes how to load the SEE machine by

running the loadmache command-line utility. In a production

environment, you can choose to configure the

load_seemachine section of the host or client configuration file

so that an SEE machine is loaded automatically. For

information about configuration files, see the User Guide.

4. Generate a key for the benchmark application to use by running the

command:

generatekey simple
protect: Protected by? (token, module) [token] >
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
HMACRIPEMD160, HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512,
HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
ident: Key identifier? [] > benchmark-test
plainname: Key name? [] > benchmark
OPTIONAL: seeintegname: SEE integrity key?
(a3a8machine, nvrammachine, a3a8userdata, hellomachine, rtccode) []
>
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
operation Operation to perform generate
application Application simple
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes
type Key type RSA
size Key size 2048
pubexp Public exponent for RSA key (hex)
ident Key identifier benchmark-test
plainname Key name benchmark
seeintegname SEE integrity key
nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_simple_benchmark-test

4.3.8.4. Running the example application

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 83/160

To use the example change to the host application directory by running the

command:

$ cd ~/buildhost/csee/benchmark/hostside/

Run the bm-test example application as follows:

$./bm-test -l bmtest.log simple benchmark-test
Please insert the next operator card and press enter.
Please enter card passphrase:
1 878 878.00
2 1758 879.00
3 2639 879.67
4 3522 880.50
5 4406 881.20
6 5284 880.67
.
.
.

The application will run indefinitely, the user must terminate the

application manually by using Ctrl-C.

Run the bm-verify example application, specifying the log file, bm-test.log, created

in the previous step by the bm-test application.

$./bm-verify bmtest.log
Verified timestamp #1.
Verified timestamp #2.
Verified timestamp #3.
Verified timestamp #4.
Verified timestamp #5.
Verified timestamp #6.
.
.
.

4.3.8.5. What the code actually does

The host program performs the following tasks in order:

1. It tickets a generated key into the SEE machine.

2. The SEE machine uses that key for signing purposes.

3. Each request is concatenated with the current time and then signed.

4. The signature is concatenated with the time and then returned to the host

side.

On the host side, two programs are generated:

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 84/160

• bm-test

• bm-verify.

The bm-test command is used to generate pseudo-random values that are sent to

the HSM-side code to be signed. Every second, the total number of completed

time-stamp requests is printed, along with the average number completed each

second.

The bm-verify command looks for the file specified as LOGFILE on the host. From

this file, bm-verify extracts the public key and verifies the time-stamp requests

until it finds an invalid request or reaches the end of the file.

4.3.8.6. About the Java example

We supply a Java version of the HelloWorld example. This consists of the source

files for host-side applications that you can run with the example SEE machines

written in C (or any other SEE machines written in any language) in order to

understand how simple SEE machines work.

For information about the C examples for SEElib, see Examples

for SEElib

The Java SEE example files can be found within the nCipherKM-SEE-Examples jar

located at /opt/nfast/java/examples. A common directory is also supplied which

contains files that are used by more than one of the examples.

The Java examples have the same options as their equivalent, similarly named C

examples.

4.3.8.6.1. Supported versions of Java

The following versions of Java have been tested to work with, and are supported

by, your nShield Security World Software:

• Java7 (or Java 1.7x)

• Java8 (or Java 1.8x)

• Java11

We recommend that you ensure Java is installed before you install the Security

World Software. The Java executable must be on your system path.

If you can do so, please use the latest Java version currently supported by Entrust

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 85/160

that is compatible with your requirements. Java versions before those shown are

no longer supported. If you are maintaining older Java versions for legacy reasons,

and need compatibility with current software, please contact

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html for Java

downloads.

4.3.8.6.2. HelloWorld.java

The HelloWorld.java example is not intended to be the basis for

any real world applications. It is intended only to demonstrate

host-side use of an SEE machine by code written in Java.

First, ensure you have already built the file hello.sxf as described in Examples for

SEElib converted this into the file hello.sar and loaded it into the HSM as

described in Signing, packing, and loading the SEE machine.

To build the example:

1. Change to the example directory by running the command:

cd /opt/nfast/java/examples

2. Extract the example files by running the command:

jar xf nCipherKM-SEE-Examples.jar
jar xf ../classes/nCipherKM-jhsee.jar

3. Compile the example using this command:

javac -cp /opt/nfast/java/classes/nCipherKM.jar com/ncipher/see/hostside/*.java
javac -cp
.:/opt/nfast/java/classes/nCipherKM.jar com/ncipher/see/hostside/examples/helloworld/HelloWorld.java

To run the helloworld example:

1. Ensure you are in the example’s directory by running the command:

cd /opt/nfast/java/examples

2. Run the example:

java -cp .:/opt/nfast/java/classes/nCipherKM.jar com/ncipher/see/hostside/examples/helloworld/HelloWorld
<FILENAME> [<USERDATA>]

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 86/160

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html

In this example, <FILENAME> is the name of an input file to pass to the SEE machine

as an SEE job, and <USERDATA> the name of an (optional) userdata file. The SEE

machine transforms the input by replacing all lowercase alphabetic characters in

<FILENAME> with their uppercase equivalents and replacing any characters in

<FILENAME> that are also found in <USERDATA> (if supplied) with the character X.

Chapter 4. Example SEE machines

CodeSafe v13.3 User Guide (Linux) 87/160

5. Debugging SEE machines
This chapter provides some guidance on debugging an SEE machine.

5.1. Debugging settings and output

To debug an SEE application effectively, you must have:

• Enabled SEE debugging when creating the Security World in which the

application is to run.

SEE debugging is enabled when creating a Security World

by specifying the new-world command-line utility’s dsee or

dseeall features; for more information, see the User Guide.

We do not recommend specifying the dseeall feature for

Security Worlds in a production system.

• Set Cmd_CreateSEEWorld_Args_flags_EnableDebug when creating the SEE World.

If you try to set the

Cmd_CreateSEEWorld_Args_flags_EnableDebug flag in a Security

World that does not allow SEE debugging, the

CreateSEEWorld command returns AccessDenied. This also

occurs if you call CreateSEEWorld in a Security World where

SEE debugging is restricted and an appropriate certifier is

not present.

5.1.1. Debugging authorization

Access to the SEE trace buffer is controlled by the Security World in which the

SEE machine runs. Every Security World has exactly one of the following

properties:

• Restricted SEE debugging

This is the default setting. When SEE debugging is restricted, there is no

delegation key from KNSO for accessing the SEE trace buffer. All Security

Worlds created by software released before the introduction of SEE have

restricted SEE debugging. A full quorum of Administrator Cards is required to

access the SEE trace buffer in such Security Worlds.

Chapter 5. Debugging SEE machines

CodeSafe v13.3 User Guide (Linux) 88/160

• Authorized SEE debugging

In this case, a delegation key from KNSO exists to allow access to the SEE trace

buffer. A subset of a full quorum of the Administrator Cards is required to

access the SEE trace buffer in such Security Worlds. This delegation key must

have been created and the number of cards required to authorize access to

the SEE trace buffer must have been specified when the Security World was

created.

• No access-control SEE debugging

In this case, no authorization of any kind is required for accessing the SEE

trace buffer. No cards are required to access the SEE trace buffer in such

Security Worlds. This property must have been specified when the Security

World was created.

5.1.2. Obtaining debugging output

For SEE machines that require support from a host-side see-*-serv utility, you can

run the see-*-serv utilities with the --trace or --plain-trace option to perform

tracing automatically.

For SEE machines using the SEElib architecture, the TraceSEEWorld() command can

be used to return debugging information. An example of this is provided in the

a3a8 host-side example code. See A3A8 example.

Data written to standard output and standard error on the HSM is written to the

SEE World’s Trace Buffer. The Trace Buffer is a 3000 character circular buffer: if

more than 3000 characters are written to it without being retrieved, information is

lost on a first-in/first-out basis. The TraceSEEWorld command retrieves the contents

of the buffer so that the host can analyze or display them.

If the SEE machine crashes, a SEE register dump is printed to the SEE Trace Buffer

for the nShield Solo, but not for the nShield Solo XC.

For example, assume that the HSM code calls the following command:

printf("Hello World!\n");

The string Hello World!\n is pushed into the Trace Buffer. A host-side call to

TraceSEEWorld would then return this string and empty the buffer.

If a SEE World is terminated by the HSM (for instance, if its last remaining thread

Chapter 5. Debugging SEE machines

CodeSafe v13.3 User Guide (Linux) 89/160

exits or it causes a fatal signal to be raised), a diagnostic message is usually sent

to the Trace Buffer to help debug the problem.

5.1.2.1. Example Debug

If an illegal access violation (segmentation fault) occurs, the tail of the Trace

Buffer looks similar to this:

 *** World exits: thread 28 caused CPU exception
DSI exception:
Exception vector 00300h
 r0 =001D9E40h r1 =001D9F38h r2 =00C4E090h r3 =00000008h
 r4 =00000000h r5 =00C00444h r6 =00000000h r7 =001C21B1h
 r8 =00C39CB8h r9 =00000019h r10=40000000h r11=00002000h
 r12=00000000h r13=00D08048h r14=00000000h r15=00000000h
 r16=00000000h r17=00000000h r18=00000000h r19=00000000h
 r20=00000000h r21=00000000h r22=00000000h r23=00C40000h
 r24=FFFC5CD0h r25=00C3A750h r26=00C40000h r27=00C40000h
 r28=00000000h r29=00000000h r30=00000000h r31=00D00000h
 XER=20000000h CR =20000000h LR =00C00444h CTR=00C39B9Ch
 PC =00C00448h MSR=0000F030h
 f0 =0000000000000000h f1 =0000000000000000h
 f2 =0000000000000000h f3 =0000000000000000h
 f4 =0000000000000000h f5 =0000000000000000h
 f6 =0000000000000000h f7 =0000000000000000h
 f8 =0000000000000000h f9 =0000000000000000h
 f10 =0000000000000000h f11 =0000000000000000h
 f12 =0000000000000000h f13 =0000000000000000h
 f14 =0000000000000000h f15 =0000000000000000h
 f16 =0000000000000000h f17 =0000000000000000h
 f18 =0000000000000000h f19 =0000000000000000h
 f20 =0000000000000000h f21 =0000000000000000h
 f22 =0000000000000000h f23 =0000000000000000h
 f24 =0000000000000000h f25 =0000000000000000h
 f26 =0000000000000000h f27 =0000000000000000h
 f28 =0000000000000000h f29 =0000000000000000h
 f30 =0000000000000000h f31 =0000000000000000h
 FPSCR=00000000h

The program counter, which is currently at position 00C00448h in the PowerPC-

based compilation shows where this access occurs.

The following excerpt from the PowerPC based map file created at application link

time (by specifying the -map option to the linker) indicates that the problem

address is in main.o:

.text 0x00c00000 0x3a0ac
 (.text.stub.text..gnu.linkonce.t.*)
 .text 0x00c00000 0xa5c usermain.o
 0x00c00160 main
 .text 0x00c00a5c 0x544 .\lib-ppc-gcc\seelib.a(nfstrerr.o)
 0x00c00a5c NFast_StrError

To find out which instruction is causing the segmentation fault, calculate the offset

Chapter 5. Debugging SEE machines

CodeSafe v13.3 User Guide (Linux) 90/160

into main.o. The formula is:

program_counter - object_base_address

The calculation is as follows:

00C00448h -
00C00000

0x00448h

Once the location of the problem is located in this way, investigate it as follows:

1. Recompile the source with the -g option and no optimization (if you did not

originally compile it with these options).

2. Run an object dump utility on the object files powerpc-codesafe-linux-gnu-

objcopy.

The head of the generated object is now similar to the following for PowerPC

based objects:

434: 38 7a 03 34 addi r3,r26,820
438: 38 80 00 08 li r4,8
43c: 4c c6 31 82 crclr 4*cr1+eq
440: 48 00 00 01 bl 440 <main+0x2e0>
444: 38 60 00 08 li r3,8
448: 80 03 00 00 lwz r0,0(r3)
44c: 4b ff fe 74 b 2c0 <main+0x160>
450: 3c 80 00 00 lis r4,0

From this output is it possible to see that the segmentation fault is caused by an

illegal access to the pointer held in R4 (which the register dump showed to be

80000004h, an obviously invalid user mode memory address). The source shows

plainly that the instruction at offset 0458h in usermain.o is trying to assign to *i, but

i has not been allocated. The bug can now be fixed and the program rebuilt.

5.2. Finding memory leaks with stattree

You can use the stattree command-line utility to find memory leaks. Run the

command as follows:

$ stattree | grep Mem

For each HSM in the Security World, this command produces output that reports

Chapter 5. Debugging SEE machines

CodeSafe v13.3 User Guide (Linux) 91/160

values for the total memory (MemTotal), the memory currently allocated to the

kernel (MemAllocKernel), and the memory currently allocated to the loaded SEE

machine (MemAllocUser).

If no SEE machine is loaded, the output from this stattree command (if there is

only one HSM) looks similar to the following:

-MemTotal 128921600
-MemAllocKernel 1355776
-MemAllocUser 0

If an SEE machine is loaded, the output from this stattree command (if there is

only one HSM) looks similar to the following:

-MemTotal 128921600
-MemAllocKernel 1355776
-MemAllocUser 1032192

You can monitor a loaded SEE machine’s memory usage by either repeatedly

running and checking output from stattree or by writing code to call the nCore

statistics APIs directly. In any case, if any reported memory value appears to being

growing continuously over time, this probably indicates some kind of memory

leak.

5.3. Segment addresses for Solo

SEE executables are non-relocatable; that is, they are loaded in memory at the

addresses specified in the image. Ensure that you choose these addresses

carefully so that they map onto usable RAM and do not overlap with memory

being used by the kernel. Typically, this means you must choose an address at the

high end of RAM.

Different HSM types have different mappable memory ranges.

• The CodeSafe compiler sets all values for Solo XC and later HSM models.

• You have to set the ranges in the CodeSafe application code if you are

developing for Solo +.

The rest of this section describes guidelines for Solo +.

To determine your HSM type, run the enquiry command-line utility and check the

SEE Machine Type output. You can then determine where the mappable memory

range starts from this table:

Chapter 5. Debugging SEE machines

CodeSafe v13.3 User Guide (Linux) 92/160

SEE Machine Type Start of mappable range

PowerPCSXF 0x00400000

These ranges follow the approximately 4MB of RAM reserved for use by the

kernel.

You can use the stattree command-line utility to find the total length of the

mappable range. Run the command:

$ stattree | grep MemTotal

This command produces output that reports values for the total memory (

MemTotal) for each HSM in the Security World.

For Solo +, we recommend the following segment addresses as starting points:

SEE Machine Type PowerPCSXF

text segment start 0xa00000

data segment start 0x00d00000

Arguments to the linker -Ttext 0xa00000 -Tdata 0xd00000

For large SEE machines more space may be needed in the text segment, causing a

linker error of the following form:

powerpc-codesafe-linux-gnu-ld: section .data [00d00000 -> 00d0327f] overlaps section .text [00c00000 -> 00d7bd8b]
powerpc-codesafe-linux-gnu-ld: section .sdata [00d03280 -> 00d035ef] overlaps section .text [00c00000 ->
00d7bd8b]
powerpc-codesafe-linux-gnu-ld: section .sbss [00d035f0 -> 00d036ab] overlaps section .text [00c00000 -> 00d7bd8b]
powerpc-codesafe-linux-gnu-ld: section .bss [00d036b0 -> 00d0854f] overlaps section .text [00c00000 -> 00d7bd8b]

To resolve this example error, you could move the data segment start point

upward (for example, to 0x00e00000) as necessary to prevent the overlap.

Alternatively (or additionally), you could move the text segment start point

downward.

5.4. Vulnerability test harness

We supply a test harness called vulnerability.o that can be used for debugging

SEE machines. It supplies a standard set of command-line arguments and

environment variables to the SEE environment, as well as providing the standard

Chapter 5. Debugging SEE machines

CodeSafe v13.3 User Guide (Linux) 93/160

stdioe and socket support.

Because the vulnerability.o test harness is insecure, we

recommend that you not link vulnerability.o into a production

SEE machine.

5.5. Troubleshooting guide

Symptom Possible problems Solution

SEEJob takes a long time then

fails with HardwareFailed

The SEE machine has

deadlocked or entered an

infinite loop which prevents the

job from returning and causes

the SEEJob to trigger the

command time-out.

Check the code for possible

deadlocks or infinite loops. Non-

obvious problems can be

debugged by writing progress

reports to the Trace Buffer and

calling TraceSEEWorld after the

job returns HardwareFailed.

CreateSEEWorld fails with
BadMachineImage

No SEE machine is loaded. Load an SEE machine

SEE machine loading fails with
BadMachineImage

The file being loaded is not a

correctly formatted SAR file.

Ensure that the correct SEE

machine file is being loaded.

Ensure that the SEE machine

has been properly processed by

the Trusted Code Tool into a

SAR file.

The SEE machine file is

corrupted.

Rebuild the SEE machine, or

revert to a known good back-

up.

The SEE machine has been

compiled or linked with the

wrong options.

SEE machines must be

nonexecutable, uncompressed,

non-relocatable AIFs or SXFs,

packaged as SAR files.

CreateSEEWorld fails with
InvalidCertificate

The machine signing hash on

userdata signatures does not

match any signature hash on

the currently loaded machine.

Ensure the correct SEE machine

with the correct signatures is

loaded.

Ensure the correct user data is

being passed to CreateSEEWorld.

Ensure the user data signatures

are correct.

Chapter 5. Debugging SEE machines

CodeSafe v13.3 User Guide (Linux) 94/160

Symptom Possible problems Solution

SEE machine loading fails with

InvalidCertificate.

The SEE machine signatures

were created incorrectly.

SEE machine signatures must

be created with the machine

key specification --is-machine.

Recreate the SEE machine SAR

with correct signatures.

The SEE machine crashes, and

Trace Buffer output shows

raised signal.

Dependent on signal number. Check stdh.h and signal.h for

signal descriptions then check

the code to see how that signal

could be raised.

AccessDenied from

CreateSEEWorld.

SEE World debugging is not

available in Security World.

Check the Security World’s SEE

debugging policy.

SEE machine is returning

AccessDenied in

SEElib_initComplete.

Check the SEE machine set-up

code to see where it might be

passing AccessDenied to

SEElib_initComplete, and fix the

cause of that, if necessary.

All SEEJobs return with

Status_Cancelled.

SEElib transaction listener is not

running.

If you are using SEElib_Transact

you must call

SEElib_StartTransactListener

before making use of

SEElib_Transact.

NoModuleMemory is returned from

the CreateSEEWorld command.

Segment addresses clash with

kernel pages.

Adjust segment positions away

from kernel RAM; see Segment

addresses for Solo

.

Segment addresses overlap. Adjust segment away from each

other; see Segment addresses

for Solo

.

Segment addresses are not

usable RAM.

Adjust segment positions to

usable RAM; see Segment

addresses for Solo

.

NoModuleMemory is returned when

loading a SEE machine.

Userdata has been specified but

is not expected.

Exclude the userdata.

The previous SEE machine has

not been cleared

Clear the previous SEE machine;

see clearing a SEE machine

from the front panel or clearing

a SEE machine remotely

Chapter 5. Debugging SEE machines

CodeSafe v13.3 User Guide (Linux) 95/160

Symptom Possible problems Solution

Error from link: section .data
[hhhhhhhh → hhhhhhhh] overlaps

section .text [hhhhhhhh →
hhhhhhhh]

Segment addresses overlap. Adjust segment away from each

other; see Segment addresses

for Solo

.

Chapter 5. Debugging SEE machines

CodeSafe v13.3 User Guide (Linux) 96/160

6. Deploying SEE Machines
This chapter discusses the deployment of SEE machines after their development is

complete. It includes information about Feature Enabling as this applies to SEE.

Deploying a SEE machine involves the following steps:

1. Sign and encrypt the SEE machine. See Signing methods and Encryption.

2. Obtain an export certificate for the SEE machine from Entrust and incorporate

the certificate in the distribution. See Obtaining and using export certificates.

3. Distribute the SEE machine to customers.

6.1. About the Feature Enabling Mechanism (FEM)

Entrust provides a Feature Enabling Mechanism (FEM) that controls the software

that any given HSM can use. This is used to control access to the SetSEEMachine

command that loads the SEE machines.

The SetSEEMachine command can be authorized in either of the following ways:

• The GeneralSEE static feature is set with a bit in the EEPROM. If this bit is set,

the command can load any SEE machine without further certificates or

authorization.

• If the GeneralSEE static feature is not applied, the command requires a dynamic

Feature Enabling certificate chain to load a SEE machine.

All CodeSafe development environments have the GeneralSEE static feature.

However, to deploy an already-developed SEE machine, you require the dynamic

Feature Enabling certificate chain.

Customers who require the dynamic certificate chain can load a SEE machine only

when the key used to sign the SEE machine is export approved by Entrust through

the provision of a signing certificate (an ADDER certificate). See Obtaining and

using export certificates.

The SEE machine signing (ADDER) certificate authorizes SetSEEMachine on any

HSM, but the dynamic Feature Enabling certificate chain is valid only on the

specified HSM.

6.2. Obtaining and using export certificates

Chapter 6. Deploying SEE Machines

CodeSafe v13.3 User Guide (Linux) 97/160

You must understand and agree to the conditions for exporting

SEE machines. Contact Entrust for full details of these

conditions.

To obtain an export certificate for a SEE machine:

Users with a Restricted SEE, [SEE(R)], enabled Connect will

need to run update world files to pull the ADDER cert onto the

Connect file system to load a SEE machine.

1. Generate a signing key and send the hash to Entrust together with a

description of the SEE machine.

Entrust approves the SEE machine for export and sends you an ADDER

certificate to allow the SEE machine signed by the specified key to run.

2. Sign the SEE machine with the signing key supplied to Entrust and, optionally,

encrypt it.

3. Develop an installation process that places the certificate in the

/opt/nfast/femcerts (Linux systems) or %NFAST_CERTDIR% (Windows) directory.

4. Distribute the signed SEE machine and the certificate to end-users with the

appropriate installation instructions.

6.3. Automatically loading a SEE machine

The figures below outline different methods for loading a SEE machine.

Loading SEE machines for Solo XC:

Chapter 6. Deploying SEE Machines

CodeSafe v13.3 User Guide (Linux) 98/160

Loading SEE machines for Solo PCIe:

Chapter 6. Deploying SEE Machines

CodeSafe v13.3 User Guide (Linux) 99/160

You can load SEE machines manually by running the loadmache command-line

utility or, optionally, you can load SEE machines that require support from a host-

side see-*-serv utility by specifying the -M option when you run the utility.

However, you can also configure the hardserver to load SEE machines

automatically whenever the HSM is initialized (that is, when the hardserver starts,

or restarts, or after the HSM receives a ClearUnit command).

To configure the hardserver to load a SEE machine automatically, you must edit

the settings in the host systems hardserver configuration file. Entrust provides the

loadsee-setup command-line utility to help you set up, display, and remove settings

in the hardserver configuration file that control the automatic loading of SEE

machines.

For a usage description of the loadsee-setup command-line

utility, see Loadsee setup. For more information about the

configuration files, see the User Guide.

The loadsee-setup utility configures the hardserver settings that specify:

• The name of the SEE machine file to be automatically loaded

• If appropriate, the name of an accompanying userdata file.

• If appropriate (if userdata is specified), the published-object name for the SEE

machine

• The name of an appropriate post-load program (to perform setup and

initialization tasks for the SEE machine) and any necessary arguments for it (a

-m option to specify an HSM is automatically added)

For SEE machines that require support from a host-side see-*-serv utility, Entrust

provides the postload-bsdlib post-load program, which runs the appropriate host

utility, in restricted mode, while returning control back to the hardserver. The

postload-bsdlib program takes the same arguments as the see-*-serv host utilities

(see see-*-serv utilities), together with a --provision argument that takes one of

the following parameters to specify which utility to run:

• stdoe

• stdioe

• sock

• stdioesock

For SEE machines using the SEElib architecture, it is usually necessary to write a

custom post-load program.

Chapter 6. Deploying SEE Machines

CodeSafe v13.3 User Guide (Linux) 100/160

6.3.1. Automatically loading a glibc/bsdlib SEE machine with
userdata

To configure the hardserver configuration file to automatically load a glibc/bsdlib

SEE machine and its accompanying userdata file, run a command similar to the

following example:

loadsee-setup -m1 -M /tmp/MySEEMachine.sar -U /tmp/MyUserdata.sar -p MyPublishedObjectName -P glibc -A "--
provision sock -p MyPublishedObjectName"

In this example, MySEEMachine.sar is the SEE Machine (packed as a SAR file),

MyUserdata.sar is the userdata (packed as a SAR file), MyPublishedObjectName is the

name to use for publishing the KeyID of the started SEE machine, and the glibc

/bsdlib parameter specifies use of the postload-bsdlib post-load program.

The sock parameter in this example tells postload-bsdlib to run the see-sock-serv

host utility. If a different host utility were necessary, you would specify the

appropriate parameter for the appropriate utility (stdoe, stdioe, or stdioesock).

When running a command of this form, ensure that the

parameters specifying name of the published object (in this

example, MyPublishedObjectName) are the same for both the

loadsee-setup utility and the postload-bsdlib program.

For more information about the loadsee-setup command-line utility, see Loadsee

setup.

6.3.2. Automatically loading a glibc/bsdlib SEE machine without
userdata

To configure the hardserver configuration file to automatically load a glibc/bsdlib

SEE machine without its accompanying userdata file (which instead is to be loaded

by the host utility), run a command similar to the following example:

loadsee-setup -m1 -M /tmp/MySEEMachine.sar -P glibc -A "--provision sock --userdata-sar /opt/nfast/nc-
seemachines/MyUserdata.sar"

In this example, MySEEMachine.sar is the SEE Machine (packed as a SAR file) and the

glibc/bsdlib parameter specifies use of the postload-bsdlib post-load program.

The sock parameter in this example tells postload-bsdlib to run the see-sock-serv

host utility. If a different host utility were necessary, you would specify the

Chapter 6. Deploying SEE Machines

CodeSafe v13.3 User Guide (Linux) 101/160

appropriate parameter for the appropriate utility (stdoe, stdioe, or stdioesock).

The MyUserdata.sar parameter in this example, passed to the postload-glibc

/postload-bsdlib program, specifies a userdata file (packed as a SAR) that is to be

loaded by the host utility.

To specify userdata that has not been packed as a SAR file, use

the --userdata-raw option instead of --userdata-sar.

To turn on SEE debugging, pass one of the options --trace or

--plain-trace as an argument for the post-load program. See

also Debugging SEE machines.

The host utility will be run in restricted mode, using the -r

option.

6.4. Configuring the nShield Connect to use
CodeSafe Direct

The CodeSafe client can be any OS platform (including mainframe, Non-Stop or

embedded device). The use of CodeSafe Direct eliminates proxy devices,

complexity and points of failure.

Chapter 6. Deploying SEE Machines

CodeSafe v13.3 User Guide (Linux) 102/160

The nShield Connect can be configured to receive direct socket connections from

the SEE machine via see-sock-serv, removing the need for a client machine. You do

this by specifying postload_prog and postload_args in the load_seemachine section of

the nShield Connect hardserver configuration file, located in NFAST_KMDATA/hsm-

<ESN>, where <ESN> is the Electronic Serial Number of the HSM. (For more

information about this section of the configuration file, see the User Guide.)

CodeSafe Direct is supported on bsdlib-based/glibc-based SEE

machines only: the functionality is not available on SEElib-based

machines.

The configuration file can be managed in two ways: via the front panel of the

nShield Connect (see Configuring a SEE machine using the front panel), and by

using the remote configuration functions to push a config.new file, containing the

postload_prog and postload_args settings, to the HSM.

For more information, see Configuring the HSM with

configuration files and HSM and client configuration files in the

User Guide.

6.5. Configuring a SEE machine using the front panel

To use see-sock-serv directly, you must create a bsdlib/glibc SEE

machine.

Ensure that the SEE machine for the application is in the directory

/opt/nfast/custom-seemachines on the remote file system.

If a SEE machine has previously been loaded on a network-

attached HSM with a front panel, such as an nShield Connect,

press the Clear button on the front of the HSM before

proceeding to the next step. This clears the current SEE machine

from memory.

6.5.1. Configuring a glibc/bsdlib SEE machine

Select the CodeSafe menu option, and enter the following information when

prompted:

1. The name of the SEE machine file.

2. The name of the userdata file.

Chapter 6. Deploying SEE Machines

CodeSafe v13.3 User Guide (Linux) 103/160

For CodeSafe Direct, the userdata file must be packed as a

SAR file.

3. The type of custom SEE machine you are using (glibc/bsdlib sockserv).

Worldid_pubname, postload_prog, and postload_args will be passed to

load_seemachine. For detailed descriptions of the options in this section, see

the User Guide.

6.5.2. Configuring a SEElib SEE machine

Select the CodeSafe menu option, and enter the following information when

prompted:

1. The name of the SEE machine file.

2. The name of the userdata file, if required.

 The userdata file must be packed as a SAR file.

3. The type of custom SEE machine you are using (SEElib).

4. The ID of the SEE World to create.

6.6. Remotely loading and updating SEE machines

The SEE remote push facility allows the remote deployment of CodeSafe SEE

machines to an nShield Connect, negating the need to physically visit the HSM to

load or update the SEE machine. This is achieved by editing the configuration file

on the RFS for a specific nShield Connect to specify the new SEE machine, then

setting a configuration flag in the config file to true.

Before configuring an HSM to autonomously run a SEE machine and accept

updates using the RFS, that HSM must first be set up to accept remotely-pushed

configurations; see Pushing configuration files to the nShield Connect in the

nShield Connect User Guide.

For more information about configuring log file storage options, see Configuring

the HSM with configuration files in the nShield Connect User Guide.

Both SEElib and glibc/bsdlib sockserv SEE machines are

supported on the nShield Connect.

To configure an nShield Connect to autonomously run a SEE machine and accept

Chapter 6. Deploying SEE Machines

CodeSafe v13.3 User Guide (Linux) 104/160

updates using the RFS:

1. Copy the existing config file to a new file called config.new.

2. In the load_seemachine section of the config.new file for the remote HSM, add or

amend the following settings:

pull_rfs=true
machine_file=mymachinename.sar
userdata=myuserdata.sar
worldid_pubname=publ_name

These settings specify the type, name and user data of the

SEE machine you wish to load. For more information about

each setting, see load_seemachine in Hardserver configuration

files, in the nShield Connect User Guide.

For CodeSafe Direct, the userdata file must be packed as a

SAR file.

The remote HSM will load the new SEE machine in place of

any existing SEE machine. If no machine_file value is set,

then pushing the config file will remove any existing

machines on the HSM.

3. In the sys_log section of the config.new file for the remote HSM, add or amend

the following settings:

behaviour=push
push_interval=1

These settings control how and where log messages are

written. Using the example above, messages will be written

to the system.log and hardserver.log files of the HSM, which

are accessible using the remote file system. You may wish to

revise the push_interval to a higher value once the nShield

Connect has successfully loaded the new SEE machine.

1. Run nopclearfail to clear the HSM, followed by enquiry to check that the HSM

is ready.

2. Run cfg-pushnethsm to push the new config file to the HSM.

For more information about the cfg-pushnethsm utility, see the

User Guide.

Chapter 6. Deploying SEE Machines

CodeSafe v13.3 User Guide (Linux) 105/160

To load a new SEE machine to multiple nShield Connects, we recommend

scheduling down time for each HSM, upgrading them on a per HSM basis. Each

nShield Connect configuration file is specific to an individual HSM and each

configuration file should be updated separately to load the new SEE machine.

Chapter 6. Deploying SEE Machines

CodeSafe v13.3 User Guide (Linux) 106/160

7. Utilities
Entrust supplies the following SEE-specific nShield command-line utilities,

described in this appendix:

• elftool.

• loadmache.

• loadsee-setup.

• hsc_loadseemachine

• The see-*-serv host-side utilities:

◦ see-sock-serv.

◦ see-stdoe-serv.

◦ see-stdioe-serv.

◦ see-stdioesock-serv.

• seessl-migrate.py.

• tct2 (the Trusted Code Tool)

This appendix also describes the following general nShield command-line utilities:

• nfkmverify

• stattree

For a list of all supplied nShield utilities, see the User Guide.

7.1. cpioc

The cpioc command-line utility takes a collection of files and packs them up into a

userdata archive file that the SEE machine can use.

7.1.1. Usage

cpioc userdata.cpio <MyFile1> <MyFile2> <MyFile3> <[...]>

In this command, <MyFile1>, <MyFile2>, and <MyFile3> represent the files being

packed into the userdata.cpio file that is generated by the command. You can

specify as many files as appropriate.

You can also specify one or more directories; the command automatically packs

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 107/160

their contents (including any subdirectories) into the generated userdata.cpio file.

7.2. elftool

The elftool command-line utility lets you convert ELF format executables into a

format suitable for loading as an SEE machine.

7.2.1. Usage

elftool [<options>] <infile> [<outfile>]

This utility has the following options:

-d|--dump-fields

These options dumps (display) all fields in the input file infile as they are read.

-q|--quiet

These options suppresses informative messages.

--single-section

This option checks that exactly one of each section type is present in the input

file infile. If more than one section of a type is present, an error is displayed.

--aif

This option generates an output file outfile in nonexecutable AIF output (ARM

only, deprecated).

--bin

This option generates an output file outfile in raw binary format.

--sxf

This option generates an output file outfile in nShield SEE Executable Format

(SXF).

-n|--no-output

These options check the input file infile without generating any output.

To view the loadable sections of an ELF file, use the following command:

elftool --dump-fields <infile>

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 108/160

This command displays details of the sections of the file under one of the

following categories:

Read Only

This category includes program code and constant data (either Read or

Read+Execute permissions).

Read/Write

This category includes non-constant data initialized to particular values

(Read+Write permissions).

Zero Init

This category includes non-constant data initialized to zero.

To generate an AIF or SXF format output file correctly, the ELF input file must

have the following characteristics:

• The address range for one category of data (for example, Read Only) must not

overlap with the address range for another (for example, Read/Write).

• All Zero Init data must come after all Read/Write data in memory (that is, Zero

Init data must occupy a higher memory address).

The default options for most linkers ensure that ELF files meet these requirements.

To convert a ELF file into SXF, a format specifically for SEE machines, use the

following command:

elftool --sxf <infile> <outfile>

SXF format files can be loaded on all existing SEE-enabled HSMs. This is the

preferred format.

To convert a ELF file into binary format, use the following command:

elftool --bin <infile> <outfile>

The output file consists of the Read Only data immediately followed by the

Read/Write data, without a header. This may be useful in applications other than

SEE Machine images.

7.3. loadmache

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 109/160

The loadmache command-line utility supplied with the Secure Execution Engine

(SEE) loads an SEE machine into an SEE-enabled HSM. The hardserver can

automatically use this utility to load an SEE machines.

To use this command, you must be logged in to the host computer as a user in the

group nfast.

SEE machines that require support from a host-side see-*-serv

utility

If your SEE machine requires support from a host-side see-*-serv

utility, you must run one of those utilities as appropriate to serve

the SEE machine before its networking or stdioe provisions can

work.

7.3.1. Usage

loadmache [-m|--module=<MODULE>] [-s|--slot=<SLOT>] [-U|--unencrypted] [-e|--encryptionkey=<IDENT>] [-a|--
sighash=<HASH>] [-n|--noprompt] <machine-filename>

In this command, the machine-filename parameter specifies the path of the SEE

machine. If machine-filename is not specified, loadmache tries to select a machine

from the location specified by the NFAST_SEE_MACHINEIMAGE_* environment variables.

See the User Guide for more information about environment variables.

7.3.1.1. HSM options

-m|--module=<MODULE>

These options specify the hardware security module to use.

-s|--slot=<SLOT>

These options specify the slot from which to load cards.

7.3.1.2. SEE machine loading options

-a|--sighash=<HASH>

These options specify that the SEE machine is to be signed with a key whose

hash is HASH.

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 110/160

-n|--noprompt

These options specify that you are never prompted for missing smart cards.

-U|--unencrypted

These options specify that the SEE machine is to be unencrypted. This is the

default. If set, these options override any previously specified

`NFAST_SEE_MACHINEENCKEY_`* variable. See the User Guide for more

information about environment variables.

-e|--encryptionkey=<IDENT>

These options specify that the SEE machine is to be encrypted with the key

identified by IDENT. If set, these options override the -U|--unencrypted options.

If neither the -e|--encryptionkey nor the -U|--unencrypted options

are specified, a decryption key is used only if the name of a

suitable one is found in the location specified by the

NFAST_SEE_MACHINEENCKEY_DEFAULT environment variable. See the

User Guide for more information about environment variables.

7.4. loadsee-setup

The loadsee-setup command-line utility helps you set up, display, or remove

settings in the hardserver configuration file that control the automatic loading of

SEE machines.

 For details about the configuration files, see the User Guide.

You can use loadsee-setup for one of three types of action by specifying the

appropriate option:

• Specifying the --setup option selects the setup action, used to add a new

configuration or replace an existing configuration

• Specifying the --remove option selects the remove action, used to remove an

existing configuration (without replacing it)

• Specifying the --display option selects the display action, used to display the

configuration of one or all HSMs

7.4.1. Usage

loadsee-setup -s|--setup -m <MODULE>

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 111/160

loadsee-setup -r|--remove -m <MODULE>
loadsee-setup -d|--display [-m <MODULE>]

7.4.1.1. Action selection

-s|--setup

This option selects the setup action, enabling you to set up the hardware

configuration file for the HSM specified by -m|--module=<MODULE> to provide

automatic loading for the SEE machine specified by -M|--machine=<MACHINE>.sar.

You must always specify the -m|--module=<MODULE> and -M|

--machine=<MACHINE>.sar options when using the --setup option.

See the comments in the hardserver configuration file for

information about the effects of specifying or omitting other

options.

-r|--remove

This option selects the remove action, enabling you to remove settings that

control automatic SEE machine loading from the hardware configuration file

for the HSM specified by -m|--module=<MODULE>

-d|--display

This option selects the display action, enabling you to display the current

configuration of automatic SEE machine loading for the HSM specified by -m|

--module=<MODULE> or, if no HSM is specified, all HSMs in the Security World.

7.4.1.2. Setup options

-M|--machine=<MACHINE>.sar

This option specifies the SEE machine file (packed as a SAR). You must supply

a value for this option when using setup mode.

-U|--userdata=<USERDATA>.sar

This option specifies the name of the userdata file (packed as a SAR) to be

passed to SEE machine.

-k|--key=<IDENT>

This option identifies the seeconf key protecting the SEE machine. You must

supply this option is the SEE machine is encrypted. Only HSM-protected keys

are supported.

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 112/160

-S|--sighash=<HASH>

This option identifies the hash of the key that the SEE machine is signed with.

You only need to supply this option if the SEE machine is encrypted and you

are using a dynamic SEE feature. This option is not required if the SEE machine

is not encrypted or if you have the GeneralSEE static feature.

-p|--published-object=<NAME>

This option specifies the PublishedObject name to use for publishing the KeyID

of the started SEE machine.

-P|--postload-prog=<PROGRAM>

This option specifies the post-load program to be run after the SEE machine is

loaded.

In most cases, SEE machines using the bsdlib/glibc

architecture should supply the value bsdlib/glibc to specify

use of the provided postload-bsdlib program.

-A|--postload-args="<ARGUMENTS>"

This option specifies an argument string to pass to the post-load program

specified by the --postload-prog option. Supply the individual arguments within

the double quotation marks, each argument separated from the next by a

single space.

7.4.1.3. General options

-m|--module=<MODULE>

This option specifies the HSM with the hardware configuration file that is to be

acted upon by the command. You must supply a value for this option in either

setup or remove mode.

-c|--configfile=<FILENAME>

This option specifies name of (or path to) the hardserver configuration file to

be acted upon by the command. The default is /opt/nfast/kmdata/config/config.

-f|--force

Setting this option allows the command to make configuration changes

without prompting you.

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 113/160

--no-reset

This option prevents resetting HSMs with changed configurations.

7.4.2. Output

7.4.2.1. loadsee-setup --setup

This section provides an example of loadsee-setup used in --setup mode.

When --setup mode is specified, the only other required options are -m|

--module=<MODULE> and -M|--machine=<MACHINE>.sar. However, if you supply the -A|

--postload-args="<ARGUMENTS>" option, you must also supply the -P|--postload

-prog=<PROGRAM> option.

To set up a hardware configuration file to provide automatic loading for an SEE

machine, run a command similar to the following Solo XC example:

$ loadsee-setup --setup -m1 --machine /tmp/test.sar --postload-prog=glibc --postload-args="--provision stdoe
--userdata-sar /tmp/userdata.sar --trace"

If automatic SEE machine loading has already been configured for the specified

HSM, loadsee-setup warns you before it is overwritten:

Module #1 new SEE configuration saved, new configuration follows:
Module #1:
 Machine file: /tmp/test-helloworld.sar
 Userdata file:
 WorldID published object:
 Postload helper: glibc
 Postload args: --provision stdoe --userdata-sar /tmp/test.cpio.sar
--trace
Clear modules now to reload new configuration? (yes/no): yes

You can use the -f|--force option to bypass this warning and overwrite the

existing configuration.

After setting up the configuration, loadsee-setup resets the affected HSM (unless

you specified the --no-reset option).

7.4.2.2. loadsee-setup --remove

This section provides an example of loadsee-setup used in --remove mode.

When --remove mode is specified, the only other required option is -m|

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 114/160

--module=<MODULE>. This specifies the HSM with the hardserver configuration file

that needs the settings for automatic SEE machine loading removed.

To remove settings for automatic SEE machine loading from an HSM’s hardware

configuration file, run a command similar to the following example:

$ loadsee-setup --remove -m1

If the HSM specified by -m|--module=<MODULE> does not exist or is not currently

configured to automatic SEE machine loading configured, an error is displayed.

Otherwise, the current configuration is displayed and loadsee-setup prompts you

to continue:

Module #1:
 Machine file: /tmp/test-helloworld.sar
 Userdata file:
 WorldID published object:
 Postload helper: glibc
 Postload args: --provision stdoe --userdata-sar /tmp/test.cpio.sar
--trace
Erase this configuration? (yes/no): yes
Module #1 SEE auto-loading configuration removed.
Clear modules now to reload new configuration? (yes/no): yes

You can use the -f|--force option to bypass warnings and remove the existing

configuration without being prompted.

After removing the configuration, loadsee-setup resets any HSM with a

configuration that has changed (unless you specified the --no-reset option). After

running loadsee-setup command in --remove mode, no SEE machines are

automatically loaded onto the specified HSM.

7.4.3. loadsee-setup --display

This section provides an example of loadsee-setup used in --display mode.

You are not required to specify any additional options with --remove mode. You can

specify the -m|--module=<MODULE> option to display the settings for automatic SEE

machine loading in a particular HSM’s hardserver configuration file; without

specifying this option, loadsee-setup displays the settings for automatic SEE

machine loading in the hardserver configuration files for any HSM in the Security

World for which these settings exist.

To display settings for automatic SEE machine loading for all HSMs, run a

command similar to the following example:

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 115/160

$ loadsee-setup --display

This command produces output similar to the following:

Module #1:
 Machine file: /tmp/test-helloworld.sar
 Userdata file:
 WorldID published object:
 Postload helper: glibc
 Postload args: --provision stdoe --userdata-sar /tmp/test

7.5. hsc_loadseemachine

The hsc_loadseemachine utility enables you to publish an SEE machine. The utility:

1. Loads an SEE machine into each HSM configured.

2. Publishes a newly created SEE world, if appropriate.

7.5.1. Usage

hsc_loadseemachine [<options>]

7.5.1.1. Options

-m|--module

This option specifies the HSM number into which the configuration data must

be read. The default value is 0.

The SEE machine can be loaded only if you specify this option. If you do not

specify this option, the utility examines the configuration file to check the

changes that are made to the load_seemachine section and then reset any HSM

that has had its entry modified. The hardserver loading script then calls

hsc_loadseemachine -m MODULE for each HSM that has been reset.

-c|--configfile=<FILENAME>

This option specifies the name of the configuration file that must be read.

7.6. nfkmverify

The nfkmverify command-line utility verifies key generation certificates. You can

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 116/160

use nfkmverify to confirm how a particular Security World and key are protected. It

also returns some information about the Security World and key.

The nfkmverify utility compares the details in the ACL of the key and those of the

card set that currently protects the key.

A key that has been recovered to a different card set shows a discrepancy for

every respect that the new card set differs from the old one. For example, a key

recovered from a 2-of-1 card set to a 1-of-1 card set has a different card-set hash

and a different number of cards, so two discrepancies are reported. The

discrepancy is between the card set mentioned in the ACL of the key and the card

set by which the key is currently protected (that is, the card set mentioned in the

key blobs).

A key that has been transferred from another Security World

shows discrepancies and fails to be verified. We recommend that

you verify keys in their original Security World at their time of

generation.

If you must replace your Security World or card set, we recommend that you

generate new keys whenever possible. If you must transfer a key, perform key

verification immediately before transferring the key; it is not always possible to

verify a key after transferring it to a new Security World or changing the card set

that protects it.

7.6.1. Usage

nfkmverify [-f|--force] [-v|--verbose] [-U|--unverifiable] [-m|--module=<MODULE>] [appname ident [appname ident
[...]]]

7.6.1.1. Help options

-h|--help

This option displays help for nfkmverify.

-V|--version

This option displays the version number for nfkmverify.

-u|--usage

This option displays a brief usage summary for nfkmverify.

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 117/160

7.6.1.2. Program options

-m|--module=<MODULE>

This option performs checks with module MODULE.

-f|--force

This option forces display of an output report that might be wrong.

-U|--unverifiable

This option permits operations to proceed even if the Security World is

unverifiable.

If you need the -U|--unverifiable option, there may be some

serious problems with your Security World.

-v|--verbose

This option prints full public keys and generation parameters.

-C|--certificate

This option checks the original ACL for the key using the key generation

certificate. This is the default.

-L|--loaded

These options check the ACL of a loaded key instead of the generation

certificate.

-R|--recov

This option checks the ACL of the key loaded from the recovery blob.

--allow-dh-unknown-sg-group

This option allows an operation to proceed even if a Diffie-Hellman key is using

an unrecognized Sophie-Germain group.

7.6.2. Output

Output returned from nfkmverify can take a variety of forms, depending on the

parameters of the given key generation certificate, Security World, and key

concerned. Examples of possible output resulting from several different situations

are provided below.

Under normal circumstances, issuing a command of the form:

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 118/160

nfkmverify --verbose --unverifiable myapp o20010621a13h25m02

returns output of the form:

** [Security world] **
 1 Administrator Cards
 (Currently in Module #1 Slot #0: Card #1)
 Cardset recovery ENABLED
 Passphrase recovery disabled
 Strict FIPS 140 level 3 (does not improve security) disabled
 SEE application nonvolatile storage disabled
 real time clock setting disabled
 SEE debugging disabled
 Generating module ESN 0A42-E645-7A75 currently #1 (in same incarnation)
** [Application key myapp o20010621a13h25m02] **
 [Named 'test Thu, 21 Jun 2001 13:25:02 +0100']
 Useable by HOST applications.
 Recovery ENABLED.
 MODULE-ONLY protection
 Type RSAPrivate 1024 bits keygenparams.type= RSAPrivate 2
 .params.rsaprivate.flags= none 0x00000000
 .lenbits= 0x00000400 1024
 .given_e absent
 .nchecks absent

 Generating module ESN 0A42-E645-7A75 currently #1 (in same incarnation)
 nCore hash 23a901f3329aa9e29cd79d3bb7b32d549b725fc3
 public_half.type= RSAPublic 1
 .data.rsapublic.e= 4 bytes
 00010001

 .n= 128 bytes
 8a6ab219 183de558 48c8379e 840895ff 0ba64bae 392848c6 c0aeb7f9 d10b046d
 4a214b70 4878b518 8e599c69 1cd61db0 bab4f852 425c70f5 b9c000e5 4ceda15f
 c062b5dd 01852380 f70275a1 870a6947 68ef59f0 db5d2e84 d6ae8dc1 7542e94d
 adedece8 cb3c9fb6 98fab8af 52c94137 a76ab7dd 38648134 0df55ca8 2f45e8b7

Verification successful, check details above.

Output of the form shown above indicates successful verification of the relevant

key generation certificate.

The following examples indicate forms of output that could be returned if you try

to verify the generation certificate of a key generated in a Security World that was

created with an insufficiently up-to-date version of Security World for nShield.

In such a case, issuing a command of the form:

nfkmverify --verbose myapp spong

returns output of the form:

PROBLEM: no world generation certificates
PROBLEM: application key myapp spong: no key generation signature
 2 issues found, NOT VERIFIED

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 119/160

Adding the --unverifiable option to the same command:

nfkmverify --verbose --unverifiable myapp spong

returns output of the form:

PROBLEM: application key myapp spong: no key generation signature
1 issues found, NOT VERIFIED

Then, also adding the --force option to this same command:

nfkmverify --force --verbose --unverifiable myapp spong

returns output of the form:

PROBLEM: application key myapp spong: no key generation signature
PROBLEMS BUT FORCING POSSIBLY-WRONG OUTPUT
 ** [Security world] **
 UNVERIFIED SECURITY WORLD !
 proceeding anyway as requested
 ** [Application key myapp spong] **
 [Not named]
 Useable by HOST applications.
 Recovery ENABLED.
 MODULE-ONLY protection

 1 issues found, NOT VERIFIED

7.7. see-*-serv utilities

This section describes the usage and available options for the host-side utilities

that Entrust supplies to enable standard IO and socket connections for SEE

machines using the bsdlib/glibc architecture:

• see-sock-serv, for SEE machines that require only sockets.

• see-stdoe-serv, for SEE machines that require only standard output and error

streams.

• see-stdioe-serv, for SEE machines that require standard input, output, and

error streams.

If you are using a nShield Connect, you must set the --no

-feature-check option when running the see-stdoe-serv utility.

• see-stdioesock-serv, for SEE machines that require sockets in addition to

standard input, output, and error streams.

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 120/160

Each of the 4 supplied utilities has the capability to:

• Load the SAR file for the SEE machine

• Load the mandatory userdata file

• Provide a selection of socket and I/O streams

SEE machines that require the standard I/O streams or INET domain sockets must

be serviced by one of the described host-side utilities. Without an appropriate

host-side utility, SEE machine operations requiring any of these streams are

blocked until the appropriate service becomes available.

Ensure that you select the appropriate utility for your SEE

machine, because running a host-side utility with more

provisions than the SEE machine was linked against causes the

SEE machine to abort.

7.7.1. Usage

All the see-*-serv host-side utilities take the same arguments:

see-sock-serv -p <PUBL-NAME> | -o <KEYID> | -M <MACHINE>.sar
see-stdoe-serv -p <PUBL-NAME> | -o <KEYID> | -M <MACHINE>.sar
see-stdioe-serv -p <PUBL-NAME> | -o <KEYID> | -M <MACHINE>.sar
see-stdioesock-serv -p <PUBL-NAME> | -o <KEYID> | -M <MACHINE>.sar

-M|--machine=<MACHINE>.sar

This option specifies SEE machine file (packed as a SAR). If you do not specify

this option, the SEE machine must have been loaded previously by, for

example, running the loadmache command-line utility. (See loadmache.)

--userdata-sar <USERDATA>.sar

This option specifies the name of the userdata file (packed as a SAR) to be

passed to SEE machine.

--userdata-raw <USERDATAFILE>

This option specifies the name of an unpacked userdata file to be passed to

SEE machine.

 The raw file is internally made into an unsigned SAR file.

-p|--published-object=<NAME>

This option specifies the PublishedObject name to use for publishing the KeyID

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 121/160

of the started SEE machine.

-o|--object-id=<NAME>

This option specifies the KeyID of the started SEE machine.

-m|--module=<MODULE>

This option specifies an HSM onto which the SEE machine is to be loaded.

Use the enquiry command-line utility to get information

about an HSM. For more information, see the User Guide.

--job-prefix <PREFIX>

This option is for debugging. For the host-side utilities that provide a single

service (that is, see-sock-serv, see-stdoe-serv, and see-stdioe-serv), specifying

this option forces the service to use the job prefix specified by <PREFIX>.

--trace

Specifying this option polls the Security World’s trace buffer. The contents are

printed to stderr in dark red.

If the configuration of the Security World requires it, you

must supply authorization to poll the trace buffer when

specifying this option. The see-*-serv host-utility prompts

you to supply authorization if it is required.

--plain-trace

This option functions like the --trace option to poll the Security World’s trace

buffer, but the output from --plain-trace is not surrounded by terminal escape

codes.

-f|--no-feature-check

Specifying this option suppresses the default behavior of the see-*-serv host-

side utilities to ensure that the HSM specified by the -m|--module=<MODULE>

option has the HasSEE flag and the GeneralSEE feature before the utility tries to

load an SEE machine.

If you are using a nShield Connect, you must set the --no

-feature-check option when running the see-stdoe-serv utility.

-r|--restrict

This option only permits userdata and machine-image files from the nc-

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 122/160

seemachines or the custom-seemachines subdirectories of the /opt/nfast directory

to be loaded. When userdata is loaded automatically by a privileged account,

this option should be specified, for extra security.

7.7.2. Error output from SEE machine with SEElib architecture

You cannot use the see-*-serv host-side utilities to load SEE machines built with

the SEElib architecture. If you try to do so, the utility returns a message similar to

FATAL: SeeHostCallProvision_Init (prefix `nC/HC/sock/INET ') failed:
SeeHostcallProvisionFailed

This is the expected behavior caused by the host utility sending SEEJobs that the

SEE machine cannot understand or to which it cannot respond correctly.

You can use the loadmache command-line utility to manually load SEE machines

built with the SEElib architecture.

7.8. stattree

The stattree utility returns the statistics gathered by the hardserver and HSMs.

7.8.1. Usage

stattree [<node> [<node> [...]]]

7.8.2. Output

Running the stattree utility displays a snapshot of statistics currently available on

the host machine. Statistics are gathered both by the hardserver (relating to the

server itself, and its current clients) and by each attached HSM.

Times are listed in seconds. Other numbers are integers, which are either real

numbers, IP addresses, or counters. For example, a result -CmdCount 74897 means

that there have been 74,897 commands submitted.

A typical fragment of output from stattree looks like this:

+PerModule:
 +#1:
 +ModuleObjStats:

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 123/160

 -ObjectCount 5
 -ObjectsCreated 5
 -ObjectsDestroyed 0
 +ModuleEnvStats:
 -MemTotal 15327232
 -MemAllocKernel 126976
 -MemAllocUser 0
 +ModuleJobStats:
 -CmdCount 169780
 -ReplyCount 169778
 -CmdBytes 3538812
 -ReplyBytes 4492764
 -HostWriteCount 169772
 -HostWriteErrors 0
 -HostReadCount 437472
 -HostReadErrors 0
 -HostReadEmpty 100128
 -HostReadDeferred 167578
 -HostReadTerminated 0
 -PFNIssued 102578
 -PFNRejected 1
 -PFNCompleted 102577
 -ANIssued 1
 -CPULoadPercent 0
 +ModuleSerialStats:
 -HostReadCount 437476
 -HostReadDeferred 167580
 -HostReadReconnect 167579
 -HostReadErrors 0
 -HostWriteCount 169774
 -HostWriteErrors 0

PerModule, ModuleObjStats, and ModuleEnvStats are node tags that identify classes of

statistics. 1 identifies an instance node.

ObjectCount, MemTotal, and the remaining items at the same level are statistics IDs.

Each has a corresponding value.

If <node> is provided, stattree uses the value given as the starting point of the tree

and displays only information at or below that node in the tree. Values for <node>

can be numeric or textual. For example, to view the object counts for local HSM

number 3:

$ stattree PerModule 3 ModuleObjStats
+#PerModule:
 +#3:
 +#ModuleObjStats:
 -ObjectCount 6
 -ObjectsCreated 334
 -ObjectsDestroyed 328

The value of <node> must be a node tag; it must identify a node in the tree and not

an individual statistic. Thus, the following command does not work:

$ stattree PerModule 3 ModuleObjStats ObjectCount
+#PerModule:
 +#3:

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 124/160

 +#ModuleObjStats:
Unable to convert 'ObjectCount' to number or tag name.

7.8.2.1. Node tags

These hold statistics for each HSM:

Category Contains

ModuleJobStats This tag holds statistics for the Security World Software commands (jobs)

processed by this HSM.

ModulePCIStats This tag holds statistics for the PCI connection between the HSM and the

host computer.

ServerGlobals Aggregate statistics for all commands processed by the hardserver since

it started.

The standard statistics (as described below) apply to the commands sent

from the hardserver to HSMs. Commands processed internally by the

server are not included here. The Uptime statistic gives the total running

time of the server so far.

Connections Statistics for connections between clients and the hardserver. There is one

node for each currently active connection. Each node has an instance

number that matches the log message generated by the server when that

client connected. For example, when the hardserver message is

Information: New client #24 connected, the client’s statistics appear under

node #24 in the stattree output.

PerModule Statistics kept by the HSMs. There is one instance node for each HSM,

numbered using the standard HSM numbering. The statistics provided by

each HSM depend on the HSM type and firmware version.

ModuleObjStats Statistics for the HSM’s Object Store, which contains keys and other

resources. These statistics may be useful in debugging applications that

leak key handles, for example.

ModuleEnvStats General statistics for the HSM’s operating environment.

HostEnvStats Environmental statistics for the HSM.

HostSysInfo Further statistics for the HSM.

7.8.2.2. Statistics IDs

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 125/160

ID Value

Uptime The length of time (in seconds) since an HSM was last reset, the

hardserver was started, or a client connection was made.

CmdCount The total number of commands sent for processing from a client to the

server, or from the server to an HSM. Contains the number of commands

currently being processed.

ReplyCount The total number of replies returned from server to client, or from HSM to

server.

CmdBytes The total length of all the command blocks sent for processing.

ReplyBytes The total length of all the reply blocks received after completion.

CmdMarshalErrors The number of times a command block was not understood when it was

received. A nonzero value indicates either that the parties at each end of a

connection have mismatched version numbers (for example, a more

recent hardserver has sent a command to a less recent HSM that the HSM

does not understand), or that the data transfer mechanism is faulty.

ReplyMarshalErrors The number of times a reply was not understood when it was received. A

nonzero value indicates either that the parties at each end of a connection

have mismatched version numbers (for example, a more recent hardserver

has sent a command to a less recent HSM that the HSM does not

understand), or that the data transfer mechanism is faulty.

ClientCount The number of client connections currently made to the server. This

appears in the hardserver statistics.

MaxClients The maximum number of client connections ever in use simultaneously to

the hardserver.

This gives an indication of the peak load experienced so far by the server.

DeviceFails The number of times the hardserver has declared a device to have failed.

The hardserver provides a diagnostic message when this occurs.

DeviceRestarts The number of times the hardserver has attempted to restart an HSM after

it has failed. The hardserver provides a Notice message when this occurs.

The message does not indicate that the attempt was successful.

QOutstanding The number of commands waiting for an HSM to become available on the

specified client connection. When an HSM accepts a command from a

client, this number decreases by 1 and DevOutstanding increases by 1.

Commands that are processed purely by the server are never included in

this count.

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 126/160

ID Value

DevOutstanding The number of commands sent by the specified client that are currently

executing on one or more HSMs. When an HSM accepts a command from

a client, this number decreases by 1 and QOutstanding increases by 1.

Commands that are processed purely by the server are never included in

this count.

LongOutstanding The number of LongJobs sent by the specified client that are currently

executing on one or more HSMs. When an HSM accepts a LongJobs

command from a client, this number increases by 1 and QOutstanding

decreases by 1. Commands that are processed purely by the server are

never included in this count.

RemoteIPAddress The remote IP address of a client who has this connection. A local client

has the address 0.0.0.0.

HostWriteCount The number of write operations (used to submit new commands) that

have been received by the HSM from the host machine. One write

operation may contain more than one command block. The operation is

most efficient when this is the case.

HostWriteErrors The number of times the HSM rejected the write data from the host. A

nonzero value may indicate that data is being corrupted in transfer, or that

the hardserver/device driver has got out of sync with the HSM’s interface.

HostWriteBadData Not currently reported by the HSM.

Attempts to write bad data to the HSM are reflected in HostWriteErrors.

HostWriteOverruns Not currently reported by the HSM. Write overruns are reflected in

HostWriteErrors.

HostWriteNoMemory Not currently reported by the HSM. Write failures due to a lack of memory

are reflected in HostWriteErrors.

HostReadCount The number of times a read operation to the HSM was attempted. The

HSM can defer a read if it has no replies at the time, but expects some to

be available later. Typically the HSM reports HostReadCount in two places:

the number under ModuleJobStats counts a deferred read twice, once when

it is initially deferred, and once when it finally returns some data. The

number under ModulePCIStats counts this as one operation.

HostReadErrors The number of times a read to an HSM failed because the parameters

supplied with the read were incorrect. A nonzero value here typically

indicates some problem with the host interface or device driver.

HostReadEmpty The number of times a read from the HSM returned no data because there

were no commands waiting for completion. In general, this only happens

infrequently during HSM startup or reset. It can also happen if

PauseForNotifications is disabled.

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 127/160

ID Value

HostReadUnderruns Not currently reported by the HSM.

HostReadDeferred The number of times a read operation to the HSM was suspended because

it was waiting for more replies to become available. When the HSM is

working at full capacity, a sizeable proportion of the total reads are likely

to be deferred.

HostReadTerminated The number of times an HSM had to cancel a read operation which has

been deferred. This normally happens only if the clear key is pressed while

the HSM is executing commands. Otherwise it might indicate a device

driver, interface, or firmware problem.

PFNIssued The number of PauseForNotifications commands accepted by the HSM

from the hardserver. This normally increases at a rate of roughly one every

two seconds. If the hardserver has this facility disabled (or a very early

version), this does not occur.

PFNRejected The number of PauseForNotifications commands rejected by the HSM

when received from the hardserver. This can happen during HSM startup

or reset, but not in normal use. It indicates a hardserver bug or

configuration problem.

PFNCompleted The number of PauseForNotifications commands that have been

completed by the HSM. Normally, this is one less than the PFNIssued figure

because there is normally one such command outstanding.

ANIssued The number of Asynchronous Notification messages issued by the HSM to

the hardserver. These messages indicate such things as the clear key being

pressed and the HSM being reset. In later firmware revisions inserting or

removing the smartcard or changing the non-volatile memory also

generate asynchronous notifications.

ChanJobsIssued The number of fast channel jobs issued to the HSM. The fast channel

facility is unsupported on current HSMs. This number should always be 0.

ChanJobsCompleted The number of fast channel jobs completed by the HSM. The fast channel

facility is unsupported on current HSMs. This number should always be 0.

CPULoadPercent The current processing load on the HSM, represented as a number

between 0 and 100. Because an HSM typically contains a number of

different types of processing resources (for example, main CPU, and RSA

acceleration), this figure is hard to interpret precisely. In general, HSMs

report 100% CPU load when all RSA processing capacity is occupied;

when performing non-RSA tasks the main CPU or another resource (such

as the random number generator) can be saturated without this statistic

reaching 100%.

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 128/160

ID Value

HostIRQs On PCI HSMs, the total number of interrupts received from the host. On

current HSMs, approximately equal to the total of HostReadCount and

HostWriteCount.

ChanJobErrors The number of low-level (principally data transport) errors encountered

while processing fast channel jobs. Should always be 0 on current HSMs.

HostDebugIRQs On PCI HSMs, the number of debug interrupts received. This is used only

for driver testing, and should be 0 in any production environment.

HostUnhandledIRQs On PCI HSMs, the number of unidentified interrupts from the host. If this is

nonzero, a driver or PCI bus problem is likely.

HostReadReconnect On PCI HSMs, the number of deferred reads that have now completed.

This should be the same as HostReadDeferred, or one less if a read is

currently deferred.

ObjectsCreated The number of times a new object has been put into the object store. This

appears under the HSM’s ModuleObjStats node.

ObjectsDestroyed The number of items in the HSM’s object store that have been deleted and

their corresponding memory released.

ObjectCount The current number of objects (keys, logical tokens, buffers, SEE Worlds)

in the object store. This is equal to ObjectsCreated minus ObjectsDestroyed.

An empty HSM contains a small number of objects that are always

present.

CurrentTempC The current temperature (in degrees Celsius) of the HSM main circuit

board. First-generation HSMs do not have a temperature sensor and do

not return temperature statistics.

MaxTempC The maximum temperature recorded by the HSM’s temperature sensor.

This is stored in non-volatile memory, which is cleared only when the HSM

is initialized. First-generation HSMs do not have a temperature sensor and

do not return temperature statistics.

MinTempC The minimum temperature recorded by the HSM’s temperature sensor.

This is stored in non-volatile memory, which is cleared only when the HSM

is initialized. First-generation HSMs do not have a temperature sensor and

do not return temperature statistics.

MemTotal The total amount of RAM (both allocated and free) available to the HSM.

This is the installed RAM size minus various fixed overheads.

MemAllocKernel The total amount of RAM allocated for kernel (that is, non-SEE) use in an

HSM. This is principally used for the object store (keys, logical tokens, and

similar) and for big-number buffers.

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 129/160

ID Value

MemAllocUser The total amount of RAM allocated for user-mode processes in the HSM (0

for non-SEE use). This includes the size of the SEE Machine image, and the

total heap space available to it. The HSM’s kernel does not know (and

does not report in the statistics) how much of the user-mode’s heap is

currently free, and how much is in use.

SystemFans The fan speed (RPM) for each fan in the HSM.

7.9. tct2

The tct2 command-line utility (also referred to as the Trusted Code Tool) enables

users to sign, pack, and encrypt file archives so that they can be loaded onto an

SEE-Ready nShield HSM. tct2 creates SAR files.

tct2 uses keys that are protected by a Security World or an OCS.

Examples of how tct2 can be used are provided in Example SEE

machines.

Encrypted SEE machines are not currently supported for use

with nShield Connect HSMs. When the SEEMachine binary is

installed on the Connect itself for automated loading at boot, the

SEE Confidentiality key is not available. However, when a client

host loads a SEEMachine, it has access to the SEE Confidentiality

key and can cause the binary to be decrypted. In this scenario,

the Connect works fine with encrypted SEEMachine binaries.

Check the documentation supplied by the application vendor to

see if you need to use tct2 to set up and use the application.

7.9.1. Usage

tct2 [[-S|--sign] | [-P|--pack] | [-E|--encrypt] | [--add-sig] | [--sign-and-pack] | [--print-sigs] | [--unpack-
skycert] | [--unpack-sar-payload]] [--sigfile=<NAME>] [-k|--key=<IDENT>] [[--is-machine] |[--machine-
key=<HASH>]| [--machinekey-ident=<IDENT>] [-T|--machine-type=<TYPE>]] [-m|--module=<MODULE>] [-o|--
outfile=<OUTFILE>] [--non-interactive] [--show-metadata] [-v|--verbose] [-q|--quiet] [[-i|--infile=]<INFILE>]

7.9.1.1. Help options

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 130/160

-h|--help

These options display help for tct2.

-V|--version

These options display the version number of tct2.

-u|--usage

These options display a brief usage summary for tct2.

7.9.1.2. Program options

-S|--sign

These options create a signature on the file specified by --infile=<INFILE>. You

must specify --key=<IDENT> and one of --is-machine, --machine-key=<HASH>,

--machine-key-ident=<IDENT>.

-P|--pack

These options pack the file specified by --infile=<INFILE> and any signatures

specified by --sigfile=<NAME> into a SAR file specified by --outfile=<OUTFILE>.

When creating an SEE machine image, the input file is a .SXF file produced by

the elftool utility. When creating a SEE user data file, the input format is

determined by the SEE machine type.

-E|--encrypt

These options encrypt the packed SAR file specified by --infile=<INFILE>.

--key=<IDENT> must be specified.

Encrypted SEE machines are not currently supported for use

with nShield Connects. When the SEEMachine binary is

installed on the Connect itself for automated loading at boot,

the SEE Confidentiality key is not available. However, when a

client host loads a SEEMachine, it has access to the SEE

Confidentiality key and can cause the binary to be decrypted.

In this scenario, the Connect works fine with encrypted

SEEMachine binaries.

--add-sig

This option creates a signed SAR file specified by --outfile=<OUTFILE> from the

unsigned SAR file specified by --infile=<INFILE> and the key specified by

--key=<IDENT>.

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 131/160

--sign-and-pack

This option creates a signature on the file specified by --infile=<INFILE> using

--key=<IDENT> and one of --is-machine, --machine-key=<HASH>, or --machine-key

-ident=<IDENT>, then to pack it in the file specified by --outfile=<OUTFILE>.

--print-sigs

This option displays the key hashes used to sign the SAR file specified by

--infile=<INFILE>.

--unpack-sar-payload

This option retrieves the payload of the SAR file specified by --infile=<INFILE>.

7.9.1.3. Packing and signing options

--sigfile=<NAME>

This option specifies the file that contains the signature. This option can be

repeated to specify multiple signatures.

7.9.1.4. Machine key specification options for signing operations

--is-machine

This option specifies SEE machine signing mode.

--machine-key=<HASH>

This option specifies the key hash of the SEE machine for which this signature

is good.

--machine-key-ident=<IDENT>

This option retrieves the hash of key <IDENT> then behaves like --machine

-key=<HASH>. Only one machine key specification option can be specified.

-T|--machine-type=<TYPE>

These options specify the SEE machine type. You can specify the appropriate

machine type parameter (<TYPE>) for tct2 as a string or a number:

SEE Machine Type tct2 machine type parameter

PowerPCSXF PowerPCSXF or 2

PowerPCELF PowerPCELF or 5

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 132/160

If you are not sure which SEE machine type is appropriate for your HSM, run

the enquiry command-line utility, and check the SEE Machine Type output.

If you do not specify an SEE machine type with this option, tct2 tries to

determine the appropriate type by reading the format of the code to be

signed. If tct2 cannot determine the appropriate SEE machine type, it returns

an error message. In such a case, run tct2 again, explicitly setting the SEE

machine type with this option.

7.9.1.5. Other options

-m|--module=<MODULE>

These options specify the HSM to use (where MODULE is an HSM number). The

default is 1.

-i|--infile=<INFILE>.

These options specify the name of the input .sxf file. You can also specify the

input file without the using --infile option by including the file name at the

end of the command.

-o|--outfile=<OUTFILE>

These options specify the name of the output .sar file to create. This option is

valid only with the program options that create an output file, as described in

Program options.

--non-interactive

This option sets non-interactive mode. This means that, if you have not already

loaded any required card sets, tct2 fails (instead of prompting you to load any

required card sets).

--show-metadata

This option shows image metadata before signing.

-v|--verbose

These options increase the verbosity level. These options can be repeated.

-q|--quiet

These options decrease the verbosity level. These options can be repeated.

7.9.2. Signing

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 133/160

Use one of the following methods to create a signing key:

• During the KeySafe key-generation process, ensure you select the SEE Code

Integrity option.

• When generating the key with the generatekey command-line utility, ensure

you select the application type seeinteg.

Signing keys can be DSA or RSA. You can sign a file any number of times using

different signing keys.

For information about key application types, see Key application

type (APPNAME).

 For information about generating keys, see the User Guide.

To create a signature, give a command of the form:

tct2 -S|--sign [-m|--module=<MODULE>] -k|--key=<IDENT> [--machine-key=<HASH>| --machine-key-ident=<IDENT> | --is
-machine] -o|--outfile=<OUTFILE> [-i|--infile=<INFILE>]

If the signing key is protected by an OCS, tct2 prompts you for the passphrase for

the inserted card.

7.9.3. Packing

All files must be packed even if you are not adding signatures. The packing

operation must be performed once and only once. Your application vendor may

have supplied a pre-packed SAR file.

Packing a file creates a new SAR file. The packed file contains:

• The original file

• Specified signatures, if any.

To pack a file and any signatures, give a command of the form:

tct2 -P|--pack -o|--outfile=<OUTFILE> [-i|--infile=]<INFILE> [sigfile...]

7.9.4. Encryption

Encrypted SEE machines are not currently supported for use

with nShield Connects. When the SEEMachine binary is installed on

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 134/160

the Connect itself for automated loading at boot, the SEE

Confidentiality key is not available. However, when a client host

loads a SEEMachine, it has access to the SEE Confidentiality key

and can cause the binary to be decrypted. In this scenario, the

Connect works fine with encrypted SEEMachine binaries.

Use one of the following methods to create an encryption key:

• During the KeySafe key-generation process, ensure you select the SEE Code

Confidentiality option.

• When generating the key with the generatekey command-line utility, ensure

you select the application type seeconf.

Encryption keys can be either Triple DES or AES keys. Encryption keys can be

protected by the Security World or by a 1/N OCS.

For information about key application types, see Key application

type (APPNAME).

 For information about generating keys, see the User Guide.

A .sar file can be encrypted only once. To encrypt a .sar file, use the command:

tct2 -E|--encrypt -k|--key=<IDENT> [-m|--module=<MODULE>] -o|--outfile=<OUTFILE> [-i|--infile=]<INFILE>

Chapter 7. Utilities

CodeSafe v13.3 User Guide (Linux) 135/160

8. Environment variables
This appendix describes the environmental variables used by Security World

Software to control SEE functionality:

Variable Description

NFAST_SEE_MACHINEENCKEY_DEFAULT This variable is the name of the SEEConf key

needed to decrypt SEE-machine images.

Running the command loadmache

--encryptionkey=<IDENT> (or loadmache

--unencrypted) overrides any value set by this

variable.

NFAST_SEE_MACHINEENCKEY_<module> This variable is the name of the SEEConf key

needed to decrypt the SEE-machine image

targeted for the specified HSM. It overrides

NFAST_SEE_MACHINEENCKEY_DEFAULT for the specified

HSM. Running the command loadmache

--encryptionkey=<IDENT> (or loadmache

--unencrypted) overrides any value set by this

variable.

NFAST_SEE_MACHINEIMAGE_DEFAULT This variable is the path of the SEE machine

image to load on to any HSM for which a specific

image is not defined. Supplying the machine-

filename parameter when running the loadmache

command-line utility overrides this variable. This

variable is not affected when running the

loadsee-setup or hsc_loadseemachine utilities.

NFAST_SEE_MACHINEIMAGE_<module> This variable is the path of the SEE machine

image to load on to the specified HSM. If set, this

variable overrides the use of

NFAST_SEE_MACHINEIMAGE_DEFAULT for the specified

HSM. Supplying the machine-filename parameter

when running the loadmache command-line utility

overrides the NFAST_SEE_MACHINEIMAGE_<module>

variable. This variable is not affected when

running the loadsee-setup or hsc_loadseemachine

utilities.

NFAST_SEE_MACHINESIGHASH_DEFAULT This variable is the default key hash of the

vendor signing key (seeinteg) that signs SEE

machine images. This variable is only required if

you are using a dynamic SEE feature with an

encrypted SEE machine. Running the command

loadmache --sighash=<HASH> any value set in this

variable.

Chapter 8. Environment variables

CodeSafe v13.3 User Guide (Linux) 136/160

Variable Description

NFAST_SEE_MACHINESIGHASH_<module> This variable is the key hash of the vendor

signing key (seeinteg) that signs SEE machine

images for the specified HSM. It overrides

NFAST_SEE_MACHINESIGHASH_DEFAULT for the specified

HSM. This variable is only required if you are

using a dynamic SEE feature with an encrypted

SEE machine. Running the command loadmache

--sighash=<HASH> any value set in this variable.

For information on additional (non-SEE) environment variables used by Security

World Software, see the User Guide.

Chapter 8. Environment variables

CodeSafe v13.3 User Guide (Linux) 137/160

9. Key generation options and
parameters
This appendix describes the various options and parameters that you can set

when running the generatekey utility to control the application type and other

properties of a key being generated.

For information about generating keys with the generatekey

utility, see the User Guide.

9.1. Key application type (<APPNAME>)

The <APPNAME> parameter specifies the name of the application for which

generatekey can generate keys. Specifying an application can restrict your choice

of key type. A value for <APPNAME> must follow any <OPTIONS> and must

precede any parameters specified for the key:

Parameter Description

simple Specifying the simple application type generates an nShield-native key. No

special action is taken after the key is generated.

custom Specifying the custom application type generates a key for custom

applications that require the key blob to be saved in a separate file.

Specifying custom also causes the generation of a certificate request and

self-signed certificate. However, we recommend that you specify the

simple (instead of custom) application type whenever possible.

Chapter 9. Key generation options and parameters

CodeSafe v13.3 User Guide (Linux) 138/160

Parameter Description

pkcs11 Specifying the pkcs11 application type generates keys that are formatted

for use with PKCS #11 applications and are given a suitable identifier. The

set of possible supported key types is currently limited to:

• DES3

• DH

• DSA

• ECDH

• ECDSA

• HMACSHA1

• RSA

• Rijndael (AES)

Some key types are only available if the features that support them have

been enabled for the HSM, if the Security World is not compliant with

FIPS 140 Level 3, or if you do not set the --no-verify option.

embed Specifying the embed application type generates a key for use with CHIL

applications that:

• Do not support hwcrhk key storage

• Have a key importation facility capable of reading PEM-format RSA

key files.

Specify the hwcrhk application type for CHIL applications that support

hwcrhk key storage.

You can use a key of the embed application type like a PEM-format

RSA/DSA key file, even though it is really a specially encoded reference to

a key stored in opt/nfast/kmdata/local. This allows you to use an embed key

when integrating with applications that normally require software RSA

keys. For example, you can supply an embed key to the patched version of

OpenSSL we have provided so that it uses the HSM to access the key

rather than using its own built-in RSA operations.

hwcrhk Specifying the hwcrhk application type generates a key for Cryptographic

Hardware Interface Library (CHIL) applications that do not require embed

keys. Only RSA, DSA, and DH key types are supported

kpm Specifying the kpm application type generates a key for delivery by an

nForce Ultra key server. The generatekey utility automatically creates a

special ACL entry that permits a kpm to be delivered to an nForce Ultra’s

enrolled internal hardware security module.

Chapter 9. Key generation options and parameters

CodeSafe v13.3 User Guide (Linux) 139/160

Parameter Description

seeinteg Specifying the seeinteg application type generates an SEE integrity key.

The DSA, RSA, ECDSA and KCDSA algorithms are supported. SEE

integrity keys are always protected by an OCS and cannot be imported.

You cannot retarget an existing key as an SEE integrity key.

seeconf Specifying the seeconf application type generates an SEE confidentiality

key. Both the Triple DES and AES algorithms are supported for this key

type. SEE confidentiality keys are HSM-protected by default and cannot

be imported. You cannot retarget an existing key as an SEE confidentiality

key.

9.2. Key properties (<NAME>=<VALUE>)

The <NAME>=<VALUE> syntax is used to specify the properties of the key being

generated.

If a parameter’s argument contains spaces, you must enclose the

argument within quotation marks (" ").

You can supply an appropriate <VALUE> for the following NAME options:

Option Description

alias The <VALUE> for alias specifies an alias to assign to the key.

blobsavefile When using the custom application type, the <VALUE> for blobsavefile

specifies a file name of the form <FILENAME>.ext to which the key blob is

saved. Additionally, a text file containing information about the key is

saved to a file whose name has the form <ROOT>_inf.txt; for asymmetric

key types, the public key blob is also saved to a file whose name has the

form <ROOT>_pub.ext.

cardset The <VALUE> for cardset specifies an OCS that is to protect the key (if

protect is set to token). In interactive mode, if you do not specify an OCS,

you are prompted to select one at card-loading time. The default is the

OCS to which the card currently inserted in the slot belongs (or the first

one returned by nfkminfo).

Chapter 9. Key generation options and parameters

CodeSafe v13.3 User Guide (Linux) 140/160

Option Description

certreq Setting certreq enables you to generate a certificate request when

generating a PKCS #11 key (RSA keys only). The default behavior is to not

generate a certificate request.

To generate a certificate request you must set the <VALUE> for certreq to

yes, which makes generatekey prompt you to fill in the extra fields required

to generate a key with a certificate request. The resultant certificate

request is saved to the current working directory with a file name of the

form <FILENAME>_req.ext (where FILENAME is a name of your choice).

An extra file with a name of the form <FILENAME>.ext is also generated for

use as a pseudo-key-header. This file can be removed after the certificate

request has been generated. You can use certreq with the --retarget

option to generate a self-signed certificate for an existing key.

checks For RSA key generation only, this specifies the number of checks to be

performed. Normally, you should leave <VALUE> empty to let the HSM

pick an appropriate default.

curve For ECDH and ECDSA key generation only, the <VALUE> for curve

specifies which curves from the supported range to use. Supported curves

are: NISTP192, NISTP224, NISTP256, NISTP384, NISTP521, NISTB163,

NISTB233, NISTB283, NISTB409, NISTB571, NISTK163, NISTK233,

NISTK283, NISTK409, NISTK571, ANSIB163v1, ANSIB191v1, SECP160r1 and

SECP256k1.

embedconvfile The <VALUE> for embedconvfile specifies the name of the PEM file that

contains the RSA key to be converted.

embedsavefile When using the embed application type, the <VALUE> for embedsavefile

specifies the name for the file where the fake RSA private key is to be

saved. The file has the same syntax as an RSA private key file, but actually

contains the key identifier rather than the key itself, which remains

protected.

A certificate request and a self-signed certificate are also written. If the

filename is <ROOT>.ext then the request is saved to <ROOT>_req.ext and the

self-signed certificate is saved to <ROOT>_selfcert.ext.

from-application When retargeting a key, the <VALUE> for from-application specifies the

application name of the key to be retargeted. Only applications for which

at least one key exists are acceptable.

from-ident When retargeting a key, the <VALUE> for from-ident specifies the identifier

of the key to be retargeted (as displayed by the nfkminfo command-line

utility).

Chapter 9. Key generation options and parameters

CodeSafe v13.3 User Guide (Linux) 141/160

Option Description

hexdata The <VALUE> for hexdata specifies the hex value of DES or Triple DES key

to import. The hex digits are echoed to the screen and can appear in

process listings if this parameter is specified on the command line.

ident The <VALUE> for ident specifies a unique identifier for the key in the

Security World. For applications of types simple or hwcrhk, this is the key

identifier to use (the exact identifier for simple, for hwcrhk the key type is

implicitly included). For other application types, keys are assigned an

automatically generated identifier and accessed by means of some

application-specific name.

keystore The <VALUE> for keystore specifies the file name of the key store to use.

This must be an nShield key store.

keystorepass The <VALUE> for keystorepass specifies the password to the key store to

use.

module The <VALUE> for module specifies an HSM to use when generating the key.

If there is more than one usable HSM, you are prompted to supply a value

for one of them. The default is the first usable HSM (one in the current

Security World and in the operational state).

You can also specify an HSM by setting the --module

option.

paramsreadfile The <VALUE> for paramsreadfile specifies the name of the group

parameters file that contains the discrete log group parameters for Diffie-

Hellman keys only. This should be a PEM-formatted PKCS#3 file. If a

<VALUE> for paramsreadfile is not specified, the HSM uses a default file.

pemreadfile The <VALUE> for pemreadfile specifies the name of the PEM file that

contains the key to be imported. When importing an RSA key, this is the

name of the PEM-encoded PKCS #1 file to read it from. Password-

protected PEM files are not supported.

plainname The <VALUE> for plainname specifies the key name within the Security

World. For some applications, the key identifier is derived from the name,

but for others the name is just recorded in kmdata and not used otherwise.

protect The <VALUE> for protect specifies the protection method, which can be

module for Security World protection, softcard for softcard protection or

token for Operator Card Set protection. The default is token, except for

seeconf keys, where the default is module. seeinteg keys are always token-

protected. The softcard option is only available when your system has at

least one softcard present.

Chapter 9. Key generation options and parameters

CodeSafe v13.3 User Guide (Linux) 142/160

Option Description

pubexp For RSA key generation only, the <VALUE> for pubexp specifies (in

hexadecimal format) the public exponent to use when generating RSA

keys. We recommend leaving this parameter blank unless advised to

supply a particular value by Support.

recovery The <VALUE> for recovery enables recovery for this key and is only

available for card-set protected keys in a recovery-enabled world. If set to

yes, the key is recoverable. If set to no, key is not recoverable. The default is

yes. Non-recoverable HSM-protected keys are not supported.

seeintegname If present, the <VALUE> for seeintegname identifies a seeinteg key. The ACL

of the newly generated private key is modified to require a certificate from

the seeinteg key for its main operational permissions, such Decrypt and Sign

(DuplicateHandle, ReduceACL, and GetACL are still permitted without

certification.)

selfcert The <VALUE> for selfcert enables you to generate a self-signed certificate

when generating a PKCS #11 key (RSA keys only). To generate a self-

signed certificate request you must set selfcert to yes, which makes

generatekey prompt you to fill in the extra fields required to generate a key

with a self-signed certificate. The resultant certificate is saved to the

current working directory with a file name of the form <FILENAME>.ext. You

can use this parameter with the --retarget option to generated a self-

signed certificate for an existing key.

size For key types with variable-sized keys, the <VALUE> for size specifies the

key size in bits. The range of allowable sizes depends on the key type and

whether the --no-verify option is used. The default depends on the key

type; for information on available key types and sizes, see the User Guide.

This parameter does not exist for fixed-size keys, nor for ECDH and

ECDSA keys which are specified using curve.

strict For DSA key generation only, setting the <VALUE> for strict to yes

enables strict verification, which also limits the size to exactly 1024 bits.

The default is no.

type The <VALUE> for type specifies the type of key. You must usually specify

the key type for generation and import (though some applications only

support one key type, in which case you are not asked to choose).

Sometimes the type must also be specified for retargeting; for information

on available key types and sizes, see the User Guide. The --verify option

limits the available key types.

x509country The <VALUE> for x509country specifies a country code, which must be a

valid 2-letter code, for the certificate request.

x509dnscommon The <VALUE> for x509dnscommon specifies a site domain name, which can be

any valid domain name, for the certificate request.

Chapter 9. Key generation options and parameters

CodeSafe v13.3 User Guide (Linux) 143/160

Option Description

x509email The <VALUE> for x509email specifies an email address for the certificate

request.

x509locality The <VALUE> for x509locality specifies a city or locality for the certificate

request.

x509org The <VALUE> for x509org specifies an organization for the certificate

request.

x509orgunit The <VALUE> for x509orgunit specifies an organizational unit for the

certificate request.

x509province The <VALUE> for x509province specifies a province for the certificate

request.

xsize The <VALUE> for xsize specifies the private key size in bits when

generating Diffie-Hellman keys. The defaults are 256 bits for a key size of

1500 bits or more or 160 bits for other key sizes.

9.3. Available key properties by action

The following table shows which actions are applicable to the different NAME

options:

Property generate import retarget

alias X X X

blobsavefile X X X

cardset X X

certreq

checks X

curve X

embedconvfile X

embedsavefile X X X

from-application X

from-ident X

hexdata X

Chapter 9. Key generation options and parameters

CodeSafe v13.3 User Guide (Linux) 144/160

Property generate import retarget

ident X X

keysavefile

keystore X X X

keystorepass X X X

module X X

nvram X X

paramsreadfile X

pemreadfile X

plainname X X X

protect X X

pubexp X

qsize X

recovery X X

seeintegname

selfcert

size X

strict X

type X

x509country X X X

x509dnscommon X X X

x509email X X X

x509locality X X X

x509org X X X

x509orgunit X X X

x509province X X X

xsize X

Chapter 9. Key generation options and parameters

CodeSafe v13.3 User Guide (Linux) 145/160

9.4. Available key properties by application

The following table shows which applications are applicable to the different NAME

options:

Property custom embed hwcrhk pkcs 11 seeconf seeinte
g

seessl simple kpm

alias

blobsavefile X

cardset X X X X X X

certreq X

checks X X X X X X

curve X X X X X X X

embedconvfile X

embedsavefile X X

from-application X X X X X X

from-ident X X X X X X

hexdata X X X X X

ident X X X

keysavefile X X

keystore

keystorepass

module X X X X X X X

nvram X X X X X

paramsreadfile X X X X X X X

pemreadfile X X X X

plainname X X X X X X X X

protect X X X X X X X X X

pubexp X X X X X X

qsize X X X X X X

Chapter 9. Key generation options and parameters

CodeSafe v13.3 User Guide (Linux) 146/160

Property custom embed hwcrhk pkcs 11 seeconf seeinte
g

seessl simple kpm

recovery X X X X X X X X

seeintegname X X

selfcert X

size X X X X X X X X X

strict X X X X X

type X X X X X X X X X

x509country X X

x509dnscommon X X

x509email X X

x509locality X X

x509org X X

x509orgunit X X

x509province X X

xsize X X X X X

Chapter 9. Key generation options and parameters

CodeSafe v13.3 User Guide (Linux) 147/160

10. SEElib functions
The file seelib.h contains wrapper functions for the software interrupts.

10.1. SEElib_init

extern void SEElib_init(void);

This function initializes the SEElib library.

It also checks that the SWI interface that was implemented by the nShield core

matches the version that the SEE machine implements.

 This function does not return on error.

10.2. SEElib_RecProcessThreads

int
SEElib_RecProcessThreads(void);

This function returns the recommended number of processing threads on this

system.

10.3. SEElib_StartProcessorThreads

struct ProcessThreadCtx; /* User-defined */
typedef struct SEElib_ProcessContext
{
 struct ProcessThreadCtx *uc;

 unsigned char *iobuf;
 int iobuf_maxlen;
}
 SEElib_ProcessContext;

typedef struct ProcessThreadCtx * (*SEEJobInitFn) (SEElib_ProcessContext *pC);
/* Function called during thread initialisation */
typedef int (*SEEJobFn) (SEElib_ProcessContext *pC, M_Word tag, int in_len);
/* Function to process an SEEJob; data is sent in & out via pC->iobuf.
Returns length being returned.
*/
extern int SEElib_StartProcessorThreads(int nthreads, int stacksize, SEEJobInitFn
pfnInit, SEEJobFn pfnProcess);

This function causes the SEE library to start a number of processing threads. Each

Chapter 10. SEElib functions

CodeSafe v13.3 User Guide (Linux) 148/160

thread has its own SEElib_ProcessContext allocated, which remains constant

throughout the life of the thread.

A working buffer for a given thread is allocated; the iobuf member points to this

buffer and iobuf_maxlen is set to the size. Data for the SEEJob is passed in and out

through this buffer.

For each thread, the supplied SEEJobInitFn is called first, and the ProcessThreadCtx

pointer it returns is stored in the SEElib_ProcessContext structure. This structure is

typically some convenient thread-local storage. The pointer may be NULL if it is

not required.

When a job arrives for the given thread, the supplied SEEJobFn is called. It is passed

the SEElib_ProcessContext pointer pC, a tag, and a length (in_len). The SEEJob data is

at

pC→iobuf, length in_len. The tag is merely for information. The function should

process the data and leave a reply at pC→iobuf. The return value from the function

indicates the number of bytes to be returned from this buffer.

10.4. SEElib_GetUserDataLen

extern M_Word SEElib_GetUserDataLen (void);

This function gets the length in bytes of the UserData block that was passed in to

create this SEE World. The function returns 0 if the UserData block has been freed

with SEElib_ReleaseUserData().

10.5. SEElib_ReadUserData

extern int SEElib_ReadUserData (M_Word offset, unsigned char *buf, M_Word len);

This function reads selected bytes from the UserData block, starting at offset bytes

in and continuing for len bytes. It returns an M_Status value.

10.6. SEElib_ReleaseUserData

extern void SEElib_ReleaseUserData(void);

Chapter 10. SEElib functions

CodeSafe v13.3 User Guide (Linux) 149/160

This function frees the resources associated with the UserData block. Typically, if an

SEE machine copies the UserData block into some internal format on initialization,

it should call this function on completion to avoid having two copies of the data in

memory.

10.7. SEElib_InitComplete

extern void SEElib_InitComplete(M_Word status);

This function must be called as soon as the SEE World has been initialized. This

call must be made as soon as the SEE World is ready to accept jobs or has

decided that it cannot accept jobs.

The status value forms the initstatus value in the reply to the CreateSEEWorld

nCore API command.

10.8. SEElib_AwaitJob

extern int SEElib_AwaitJob(M_Word *tag_out, , unsigned char *buf, M_Word *len_io);

This function blocks and waits for the next SEEJob in from the nShield core. On

entry, *buf and *len_io give the base and length of a buffer area to receive the job.

On return, *len_io is set to the length delivered (if the job is received successfully).

This buffer is a copy of the seeargs field that was sent in to the SEEJob command.

The *tag_out value is the tag for this command. It must be returned in the

SEElib_ReturnJob so that the nShield core associates the reply with this command.

The SEElib_AwaitJob function returns an M_Status, which is only likely to be OK or

BufferFull.

If you use SEElib_StartProcessorThreads(), it calls this function

automatically, and you should not call this function yourself.

10.9. SEElib_StartTransactListener

extern void SEElib_StartTransactListener(void);

This function starts the thread that listens for SEElib_Transact calls and dispatches

Chapter 10. SEElib functions

CodeSafe v13.3 User Guide (Linux) 150/160

them. This function must be called before any use is made of SEElib_Transact.

10.10. SEElib_Transact

extern int SEElib_Transact(struct M_Command *cmd, struct M_Reply *buf);

This function marshals a command, submits it, waits for the response, and

unmarshals it into a reply structure.

10.11. SEElib_MarshalSendCommand

extern int SEElib_MarshalSendCommand(M_Command *cmd);

This function marshals a command and places it on the input queue for processing

by the nShield core.

The command takes a reference to an M_Command structure, as described in the

nCore CodeSafe API Documentation.

The SEE machine can submit any of the nCore API commands listed in the Basic

commands and Key-Management commands sections of the nCore CodeSafe API

Documentation except:

• RetryFailedModule

• GetWhichModule

• MergeKeyIDs.

If the SEE machine attempts to submit one of these commands, the nShield core

returns a response with the status code NotAvailable.

The SEElib_MarshalSendCommand function returns an M_Status value. This value is OK if

the command was marshalled and transferred to the nShield core correctly.

Do not mix calls to SEE_Transact() and

SEElib_MarshalSendCommand() and SEElib_GetUnmarshalResponse(),

because the replies may be misdirected.

10.12. SEElib_GetUnmarshalResponse

Chapter 10. SEElib functions

CodeSafe v13.3 User Guide (Linux) 151/160

extern int SEElib_GetUnmarshalResponse(M_Reply *buf);

If there is a reply in the input queue for this SEE World, this function returns the

first job in the queue. Otherwise, it blocks and waits for the nShield core to return

a job.

On return, M_Reply contains the unmarshalled reply.

The SEElib_GetUnmarshalResponse function returns an M_Status value. This value is OK

if the reply was unmarshalled successfully. The return of this value does not

necessarily mean that the command was completed successfully, only that the

reply was unmarshalled. You must also check the M_Status within the reply.

10.13. SEElib_FreeCommand

extern int SEElib_FreeCommand(struct M_Command *cmd);

This function frees a command structure and is equivalent to the generic stub

function NFastApp_FreeCommand (described in the nCore CodeSafe API

Documentation).

10.14. SEElib_FreeReply

extern int
SEElib_FreeReply(struct M_Reply *reply);

This function frees a reply structure and is equivalent to the generic stub function

NFastApp_FreeReply (described in the nCore CodeSafe API Documentation).

10.15. SEElib_ReturnJob

extern void SEElib_ReturnJob(M_Word tag, const unsigned char *data, unsigned int len);

This function returns an SEEJob reply to the nShield core so that the core can pass

it to the calling application.

If you use the SEElib_StartProcessorThreads() function, it calls

SEElib_ReturnJob() for you.

Chapter 10. SEElib functions

CodeSafe v13.3 User Guide (Linux) 152/160

The tag field must match the tag supplied in the SEElib_AwaitJob() call that created

the job.

The given data is copied away and forms the seereply field of the SEEJob reply (see

the description of the SEEJob command in the nCore CodeSafe API

Documentation).

10.16. SEElib_SubmitCoreJob

extern int SEElib_SubmitCoreJob(const unsigned char *data, unsigned int len);

This function puts a job on the input queue for processing by the core. The byte

block is passed in data and len. It should be a full marshalled M_Command with a valid

tag at the start.

This function returns an M_Status, which is typically OK or BufferFull (if len is too

big).

10.17. SEElib_GetCoreJob

extern int SEElib_GetCoreJob (unsigned char *buf, M_Word *len_io);

This function blocks and waits for a job submitted to the core to be returned. On

entry, buf points to a buffer of length (*len_io) max. On exit, if successful, *len_io is

the length of bytes returned.

This function returns an M_Status, which is typically OK or BufferFull (if len_io is too

big).

10.18. SEElib_GetUserDataLen

extern M_Word SEElib_GetUserDataLen (void);

This function gets the length in bytes of the UserData block passed in to create

this SEE World.

If this data has been discarded because SEElib_ReleaseUserData() has been called,

this function returns 0.

Chapter 10. SEElib functions

CodeSafe v13.3 User Guide (Linux) 153/160

10.19. SEElib_Submit

extern int SEElib_Submit(M_Command *cmd, M_Reply *reply, PEVENT ev, SEElib_ContextHandle tctx);

This function submits the command specified in cmd. The transaction listener

thread calls EventSet ev, if ev is non-NULL, when the reply returns for this

command. The reply is unmarshalled into reply and tctx is returned to the caller in

SEElib_Query.

Unlike SEElib_SubmitCoreJob this function can be called at the same time as another

thread is blocking in SEElib_Transact.

SEElib_StartTransactListener must have been called before this function is called.

10.20. SEElib_Query

extern int SEElib_Query(M_Reply **replyp, SEElib_ContextHandle *tctx_r);

This function is called to receive a reply that is being held by the transaction

listener thread. It is typically called after having been woken from EventWait as a

result of the transaction listener thread posting to the event passed in to

SEElib_Submit.

If *replyp is NULL, SEElib_Query accepts any returned reply, and *replyp is changed

to point to that reply. If *replyp is not NULL, the function accepts the reply

specified; other replies are queued internally.

tctx_r may be NULL. If it is not, the tctx used when submitting the reply is stored

in *tctx_r. SEElib_Query can return, in addition to the usual return values,

TransactionNotYetComplete if the reply (or any reply if *replyp was NULL) has not

come back from the core yet.

SEElib_StartTransactListener must have been called before this function is called.

10.21. SEElib_StartSEEJobListener

extern int SEElib_StartSEEJobListener(PEVENT ev);

This function starts the SEEJob listener thread which blocks calling SEElib_AwaitJob,

caches the new job and then sets the event ev if ev is non-NULL.

Chapter 10. SEElib functions

CodeSafe v13.3 User Guide (Linux) 154/160

Use SEElib_QuerySEEJob to receive any SEEJobs that have been cached by this

listener thread, followed by SEElib_ReturnJob to reply to the SEEJob, then followed

by SEElib_ReleaseSEEJob to free the buffer.

It is safe to call this function multiple times. Calls after the first call will have no

effect.

10.22. SEElib_QuerySEEJob

extern M_Status SEElib_QuerySEEJob(M_Word *tag_out, unsigned char **buf, M_Word *len);

This function is called to receive a SEEJob that is being held by the SEEJob listener

thread. It is typically called after having been woken from EventWait as a result of

the SEEJob listener thread setting the event passed in to SEElib_StartSEEJobListener.

buf is set to the buffer containing the SEEJob, len is set to the length of the data

contained in buf.

This function returns TransactionNotYetComplete if there were no outstanding

SEEJobs.

10.23. SEElib_ReleaseSEEJob

extern void SEElib_ReleaseSEEJob(unsigned char **buf);

This function is called to release a buffer which was returned from

SEElib_QuerySEEJob. This function must be called after the buffer specified by buf in

a call to SEElib_QuerySEEJob has been finished with. This function is safe to call even

if *buf is NULL. In addition, this function sets *buf to NULL on completion.

Chapter 10. SEElib functions

CodeSafe v13.3 User Guide (Linux) 155/160

11. Differences between glibc and bsdlib
(SoloXC only)
In order to provide CodeSafe developers the ability to write standard POSIX calls

and be able to run in the SEE environments, gcc wrappers have been used to

override certain standard functions. For example, both CodeSafe and Libc, have a

definition for the function socket:

socket(int __domain, int __type, int __protocol)

At link time, the function call is overridden and resolved to the CodeSafe

implementation. A linker options is used to accomplish that.

-Wl,-wrap=socket

The standard POSIX socket() function can still be used calling real_socket(). The

applicability of the standard (real_*) familiarity of functions is limited in the SEE

environment due to embedded system constraints.

All the wrapped functions were replaced by equivalent ones with the underlying

IPC support to communicate with nShield core and provide the same functionality

as in legacy systems.

List functions that were wrapped and redefined:

• socket()

• bind()

• listen()

• accept()

• connect()

• read()

• write()

• send()

• setsockopt()

• poll()

• select()

11.1. glibc Compatibility exceptions

Chapter 11. Differences between glibc and bsdlib (SoloXC only)

CodeSafe v13.3 User Guide (Linux) 156/160

As a consequence of some function redefinitions and the underlying differences,

some standard C functions may not work as expected in Codesafe.

FILE *fdopen(int fd, const char *mode): associates a stream with an existing file

descriptor, fd. In the case of a socket fd (returned by Codesafe socket()

implementation) the association result may fail or cause unexpected errors in

subsequent calls. Developers should avoid using fdopen with non-standard Unix file

descriptors.

Chapter 11. Differences between glibc and bsdlib (SoloXC only)

CodeSafe v13.3 User Guide (Linux) 157/160

12. SEE Machines Whitelist
Classic and GLIBC SEE machines are restricted to a subset of Linux system calls

they can execute.

An SEE machine that attempts to execute a system call that is not allowed will be

immediately terminated by a safeguarding process.

The whitelisted system calls are given in the following table, with their number and

name.

Whitelisted System Calls

1 __NR_exit 2 __NR_fork

3 __NR_read 4 __NR_write

5 __NR_open 6 __NR_close

7 __NR_waitpid 8 __NR_creat

9 __NR_link 10 __NR_unlink

11 __NR_execve 12 __NR_chdir

13 __NR_time 15 __NR_chmod

19 __NR_lseek 21 __NR_mount

22 __NR_umount 24 __NR_getuid

29 __NR_pause 33 __NR_access

37 __NR_kill 38 __NR_rename

39 __NR_mkdir 40 __NR_rmdir

41 __NR_dup 42 __NR_pipe

45 __NR_brk 49 __NR_geteuid

54 __NR_ioctl 60 __NR_umask

63 __NR_dup2 64 __NR_getppid

65 __NR_getpgrp 78 __NR_gettimeofday

83 __NR_symlink 85 __NR_readlink

90 __NR_mmap 91 __NR_munmap

94 __NR_fchmod 99 __NR_statfs

Chapter 12. SEE Machines Whitelist

CodeSafe v13.3 User Guide (Linux) 158/160

Whitelisted System Calls

102 __NR_socketcall 106 __NR_stat

107 __NR_lstat 108 __NR_fstat

114 __NR_wait4 119 __NR_sigreturn

120 __NR_clone 125 __NR_mprotect

140 __NR_llseek 141 __NR_getdents

145 __NR_readv 146 __NR_writev

160 __NR_sched_get_priority_min 162 __NR_nanosleep

163 __NR_mremap 172 __NR_rt_sigreturn

173 __NR_rt_sigaction 174 __NR_rt_sigprocmask

175 __NR_rt_sigpending 176 __NR_rt_sigtimedwait

177 __NR_rt_sigqueueinfo 178 __NR_rt_sigsuspend

179 __NR_pread64 181 __NR_chown

182 __NR_getcwd 190 __NR_ugetrlimit

195 __NR_stat64 196 __NR_lstat64

197 __NR_fstat64 202 __NR_getdents64

204 __NR_fcntl64 205 __NR_madvise

207 __NR_gettid 221 __NR_futex

232 __NR_set_tid_address 234 __NR_exit_group

250 __NR_tgkill 252 __NR_statfs64

286 __NR_openat 300 __NR_set_robust_list

326 __NR_socket 327 __NR_bind

328 __NR_connect 329 __NR_listen

330 __NR_accept 331 __NR_getsockname

332 __NR_getpeername 333 __NR_socketpair

334 __NR_send 335 __NR_sendto

336 __NR_recv 337 __NR_recvfrom

338 __NR_shutdown 339 __NR_setsockopt

Chapter 12. SEE Machines Whitelist

CodeSafe v13.3 User Guide (Linux) 159/160

Whitelisted System Calls

340 __NR_getsockopt

Chapter 12. SEE Machines Whitelist

CodeSafe v13.3 User Guide (Linux) 160/160

	nShield Security World: CodeSafe v13.3 User Guide (Linux)
	Table of Contents
	1. Introduction
	1.1. Read this guide if …
	1.2. Model numbers
	1.3. Security World Software
	1.4. Requirements
	1.5. Further information
	1.6. Security advisories
	1.7. Contacting Entrust nShield Support

	2. About the Secure Execution Engine SEE
	2.1. Why use the Secure Execution Engine?
	2.2. How SEE works
	2.3. SEE system architecture
	2.4. SEE and byte code
	2.5. SEE and userdata
	2.6. SEE and Security Worlds

	3. Designing SEE machines and SEE-ready HSMs
	3.1. Writing SEE machines - Solo XC
	3.2. Writing SEE machines - Solo PCIe

	4. Example SEE machines
	4.1. Examples for bsdlib library
	4.2. Examples for glibc library
	4.3. Examples for SEElib

	5. Debugging SEE machines
	5.1. Debugging settings and output
	5.2. Finding memory leaks with stattree
	5.3. Segment addresses for Solo
	5.4. Vulnerability test harness
	5.5. Troubleshooting guide

	6. Deploying SEE Machines
	6.1. About the Feature Enabling Mechanism (FEM)
	6.2. Obtaining and using export certificates
	6.3. Automatically loading a SEE machine
	6.4. Configuring the nShield Connect to use CodeSafe Direct
	6.5. Configuring a SEE machine using the front panel
	6.6. Remotely loading and updating SEE machines

	7. Utilities
	7.1. cpioc
	7.2. elftool
	7.3. loadmache
	7.4. loadsee-setup
	7.5. hsc_loadseemachine
	7.6. nfkmverify
	7.7. see-*-serv utilities
	7.8. stattree
	7.9. tct2

	8. Environment variables
	9. Key generation options and parameters
	9.1. Key application type (<APPNAME>)
	9.2. Key properties (<NAME>=<VALUE>)
	9.3. Available key properties by action
	9.4. Available key properties by application

	10. SEElib functions
	10.1. SEElib_init
	10.2. SEElib_RecProcessThreads
	10.3. SEElib_StartProcessorThreads
	10.4. SEElib_GetUserDataLen
	10.5. SEElib_ReadUserData
	10.6. SEElib_ReleaseUserData
	10.7. SEElib_InitComplete
	10.8. SEElib_AwaitJob
	10.9. SEElib_StartTransactListener
	10.10. SEElib_Transact
	10.11. SEElib_MarshalSendCommand
	10.12. SEElib_GetUnmarshalResponse
	10.13. SEElib_FreeCommand
	10.14. SEElib_FreeReply
	10.15. SEElib_ReturnJob
	10.16. SEElib_SubmitCoreJob
	10.17. SEElib_GetCoreJob
	10.18. SEElib_GetUserDataLen
	10.19. SEElib_Submit
	10.20. SEElib_Query
	10.21. SEElib_StartSEEJobListener
	10.22. SEElib_QuerySEEJob
	10.23. SEElib_ReleaseSEEJob

	11. Differences between glibc and bsdlib (SoloXC only)
	11.1. glibc Compatibility exceptions

	12. SEE Machines Whitelist

