
nShield Security World

Cryptographic API
v12.81 Guide
05 April 2024

Table of Contents
1. Introduction . 1

1.1. Read this guide if … . 1

1.2. Model numbers . 1

1.3. Security World Software default directories. 2

1.4. Utility help options . 4

1.5. Further information . 4

1.6. Security advisories. 5

1.7. Contacting Entrust nShield Support . 5

2. nShield architecture . 6

2.1. Security World Software modules . 6

2.2. Security World Software server . 6

2.3. Stubs and interface libraries . 7

2.4. Using an interface library. 7

2.5. Writing a custom application . 8

2.6. Acceleration-only or key management. 8

3. PKCS #11 . 9

3.1. PKCS #11 developer libraries . 9

3.2. PKCS #11 with load-sharing mode . 11

3.3. PKCS #11 with HSM Pool mode . 13

3.4. PKCS #11 with key reloading . 14

3.5. PKCS #11 without load-sharing mode or HSM Pool mode 16

3.6. Generating and deleting NVRAM-stored keys with PKCS #11 17

3.7. PKCS #11 Security Officer . 19

3.8. nShield-specific PKCS #11 API extensions . 20

3.9. Compiling and linking. 22

3.10. Objects. 23

3.11. Functions supported . 25

4. Microsoft CAPI CSP. 61

4.1. Crypto API CSP . 61

4.2. Supported algorithms . 62

4.3. Key generation and storage . 63

4.4. User interface issues . 65

4.5. Key counting . 66

4.6. NVRAM-stored keys . 67

4.7. CSP setup and utilities . 68

5. Microsoft CNG . 70

5.1. CNG architecture overview . 70

5.2. Supported algorithms for CNG. 72

5.3. Key authorization for CNG . 75

5.4. Key use counting. 78

5.5. Using CAPI keys in CNG. 79

5.6. Utilities for CNG. 79

5.7. Environment variables that control CNG protection options. 80

6. nCipherKM JCA/JCE CSP . 82

6.1. Installing the nCipherKM JCA/JCE CSP. 83

6.2. System properties. 88

6.3. Compatibility . 91

6.4. Architecture . 92

6.5. Available functions . 93

6.6. The KeyStore API . 99

6.7. Initialization . 99

6.8. Loading and storing keys . 100

6.9. keytool. 100

6.10. Using keys . 102

1. Introduction
This guide describes the following toolkits, supplied by Entrust Security to help

developers write applications that use nShield modules:

• nShield PKCS #11 library

• Microsoft CryptoAPI (MSCAPI)

• Microsoft Cryptography API: Next Generation (CNG)

• nCipherKM JCA/JCE cryptographic service provider.

These tool kits, like the application plug-ins supplied by Entrust, use the Security

World paradigm for key storage. For an introduction to Security Worlds, see the

User Guide.

1.1. Read this guide if …

Read this guide if you want to build an application that uses an nShield key

‑management module to accelerate cryptographic operations and protect

cryptographic keys through a standard interface rather than the full nCore API.

This guide assumes that you are familiar with the concept of the Security World,

described in the User Guide. It is intended for experienced programmers and

assumes that you are familiar with the following documentation:

• The nCore Developer Tutorial, which describes how to write applications using

an nShield module

• The nCore API Documentation (supplied as HTML), which describes the nCore

API.

1.2. Model numbers

Model numbering conventions are used to distinguish different nShield hardware

security devices. In the table below, n represents any single digit integer.

Model number Used for

NH2047 nShield Connect 6000

NH2040 nShield Connect 1500

NH2033 nShield Connect 500

Chapter 1. Introduction

Cryptographic API v12.81 Guide 1/102

Model number Used for

NH2068 nShield Connect 6000+

NH2061 nShield Connect 1500+

NH2054 nShield Connect 500+

NH2075-B nShield Connect XC Base

NH2075-M nShield Connect XC Medium

NH2075-H nShield Connect XC High

NH2082 nShield Connect XC SCAP

NH2089-B nShield Connect XC Base - Serial Console

NH2089-M nShield Connect XC Mid - Serial Console

NH2089-H nShield Connect XC High - Serial Console

NH3003-B Connect CLX Base - Serial Console

NH3003-M Connect CLX Mid - Serial Console

NH3003-H Connect CLX High - Serial Console

nC2021E-000, NCE2023E-000 nToken PCIe

nC3nnnE-nnn, nC4nnnE-nnn nShield Solo PCIe

nC30n5E-nnn, nC40n5E-nnn nShield Solo XC PCIe

nC30nnU-10, nC40nnU-10 nShield Edge

1.3. Security World Software default directories

The default locations for Security World Software and program data directories on

English-language systems are summarized in the following table:

Directory Name Environment
Variable

Windows Server 2016 Linux

nShield

Installation
NFAST_HOME C:\Program Files\nCipher\nfast /opt/nfast/

Key

Management

Data

NFAST_KMDATA C:\ProgramData\nCipher\Key

Management Data

/opt/nfast/kmdata/

Chapter 1. Introduction

Cryptographic API v12.81 Guide 2/102

Directory Name Environment
Variable

Windows Server 2016 Linux

Dynamic Feature

Certificates
NFAST_CERTDIR C:\ProgramData\nCipher\Feature

Certificates

/opt/nfast/femcerts/

Static Feature

Certificates
C:\ProgramData\nCipher\Features /opt/nfast/kmdata/features

/

Log Files NFAST_LOGDIR C:\ProgramData\nCipher\Log Files /opt/nfast/log/



By default, the Windows %NFAST_KMDATA% directories are

hidden directories. To see these directories and their contents,

you must enable the display of hidden files and directories in the

View settings of the Folder Options.



Dynamic feature certificates must be stored in the directory

stated above. The directory shown for static feature certificates

is an example location. You can store those certificates in any

directory and provide the appropriate path when using the

Feature Enable Tool. However, you must not store static feature

certificates in the dynamic features certificates directory. For

more information about feature certificates, see the User Guide

for your HSM.

The absolute paths to the Security World Software installation directory and

program data directories on Windows platforms are stored in the indicated

nShield environment variables at the time of installation. If you are unsure of the

location of any of these directories, check the path set in the environment

variable.

The instructions in this guide refer to the locations of the software installation and

program data directories by their names (for example, Key Management Data) or:

• For Windows, nShield environment variable names enclosed with percent

signs (for example, %NFAST_KMDATA%).

• For Linux, absolute paths (for example, /opt/nfast/kmdata/).

NFAST_KMDATA cannot be a symbolic link.

If the software has been installed into a non-default location:

• For Windows, ensure that the associated nShield environment variables are re-

set with the correct paths for your installation

Chapter 1. Introduction

Cryptographic API v12.81 Guide 3/102

• For Linux, you must create a symbolic link from /opt/nfast/ to the directory

where the software is actually installed; for more information about creating

symbolic links, see your operating system’s documentation.



With previous versions of Security World Software for Windows

platforms, the Key Management Data directory was located by

default in C:\nfast\kmdata, the Feature Certificates directory was

located by default in C:\nfast\fem, and the Log Files directory

was located by default in C:\nfast\log.

1.4. Utility help options

Unless noted, all the executable utilities provided in the bin subdirectory of your

nShield installation have the following standard help options:

-h|--help displays help for the utility

-v|--version displays the version number of the utility

-u|--usage displays a brief usage summary for the utility.

1.5. Further information

This guide forms one part of the information and support provided by Entrust. You

can find additional documentation in the documentation directory of the installation

media for your product.

The nCore API Documentation is supplied as HTML files installed in the following

locations:

• Windows:

◦ API reference for host: %NFAST_HOME%\document\ncore\html\index.html

◦ API reference for SEE: %NFAST_HOME%\document\csddoc\html\index.html

• Linux:

◦ API reference for host: /opt/nfast/document/ncore/html/index.html

◦ API reference for SEE: /opt/nfast/document/csddoc/html/index.html

The Java Generic Stub classes, nCipherKM JCA/JCE provider classes, and Java

Key Management classes are supplied with HTML documentation in standard

Javadoc format, which is installed in the appropriate nfast\java or nfast/java

directory when you install these classes.

Chapter 1. Introduction

Cryptographic API v12.81 Guide 4/102

Release notes containing the latest information about your product are available in

the release directory of your installation media.


We strongly recommend familiarizing yourself with the

information provided in the release notes before using any

hardware and software related to your product.

1.6. Security advisories

If Entrust becomes aware of a security issue affecting nShield HSMs, Entrust will

publish a security advisory to customers. The security advisory will describe the

issue and provide recommended actions. In some circumstances the advisory may

recommend you upgrade the nShield firmware and or nShield Connect image file.

In this situation you will need to re-present a quorum of administrator smart cards

to the HSM to reload a Security World. As such, deployment and maintenance of

your HSMs should consider the procedures and actions required to upgrade

devices in the field.


The Remote Administration feature supports remote firmware

upgrade of nShield Solo and nShield Connects and remote ACS

card presentation.

We recommend that you monitor the Announcements & Security Notices section

on Entrust nShield Support, https://nshieldsupport.entrust.com, where any

announcement of nShield Security Advisories will be made.

1.7. Contacting Entrust nShield Support

To obtain support for your product, contact Entrust nShield Support,

https://nshieldsupport.entrust.com.

Chapter 1. Introduction

Cryptographic API v12.81 Guide 5/102

https://nshieldsupport.entrust.com/
https://nshieldsupport.entrust.com/

2. nShield architecture
This chapter provides a brief overview of the Security World Software

architecture. The following diagram provides a visual representation of nShield

architecture and the documentation that relates to it.

2.1. Security World Software modules

nShield modules provide a secure environment to perform cryptographic

functions. Key-management modules are fitted with a smart card interface that

enables keys to be stored on removable tokens for extra security. nShield modules

are available for PCI buses and also as network attached Ethernet modules

(nShield Connect).

2.2. Security World Software server

The Security World Software server, often referred to as the hardserver, accepts

requests by means of an interprocess communication facility (for example, a

domain socket on Linux or named pipes or TCP/IP sockets on Windows).

The Security World Software server receives requests from applications and

passes these to the nShield module(s). The module handles these requests and

returns them to the server. The server ensures that the results are returned to the

correct calling program.

You only need a single Security World Software server running on your host

Chapter 2. nShield architecture

Cryptographic API v12.81 Guide 6/102

computer. This server can communicate with multiple applications and multiple

nShield modules.

2.3. Stubs and interface libraries

An application can either handle its own cryptographic functions or it can use a

cryptographic library:

• If the application uses a cryptographic library that is already able to

communicate with the Security World Software server, then no further

modification is necessary. The application can automatically make use of the

nShield module.

• If the application uses a cryptographic library that has not been modified to

be able to communicate with the Security World Software server, then either

Entrust or the cryptographic library supplier need to create adaption

function(s) and compile them into the cryptographic library. The application

users then must relink their applications using the updated cryptographic

library.

If the application performs its own cryptographic functions, you must create

adaption function(s) that pass the cryptographic functions to the Security World

Software server. You must identify each cryptographic function within the

application and change it to call the nShield adaption function, which in turn calls

the generic stub. If the cryptographic functions are provided by means of a DLL or

shared library, the library file can be changed. Otherwise, the application itself

must be recompiled.

2.4. Using an interface library

Entrust supplies the following interface libraries:

• Microsoft CryptoAPI

• PKCS #11

• nCipherKM JCA/JCE CSP

Third-party vendors may supply nShield-aware versions of their cryptographic

libraries.

The functionality provided by these libraries is the intersection of the functionality

provided by the nCore API and the functionality provided by the standard for that

library.

Chapter 2. nShield architecture

Cryptographic API v12.81 Guide 7/102

Most standard libraries offer fewer key-management options than are available in

the nCore API. However, the nShield libraries do not include any extensions to

their standards. If you want to make use of features of the nCore API that are not

offered in the standard, you should convert your application to work directly with

the generic stub.

On the other hand, many standard libraries include functions that are not

supported on the nShield module, such as support for IDEA or Skipjack. If you

require a feature that is not supported on the nShield module, contact Support

because it may be possible to add the feature in a future release. However, in

many cases, features are not present on the module for licensing reasons, as

opposed to technical reasons, and Entrust cannot offer them in the interface

library.

2.5. Writing a custom application

If you choose not to use one of the interface libraries, you must write a custom

application. This gives you access to all the features of the nCore API. For this

purpose, Entrust provides generic stub libraries for C and Java. If you want to use

a language other than C orJava, you must write your own wrapper functions in

your chosen programming language that call the C generic stub functions.

Entrust supplies several utility functions to help you write your application.

2.6. Acceleration-only or key management

You must also decide whether you want to use key management or whether you

are writing an acceleration-only application.

Acceleration-only applications are much simpler to write but do not offer any

security benefits.

The Microsoft CryptoAPI, Java JCE, PKCS #11, as well as the application plug-ins,

use the Security World paradigm for key storage.

If you are writing a custom application, you have the option of using the Security

World mechanisms, in which case your users can use either KeySafe or the

command-line utilities supplied with the module for many key-management

operations. This means you do not have to write these functions yourself.

The NFKM library gives you access to all the Security World functionality.

Chapter 2. nShield architecture

Cryptographic API v12.81 Guide 8/102

3. PKCS #11
This chapter is intended for application developers who are writing PKCS #11

applications.

For an introduction to the PKCS #11 user library, including information about the

environment variables and utilities available, see the User Guide for your HSM.

Before using the nShield PKCS #11 libraries, we recommend that you read

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html.

The following diagram illustrates the way that an nShield PKCS #11 library works

with the nShield APIs.


This guide does not address how the nShield PKCS #11 libraries

map PKCS #11 functions to nCore API calls within the library.

3.1. PKCS #11 developer libraries

The nShield PKCS #11 libraries, libdcknfast.so and libcknfast.a (nShield tools only)

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 9/102

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html

on Linux, and cknfast.lib and cknfast.dll on Windows are provided so that you

can integrate your PKCS #11 applications with the nShield hardware security

modules.

The nShield PKCS #11 libraries:

• Provide the PKCS #11 mechanisms listed in Mechanisms

• Help you to identify potential security weaknesses, enabling you to create

secure PKCS #11 applications more easily.

3.1.1. PKCS #11 security assurance mechanism

It is possible for an application to use the PKCS #11 API in ways that can introduce

potential security weaknesses. For example, it is a requirement of the PKCS #11

standard that the nShield PKCS #11 libraries are able to generate keys that are

explicitly exportable in plain text. An application could use this ability in error

when a secure key would be more appropriate.

The nShield PKCS #11 libraries are provided with a configurable security assurance

mechanism (SAM). SAM helps prevent PKCS #11 applications from performing

operations through the PKCS #11 API that may compromise the security of

cryptographic keys. Operations that reveal questionable behavior by the

application fail by default with an explanation of the cause of failure.

If you decide that some operations that carry a higher security risk are acceptable

to you, then you can reconfigure the nShield PKCS #11 library to permit these

operations by means of the environment variable

CKNFAST_OVERRIDE_SECURITY_ASSURANCES. You must think carefully, however, before

permitting operations that could compromise the security of cryptographic keys.

For more information about the environment variable and its parameters, see the

User Guide for your HSM.



It is your responsibility as a security developer to familiarize

yourself with the PKCS #11 standard and to ensure that all

cryptographic operations used by your application are

implemented in a secure manner.

If no parameters are supplied to the environment variable, the nShield PKCS #11

library fails and issues a warning, with an explanation, when the following

operations are detected:

• Short term session keys created as long term objects

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 10/102

• Keys that can be exported as plain text are created

• Keys are imported from external sources

• Wrapping keys are created or imported

• Unwrapping keys are created or imported

• Keys with weak algorithms (for example, DES) are created

• Keys with short key length are created.

3.2. PKCS #11 with load-sharing mode

The behavior of the nShield PKCS #11 library varies depending on which of load-

sharing mode, HSM Pool mode or neither or these is enabled. If you have enabled

load-sharing mode, the nShield PKCS #11 library creates one virtual slot for each

OCS and, optionally, also creates one slot for the HSM or HSMs. Softcards appear

as additional virtual slots once enabled.


Load-sharing mode must be enabled in PKCS #11 in order to use

softcards.

Whether or not load-sharing mode is enabled is determined by the state of the

CKNFAST_LOADSHARING environment variable.

Load-sharing mode enables you to load a single PKCS #11 token onto several

nShield HSMs to improve performance. To enable successful load-sharing with an

OCS protected key:

• You must have an Operator Card from the OCS inserted into every slot from

the same 1/N card set

• All the Operator Cards must have the same passphrase.

The nShield-specific API calls, C_LoginBegin, C_LoginNext, and C_LoginEnd do not

function in load-sharing mode. K/N support for card sets in load-sharing mode is

only available if you first use preload to load the logical token.

3.2.1. Logging in

If you call C_Login without a token present, it fails (as expected) unless you are

using a persistent token with preload or using only module-protected keys.

Therefore, your application should prompt users to insert tokens before logging in.

The nShield PKCS #11 library removes the nShield logical token when you call

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 11/102

C_Logout, whether or not there is a smart card in the reader.

If there are any cards from the OCS present when you call C_Logout, the PKCS #11

token remains present but not logged-in until all cards in the set are removed. If

there are no cards present, the PKCS #11 token becomes not present.

The CKNFAST_NONREMOVABLE environment variable is only available for persistent

tokens. When the variable is set, the rules for recognizing new cards are

overridden, and the only way to invoke a new token is to call C_Finalize or

C_Initialize.

3.2.2. Session objects

Session objects are loaded on all modules.

3.2.3. Module failure

If a subset of the modules fails, the nShield PKCS #11 library handles commands

using the remaining modules. If a module fails, the single cryptographic function

that was running on that module will fail, and the nShield PKCS #11 library will

return a PKCS #11 error. Subsequent cryptographic commands will be run on other

modules.

3.2.4. Compatibility

Before the implementation of load-sharing, the nShield PKCS #11 library puts the

electronic serial number in both the slotinfo.slotDescription and

tokeninfo.serialNumber fields. If you have enabled load-sharing, the

tokeninfo.serialNumber field displays the hash of the OCS.

3.2.5. Restrictions on function calls in load-sharing mode

The following function calls are not supported in load-sharing mode:

• C_LoginBegin (nShield-specific call to support K/N card sets)

• C_LoginNext (nShield-specific call to support K/N card sets)

• C_LoginEnd (nShield-specific call to support K/N card sets).

The following function calls are supported in load-sharing mode only when using

softcards:

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 12/102

• C_InitToken

• C_InitPIN

• C_SetPIN.


To use C_InitToken, C_InitPIN, or C_SetPIN in load-sharing mode,

you must have created a softcard with the command ppmk -n

before selecting the corresponding slot.


The C_InitToken function is not supported for use in non-load-

sharing FIPS 140-2 Level 3 Security Worlds.

3.3. PKCS #11 with HSM Pool mode

If HSM Pool mode is enabled, the nShield PKCS #11 library exposes a single pool of

HSMs and a single virtual slot for a fixed token with the label accelerator. This

accelerator slot can be used to create module protected keys and to support

session objects.

HSM Pool mode supports module protected keys but does not support token-

protected keys. If your application only uses module protected keys, you can use

HSM Pool mode as an alternative to using load-sharing mode. HSM Pool mode

supports returning or adding a hardware security module to the pool without

restarting the system.

Whether or not HSM Pool mode is enabled is determined by the state of the

CKNFAST_HSM_POOL environment variable.

In FIPS 140-2 Level 3 Security Worlds, keys cannot be created in HSM Pool mode,

however keys created outside HSM Pool mode can be used in HSM Pool mode.

3.3.1. Module failure

If a subset of the modules in the HSM pool fail, the nShield PKCS #11 library

handles commands using the remaining modules. When a module fails, any

cryptographic functions that were running on that module are restarted on one of

the remaining modules. If all of the modules in the HSM pool fail, the nShield

PKCS #11 library will return a PKCS #11 error.

3.3.2. Module recovery

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 13/102

If a failed module recovers and remains part of the Security World, it is

automatically returned to the HSM Pool and the nShield PKCS #11 library can use it

for new commands. If a new module is added to the system that is accessible to

the host running the PKCS #11 application, then once the Security World has been

loaded onto this HSM, then it is automatically added to the HSM Pool and the

nShield PKCS #11 library can use it for new commands.

3.3.3. Restrictions on function calls in HSM Pool mode

The following function calls are not supported in HSM Pool mode:

• C_LoginBegin

• C_LoginNext

• C_LoginEnd

• C_InitToken

• C_InitPIN

• C_SetPIN

3.4. PKCS #11 with key reloading

The nShield PKCS #11 library is capable of reloading keys to nShield HSMs after a

PKCS #11 application has started. The PKCS #11 library will attempt to reload the

keys to all HSMs from which keys have been unloaded after the application was

started, for example, if the HSM was cleared. This also means that if an application

uses HSMs that became unusable during runtime, the PKCS #11 library will re-add

these HSMs into the group of HSMs in a single Security World when they become

usable again. The PKCS #11 library will also attempt to reload the keys on new

HSMs that become usable after the application has started, for example if you

enroll a new HSM into the Security World. The application can then use the HSM

for key operations.

The default behavior without PKCS #11 key reloading is that when an HSM is

removed from the group of HSMs in a Security World, it is not re-added for

PKCS #11 until the user’s application is restarted.

The CKNFAST_RELOAD_KEYS environment variable determines whether key reloading

mode is enabled.


Load-sharing mode must be enabled in PKCS #11 to use key

reloading mode. If load-sharing is not enabled, it is enabled

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 14/102

automatically if CKNFAST_RELOAD_KEYS is enabled.

Key reloading is not supported for session keys.

3.4.1. Usage under preload

PKCS #11 key reloading only reloads keys. It must also operate under a preload

session during which preload is reloading tokens that protect the keys used by

PKCS #11, in high availability mode. When the PKCS #11 application is using a

token-protected key, preload should first be run to reload the token while PKCS #11

is reloading the key. For information on running preload for PKCS #11 key reloading,

see section PKCS #11 and JCE in the User Guide for your HSM.


PKCS #11 key reloading is also supported for module-protected

keys, but the PKCS #11 application must still be run under a

preload application which is reloading tokens for another key.

Either run the PKCS #11 application as a subprocess of preload, or in a separate

command window ensuring the preload file set for preload matches the one set

for PKCS #11. See section nShield PKCS #11 library with the preload utility in the

User Guide for your HSM.

The application will attempt to reload keys when supported functions are called,

see Supported function calls.

3.4.1.1. Persistent preload files

The preload file persists on disk after the preload process has terminated.

Therefore, a PKCS #11 application in key reloading mode should not be run with an

NFAST_NFKM_TOKENSFILE that points to a preload file from an old (non-running)

preload process.

3.4.2. Supported function calls

Key reloading is attempted whenever a key is used for a cryptographic operation.

For signing, verifying, encrypting, and decrypting, the functions are as follows:

• C_SignInit

• C_VerifyInit

• C_EncryptInit

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 15/102

• C_DecryptInit

On a call to any of these functions, the PKCS #11 library will do the following:

1. Checks if preload has reloaded any token objects on any HSMs since the last

time one of the above functions was called. This is done by checking if the

preload file has been modified. If not, there is nothing to reload.

2. If reload is required, reloads any keys that are protected by the newly-loaded

tokens on all usable HSMs in the group.

3.4.3. Retrying key reloads

PKCS #11 can fail to reload a key due to transient or genuine errors. An example for

a transient error is when an HSM has not finished reinitializing in time for a key to

be reloaded. An example for a genuine error is when the key is invalid. In case of a

failure, PKCS #11 will attempt to reload the key every time one of the functions in

Supported function calls is called for a further 5 minutes before abandoning the

key reload on that HSM.

3.4.4. Adding new HSMs

With key reloading enabled using the CKNFAST_RELOAD_KEYS environment variable,

the PKCS #11 library can add new HSMs to its internal list of usable modules. HSMs

are new if they were not present when PKCS #11 applications were initialized.

When key reloading is not enabled, PKCS #11 applications must be restarted

before the new HSMs can be used.

The PKCS #11 library supports a maximum of 32 HSMs. If you have already reached

32 HSMs and you add a new HSM, then the PKCS #11 library will not be able to add

this module. If an HSM is removed from the Security World or otherwise becomes

unusable, it is still counted towards this limit. The application must be restarted to

remove the removed or unusable HSM from the list.

3.5. PKCS #11 without load-sharing mode or
HSM Pool mode

The nShield PKCS #11 library makes each nShield module appear to your PKCS #11

application as two or more PKCS #11 slots.

The first slot represents the module itself. This token:

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 16/102

• Appears as a non-removable hardware token and has the flag CKF_REMOVABLE

not set

• Has the flag CKF_LOGIN_REQUIRED not set (C_Login always fails on this flag).



Applications can ignore this slot, but you can use the slot to

store public session objects or for functions that do not use

objects (such as C_GenerateRandom) even when the smart-card is

not present.

The second slot represents the smart-card reader. This token:

• appears as a PKCS #11 slot, potentially containing a removable hardware token

that has the flag CKF_REMOVABLE set

• is marked as removed if the smart card is removed from the physical slot

• has the flag CKF_LOGIN_REQUIRED

• allows the creation of token objects.


To use softcards with PKCS #11, load-sharing mode must be

enabled.

A PKCS #11 token can support multiple concurrent sessions on multiple

applications. However, by default, only one token may be logged in to a given slot

at a given time (see K/N support for PKCS #11). By default, when you insert a new

card into a slot, the nShield PKCS #11 library automatically logs out any token that

had been logged in to the slot previously.


The C_InitToken function is not supported for use in non-load-

sharing FIPS 140-2 Level 3 Security Worlds.

3.5.1. K/N support for PKCS #11

If you use the nShield PKCS #11 library without load-sharing mode or HSM Pool

mode, you can implement K/N card set support in two ways:

• By using the nShield-specific API calls, C_LoginBegin, C_LoginNext, and

C_LoginEnd

• By using the preload command-line utility to load the logical token first.

3.6. Generating and deleting NVRAM-stored keys
with PKCS #11

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 17/102

You can use the nShield PKCS #11 library to generate keys stored in nonvolatile

memory (up to a maximum of 12 keys) if you have set the

CKNFAST_NVRAM_KEY_STORAGE environment variable.

3.6.1. Generating NVRAM-stored keys

To generate NVRAM-stored keys with the nShield PKCS #11 library:

1. Load (or reload) the ACS using the preload command-line utility. Open a

command-line window and give the command:

preload --admin=NV pause

2. After loading the ACS, remove the Administrator Cards from the module.

3. Ensure that the CKNFAST_NVRAM_KEY_STORAGE environment variable is set. If this

variable is not set, the keys generated are not stored in NVRAM.

4. Open a second command-line window, and give the command:

preload --cardset-name=<name> <pkcs11app>

where <name> is the cardset name and <pkcs11app> is the name of your PKCS #11

application.

5. Generate the NVRAM-stored keys that you need (up to a maximum of 12 keys)

as normal.

6. Stop or close <pkcs11app>.

7. Return to the command-line window you opened in step 1 and terminate the

preload --admin=NV pause process.



Do not allow the preload --admin=NV pause process to run

continuously. Run this process only when generating or

deleting NVRAM-stored keys. As usual, remove the

Administrator Cards when they are not in use and store

them safely.

8. Unset the CKNFAST_NVRAM_KEY_STORAGE environment variable.

9. Restart <pkcs11app>.

You can use the newly generated NVRAM-stored keys in the same way as

other PKCS #11 keys. You can also generate any number of standard keys (not

stored in NVRAM) in the usual way.

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 18/102

3.6.2. Deleting NVRAM-stored keys

To delete NVRAM-stored keys with the nShield PKCS #11 library:

1. Load (or reload) the ACS using the preload command-line utility. Open a

command-line window and give the command:

preload --admin=NV pause

2. After loading the ACS, remove the Administrator Cards from the module.

Ensure that the CKNFAST_NVRAM_KEY_STORAGE environment variable is set.



If you attempt to delete NVRAM-stored keys without the

CKNFAST_NVRAM_KEY_STORAGE environment variable set, only the

key blob stored on hard disk is deleted. The keys remain in

NVRAM on the module. Use the nvram-sw command-line

utility to fully remove the NVRAM-stored keys. For more

information, see the User Guide.

3. Open a second command-line window, and give the command:

preload --cardset-name=<name> -M <pkcs11app>

where <name> is the cardset name and <pkcs11app> is the name of the PKCS #11

application that you use to delete the keys.

4. Delete the NVRAM-stored keys as you would delete normal keys.

5. Stop or close <pkcs11app>.

6. Return to the command-line window you opened in step 1 and terminate the

preload --admin=NV pause process.



Do not allow the preload --admin=NV pause to run

continuously. Run this process only when generating or

deleting NVRAM-stored keys. As usual, remove the

Administrator Cards when they are not in use and store

them safely.

7. Unset the CKNFAST_NVRAM_KEY_STORAGE environment variable.

3.7. PKCS #11 Security Officer

The PKCS #11 Security Officer is a role that is created and managed by the

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 19/102

cksotool utility. The utility creates a softcard and key, which are used to perform

operations within the nShield PKCS #11 library as the Security Officer. The idents of

the generated softcard and key are ncipher-pkcs11-so-softcard and ncipher-pkcs11-

so-key, respectively. They are used during Security Officer operations to provide

the cryptographic security.


ncipher-pkcs11-so-softcard does not appear in the result of

C_GetSlotList and therefore cannot be used to create PKCS #11

keys, or have its PIN changed using C_SetPIN.

To act as the Security Officer within the nShield PKCS #11 library, the Security

Officer token and key must be preloaded using the preload utility:

preload -s ncipher-pkcs11-so-softcard pause

The PKCS #11 session must also be logged in as the user CKU_SO. preload is used so

that virtual-slots in load-sharing can be logged into using the usual PKCS #11 API.

This allows Security Officer operations to be performed on keys protected by any

token.

It is strongly advised that operations that require loading the PKCS #11 Security

Officer token are performed by a dedicated tool, and not integrated into a main

application.

3.8. nShield-specific PKCS #11 API extensions

nShield K/N card sets use nShield-specific API calls. These calls can be used by

the application in place of the standard C_Login to provide log-in to a card set with

a K parameter greater than 1. The API calls include three functions, C_LoginBegin,

C_LoginNext and C_LoginEnd.

 The login sequence must occur in the same session.



You cannot use the API calls in load-sharing mode. To use K/N

card sets in load-sharing mode, use preload to load the logical

token first. The API calls also work in a non-load-sharing FIPS

140-2 Level 3 Security Worlds.

3.8.1. C_LoginBegin

Similar to C_Login, this function initiates the log-in process, ensures that the

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 20/102

session is valid, and ensures that the user is not in load-sharing mode.

The pulK and pulN return values provide the caller with the number of card

requests required. An example of the use of C_LoginBegin is shown here:

C_LoginBegin (CK_SESSION_HANDLE hSession, /* the session's handle */
 CK_USER_TYPE userType, /* the user type */
 CK_ULONG_PTR pulK, /* cards required to load logical token*/
 CK_ULONG_PTR pulN /* Number of cards in set */)

3.8.2. C_LoginNext

C_LoginNext is called K times until the required number of cards (for the given card

set) have been presented. This function checks the Security World info to ensure

that the card has changed each time. It also checks for the correct passphrase

before loading the card share. pulSharesLeft allows the user application to assess

the number of cards loaded to the number of cards required.

CK_RV gives various values that allow the user to access the application state using

standard PKCS #11 return values (such as CKR_TOKEN_NOT_RECOGNIZED). These values

reveal such information as whether the card is the same, whether the card is

foreign or blank, and whether the passphrase was incorrect.

An example of the use of C_LoginNext is shown here:

C_LoginNext (CK_SESSION_HANDLE hSession, /* the session's handle */
 CK_USER_TYPE userType, /* the user type*/
 CK_CHAR_PTR pPin, /* the user's PIN*/
 CK_ULONG ulPinLen, /* the length of the PIN */
 CK_ULONG_PTR pulSharesLeft /* Number of shares still needed */)

3.8.3. C_LoginEnd

C_LoginEnd is called after all the shares are loaded. It constructs the logical token

from the presented shares and then loads the private objects protected by the

card set that are available to it:

C_LoginEnd (CK_SESSION_HANDLE hSession, /* the session's handle */
 CK_USER_TYPE userType /* the user type*/)



There must be no other calls between the functions, in that or

any other session on the slot. In particular, a call that updates the

Security World while using a card that has been removed at the

time (for example, because a second card from the set is about

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 21/102

to be inserted) returns CKR_DEVICE_REMOVED in the same way that it

would for a single card. All sessions are then closed and the log-

in process is aborted.

If other functions are accidentally called during the log-in cycle, then

slot.loadcardsetstate is checked before updating the Security World. If the log-in

process has not been completed, other functions return CKR_FUNCTION_FAILED and

allow you to continue with the log-in process.

3.9. Compiling and linking

The following options are available if you want to integrate the nShield PKCS #11

library with your application. Depending on how your application integrates with

PKCS #11 libraries, you can:

• statically link the nShield PKCS #11 library directly into your application

• dynamically link the nShield PKCS #11 library into your application

• create a plug-in shared library that contains the nShield position-independent

code object files together with your own adaptation facilities.

You may freely supply your users with the compiled library files linked into your

application or into a plug-in library used for your application.

The nShield PKCS #11 library includes the PKCS #11 header files pkcs11.h, pkcs11t.h,

and pkcs11f.h from the RSA Data Security, Inc. Cryptoki Cryptographic Token

Interface. Any work based on this interface is bound by the following terms of RSA

Data Security, Inc. Licence, which states:

License is also granted to make and use derivative works provided that such

works are identified as derived from the RSA Data Security, Inc. Cryptoki

Cryptographic Token Interface in all material mentioning or referencing the

derived work.



For more information about using the available libraries, see the

Include Paths and Linking section in the nCore API

Documentation on the Security World Software installation

media.

3.9.1. Windows

All versions are built with Visual Studio 2017. Entrust supplies the following files:

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 22/102

• %NFAST_HOME%\bin\cknfast.dll and %NFAST_HOME%\toolkits\pkcs11\cknfast.dll: a

dynamically linked library

 Both files are identical.

• %NFAST_HOME%\c\ctd\lib\cknfast.lib: a stub for applications that link to

cknfast.dll

• %NFAST_HOME%\c\ctd\lib\libdcknfast.lib: a static library with position-

independent code

3.9.2. Linux

Entrust supplies the following libraries:

• libcknfast.so, libcknfast.so.a, or libcnfast.sl: a standard, dynamically linked,

shared library that can be used to create applications that must be

dynamically linked with the nShield libraries at run time. On platforms where

thread safety requires programs to be compiled differently from non-threaded

programs, these libraries are compiled thread-safe.

• libcknfast.a: a standard, non-shared library used to statically link an

application.

• libcknfast_thrpic.a: a non-shared library, compiled as threadsafe position-

independent code.

On the Developer installation media, each library is provided with a corresponding

set of header files. All the header files for each version are very similar, but some

header files (particularly those that contain information about compiler and

configuration options) differ by version.

These types of library are provided compiled with the following C compilers for

Linux libc6.11:

Library Type Build Notes

/opt/nfast/c/ctd/gcc/lib This type of library is built with gcc 4.9.2 in 32-bit mode.

/opt/nfast/c/csd/gcc/lib This type of library is built with gcc 4.9.2 in 64-bit mode.

3.10. Objects

Token objects are not stored in the nShield module. Instead, they are stored in an

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 23/102

encrypted and integrity-protected form on the hard disk of the host computer.

The key used for this encryption is created by combining information stored on

the smart card with information stored in the nShield module and with the card

passphrase.

Session keys are stored on the nShield module, while other session objects are

stored in host memory. Token objects on the host are created in the kmdata

directory. In order to access token objects, the user must have:

• the smart card

• the passphrase for the smart card

• an nShield module containing the module key used to create the token

• the host file containing the nShield key blob protecting the token object.

The nShield PKCS #11 library can be used to manipulate Data Objects, Certificate

Objects, and Key Objects.

3.10.1. Certificate Objects and Data Objects

The nShield PKCS #11 library does not parse Certificate Objects or Data Objects.

The size of Data Objects is limited by what can be fitted into a single command

(under most circumstances, this limit is 8192 bytes).

3.10.2. Key Objects

The following restrictions apply to keys:

Key types Restrictions

RSA Modulus greater than or equal to 1024.

The nShield PKCS #11 library requires all of the attributes for an RSA key object

to be supplied, as listed in Table 26: "RSA Private Key Object Attributes" of

PKCS #11 Cryptographic Token Interface Standard version 2.40.

DSA Modulus greater than or equal to 1024 in multiples of 8 bits.

Diffie-Hellman Modulus greater than or equal to 1024.

3.10.3. Card passphrases

All passphrases are hashed using the SHA-1 hash mechanism and then combined

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 24/102

with a module key to produce the key used to encrypt data on the nShield

physical or software token. The passphrase supplied can be of any length.


The ckinittoken program imposes a 512-byte limit on the

passphrase.


C_GetTokenInfo reports _MaxPinLen as 256 because some

applications may have problems with a larger value.

When C_Login is called, the passphrase is used to load private objects protected by

that card set on to all modules with cards from that set. Public objects belonging

to that set are loaded on to all the modules. C_Login fails if any logical token fails to

load. All cards in a card set must have the same passphrase.



The functions C_SetPIN, C_InitPIN, and C_InitToken are supported

in load-sharing mode only when using softcards. To use these

functions in load-sharing mode, you must have created a

softcard with the command ppmk -n before selecting the

corresponding slot.


The C_InitToken function is not supported for use in non-load-

sharing FIPS 140-2 Level 3 Security Worlds.

3.11. Functions supported

The following sections list the PKCS #11 functions supported by the nShield

PKCS #11 library. For a list of supported mechanisms, see Mechanisms.


Certain functions are included in PKCS #11 version 2.40 for

compatibility with earlier versions only.

3.11.1. General purpose functions

The following functions perform as described in the PKCS #11 specification:

• C_Finalize

• C_GetInfo

• C_GetFunctionList.

3.11.1.1. C_Initialize

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 25/102

If your application uses multiple threads, you must supply such functions as

CreateMutex (as stated in the PKCS #11 specification) in the CK_C_INITIALIZE_ARGS

argument.

3.11.2. Slot and token management functions

The following functions perform as described in the PKCS #11 specification:

• C_GetSlotInfo

• C_GetTokenInfo

• C_GetMechanismList

• C_GetMechanismInfo.

3.11.2.1. C_GetSlotList

This function returns an array of PKCS #11 slots. Within each module, the slots are

in the order:

1. module(s)

2. smart card reader(s)

3. software tokens, if present.

Each module is listed in ascending order by nShield ModuleID.



C_GetSlotList returns an array of handles. You cannot make any

assumptions about the values of these handles. In particular,

these handles are not equivalent to the slot numbers returned by

the nCore API command GetSlotList.

3.11.2.2. C_InitToken

C_InitToken sets the card passphrase to the same value as the current token’s

passphrase and sets the CKF_USER_PIN_INITIALIZED flag.



This function is supported in load-sharing mode only when using

softcards. To use C_InitToken in load-sharing mode, you must

have created a softcard with the command ppmk -n before

selecting the corresponding slot.


The C_InitToken function is not supported for use in non-load-

sharing FIPS 140-2 Level 3 Security Worlds.

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 26/102

3.11.2.3. C_InitPIN

There is usually no need to call C_InitPIN, because C_InitToken sets the card

passphrase.

Because the nShield PKCS #11 library can only maintain a single passphrase,

C_InitPIN has the effect of changing the current token’s passphrase.



This function is supported in load-sharing mode only when using

softcards. To use C_InitPIN in load-sharing mode, you must have

created a softcard with the command ppmk -n before selecting

the corresponding slot.

3.11.2.4. C_SetPIN

The card passphrase may be any value.

Because the nShield PKCS #11 library can only maintain a single passphrase,

C_SetPIN has the effect of changing the current token’s passphrase or, if called in a

Security Officer session, the card passphrase.



This function is supported in load-sharing mode only when using

softcards. To use C_SetPIN in load-sharing mode, you must have

created a softcard with the command ppmk -n before selecting

the corresponding slot.

3.11.3. Standard session management functions

These functions perform as described in the PKCS #11 specification:

• C_OpenSession

• C_CloseSession

• C_CloseAllSessions

• C_GetOperationState

• C_SetOperationState

• C_Login

• C_Logout

3.11.4. nShield session management functions

The following are nShield-specific calls for K/N card set support:

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 27/102

• C_LoginBegin

• C_LoginNext

• C_LoginEnd

• C_GetSessionInfo

ulDeviceError returns the numeric value of the last status, other than Status_OK,

returned by the module. This value is never cleared. Status values are enumerated

in the header file messages-args-en.h on the nShield Developer’s installation media.

For descriptions of nShield status codes, see the nCore API Documentation

(supplied as HTML).

3.11.5. Object management functions

These functions perform as described in the PKCS #11 specification:

• C_CreateObject

• C_CopyObject

• C_DestroyObject

• C_GetObjectSize

• C_GetAttributeValue

• C_SetAttributeValue

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

3.11.6. Encryption functions

These functions perform as described in the PKCS #11 specification:

• C_EncryptInit

• C_Encrypt

• C_EncryptUpdate

• C_EncryptFinal

3.11.7. Decryption functions

These functions perform as described in the PKCS #11 specification:

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 28/102

• C_DecryptInit

• C_Decrypt

• C_DecryptUpdate

• C_DecryptFinal

3.11.8. Message digesting functions

The following functions are performed on the host computer:

• C_DigestInit

• C_Digest

• C_DigestUpdate

• C_DigestFinal

3.11.9. Signing and MACing functions

The following functions perform as described in the PKCS #11 specification:

• C_SignInit

• C_Sign

• C_SignRecoverInit

• C_SignRecover.

The functions C_SignUpdate and C_SignFinal are supported for:

• CKM_SHA1_RSA_PKCS

• CKM_MD5_RSA_PKCS.

3.11.10. Functions for verifying signatures and MACs

The following functions perform as described in the PKCS #11 specification:

• C_VerifyInit

• C_Verify

• C_VerifyRecover

• C_VerifyRecoverInit.

The C_VerifyUpdate and C_VerifyFinal functions are supported for:

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 29/102

• CKM_SHA1_RSA_PKCS

• CKM_MD5_RSA_PKCS

3.11.11. Dual-purpose cryptographic functions

The following functions perform as described in the PKCS #11 specification:

• C_DigestEncryptUpdate

• C_DecryptDigestUpdate.

The C_SignEncryptUpdate and C_DecryptVerifyUpdate functions are supported for:

• CKM_SHA1_RSA_PKCS

• CKM_MD5_RSA_PKCS

3.11.12. Key-management functions

The following functions perform as described in the PKCS #11 specification:

• C_GenerateKey

• C_GenerateKeyPair

• C_WrapKey

• C_UnwrapKey

• C_DeriveKey


You can use the CKNFAST_OVERRIDE_SECURITY_ASSURANCES

environment variable to modify the way that some functions,

including key-management functions, are used.

3.11.13. Random number functions

The nShield module has an onboard, hardware random number generator to

handle the following random number functions:

• C_GenerateRandom

• C_SeedRandom

For this reason, it does not use seed values, and the C_SeedRandom function returns

CKR_RANDOM_SEED_NOT_SUPPORTED.

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 30/102

3.11.14. Parallel function management functions

The following functions are supported in the approved fashion by returning the

PKCS #11 status CKR_FUNCTION_NOT_PARALLEL:

• C_GetFunctionStatus

• C_CancelFunction

3.11.15. Callback functions

There are no vendor-defined callback functions. Surrender callback functions are

never called.

3.11.16. Mechanisms

The following table lists the mechanisms currently supported by the nShield

PKCS #11 library and the functions available to each one. Entrust also provides

vendor-supplied mechanisms, described in Vendor-defined mechanisms.


Some mechanisms may be restricted from use in Security

Worlds conforming to FIPS 140-2 Level 3. See the User Guide for

your HSM for more information.

Mechanism Encrypt &
Decrypt

Sign &
Verify

SR & VR Digest Gen.
Key/Key
Pair

Wrap &
Unwrap

Derive
Key

CKM_AES_CBC_ENCRYPT_D

ATA

— — — — — — Y

CKM_AES_CBC_PAD Y — — — — Y —

CKM_AES_CBC Y — — — — Y1 —

CKM_AES_CMAC_GENERAL — Y — — — — —

CKM_AES_CMAC — Y — — — — —

CKM_AES_ECB_ENCRYPT_D

ATA

— — — — — — Y

CKM_AES_ECB Y — — — — Y1 —

CKM_AES_GCM Y — — — — Y14 —

CKM_AES_KEY_GEN — — — — Y — —

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 31/102

Mechanism Encrypt &
Decrypt

Sign &
Verify

SR & VR Digest Gen.
Key/Key
Pair

Wrap &
Unwrap

Derive
Key

CKM_AES_KEY_WRAP — — — — — Y —

CKM_AES_KEY_WRAP_PAD2 Y — — — — Y —

CKM_AES_KEY_WRAP_KWP Y — — — — Y —

CKM_AES_MAC_GENERAL — Y — — — — —

CKM_AES_MAC — Y — — — — —

CKM_CONCATENATE_BASE_

AND_KEY

— — — — — — Y3

CKM_DES_CBC_ENCRYPT_D

ATA

— — — — — — Y

CKM_DES_CBC_PAD Y — — — — Y —

CKM_DES_CBC Y — — — — Y —

CKM_DES_ECB_ENCRYPT_D

ATA

— — — — — — Y

CKM_DES_ECB Y — — — — Y —

CKM_DES_KEY_GEN — — — — Y — —

CKM_DES_MAC_GENERAL — Y — — — — —

CKM_DES_MAC — Y — — — — —

CKM_DES2_KEY_GEN — — — — Y — —

CKM_DES3_CBC_ENCRYPT_

DATA

— — — — — — Y

CKM_DES3_CBC_PAD Y — — — — Y —

CKM_DES3_CBC Y — — — — Y1 —

CKM_DES3_ECB_ENCRYPT_

DATA

— — — — — — Y

CKM_DES3_ECB Y — — — — Y1 —

CKM_DES3_KEY_GEN — — — — Y — —

CKM_DES3_MAC_GENERAL — Y — — — — —

CKM_DES3_MAC — Y — — — — —

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 32/102

Mechanism Encrypt &
Decrypt

Sign &
Verify

SR & VR Digest Gen.
Key/Key
Pair

Wrap &
Unwrap

Derive
Key

CKM_DH_PKCS_DERIVE — — — — — — Y

CKM_DH_PKCS_KEY_PAIR_

GEN

— — — — Y — —

CKM_DSA_KEY_PAIR_GEN — — — — Y — —

CKM_DSA_PARAMETER_GEN — — — — Y — —

CKM_DSA_SHA1 — Y — — — — —

CKM_DSA — Y4 — — — — —

CKM_EC_EDWARDS_KEY_PA

IR_GEN

— — — — Y5 — —

CKM_EC_KEY_PAIR_GEN — — — — Y6 — —

CKM_EC_MONTGOMERY_KEY

_PAIR_GEN

— — — — Y5 — —

CKM_ECDH1_DERIVE — — — — — — Y7

CKM_ECDSA_SHA1 — Y — — — — —

CKM_ECDSA_SHA224 — Y — — — — —

CKM_ECDSA_SHA256 — Y — — — — —

CKM_ECDSA_SHA384 — Y — — — — —

CKM_ECDSA_SHA512 — Y — — — — —

CKM_ECDSA_SHA3_224 — Y — — — — —

CKM_ECDSA_SHA3_256 — Y — — — — —

CKM_ECDSA_SHA3_384 — Y — — — — —

CKM_ECDSA_SHA3_512 — Y — — — — —

CKM_EDDSA — Y4, 8 — — — — —

CKM_ECDSA — Y4 — — — — —

CKM_GENERIC_SECRET_KE

Y_GEN

— — — — Y — —

CKM_MD5_HMAC_GENERAL — Y — — — — —

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 33/102

Mechanism Encrypt &
Decrypt

Sign &
Verify

SR & VR Digest Gen.
Key/Key
Pair

Wrap &
Unwrap

Derive
Key

CKM_MD5_HMAC — Y — — — — —

CKM_MD5 — — — Y — — —

CKM_NC_ECIES — — — — — Y9 —

CKM_NC_MD5_HMAC_KEY_G

EN

— — — — Y — —

CKM_PBE_MD5_DES_CBC — — — — Y — —

CKM_RIPEMD160 — — — Y — — —

CKM_RSA_9796 — Y4 Y4 — — — —

CKM_RSA_AES_KEY_WRAP15 - — — — — Y16 —

CKM_RSA_PKCS_KEY_PAIR

_GEN

— — — — Y — —

CKM_RSA_PKCS_OAEP Y — — — — Y —

CKM_RSA_PKCS_PSS11 Y Y — — — — —

CKM_RSA_PKCS Y4 Y4 Y4 — — Y —

CKM_RSA_X_509 Y4 Y4 Y4 — — X —

CKM_RSA_X9_31_KEY_PAI

R_GEN

— — — — Y — —

CKM_SHA_1_HMAC_GENERA

L

— Y10 — — — — —

CKM_SHA_1_HMAC — Y10 — — — — —

CKM_SHA_1 — — — Y — — —

CKM_SHA1_RSA_PKCS_PSS
11

— Y — — — — —

CKM_SHA1_RSA_PKCS — Y — — — — —

CKM_SHA224_HMAC_GENER

AL

— Y10 — — — — —

CKM_SHA224_HMAC — Y10 — — — — —

CKM_SHA224_RSA_PKCS_P

SS11

— Y — — — — —

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 34/102

Mechanism Encrypt &
Decrypt

Sign &
Verify

SR & VR Digest Gen.
Key/Key
Pair

Wrap &
Unwrap

Derive
Key

CKM_SHA224 — — — Y — — —

CKM_SHA256_HMAC_GENER

AL

— Y10 — — — — —

CKM_SHA256_HMAC — Y10 — — — — —

CKM_SHA256_RSA_PKCS_P

SS11

— Y — — — — —

CKM_SHA256_RSA_PKCS — Y — — — — —

CKM_SHA256 — — — Y — — —

CKM_SHA384_HMAC_GENER

AL

— Y10 — — — — —

CKM_SHA384_HMAC — Y10 — — — — —

CKM_SHA384_RSA_PKCS_P

SS11

— Y — — — — —

CKM_SHA384_RSA_PKCS — Y — — — — —

CKM_SHA384 — — — Y — — —

CKM_SHA512_HMAC_GENER

AL

— Y10 — — — — —

CKM_SHA512_HMAC — Y10 — — — — —

CKM_SHA512_RSA_PKCS_P

SS11

— Y — — — — —

CKM_SHA512_RSA_PKCS — Y — — — — —

CKM_SHA512 — — — Y — — —

CKM_SHA3_224 — — — Y — — —

CKM_SHA3_256 — — — Y — — —

CKM_SHA3_384 — — — Y — — —

CKM_SHA3_512 — — — Y — — —

CKM_WRAP_RSA_CRT_COMP

ONENTS

— — — — — Y12 —

CKM_XOR_BASE_AND_DATA — — — — — — Y13

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 35/102

The nShield library supports some mechanisms that are defined in versions of the

PKCS #11 standard later than 2.01, although the nShield library does not fully

support versions of the PKCS #11 standard later than 2.01.

In the table above:

• Empty cells indicate mechanisms that are not supported by the PKCS #11

standard.

• The entry Y indicates that a mechanism is supported by the nShield PKCS #11

library.

• The entry X indicates that a mechanism is not supported by the nShield PKCS

#11 library.

In the table above, annotations with the following numbers indicate:

1 Wrap secret keys only (private key wrapping must use CBC_PAD).

2 CKM_AES_KEY_WRAP_PAD has been deprecated and replaced by CKM_AES_KEY_WRAP_KWP.

3 Before you can create a key for use with the derive mechanism

CKM_CONCATENATE_BASE_AND_KEY, you must first specify the CKA_ALLOWED_MECHANISMS

attribute in the template with the CKM_CONCATENATE_BASE_AND_KEY set. Specifying the

CKA_ALLOWED_MECHANISMS in the template enables the setting of the nCore level ACL,

which enables the key in this derive key operation. For more information about the

Security Assurance Mechanisms (SAMs) on the CKM_CONCATENATE_BASE_AND_KEY

mechanism, see Mechanisms. About the CKA_ALLOWED_MECHANISMS attribute, see

Attributes.

4 Single-part operations only.

5 CKA_EC_PARAMS is a DER-encoded PrintableString curve25519.

6 If no capabilities are specified in the template, for example the CKA_DERIVE,

CKA_SIGN and CKA_UNWRAP attributes are omitted, then the default capability is

sign/verify.

Key generation does calculate its own curves but, as shown in the PKCS #11

standard, takes the CKA_PARAMS, which contains the curve information (similar to

that of a discrete logarithm group in the generation of a DSA key pair).

CKA_EC_PARAMS is a Byte array which is DER-encoded of an ANSI X9.62 Parameters

value. It can take both named curves and custom curves.

The following PKCS #11-specific flags describe which curves are supported:

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 36/102

• CKF_EC_P: prime curve supported

• CKF_EC_2M: binary curve supported

• CKF_EC_PARAMETERS: supplying your own custom parameters is supported

• CKF_EC_NAMECURVE: supplying a named curve is supported

• CKF_EC_UNCOMPRESS: supports uncompressed form only, compressed form not

supported.

7 The CKM_ECDH1_DERIVE mechanism is supported. However, the mechanism only

takes a CK_ECDH1_DERIVE_PARAMS struct in which CK_EC_KDF_TYPE is CKD_NULL,

CKD_SHA1_KDF, CKD_SHA224_KDF, CKD_SHA256_KDF, CKD_SHA384_KDF, or CKD_SHA512_KDF. For

more information on CK_ECDH1_DERIVE_PARAMS, see the PKCS #11 standard.

For the pPublicData* parameter, a raw octet string value (as defined in section

A.5.2 of ANSI X9.62) and DER-encoded ECPoint value (as defined in section E.6 of

ANSI X9.62 or, in the case of CKK_EC_MONTGOMERY, RFC 7748) are now accepted.

8 Both the Ed25519 and Ed25519ph signature schemes are supported, The Ed25519

scheme requires either no CK_EDDSA_PARAMS to be passed or if it is passed it should

have the following set:

• phFlag to CK_FALSE

• ulContextDataLen to 0.

The Ed25519ph signature scheme requires CK_EDDSA_PARAMS to have the following set:

• phFlag to CK_TRUE

• ulContextDataLen to 0.

9 Wrap secret keys only.

10 This mechanism depends on the vendor-defined key generation mechanism

CKM_NC_SHA_1_HMAC_KEY_GEN, CKM_NC_SHA224_HMAC_KEY_GEN, CKM_NC_SHA256_HMAC_KEY_GEN,

CKM_NC_SHA384_HMAC_KEY_GEN, or CKM_NC_SHA512_HMAC_KEY_GEN. For more information,

see Vendor-defined mechanisms.

11 The hashAlg and the mgf that are specified by the CK_RSA_PKCS_PSS_PARAMS must

have the same SHA hash size. If they do not have the same hash size, then the

signing or verify fails with a return value of CKR_MECHANISM_PARAM_INVALID.

The sLen value is expected to be the length of the message hash. If this is not the

case, then the signing or verify again fails with a return value of

CKR_MECHANISM_PARAM_INVALID. The Security World Software implementation of

RSA_PKCS_PSS salt lengths are as follows:

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 37/102

Mechanism Salt-length

SHA-1 160-bit

SHA-224 224-bit

SHA-256 256-bit

SHA-384 384-bit

SHA-512 512-bit

12 Wrap only.

13 The base key and the derived key are restricted to DES, DES3, CAST5 or Generic,

though they may be of different types.

14 For wrap and unwrap with CKM_AES_GCM, the IV supplied in the CKM_GCM_PARAMS

structure must be 12 bytes. For wrap the IV must be all zeroes. This will be

overwritten by the actual value used when the wrap command has completed

successfully. For unwrap the IV must be the value returned by the corresponding

wrap.

15 Use of CKM_RSA_AES_KEY_WRAP requires 12.60.2 firmware or greater.

16 In order to create an unwrapping key for use with the mechanism

CKM_RSA_AES_KEY_WRAP where CKA_UNWRAP_TEMPLATE is also set, you must:

• Specify the CKA_ALLOWED_MECHANISMS attribute in the template with

CKM_RSA_AES_KEY_WRAP set as an allowed mechanism.

• Override the Security Assurance Mechanisms (SAMs) to permit use of

CKA_UNWRAP_TEMPLATE with the mechanism CKM_RSA_AES_KEY_WRAP.

Specifying the CKA_ALLOWED_MECHANISMS attribute in the template and overriding the

SAMs enables use of the CKA_UNWRAP_TEMPLATE attribute with the unwrapping key.

Keys with CKA_WRAP_WITH_TRUSTED set cannot be wrapped with the mechanism

CKM_RSA_AES_KEY_WRAP. The C_WrapKey operation will return CKR_KEY_NOT_WRAPPABLE for

such keys.

For more information about the SAMs, see PKCS #11 security assurance

mechanism. For more information about the CKA_ALLOWED_MECHANISMS attribute, see

Attributes.

3.11.17. Vendor-defined mechanisms

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 38/102

The following vendor‑defined mechanisms are also available. The numeric values

of vendor-defined key types and mechanisms can be found in the supplied

pkcs11extra.h header file.


Some mechanisms may be restricted from use in Security

Worlds conforming to FIPS 140-2 Level 3. See the User Guide for

your HSM for more information.

3.11.17.1. CKM_WRAP_RSA_CRT_COMPONENTS

This wrapping mechanism uses a pMechanism→pParameter argument that is itself a

CK_MECHANISM_PTR appropriate for the underlying encryption mechanism. The

wrapping mechanism takes a pointer to a PKCS #11 template as its pWrappedKey

argument.

The CK_ATTRIBUTE_PTR template is allocated by the calling application. The template

is filled in by the calling application with the attribute types (CKA_PRIME_1,

CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT), and the lengths of the

value buffers, which are also allocated by the application. The pulWrappedKeyLen

argument contains the length in bytes of the template, which is (5 *

sizeof(CK_ATTRIBUTE_PTR)).

The usual method of calling C_WrapKey is with a NULL buffer to determine its output

length. This is not available because C_WrapKey cannot specify the multiple levels of

allocation required. If any part of this structure has an inappropriate size, the

mechanism fails with a CKR_WRAPPED_KEY_LEN_RANGE error.

3.11.17.2. CKM_SEED_ECB_ENCRYPT_DATA & CKM_SEED_CBC_ENCRYPT_DATA

This mechanism derives a secret key by encrypting plain data with the specified

secret base key. This mechanism takes as a parameter a

CK_KEY_DERIVATION_STRING_DATA structure, which specifies the length and value of the

data to be encrypted by using the base key to derive another key.

If no length or key type is provided in the template, the key produced by this

mechanism is a generic secret key. Its length is equal to the length of the data.

If a length, but no key type, is provided in the template, the key produced by this

mechanism is a generic secret key of the specified length.

If a key type, but no length, is provided in the template, the key type must have a

well-defined length. If the length is well defined, the key produced by this

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 39/102

mechanism is of the type specified in the template. If the length is not well

defined, a CKR_TEMPLATE_INCOMPLETE error is returned.

If both a key type and a length are provided in the template, the length must be

compatible with that key type, and CKR_TEMPLATE_INCONSISTENT is returned if it is not.

The key produced by the CKM_SEED_ECB_ENCRYPT_DATA or CKM_SEED_CBC_ENCRYPT_DATA

mechanisms is of the specified type and length.

3.11.17.3. CKM_CAC_TK_DERIVATION

This mechanism uses C_GenerateKey to perform an Import operation using a

Transport Key Component.

The mechanism accepts a template that contains three Transport Key

Components (TKCs) with following attribute types:

• CKA_TKC1

• CKA_TKC2

• CKA_TKC3.

These attributes are all in the CKA_VENDOR_DEFINED range.

Each TKC should be the same length as the key being created. TKCs used for DES,

DES2, or DES3 keys must have odd parity. The mechanism checks for odd parity

and returns CKR_ATTRIBUTE_VALUE_INVALID if it is not found.

The new key is constructed by an XOR of the three TKC components on the

module.

Although using C_GenerateKey creates a key with a known value rather than

generating a new one, it is used because C_CreateObject does not accept a

mechanism parameter.

CKA_LOCAL, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE are set to FALSE, as they

would for a key imported with C_CreateObject. This reflects the fact that the key

was not generated locally.

An example of the use of CKM_CAC_TK_DERIVATION is shown here:

CK_OBJECT_CLASS class_secret = CKO_SECRET_KEY;
 CK_KEY_TYPE key_type_des2 = CKK_DES2;
 CK_MECHANISM mech = { CKM_CAC_TK_DERIVATION, NULL_PTR, 0 };
 CK_BYTE TKC1[16] = { ... };
 CK_BYTE TKC2[16] = { ... };
 CK_BYTE TKC3[16] = { ... };

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 40/102

 CK_OBJECT_HANDLE kHey;
 CK_ATTRIBUTE pTemplate[] = {
 { CKA_CLASS, &class_secret, sizeof(class_secret) },
 { CKA_KEY_TYPE, &key_type_des2, sizeof(key_type_des2) },
 { CKA_TKC1, TKC1, sizeof(TKC1) },
 { CKA_TKC2, TKC1, sizeof(TKC2) },
 { CKA_TKC3, TKC1, sizeof(TKC3) },
 { CKA_ENCRYPT, &true, sizeof(true) },

 };

 rv = C_GenerateKey(hSession, &mechanism, pTemplate,
 (sizeof(pTemplate)/sizeof((pTemplate)[0])), &hKey);

3.11.17.4. CKM_SHA*_HMAC and CKM_SHA*_HMAC_GENERAL

This version of the library supports the PKCS #11 standard mechanisms for SHA-1

and SHA-2 HMAC as defined in PKCS #11 standard version 2.30:

• CKM_SHA_1_HMAC

• CKM_SHA_1_HMAC_GENERAL

• CKM_SHA224_HMAC

• CKM_SHA224_HMAC_GENERAL

• CKM_SHA256_HMAC

• CKM_SHA256_HMAC_GENERAL

• CKM_SHA384_HMAC

• CKM_SHA384_HMAC_GENERAL

• CKM_SHA512_HMAC

• CKM_SHA512_HMAC_GENERAL

For security reasons, the Security World Software supports these mechanisms

only with their own specific key type. Thus, you can only use an HMAC key with

the HMAC algorithm and not with other algorithms.

The PKCS #11 standard does not provide an appropriate key type. Therefore, the

vendor-defined key types CKK_SHA_1_HMAC, CKK_SHA224_HMAC, CKK_SHA256_HMAC,

CKK_SHA384_HMAC, and CKK_SHA512_HMAC, are provided for use with these SHA-1 and

SHA-2 HMAC mechanisms. To generate the key, use the appropriate vendor-

defined key generation mechanism (which does not take any mechanism

parameters):

• CKM_NC_MD5_HMAC_KEY_GEN

• CKM_NC_SHA_1_HMAC_KEY_GEN

• CKM_NC_SHA224_HMAC_KEY_GEN

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 41/102

• CKM_NC_SHA256_HMAC_KEY_GEN

• CKM_NC_SHA384_HMAC_KEY_GEN

• CKM_NC_SHA512_HMAC_KEY_GEN

3.11.17.5. CKM_NC_ECKDF_HYPERLEDGER

This version of the library supports the vendor-defined CKM_NC_ECKDF_HYPERLEDGER

mechanism. This key derivation function is used in the user/client enrolment

process of a hyperledger system to generate transaction certificates by using the

enrolment certificate as one of the inputs to the key derivation.

The parameters for the mechanism are defined in the following structure:

typedef struct CK_ECKDF_HYPERLEDGERCLIENT_PARAMS {
 CK_OBJECT_HANDLE hKeyDF_Key;
 CK_MECHANISM_TYPE HMACMechType;
 CK_MECHANISM_TYPE TCertEncMechType;
 CK_ULONG ulEksize;
 CK_BYTE_PTR pEncTCertData;
 CK_ULONG ulEvsize;
 CK_ULONG ulEndian;
} CK_ECKDF_HYPERLEDGERCLIENT_PARAMS

Where:

• hKeyDF_key is KeyDF_Key

• HMACMechType is Hmac

• TCertEncMechType is Decrypt_Mech

• ulEksize is Eksize

• pEncTCertData is a pointer to encrypted data containing TCertIndex together

with padding and IV

• ulEvsize is Evsize

• ulEndian is Big_Endian

The function is then called as follows:

C_DeriveKey(
 hSession,
 &mechanism_hyperledger,
 EnrollPriv_Key,
 TCertPriv_Key_template,
 NUM(TCertPriv_Key_template,
 &TCertPriv_Key);

A Template_Key will be used to supply key attributes for the resulting derived key.

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 42/102

The derived key can then be used in the normal way.

Derived keys can be exported and used outside the HSM only if the template key

was created with attributes which allow export of its derived keys.

3.11.17.6. CKM_HAS160

This version of the library supports the vendor-defined CKM_HAS160 hash (digest)

mechanism for use with the CKM_KCDSA mechanism. For more information, see

Mechanisms for KISAAlgorithms.

3.11.17.7. CKM_PUBLIC_FROM_PRIVATE

CKM_PUBLIC_FROM_PRIVATE is a derive key mechanism that enables the creation of a

corresponding public key from a private key. The mechanism also fills in the public

parts of the private key, where this has not occurred.

CKM_PUBLIC_FROM_PRIVATE is an nShield specific nCore mechanism. The C_Derive

function takes the object handle of the private key and the public key attribute

template. The creation of the key is based on the template but also checked

against the attributes of the private key to ensure the attributes are correct and

match those of the corresponding key. If an operation that is not allowed or is not

set by the private key is detected, then CKR_TEMPLATE_INCONSISTANT is returned.


Before you can use this mechanism, the HSM must already

contain the private key. You must use C_CreateObject, C_UnWrapKey,

or C_GenerateKeyPair to import or generate the private key.



If you use C_GenerateKeyPair, you always generate a public key at

the same time as the private key. Some applications delete

public keys once a certificate is imported, but in the case of both

C_GenerateKeyPair and C_CreateObject you can use either the

CKM_PUBLIC_FROM_PRIVATE mechanism or the C_GetAttributeValue to

recreate a deleted public key.

3.11.17.8. CKM_NC_AES_CMAC

CKM_NC_AES_CMAC is based on the Mech_RijndaelCMAC nCore level mechanism, a

message authentication code operation that is used with both C_Sign and

C_SignUpdate, and the corresponding C_Verify and C_VerifyUpdate functions.

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 43/102

In a similar way to other AES MAC mechanisms, CKM_NC_AES_CMAC takes a plaintext

type of any length of bytes, and returns a M_Mech_Generic128MAC_Cipher standard

byte block. CKM_NC_AES_CMAC is a standard FIPS 140-2 Level 3 approved mechanism,

and is only usable with CKK_AES key types.

CKM_NC_AES_CMAC has a CK_MAC_GENERAL_PARAMS which is the length of the MAC

returned (sometimes called a tag length). If this is not specified, the signing

operation fails with a return value of CKR_MECHANISM_PARAM_INVALID.

3.11.17.9. CKM_NC_AES_CMAC_KEY_DERIVATION and
CKM_NC_AES_CMAC_KEY_DERIVATION_SCP03

This mechanism derives a secret key by validating parameters with the specified

128-bit, 192-bit, or 256-bit secret base AES key. This mechanism takes as a

parameter a CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS structure, which specifies the

length and type of the resulting derived key.

CKM_NC_AES_CMAC_KEY_DERIVATION_SCP03 is a variant of CKM_NC_AES_CMAC_KEY_DERIVATION:

it reorders the arguments in the CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS according to

payment specification SCP03, but is otherwise identical.

The standard key attribute behavior with sensitive and extractable attributes is

applied to the resulting key as defined in PKCS #11 standard version 2.20 and later.

The key type and template declaration is based on the PKCS #11 standard key

declaration for derive key mechanisms.

If no length or key type is provided in the template, the key produced by this

mechanism is a generic secret key. Its length is equal to the length of the data.

If a length, but no key type, is provided in the template, the key produced by this

mechanism is a generic secret key of the specified length.

If a key type, but no length, is provided in the template, the key type must have a

well-defined length. If the length is well defined, the key produced by this

mechanism is of the type specified in the template. If the length is not well

defined, a CKR_TEMPLATE_INCOMPLETE error is returned.

If both a key type and a length are provided in the template, the length must be

compatible with that key type, and CKR_TEMPLATE_INCONSISTENT is returned if it is not.

The key produced by the CKM_NC_AES_CMAC_KEY_DERIVATION mechanism is of the

specified type and length. If a DES, DES2, DES3, or CDMF key is derived with this

mechanism, the parity bits of the key are set properly. If the requested type of key

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 44/102

requires more bytes than are available by concatenating the original key values, an

error is generated.

This mechanism has the following rules about key sensitivity and extractability:

Attribute If the attributes for the
original keys are…

The attribute for the derived

key is…

CKA_SENSITIVE CK_TRUE for either one CK_TRUE

CKA_EXTRACTABLE CK_FALSE for either one CK_FALSE

CKA_ALWAYS_SENSITIVE CK_TRUE for both CK_TRUE

CKA_NEVER_EXTRACTABLE CK_TRUE for both CK_TRUE

3.11.17.10. CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS

typedef struct CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS {
 CK_ULONG ulContextLen;
 CK_BYTE_PTR pContext;
 CK_ULONG ulLabelLen;
 CK_BYTE_PTR pLabel;
 } CK_NC_AES_CMAC_KEY_DERIVATION_PARAMS;

The fields of the structure have the following meanings:

Argument Meaning

ulContextLen Context data: the length in bytes.

pContext Some data info context data (bytes to be CMAC’d).

ulContextLen must be zero if pContext is not provided.

Having pContext as NULL will result in the same predictable key each

time not additional data to add to the mix when carrying out the

CMAC.

ulLabelLen The length in bytes of the other party EC public key

pLabel Key derivation label data: a pointer to the other label to identify new

key. ulLabelLen must be zero if the pLabel is not provided.

3.11.17.11. CKM_COMPOSITE_EMV_T_ARQC, CKM_WATCHWORD_PIN1 and
CKM_WATCHWORD_PIN2

These mechanisms allow the module to act as a SafeSign Cryptomodule (SSCM).

To obtain support for your product, visit: nShield Support,

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 45/102

https://nshieldsupport.entrust.com.

3.11.17.12. CKM_NC_ECIES

This version of the library supports the vendor defined CKM_NC_ECIES mechanism.

This mechanism is used with C_WrapKey and C_UnwrapKey to wrap and unwrap

symmetric keys using the Elliptic Curve Integrated Encryption Scheme (ECIES).

The parameters for the mechanism are defined in the following structure:

typedef struct CK_NC_ECIES_PARAMS {
 CK_MECHANISM_PTR <pAgreementMechanism>;
 CK_MECHANISM_PTR <pSymmetricMechanism>;
 CK_ULONG <ulSymmetricKeyBitLen>;
 CK_MECHANISM_PTR <pMacMechanism>;
 CK_ULONG <ulMacKeyBitLen>;
} CK_NC_ECIES_PARAMS;

Where:

• <pAgreementMechanism> is the key agreement mechanism, which must be

CKM_ECDH1_DERIVE or CKM_ECDH1_COFACTOR_DERIVE

• <pSymmetricMechanism> is the confidentiality mechanism, currently only

CKM_XOR_BASE_AND_DATA is supported

• <ulSymmetricKeyBitLen> is the confidentiality key length (in bits) and must be a

multiple of 8. For CKM_XOR_BASE_AND_DATA the key length is irrelevant and can be

set to zero

• <pMacMechanism> is the integrity mechanism, currently only

CKM_SHA<n>_HMAC_GENERAL is supported and <n> can be _1, 224, 256, 384 or 512

• <ulMacKeyBitLen> is the integrity key length (in bits) and must be a multiple of

8

The following example shows how to use CKM_NC_ECIES to wrap a symmetric key:

/* session represents an existing open session */
CK_SESSION_HANDLE session;

/* symmetric_key and wrapping_key represent existing keys. The code to import or
 generate them is not shown here. Note wrapping_key must be a public EC key
 with CKA_WRAP set to true */
CK_OBJECT_HANDLE symmetric_key;
CK_OBJECT_HANDLE wrapping_key;

CK_ECDH1_DERIVE_PARAMS ecdh1_params = { CKD_SHA256_KDF };
CK_MECHANISM agreement_mech = {
 CKM_ECDH1_DERIVE,
 &ecdh1_params,
 sizeof(CK_ECDH1_DERIVE_PARAMS)
};

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 46/102

https://nshieldsupport.entrust.com/

CK_MECHANISM symmetric_mech = { CKM_XOR_BASE_AND_DATA };
CK_MAC_GENERAL_PARAMS mac_params = 16;
CK_MECHANISM mac_mech = {
 CKM_SHA256_HMAC_GENERAL,
 &mac_params,
 sizeof(CK_MAC_GENERAL_PARAMS)
};
CK_NC_ECIES_PARAMS ecies_params = {
 &agreement_mech,
 &symmetric_mech,
 0,
 &mac_mech,
 256
};
CK_MECHANISM ecies_mech = {
 CKM_NC_ECIES,
 &ecies_params,
 sizeof(CK_NC_ECIES_PARAMS)
};

/* Typical convention is to call C_WrapKey with the pWrappedKey parameter set to
 NULL_PTR to determine the required size of the buffer - see Section 5.2 of
 the PKCS#11 Base Specification - but for brevity we allocate a 1KB buffer */
CK_BYTE wrapped_key[1000] = { 0 };
CK_ULONG wrapped_len = sizeof(wrapped_key);
CK_RV rv = C_WrapKey(session, &ecies_mech, wrapping_key, symmetric_key,
 wrapped_key, &wrapped_len);

3.11.18. Mechanisms for KISAAlgorithms

If you are using version 1.20 or greater and you have enabled the KISAAlgorithms

feature, you can use the following mechanisms through the standard PKCS #11 API

calls.

3.11.18.1. KCDSA keys

The CKM_KCDSA mechanism is a plain general signing mechanism that allows you to

use a CKK_KCDSA key with any length of plain text or pre-hashed message. It can be

used with the standard single and multipart C_Sign and C_Verify update functions.

The CKM_KCDSA mechanism takes a CK_KCDSA_PARAMS structure that states which

hashing mechanism to use and whether or not the hashing has already been

performed:

typedef struct CK_KCDSA_PARAMS {
 CK_MECHANISM_PTR digestMechanism;
 CK_BBOOL dataIsHashed;
}

The following digest mechanisms are available for use with the digestMechanism:

• CKM_SHA_1

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 47/102

• CKM_HAS160

• CKM_RIPEMD160

The dataIsHashed flag can be set to one of the following values:

• 1 when the message has been pre-hashed (pre-digested)

• 0 when the message is in plain text.

The CK_KCDSA_PARAMS structure is then passed in to the mechanism structure.

3.11.18.2. Pre-hashing

If you want to provide a pre-hashed message to the C_Sign() or C_Verify()

functions using the CKM_KCDSA mechanism, the hash must be the value of h(z||m)

where:

• h is the hash function defined by the mechanism

• z is the bottom 512 bits of the public key, with the most significant byte first

• m is the message that is to be signed or verified.

The hash consists of the bottom 512 bits of the public key (most significant byte

first), with the message added after this.

If the hash is not formatted as described when signing, then incorrect signatures

are generated. If the hash is not formatted as described when verifying, then

invalid signatures can be accepted and valid signatures can be rejected.

3.11.18.3. CKM_KCDSA_SHA1, CKM_KCDSA_HAS160, CKM_KCDSA_RIPEMD160

These older mechanisms sign and verify using a CKK_KCDSA key. They now work with

the C_Sign and C_Update functions, though they do not take the CK_KCDSA_PARAMS

structure or pre-hashed messages. These mechanisms can be used for single or

multipart signing and are not restricted as to message size.

3.11.18.4. CKM_KCDSA_KEY_PAIR-GEN

This mechanism generates a CKK_KCDSA key pair similar to that of DSA. You can

supply in the template a discrete log group that consists of the CKA_PRIME,

CKA_SUBPRIME, and CKA_BASE attributes. In addition, you must supply CKA_PRIME_BITS,

with a value between 1024 and 2048, and CKA_SUBPRIME_BITS, which must have a

value of 160. If you supply CKA_PRIME_BITS and CKA_SUBPRIME_BITS without a discrete

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 48/102

log group, the module generates the group. CKR_TEMPLATE_INCOMPLETE is returned if

CKA_PRIME_BITS and CKA_SUBPRIME_BITS are not supplied.

CKA_PRIME_BITS must have the same length as the prime and CKA_SUBPRIME-BITS must

have the same length as the subprime if the discrete log group is also supplied. If

either are different, PKCS #11 returns CKR_TEMPLATE_INCONSISTENT.

You can use the C_GenerateKeyPair function to generate a key pair. If you supply

one or more parts of the discrete log group in the template, the PKCS #11 library

assumes that you want to supply a specific discrete log group.

CKR_TEMPLATE_INCOMPLETE is returned if not all parts are supplied. If you want the

module to calculate a discrete log group for you, ensure that there are no discrete

log group attributes present in the template.

A CKK_KCDSA private key has two value attributes, CKA_PUBLIC_VALUE and

CKA_PRIVATE_VALUE. This is in contrast to DSA keys, where the private key has only

the attribute CKA_VALUE, the private value. The public key in each case contains only

the public value.

The standard key-pair attributes common to all key pairs apply. Their values are

the same as those for DSA pairs unless specified differently in this section.

3.11.18.5. CKM_KCDSA_PARAMETER_GEN


For information about DOMAIN Objects, read the PKCS #11

specification v2.11.

Use this mechanism to create a CKO_DOMAIN_PARAMETERS object. This is referred to as

a KCDSAComm key in the nCore interface.

Use C_GenerateKey to generate a new discrete log group and initialization values.

The initialization values consist of a counter (CKA_COUNTER) and a hash (CKA_SEED)

that is the same length as CKA_PRIME_BITS, which must have a value of 160. The

CKA_SEED must be the same size as CKA_SUBPRIME_BITS. If this not the case, the

PKCS #11 library returns CKR_DOMAIN_PARAMS_INVALID.

Optionally, you can supply the initialization values. If you supply the initialization

values with CKA_PRIME_BITS and CKA_SUBPRIME_BITS, you can reproduce a discrete log

group generated elsewhere. This allows you to verify that the discrete log group

used in key pairs is correct. If the initialization values are not present in the

template, a new discrete log group and corresponding initialization values are

generated. These initialization values can be used to reproduce the discrete log

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 49/102

group that has just been generated. The newly generated discrete log group can

then be used in a PKCS #11 template to generate a CKK_KCDSA key using

C_Generate_Key_Pair. DOMAIN keys can also be imported using the C_CreateObject call.

3.11.18.6. SEED secret keys:

3.11.18.7. CKM_SEED_KEY_GEN

This mechanism generates a 128-bit SEED key. The standard secret key attributes

are required, except that no length is required since this a fixed length key type

similar to DES3. Normal return values apply when generating a CKK_SEED type key.

3.11.18.8. CKM_SEED_ECB CKM_SEED_CBC CKM_SEED_CBC_PAD

These mechanisms are the standard mechanisms to be used when encrypting and

decrypting or wrapping with a CKK_SEED key. A CKK_SEED key can be used to wrap or

unwrap both secret keys and private keys. A CKK_KCDSA key cannot be wrapped by

any key type.

The CKM_SEED_ECB mechanism wraps only secret keys of exact multiples of the

CKK_SEED block size (16) in ECB mode. The CKM_SEED_CBC_PAD key wraps the same

keys in CBC mode.

The CKM_SEED_CBC_PAD key wraps keys of variable block size. It is the only

mechanism available to wrap private keys.

A CKK_SEED key can be used to encrypt and decrypt with both single and multipart

methods using the standard PKCS #11 API. The plain text size for multipart

cryptographic function must be a multiple of the block size.

3.11.18.9. CKM_SEED_MAC CKM_SEED_MAC_GENERAL

These mechanisms perform both signing and verification. They can be used with

both single and multipart signing or verification using the standard PKCS #11 API.

Message size does not matter for either single or multipart signing and

verification.

For information on the padding schemes used by these mechanisms, see

Mechanisms.

3.11.18.10. CKM_HAS160

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 50/102

CKM_HAS160 is a basic hashing algorithm. The hashing is done on the host machine.

This algorithm can be used by means of the standard digest function calls of the

PKCS #11 API.

3.11.19. Attributes

The following sections describe how PCKS #11 attributes map to the Access

Control List (ACL) given to the key by the nCore API. nCore API ACLs are

described in the nCore API Documentation (supplied as HTML).

3.11.19.1. CKA_SENSITIVE

In a FIPS 140-2 Level 2 world, CKA_SENSITIVE=FALSE creates a key with an ACL that

includes ExportAsPlain. Keys are exported using DeriveMech_EncryptMarshalled even

in a FIPS 140-2 Level 2 world. The presence of the ExportAsPlain permission makes

the status of the key clear when a FIPS 140-2 Level 2 ACL is viewed using GetACL.

CKA_SENSITIVE=FALSE always creates a key with an ACL that includes DeriveKey with

DeriveRole_BaseKey and DeriveMech_EncryptMarshalled.

See also CKA_UNWRAP_TEMPLATE.

3.11.19.2. CKA_PRIVATE

If CKA_PRIVATE is set to TRUE, keys are protected by the logical token of the OCS. If it

is set to FALSE, public keys are protected by a well-known module key, and other

keys and objects are protected by the Security World module key.

You must set CKA_PRIVATE to:

• FALSE for public keys

• TRUE for non-extractable keys on card slots.

3.11.19.3. CKA_EXTRACTABLE

CKA_EXTRACTABLE creates a key with an ACL including DeriveKey permissions listed in

the following table:

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 51/102

Key Type Role Mechanism

Secret key DeriveRole_BaseKey DeriveMech_AESKeyWrap

DeriveMech_RawEncrypt

DeriveMech_RawEncryptZeroPad

DeriveMech_ECIESKeyWrap

Private key DeriveRole_BaseKey DeriveMech_PKCS8Encrypt

3.11.19.4. CKA_ENCRYPT, CKA_DECRYPT, CKA_SIGN, CKA_VERIFY

These attributes create a key with ACL including Encrypt, Decrypt, Sign, or Verify

permission.

3.11.19.5. CKA_WRAP, CKA_UNWRAP

CKA_WRAP creates a key with an ACL including the DeriveKey permissions listed in the

following table:

Key Type Role Mechanism

Secret key DeriveRole_WrapKey DeriveMech_PKCS8Encrypt

Secret key (AES only) DeriveRole_WrapKey DeriveMech_AESKeyWrap

Secret key, public key (RSA only) DeriveRole_WrapKey DeriveMech_RawEncrypt

DeriveMech_RawEncryptZeroPad

Public key (elliptic curve only) DeriveRole_WrapKey DeriveMech_ECIESKeyWrap

CKA_UNWRAP creates a key with an ACL including the DeriveKey permissions listed in

the following table:

Key Type Role Mechanism

Secret key DeriveRole_WrapKey DeriveMech_PKCS8Decrypt

DeriveMech_PKCS8DecryptEx

Secret key (AES only) DeriveRole_WrapKey DeriveMech_AESKeyUnwrap

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 52/102

Key Type Role Mechanism

Secret key, public key (RSA only) DeriveRole_WrapKey DeriveMech_RawDecrypt

DeriveMech_RawDecryptZeroPad

Public key (elliptic curve only) DeriveRole_WrapKey DeriveMech_ECIESKeyUnwrap

3.11.19.6. CKA_WRAP_TEMPLATE, CKA_UNWRAP_TEMPLATE

CKA_WRAP_TEMPLATE and CKA_UNWRAP_TEMPLATE guard against non-compliance of keys

by specifying an attribute template.

The CKA_WRAP_TEMPLATE attribute applies to wrapping keys and specifies the

attribute template to match against any of the keys wrapped by the wrapping key.

Keys which do not match the attribute template will not be wrapped.

The CKA_UNWRAP_TEMPLATE attribute applies to wrapping keys and specifies the

attribute template to apply to any of the keys which are unwrapped by the

wrapping key. Keys will not be unwrapped if there is attribute conflict between the

CKA_UNWRAP_TEMPLATE and any user supplied template (pTemplate).

Nested occurrences of CKA_WRAP_TEMPLATE or CKA_UNWRAP_TEMPLATE are not supported.

If CKA_MODIFIABLE or CKA_SENSITIVE are defined within the CKA_UNWRAP_TEMPLATE, the

behavior is as follows:

CKA_MODIFIABLE (TRUE)

PKCS #11
Attribute Types

Unwrap Template
Attribute

C_Unwrap
pTemplate
Attribute

Attribute Value
Comparison

Allowed

All supported Defined Defined Equal Yes

Defined Defined Not Equal Yes

Undefined Defined N/A Yes

Defined Undefined N/A Yes

CKA_MODIFIABLE (FALSE)

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 53/102

PKCS #11
Attribute Types

Unwrap Template
Attribute

C_Unwrap
pTemplate
Attribute

Attribute Value
Comparison

Allowed

All supported Defined Defined Equal Yes

Defined Defined Not Equal No

Undefined Defined N/A Yes

Defined Undefined N/A Yes

CKA_SENSITIVE (TRUE)

PKCS #11 Attribute
Types

C_Unwrap pTemplate
Attribute

C_Unwrap pTemplate
Attribute Value

Allowed

CKA_SENSITIVE Defined FALSE No

CKA_EXTRACTABLE Defined FALSE No

CKA_SENSITIVE (FALSE)

PKCS #11 Attribute
Types

C_Unwrap pTemplate
Attribute

C_Unwrap pTemplate
Attribute Value

Allowed

CKA_SENSITIVE Defined TRUE Yes

FALSE Yes

CKA_EXTRACTABLE Defined TRUE Yes

FALSE Yes

See also CKA_ALLOWED_MECHANISMS for more information about mechanism-specific

restrictions applying to the use of CKA_UNWRAP_TEMPLATE.

3.11.19.7. CKA_SIGN_RECOVER

C_SignRecover checks CKA_SIGN_RECOVER but is otherwise identical to C_Sign. Setting

CKA_SIGN_RECOVER creates a key with an ACL that includes Sign permission.

3.11.19.8. CKA_VERIFY_RECOVER

Setting CKA_VERIFY_RECOVER creates a public key with an ACL including Encrypt

permission.

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 54/102

3.11.19.9. CKA_DERIVE

For Diffie-Hellman private keys, CKA_DERIVE creates a key with Decrypt permissions.

For secret keys, CKA_DERIVE creates a key with an ACL that includes

DeriveRole_BaseKey with one of DeriveMech_DESsplitXOR, DeriveMech_DES2splitXOR,

DeriveMech_DES3splitXOR, DeriveMech_RandsplitXOR, or DeriveMech_CASTsplitXOR as

appropriate if the key is extractable, because this permission would effectively

allow the key to be extracted. The ACL includes DeriveMech_RawEncrypt whether or

not the key is extractable.

3.11.19.10. CKA_ALLOWED_MECHANISMS

CKA_ALLOWED_MECHANISMS is available as a full attribute array for all key types. The

number of mechanisms in the array is the ulValueLen component of the attribute

divided by the size of CK_MECHANISM_TYPE.

The CKA_ALLOWED_MECHANISMS attribute is set when generating, creating and

unwrapping keys.

CKA_ALLOWED_MECHANISMS is an optional attribute and does not have to be set, except

when the key is intended for use with one of the mechanisms described below.

However, if CKA_ALLOWED_MECHANISMS is set, then the attribute is checked to see if the

mechanism you want to use is in the list of allowed mechanisms. If the mechanism

is not present, then an error occurs and a value of CKR_MECHANISM_INVALID is

returned.

3.11.19.10.1. CKM_CONCATENATE_BASE_AND_KEY

You must set CKA_ALLOWED_MECHANISMS with the CKM_CONCATENATE_BASE_AND_KEY

mechanism when generating or creating both of the keys that are used in the

C_DeriveKey operation with the CKM_CONCATENATE_BASE_AND_KEY mechanism. If

CKA_ALLOWED_MECHANISMS is not set at creation time then the correct ConcatenateBytes

ACL is not set for the keys.

When CKM_CONCATENATE_BASE_AND_KEY is used with C_DeriveKey, CKA_ALLOWED_MECHANISMS

is checked. If CKM_CONCATENATE_BASE_AND_KEY is not present, then an error occurs and

a value of CKR_MECHANISM_INVALID is returned.

3.11.19.10.2. CKM_RSA_AES_KEY_WRAP

You must set CKA_ALLOWED_MECHANISMS with the CKM_RSA_AES_KEY_WRAP mechanism

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 55/102

when generating or creating RSA keys that also have CKA_UNWRAP_TEMPLATE set on

the private half if they are to be used in the C_UnwrapKey operation with the

CKM_RSA_AES_KEY_WRAP mechanism.

When CKM_RSA_AES_KEY_WRAP is used with C_UnwrapKey, CKA_ALLOWED_MECHANISMS is

checked. If CKM_RSA_AES_KEY_WRAP is not present but the unwrapping key has

CKA_UNWRAP_TEMPLATE, then an error occurs and a value of CKR_MECHANISM_INVALID is

returned.

RSA private keys that have CKA_ALLOWED_MECHANISMS set with the

CKM_RSA_AES_KEY_WRAP mechanism cannot be copied if they also have both the

following attributes set:

• CKA_TOKEN with a value of CK_TRUE

• CKA_UNWRAP_TEMPLATE

The C_CopyObject operation returns CKR_ACTION_PROHIBITED for such keys.

3.11.19.11. CKA_MODIFIABLE

CKA_MODIFIABLE only restricts access through the PKCS #11 API: all PKCS #11 keys

have ACLs that include the ReduceACL permission.

See also CKA_UNWRAP_TEMPLATE.

3.11.19.12. CKA_TOKEN

Token objects are saved as key blobs. Session objects only ever exist on the

module.

3.11.19.13. CKA_START_DATE, CKA_END_DATE

These attributes are ignored, and the PKCS #11 standard states that these

attributes do not restrict key usage.

3.11.19.14. CKA_TRUSTED and CKA_WRAP_WITH_TRUSTED

CKA_TRUSTED and CKA_WRAP_WITH_TRUSTED guard against a key being wrapped and

removed from the HSM by an untrusted wrapping key. A key with a

CKA_WRAP_WITH_TRUSTED attribute can only be wrapped by a wrapping key with a

CKA_TRUSTED attribute. A trusted key can only be given a CKA_TRUSTED attribute by

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 56/102

the PKCS #11 Security officer.

The CKA_WRAP_WITH_TRUSTED attribute gives a key an ACL whose DeriveRole_BaseKey

exists in a group protected by a certifier. The ACL therefore requires a certificate

generated by the PKCS #11 Security Officer to be able to wrap the key.

The CKA_TRUSTED attribute stores on a wrapping key a certificate signed by the

PKCS #11 Security Officer. This certificate can then be used to authenticate a

wrapping operation.

CKA_TRUSTED can only be set if the session is logged in as CKU_SO, and the Security

Officer’s token and key has been preloaded. If not, the operation will return

CKR_USER_NOT_LOGGED_IN.

CKA_WRAP_WITH_TRUSTED does not require the Security Officer token and key to be

preloaded, or to be logged in as CKU_SO, but it does require that the role exists. If

the role does not exist, the operation returns CKR_USER_NOT_LOGGED_IN. When

attributes have been set, the PKCS #11 Security Officer is not needed for C_WrapKey

to perform a trusted key wrapping.



If the PKCS #11 Security Officer is deleted, keys with existing

CKA_TRUSTED or CKA_WRAP_WITH_TRUSTED attributes continue to be

valid. If the PKCS #11 Security Officer is recreated, any new keys

that are given the CKA_TRUSTED attribute will not be trusted by

existing keys with CKA_WRAP_WITH_TRUSTED, and vice versa.

A CKO_CERTIFICATE object can also be given a CKA_TRUSTED attribute, and also

requires the PKCS #11 Security Officer to do so. This includes using ckcerttool with

the -T option, which sets CKA_TRUSTED to true.

3.11.19.15. RSA key values

CKA_PRIVATE_EXPONENT is not used when importing an RSA private key using

C_CreateObject. However, it must be in the template, since the PKCS #11 standard

requires it. All the other values are required.

The nCore API allows use of a default public exponent, but the PKCS #11 standard

requires CKA_PUBLIC_EXPONENT.

Except for very small keys, the nShield default is 65537, which as a PKCS #11 big

integer is CK_BYTEpublic_exponent[] = { 1, 0, 1 };

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 57/102

3.11.19.16. DSA key values

If CKA_PRIME is 1024 bits or less, then the KeyType_DSAPrivate_GenParams_flags_Strict

flag is used, because it enforces a 1024 bit limit.

The implementation allows larger values of CKA_PRIME, but in those cases the

KeyType_DSAPrivate_GenParams_flags_Strict flag is not used.

3.11.19.17. Vendor specific error codes

Security World Software defines the following vendor specific error codes:

CKR_FIPS_TOKEN_NOT_PRESENT

This error code indicates that an Operator Card is required even though the card

slot is not in use.

CKR_FIPS_MECHANISM_INVALID

This error code indicates that the current mechanism is not allowed in FIPS 140-2

Level 3 mode.

CKR_FIPS_FUNCTION_NOT_SUPPORTED

This error code indicates that the function is not supported in FIPS 140-2 Level 3

mode (although it is supported in FIPS 140-2 Level 2 mode).

3.11.20. Utilities

This section describes command-line utilities Entrust provides as aids to

developers.

3.11.20.1. ckdes3gen

ckdes3.gen.exe [p|--pin-for-testing=<passphrase>] | [n|-nopin]

This utility is an example of Triple DES key generation using the nShield PKCS #11

library. The utility generates the DES3 key as a private object that can be used

both to encrypt and decrypt.

By default, the utility prompts for a passphrase. You can supply a passphrase on

the command line with the --pin-for-testing option, or suppress the passphrase

request with the --nopin option. The passphrase is displayed in the clear on the

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 58/102

command line, so this option is appropriate only for testing.

3.11.20.2. ckinfo

ckinfo.exe [r|--repeat-count=<COUNT>]

This utility displays C_GetInfo, C_GetSlotInfo and C_GetTokenInfo results. You can

specify a number of repetitions of the command with --repeat-count=<COUNT>. The

default is 1.

3.11.20.3. cklist

cklist.exe [-p|--pin-for-testing=<passphrase>] [-n|-nopin]

This utility lists some details of objects on all slots. It lists public and private

objects if invoked with a passphrase argument and public objects only if invoked

without a passphrase argument.

It does not output any potentially sensitive attributes, even if the object has

CKA_SENSITIVE set to FALSE.

By default, the utility prompts for a passphrase. You can supply a passphrase on

the command line with the --pin-for-testing option, or suppress the passphrase

request with the --nopin option. The passphrase is displayed in the clear on the

command line, so this option is appropriate only for testing.

3.11.20.4. ckmechinfo

ckmechinfo.exe

The utility displays C_GetMechanismInfo results for each mechanism returned by

C_GetMechanismList.

3.11.20.5. ckrsagen

ckrsagen.exe [-p|--pin-for-testing=<passphrase>] | [-n|-nopin]

The ckrsagen utility is an example of RSA key pair generation using the nShield

PKCS #11 library. This is intended as a programmer’s example only and not for

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 59/102

general use. Use the key generation routines within your PKCS #11 application.

By default, the utility prompts for a passphrase. You can supply a passphrase on

the command line with the --pin-for-testing option, or suppress the passphrase

request with the --nopin option. The passphrase is displayed in the clear on the

command line, so this option is appropriate only for testing.

3.11.20.6. cksotool

cksotool.exe [-h] [--version] [-m MODULE] [-c | -p | -i | --delete]

The cksotool utility can be used to create and manage the PKCS #11 Security

Officer (SO). The SO consists of a token and an RSA key, and is necessary to be

able to perform any operations that require a Security Officer as defined by the

PKCS #11 specification. The utility can be used to view the current state of the SO

using the -i or --info option, which provides details of the existence and validity

of the underlying token and key.

The key and softcard created by cksotool is for Entrust internal use inside the

PKCS #11 library. It is not to be used directly in an application.

Chapter 3. PKCS #11

Cryptographic API v12.81 Guide 60/102

4. Microsoft CAPI CSP
We provide a Cryptographic Service Provider (CSP) that implements the Crypto

API (CAPI) supported in Windows 2008 and later.

The rest of this chapter details the features and implementation details of the

CAPI. Except where this chapter specifies otherwise, the Security World Software

implementation conforms to the Microsoft CSP interface. For more information,

see the Microsoft CSP documentation.

4.1. Crypto API CSP

The following provider types are supported:

• PROV_RSA_FULL (nShield Enhanced Cryptographic Provider)

• PROV_RSA_AES (nShield Enhanced RSA and AES Cryptographic Provider)

• PROV_RSA_SCHANNEL (nShield Enhanced SChannel Cryptographic Provider)

• PROV_DSS (nShield DSS Signature Cryptographic Provider)

• PROV_DSS_DH (nShield Enhanced DSS and Diffie-Hellman Cryptographic

Provider)

• PROV_DH_SCHANNEL (nShield Enhanced DSS and Diffie-Hellman SChannel

Cryptographic Provider)

We also provide a modulo exponentiation offload DLL that enables the Microsoft

CSP to take advantage of the computational power of an nShield module without

added security benefits. This is useful for interoperation with applications that do

not allow the user to choose the CSP.


Unlike the Microsoft CSPs, the nShield CSPs do not support the

exporting of private keys.

You should not need to make any adjustments to your code in order to use the

nShield CSPs. However, the nShield module is an asynchronous device capable of

performing several operations at once. In order to achieve maximum performance

from the module, structure your application in a multithreaded manner so that it

can make several simultaneous requests to the CSP.

The following diagram illustrates how the Microsoft CryptoAPI interface works

with the nShield APIs.

Chapter 4. Microsoft CAPI CSP

Cryptographic API v12.81 Guide 61/102

4.2. Supported algorithms

The nShield CSPs support a similar range of algorithms to the Microsoft CSP.

4.2.1. Symmetric algorithms

• CALG_DES

• CALG_3DES_112 (double-DES)

• CALG_3DES

• CALG_RC4

• CALG_AES_128

• CALG_AES_192

• CALG_AES_256

4.2.2. Asymmetric algorithms

• CALC_RSA_SIGN (only Enhanced RSA and AES Cryptographic Provider)

• CALC_RSA_KEYX (only Enhanced RSA and AES Cryptographic Provider)

• CALC_DSA_SIGN (only Enhanced DSS and Diffie-Hellman Cryptographic Provider

and DSS Signature Cryptographic Provider)

Chapter 4. Microsoft CAPI CSP

Cryptographic API v12.81 Guide 62/102

• CALC_DSS_SIGN (only Enhanced DSS and Diffie-Hellman Cryptographic Provider)

• CALC_DH_KEYX (only Enhanced DSS and Diffie-Hellman Cryptographic Provider)

• CALC_DH_SF (only Enhanced DSS and Diffie-Hellman Cryptographic Provider)

• CALC_DH_EPHEM (only Enhanced DSS and Diffie-Hellman Cryptographic Provider)

4.2.3. Hash algorithms

• CALG_SHA1

• CALG_SHA256

• CALG_SHA384

• CALG_SHA512

• CALG_SSL3_SHAMD5

• CALG_MD5

• CALG_MAC

• CALG_HMAC

In addition, the Enhanced SChannel Cryptographic Provider and the Enhanced

DSS and Diffie-Hellman SChannel Cryptographic Provider support all the internal

algorithm types necessary for SSL3 and TLS1 support.

The nShield CSPs do not support SSL2.

4.3. Key generation and storage

The nShield CSP generates public/private key pairs (RSA, DSA, and Diffie-Hellman

keys) in the module. The keys are stored in the Security World as protected by key

blobs. (For details of the Security World, see the User Guide). Natively generated

keys have mscapi as the appname and the hash of the key as the ident.

As in the Microsoft CSP, up to two keys are allowed for each container. Containers

themselves are stored as opaque data in the Security World. Containers contain

no key information but serve to associate NFKM keys with CSP containers, as well

as storing other miscellaneous information. They have mscapi as the appname and

container-containerID as the ident, where containerID is calculated from a

combination of the CSP name, the user’s unique SID and the container name.


The default permissions on new containers created by the

nShield CSP have changed in order to solve a problem with IIS

version 6: in this version of IIS it was possible to create

Chapter 4. Microsoft CAPI CSP

Cryptographic API v12.81 Guide 63/102

containers with an empty ACL, such that they were completely

inaccessible.

The previous default container permissions came from the inherited permissions

on the NFAST_KMLOCAL directory, and had no non-inherited permissions. The default

Security World Software installation gives everyone full control of the

NFAST_KMLOCAL directory.

The current software sets an explicit ACL on new containers created by the CSP

but does not alter permissions on previously created containers. The new

permissions are as follows:

• READ access for EVERYONE

• FULL access for BUILTIN\Administrators

• for user containers: FULL access for the current user

• for machine containers: FULL access for LOCALSYSTEM


No action is required on the user’s part to invoke the new

behavior.

Symmetric keys in the nShield CSP are generated and stored entirely in software.

These keys are not hardware protected and are no more secure than the

corresponding keys in the Microsoft CSP.


The values of the KP_PERMISSIONS flags for hardware protected

keys are enforced in software, except for CRYPT_EXPORTABLE which

is ignored.

All CSP-generated, hardware-protected keys have ACLs that allow both signing

and encryption. Hardware-protected keys that have been generated by the CSP

are never exportable by the CSP; CryptExportKey always fails with a permissions

error when called on such a key.

Container files and their associated key files can be moved freely between

machines, as long as the user’s SID is also valid on the destination machine. This is

the case if the user in question is a domain user and both machines are on that

domain. If the user’s SID is not valid on the destination machine and keys are

required to be shared between multiple machines, then the cspimport utility must

be used to reassociate the Security World key file with the required destination

container.

Chapter 4. Microsoft CAPI CSP

Cryptographic API v12.81 Guide 64/102

4.4. User interface issues

The nShield CSP supports hardware keys protected by either the module itself or

by OCSs. Protecting keys with OCSs raises some user interface issues because the

user interface needs to be displayed both at key-creation time and at key-loading

time.

The choice of using module-protected keys or keys protected by OCSs is made in

the install wizard. If, however, you generate keys protected by OCSs and then

switch to module protection, then in most cases the keys protected by OCSs still

require the user interface to be displayed in order to load them.

At key-generation time, if the always display UI at key gen flag is unset and an

automatic Operator Card is present, the CSP uses the card set to protect the key,

loading the shares automatically on all modules that contain a suitable card. (The

flag is set using the install wizard.) Otherwise the CSP displays the user interface

and blocks until the user interface is completed.

At key-loading time, if the key is protected by an automatic OCS, and the card set

is present, then the key is loaded on all modules that contain a suitable card.

Otherwise, the CSP displays the user interface and blocks until the user interface is

completed; this requires the same steps as for key generation except for choosing

the card set.

An automatic OCS means a card from a 1/N card set that is not protected by a

passphrase. At either time, the user interface is completed when the user has

chosen a card set and the modules on which to load the key and has performed

the card and passphrase operations.

The CSP requires authorization to import keys (including public keys) and to

generate keys when you have initialized your modules in the mode compatible

with FIPS 140-2 Level 3. This means that you must have a card from your current

Security World in the slot when you attempt any of these operations, even if you

are generating a module-protected key. If a card is not present, the operation

blocks, and the CSP displays a user interface that prompts you to insert a card.

The CSP honors the CRYPT_SILENT flag to CryptAcquireContext. If this flag is passed in

and the CSP would otherwise have to put up the user interface for any of the

reasons in the two previous paragraphs, it fails with the appropriate error

message.

If the CSP is being loaded from a service process (e.g. when used from within IIS

or the main Certificate Authority process), then that process does not necessarily

Chapter 4. Microsoft CAPI CSP

Cryptographic API v12.81 Guide 65/102

have access to the user’s desktop. This means that any UI displayed by the CSP

may not appear on an attended desktop (or at all), and the underlying operation

may well time out.

If this is the case (and you are not using the CRYPT_SILENT flag, for whatever

reason), we recommend that either you do not use OCS-protected keys or you use

an automatic card set, so that the CSP does not display the UI.

4.5. Key counting

The nShield CSP supports the PP_CRYPT_COUNT_KEY_USE parameter to

CryptAcquireContext as long as the module with NVRAM is attached. Setting this

parameter to a nonzero value causes all keys generated from that point to have

nonvolatile use counters. The counter persists until CryptReleaseContext is called

or until the PP_CRYPT_COUNT_KEY_USE parameter is reset to 0.



Key counting is not directly supported by end-user applications

such as IIS . It is only supported by Microsoft Certificate Services

under Windows 2003 and later. However, it is possible to create

a certificate that uses a key counter in cases where key counting

is not directly supported. For more information about key

counting, see the User Guide.

 Key counting is not supported in HSM Pool mode.

Keys that have counters can only be loaded on one module at a time. The key-

generation and key-loading functions enforce this behavior. When you generate

these keys, you must present your Administrator Cards in order to authorize the

creation of the new NVRAM area.


You must not insert your Administrator Cards in an untrusted

host.

To minimize the exposure of the Security Officer root key (KNSO) when you

generate a key with key counting enabled, you should create the Security World

with an NVRAM delegation key that requires the presentation of fewer

Administrative Cards than are required to load KNSO.

If you reinitialize your module for any reason, all the NVRAM areas on that module

are erased. You must then use cspnvfix to recreate the NVRAM areas for all the

keys that have counters.

Chapter 4. Microsoft CAPI CSP

Cryptographic API v12.81 Guide 66/102

4.6. NVRAM-stored keys

The nShield CSP now supports creating keys protected by the module NVRAM.

The PP_NO_HOST_STORAGE parameter to CryptAcquireContext is supported as long as

the module with NVRAM is attached. Setting this parameter to a nonzero value

causes all keys generated from that point to be generated with blobs in NVRAM.

The counter persists until CryptReleaseContext is called or until the

PP_NO_HOST_STORAGE parameter is reset to 0.

The method of creating NVRAM-stored keys is very similar to the method of

creating keys with NVRAM counters:

1. call CryptAcquireContext to get a handle to a container.

2. call CryptSetProvParam and set the PP_NO_HOST_STORAGE property to a non-zero

value.

This causes any keys generated with that container handle to be generated with

blobs in NVRAM until either of the following occurs:

• CryptReleaseContext is called with that container handle

• CryptSetProvParam is called to set PP_NO_HOST_STORAGE to zero

Creating NVRAM-stored keys requires insertion of the ACS quorum for NVRAM, in

the same way as creating key counted keys.

PP_NO_HOST_STORAGE is a new value and will be set in the wincrypt.h header file in

future versions of the Microsoft Platform SDK. The following example code can be

used until then to define the value correctly:

#ifndef PP_NO_HOST_STORAGE
#define PP_NO_HOST_STORAGE 44
#endif

This feature is only available to users writing CAPI code directly. To use a NVRAM-

stored key in a client application (for example IIS or the Microsoft Certificate

Authority), first create the key with the keytst command-line tool, and then

transfer the key across to the required container with the cspimport utility.

Also, the keytst and csptest utilities have gained an extra command-line

parameter. keytst --help now gives output containing the following information:

Key creation flags (only valid with -cx or -cs):
-e, --export Create the key(s) with the 'exportable' bit set.
 -L, --length=BITLEN Specify the new key length (default = 1024).
 -C, --counter Create key counters (if supported).

Chapter 4. Microsoft CAPI CSP

Cryptographic API v12.81 Guide 67/102

 -K, --kitb Create NVRAM-stored key(s) (if supported).

 The -C and -K options require you to insert your ACS.

The command csptest --help outputs the following usage message:

Program options:
 -f, --flood Run a continuous signature test.
 -d, --dsa Use DSA signatures rather than RSA signatures.
 -m, --ms Use the MS AES provider rather than nCipher's one
 (possibly with modexp offload).
 -C, --counters Generate keys with counters (needs NVRAM and ACS).
 -K, --kitb Generate keys using KITB (needs NVRAM and ACS).

The csputils utility displays the NVRAM status of keys using the ‑‑detail option.

4.7. CSP setup and utilities

Entrust provides a CSP installation wizard that creates a new Security World, loads

an existing Security World, or sets up the modexp offload DLL. The CSP

installation wizard also generates new OCSs and the set-up parameters of the

CSP, and allows HSM Pool mode to be configured for CAPI. However, the

installation wizard is not suitable for complex Security World setups. If you require

more flexibility than the CSP install wizard provides, use new-world and createocs,

or KeySafe, to create your Security World.

The standard Security World utility nfkmverify should be used to check the

security of all stored keys in the Security World; nfkminfo, nfkmcheck and other

standard utilities can also be used to assist in this process.

Additionally, Entrust provides some CSP-specific command-line utilities:

• csputils provides an overview of the containers and keys present and also tells

you the values of the counters for key-counted keys

• cspcheck is for use alongside nfkmcheck

• cspimport allows you to move keys between containers or to import a pre-

generated NFKM key into a container

• cspmigrate allows you to move the CSP container information from the registry

into the Security World

• cspnvfix allows you to regenerate NVRAM areas in modules where these have

been erased (for example, by reinitialization)

• csptest is a general test utility that can be used to list the capabilities of

Chapter 4. Microsoft CAPI CSP

Cryptographic API v12.81 Guide 68/102

installed nShield and Microsoft CSPs or to perform a soak test

• keytst allows you to generate containers and keys and also to list the available

containers

• configure-csp-poolmode allows you to configure HSM Pool mode for the nShield

CAPI CSP without using the CSP wizard.

For more information about these utilities, see the User Guide for your HSM.

Chapter 4. Microsoft CAPI CSP

Cryptographic API v12.81 Guide 69/102

5. Microsoft CNG
Cryptography API: Next Generation (CNG) is the successor to the Microsoft

Crypto API (CAPI) and its long-term replacement. The Security World Software

implementation of Microsoft CNG is supported on Microsoft Windows Server 2016

and later releases. The nShield CNG providers offer the benefits of hardware-

based encryption accessed through the standard Microsoft API, and support the

National Security Agency (NSA) classified Suite B algorithms.

Before using the nShield CNG providers, run the nShield CNG Configuration

Wizard to:

• configure HSM Pool mode for CNG as required

• create a new Security World or specify an existing Security World to use

• register the nShield CNG providers

• configure the nShield CNG providers as default CNG providers for specific

tasks.

This chapter describes the features and implementation details of the nShield CNG

providers. For more information, see the Microsoft CNG documentation:

http://msdn2.microsoft.com/en-us/library/aa376210.aspx.

5.1. CNG architecture overview

CNG handles cryptographic primitives and key storage through separate APIs. In

both cases a Windows application contacts a router, which forwards the

cryptographic operation to the provider that is configured to handle the request.

For an illustration of communication between the architecture layers for

cryptographic primitives, see the following diagram.

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 70/102

http://msdn2.microsoft.com/en-us/library/aa376210.aspx
http://msdn2.microsoft.com/en-us/library/aa376210.aspx
http://msdn2.microsoft.com/en-us/library/aa376210.aspx
http://msdn2.microsoft.com/en-us/library/aa376210.aspx
http://msdn2.microsoft.com/en-us/library/aa376210.aspx
http://msdn2.microsoft.com/en-us/library/aa376210.aspx
http://msdn2.microsoft.com/en-us/library/aa376210.aspx

For an illustration of communication between the architecture layers for

cryptographic key storage, see the following diagram.

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 71/102

5.2. Supported algorithms for CNG

This section lists the National Security Agency (NSA) classified Suite B algorithms

supported by the nShield CNG providers.


The MQV algorithm is not supported by the nShield CNG

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 72/102

providers.


Some mechanisms may be restricted from use in Security

Worlds conforming to FIPS 140-2 Level 3. See the User Guide for

your HSM for more information.

5.2.1. Signature interfaces (key signing)

Interface name Type of support

RSA PKCS#1 v1 Hardware

RSA PSS

DSA

ECDSA_P224

ECDSA_P256

ECDSA_P384

ECDSA_P521



Hashes used with ECDSA must be of the same length or shorter

than the curve itself. If you attempt to use a hash longer than the

curve the operation returns NOT_SUPPORTED. In FIPS 140‑2 Level 3

Security Worlds, curves must be of an approved type and length.

5.2.2. Hashes

Hash name Type of support

SHA1 Hardware (HMAC only)/software

SHA256

SHA384

SHA512

SHA224 Hardware (HMAC only, requires firmware version

2.33.60 or later)/software

MD5 Hardware (HMAC only)/software

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 73/102

5.2.3. Asymmetric encryption

Algorithm name Type of support

RSA Raw (NCRYPT_NO_PADDING_FLAG) Hardware

RSA PKCS#1 v1

(NCRYPT_PAD_PKCS1_FLAG)

RSA OAEP (NCRYPT_PAD_OAEP_FLAG)

5.2.4. Symmetric encryption

Algorithm name Type of support

RC4 Hardware and Software

AES ECB,CBC

DES ECB,CBC

3DES ECB,CBC

3DES_112 ECB,CBC

5.2.5. Key exchange

Protocol name Type of support

DH Hardware

ECDH_P224

ECDH_P256

ECDH_P348

ECDH_P521



Elliptic curve cryptography algorithms must be enabled before

use. Use the fet command-line utility with an appropriate

certificate to enable a purchased feature. If you enable the

elliptic curve feature on your modules after you first register the

CNG providers, you must run the configuration wizard again for

the elliptic curve algorithm providers to be registered. For more

information about registering the CNG providers, see the User

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 74/102

Guide for your HSM.

5.2.6. Random Number Generation

Name Type of support

RNG Hardware

5.3. Key authorization for CNG

When an application needs keys that are protected by an Operator Card Set or a

Softcard, a user interface is invoked to prompt the application user to insert the

smart card and/or enter appropriate passphrases.



The user interface prompt is not provided if your application is

working in silent mode. The nShield CNG providers attempt to

load the required authorization (for example, from an Operator

Card that has already been inserted) but fail if no authorization

can be found. For more information about silent mode, refer to

the documentation of the CNG Key Storage Functions at:

http://msdn2.microsoft.com/en-us/library/aa376208.aspx.



When the CNG application is running in Session 0 (i.e. loaded by

a Windows service), the user interface is provided by an agent

process nShield Service Agent that is started when the user logs

in. This agent, when running, is shown in the Windows System

Tray. All user interaction requests from a CNG application

running in Session 0 cause dialogs to be raised by the agent

allowing the user to select cardsets, modules and enter

passphrases. The interaction with the user is functionally

identical to that described in this section.

There can only be one instance of the agent running (indicated by a blue globe in

the Tray Notification area in the toolbar). Attempts to start a second instance will

fail with a CreateNamedPipe error. If the agent is not running, attempts to invoke

dialogs through it will fail and this is logged in the Windows Event Log. It can be

restarted by logging off and on or by explicitly executing either

%NFAST_HOME%\bin\nShield_service_agent64.exe or

%NFAST_HOME%\bin\nShield_service_agent.exe. On 64 bit platforms either of these can

be used irrespective of the bit size of the underlying application.

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 75/102

http://msdn2.microsoft.com/en-us/library/aa376208.aspx
http://msdn2.microsoft.com/en-us/library/aa376208.aspx
http://msdn2.microsoft.com/en-us/library/aa376208.aspx
http://msdn2.microsoft.com/en-us/library/aa376208.aspx
http://msdn2.microsoft.com/en-us/library/aa376208.aspx
http://msdn2.microsoft.com/en-us/library/aa376208.aspx
http://msdn2.microsoft.com/en-us/library/aa376208.aspx

For more information about auto-loadable card sets and the considerations of

silent mode, see the authorisation requests diagram towards the end of this

section.

You define key protection and authorization settings with the CNG Configuration

Wizard on the Key Protection Setup screen. For more information about the CNG

Configuration Wizard, see the User Guide for your HSM.

The options on this screen that are relevant to key protection and authorization

are:

• Module protection

Select this option to make keys module protected by default.

• Softcard Protection

Select this option to generate new keys with a paticular Softcard by default.

• Operator Card Set protection

Select this option to generate new keys with a paticular Operator Card Set by

default.

• Allow any protection method to be selected in the GUI when generating

Select this option to defer selection of the key protection until the key is

generated. When generating a key, the choice between Module protection, or

protection with an existing Softcard or Operator Card Set, will be offered.

If you select Softcard or Operator Card Set protection, you will be offered the

choice between selecting an existing protection token and creating a new one on

the next page.

The CNG Configuration Wizard can be re-run to change the default protection.

Existing keys that were generated with a different protection can still be loaded

even if they don’t match the protection that was selected in the wizard.



The nShield GUI is never enabled for calls with a valid Silent
option. If the Use the GUI wizard.. option is selected, and the

providers have been passed the Silent option, key generation

will always fail. For Softcard and Operator Card Set protection,

Silent mode will work only if the Softcard or Operator Card Set

can be autoloaded without prompting for user interaction or

passphrase entry.

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 76/102



FIPS 140‑2 level 3 environments always require card

authorization for key creation. When using the CNG Primitive

Functions the user is not prompted to provide card

authorization, but the request fails if no card is provided.

The key storage providers always respect calls made with the Silent option.

Primitive providers never display a user interface.

Applications may have a mechanism to disable silent mode operation, thereby

allowing appropriate passphrases to be entered. Ensure that you configure

applications to use an appropriate level of key protection. For example, in

Microsoft Certificate Services, you must select the Use strong private key

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 77/102

protection features provided by the CSP option to disable silent mode operation.

5.4. Key use counting

You can configure the CNG provider to count the number of times a key is used.

Use this functionality, for example, to retire a key after a set number of uses, or for

auditing purposes.

 Key counting is not supported in HSM Pool mode.

To enable key use counting in the Security World Key Storage Provider, call

NCryptSetProperty with NCRYPT_USE_COUNT_ENABLED_PROPERTY on the provider handle.

Alternatively, to override the behavior of third-party software that would not

otherwise provide the user with the option to enable key use counting, use one of

the following methods:

• set the environment variable NCCNG_USE_COUNT_ENABLED to 1

• set the registry key Software\nCipher\CryptoNG\UseCountEnabled to 1

Keys created while the provider has key use counting enabled continue to have

their use counts incremented, regardless of the state of the provider’s handle. Key

use counts are not recorded for keys created while the

NCRYPT_USE_COUNT_ENABLED_PROPERTY is disabled on the provider handle.

Because the key counter is a 64-bit area in a specific module’s NVRAM, the

counted keys are specific to a single module. When a key is created you are

prompted to specify which module to use, unless there is only one module in the

Security World, or preload was used to preload authorization from an ACS on only

one module.

The key counter is incremented each time a private key is used to:

• sign

• decrypt

• negotiate a secret agreement.

To test the performance of keys with counters, run the cngsoak command with the

-C option:

cngsoak -C --sign --length=1024

To view the current key use count for keys, run the cnglist command with the

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 78/102

--list-keys and --verbose options:

cnglist --list-keys --verbose

5.5. Using CAPI keys in CNG

We now provide the capability to use keys generated by CAPI in CNG applications.

This is provided through the standard NCryptOpenKey CNG API call. Passing either

AT_SIGNATURE or AT_KEYEXCHANGE as the dwLegacyKeySpec parameter and the CAPI

container name as the pszKeyName parameter will invoke this mode of operation.

The CAPI key will be loaded into the CNG provider and will behave as if it was a

CNG key. Any key authorization required will be handled with a user interface

being invoked to prompt the application user to insert the smart card or enter

appropriate passphrases. There is support for Key Usage and Key Counting

properties.

The CNG application has to be written such that it calls NCryptOpenKey to open a

CAPI key explicitly.

5.6. Utilities for CNG

Use the nfkmverify command-line utility to check the security of all stored keys in

the Security World. Use nfkminfo, nfkmcheck, and other command-line utilities to

assist in this process. For more information about these command-line utilities, see

the User Guide for your HSM.

The following table lists the utilities specific to the nShield CNG CSP:

x86 x64 Utility description

cngimport.exe cngimport.exe This key migration utility is used to migrate Security World,

CAPI, and CNG keys to the Security World Key Storage

Provider.

cnginstall.exe cnginstall64.exe This utility is the nShield CNG CSP installer. Only use this

utility to remove or reinstall the provider DLLs and

associated registry entries manually.

cnglist.exe cnglist.exe This utility lists information about CNG CSP.

cngregister.exe cngregister.exe This is the nShield CNG CSP registration utility. You can use

it to unregister and re-register the nShield providers

manually.

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 79/102

x86 x64 Utility description

ncsvcdep.exe ncsvcdep.exe This utility is the service dependency tool. You can

configure some service based applications, such as

Microsoft Certificate Services and IIS, to use the nShield

CNG CSP. The nShield Service dependency tool allows you

to add the nFast Server to the dependency list of such

services.

configure-csp-

poolmode

configure-csp-

poolmode64

This utility allows you to configure HSM Pool mode for the

nShield CNG CSP without using the CNG wizard.

For more information about the command-line utilities, see the User Guide for

your HSM.

5.7. Environment variables that control CNG
protection options

A set of environment variables are supported for controlling CNG protection

options on a per-application basis. These variables are documented here to

facilitate more complicated deployments, but it should be noted that they are

liable to change between releases.

Environment Variable Description

NCCNG_PIN Passphrase for Softcard. This enables the passphrase to be specified

programmatically rather than through the GUI passphrase prompt.

Note: This can expose your passphrase.



It is recommended that this be set in a context

where the passphrase will be visible only to the

user or service that should have access to this

passphrase. It should not be set as a machine-

wide environment variable.

NCCNG_USE_MODULE_KEYS • If set to 1, module protection will be used for new keys that are

generated.

• If set to 0, the NCCNG_PROTECTION_TOKEN environment variable

controls the protection option used.

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 80/102

Environment Variable Description

NCCNG_PROTECTION_TOKEN If NCCNG_USE_MODULE_KEYS is set to 0 (or a protection option other than

module key protection or HSM pool mode was selected in the wizard)

this environment variable enables the protection token to be specified

for new keys that are generated.

• If set to softcard:HASH the Softcard with the specified hash will be

used.

• If set to cardset:HASH the OCS with the specified hash will be

used.

• If set to anything else (e.g. wizard), the GUI key protection wizard

will be used. The HASH for Softcard or OCS protections refers to

its Security World hash in hexadecimal, which can be identified

using nfkminfo -s for softcards or nfkminfo -c for OCS.

NCCNG_ALWAYS_USE_AGENT By default, if a CNG provider must display GUI, it will display it in the

calling application if not in Session 0, and in the nShield Service Agent

if running in Session 0 (e.g. running as a service).

Setting NCCNG_ALWAYS_USE_AGENT to 1 forces CNG GUI prompts to always

be displayed in the nShield Service Agent regardless of whether it is

running in Session 0.

(If setting this value to 1 ensure that the nShield Service Agent is

running).

Chapter 5. Microsoft CNG

Cryptographic API v12.81 Guide 81/102

6. nCipherKM JCA/JCE CSP
The nCipherKM JCA/JCE CSP (Cryptographic Service Provider) allows Java

applications and services to access the secure cryptographic operations and key

management provided by Entrust nShield hardware. This provider is used with the

standard JCE (Java Cryptographic Extension) programming interface.

To use the nCipherKM JCA/JCE CSP, you must install:

• the nShield Java package which includes the nShield Java jars and Keysafe.

For more information about the bundles and components supplied on your

Security World Software installation media, see the User Guide.

The following versions of Java have been tested to work with, and are supported

by, your nShield Security World Software:

• Java7 (or Java 1.7x)

• Java8 (or Java 1.8x).

• Java11

We recommend that you ensure Java is installed before you install the Security

World Software. The Java executable must be on your system path.

If you can do so, please use the latest Java version currently supported by Entrust

that is compatible with your requirements. Java versions before those shown are

no longer supported. If you are maintaining older Java versions for legacy reasons,

and need compatibility with current nShield software, please contact Entrust

nShield Support, https://nshieldsupport.entrust.com.

To install Java you may need installation packages specific to your operating

system, which may depend on other pre-installed packages to be able to work.

Suggested links from which you may download Java software as appropriate for

your operating system:

• http://www.oracle.com/technetwork/java/index.html

• http://www.oracle.com/technetwork/java/all-142825.html


Detailed documentation for the JCE interface can be found on

the Oracle Technology web page here.


Softcards are not supported for use with the nCipherKM

JCA/JCE CSP in Security Worlds that are compliant with FIPS

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 82/102

https://nshieldsupport.entrust.com
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
http://www.oracle.com/technetwork/java/all-142825.html
https://docs.oracle.com/en/java/javase/11/security/java-cryptography-architecture-jca-reference-guide.html

140-2 Level 3.

6.1. Installing the nCipherKM JCA/JCE CSP

To install the nCipherKM JCA/JCE CSP:

1. In the hardserver configuration file, ensure that:

◦ priv_port (the port on which the hardserver listens for local privileged TCP

connections) is set to 9001

◦ nonpriv_port (the port on which the hardserver listens for local

nonprivileged TCP connections) is set to 9000.

If you need to change either or both of these port settings, you restart the

hardserver before continuing the nCipherKM JCA/JCE CSP installation

process. For more information, see the User Guide.

2. For Java 7 and 8 only. Copy the nCipherKM.jar file to the extensions folder of

your local Java Virtual Machine installation from the following directory:

◦ %NFAST_HOME%\java\classes (Windows)

◦ /opt/nfast/java/classes (Linux)

The location of the extensions folder depends on the type of your local Java

Virtual Machine (JVM) installation:

JVM type Extensions folder
(Windows)

Extensions folder (Linux)

Java Developer Kit (JDK) %JAVA_HOME%\jre\lib\ext $JAVA_HOME/jre/lib/ext

Java Runtime Environment (JRE) %JAVA_HOME%\lib\ext $JAVA_HOME_/lib/ext

In these paths, %JAVA_HOME% (Windows) and $JAVA_HOME (Linux) are the home

directory of the Java installation (commonly specified in the JAVA_HOME

environment variable).

If you are using Java11 you do not need to copy the jar file.

3. Add %JAVA_HOME%\bin (Windows) or $JAVA_HOME/bin (Linux) to your PATH system

variable.

4. For Java 7 and 8 only. Install the unlimited strength JCE jurisdiction policy files

that are appropriate to your version of Java. JDK 9 and later ship with, and

use by default, the unlimited policy files.

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 83/102

The Java Virtual Machine imposes limits on the cryptographic strength that

may be used by default with JCE providers. Replace the default policy

configuration files with the unlimited strength policy files.

The Java Virtual Machine imposes limits on the cryptographic strength that

may be used by default with JCE providers. Replace the default policy

configuration files with unlimited strength policy files.

To install the unlimited strength JCE jurisdiction policy files:

a. If necessary, download the archive containing the Java Cryptography

Extension (JCE) Unlimited Strength Jurisdiction Policy Files from your

Java Virtual Machine vendor’s Web site. Be sure to download a file

appropriate for your version of Java.



The Java Cryptography Extension (JCE) Unlimited

Strength Jurisdiction Policy Files are covered and

controlled by U.S. Export Control laws and may be

subject to the export or import laws in other countries.

We recommend that you take legal advice before

downloading these files from your Java Virtual Machine

vendor.

b. Extract the files local_policy.jar and US_export_policy.jar from Java

Virtual Machine vendor’s Java Cryptography Extension (JCE) Unlimited

Strength Jurisdiction Policy File archive.

c. Copy the extracted files local_policy.jar and US_export_policy.jar into the

security directory for your local Java Virtual Machine (JVM) installation:

JVM type Extensions folder (Windows) Extensions folder (Linux)

Java Developer

Kit (JDK)
%JAVA_HOME%\jre\lib\security $JAVA_HOME/jre/lib/security

Java Runtime

Environment

(JRE)

%JAVA_HOME%\lib\security $JAVA_HOME_/lib/security

In these paths, %JAVA_HOME% (Windows) and $JAVA_HOME (Linux) are the

home directory of the Java installation (commonly specified in the

JAVA_HOME environment variable).


Copying the files local_policy.jar and

US_export_policy.jar into the appropriate folder must

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 84/102

overwrite any existing files with the same names.

5. Add the nCipherKM provider to the Java security configuration file

java.security (located in the security directory for your local Java Virtual

Machine (JVM) installation).

The java.security file contains a list of providers in preference order that is

used by the Java Virtual Machine to decide from which provider to request a

mechanism instance. Ensure that the nCipherKM provider is registered in the

first position in this list, as shown in the following example:

#
List of providers and their preference orders (see above):
#
security.provider.1=com.ncipher.provider.km.nCipherKM
security.provider.2=sun.security.provider.Sun
security.provider.3=sun.security.rsa.SunRsaSign
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider

For Java 11 you do not need to specify the fully qualified class name for the

provider. Instead you can just use the provider name.

security.provider.1=nCipherKM

Placing the nCipherKM provider first in the list permits the nCipherKM

provider’s algorithms to override the algorithms that would be implemented

by any other providers (except in cases where you explicitly request another

provider name).


The nCipherKM provider cannot serve requests required for

the SSL classes unless it is in the first position in the list of

providers.

Do not change the relative order of the other providers in the list.



If you add the nCipherKM provider as security.provider.1,

ensure that the subsequent providers are re-numbered

correctly. Ensure you do not list multiple providers with the

same number (for example, ensure your list of providers

does not include two instances of security.provider.1, both

com.ncipher.provider.km.nCipherKM and another provider).

6. Save your updates to the file java.security.

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 85/102

When you have installed the nCipherKM JCA/JCE CSP, you must have created

a Security World before you can test or use it. For more information about

creating a Security World, see the User Guide.



If you have a Java Enterprise Edition Application Server

running, you must restart it before the installed nCipherKM

provider is loaded into the Application Server virtual

machine and ready for use.

6.1.1. Testing the nCipherKM JCA/JCE CSP installation

After installation, you can test that the nCipherKM JCA/JCE CSP is functioning

correctly by running the command.

For Java 7 and Java 8:

java com.ncipher.provider.InstallationTest

For Java 11 (Windows):

java --module-path %NFAST_HOME%\java\classes com.ncipher.provider.InstallationTest

For Java 11 (Linux):

java --module-path /opt/nfast/java/classes com.ncipher.provider.InstallationTest


For these commands to work, you must have added %JAVA_HOME%

(Windows) or $JAVA_HOME (Linux) to your PATH system variable.

If the nCipherKM JCA/JCE CSP is functioning correctly, output from this command

has the following form:

Installed providers:
1: nCipherKM
2: SUN
3: SunRsaSign
4: SunJSSE
5: SunJCE
6: SunJGSS
7: SunSASL
Unlimited strength jurisdiction files are installed.
The nCipher provider is correctly installed.
nCipher JCE services:
Alg.Alias.Cipher.1.2.840.113549.1.1.1
Alg.Alias.Cipher.1.2.840.113549.3.4
Alg.Alias.Cipher.AES
Alg.Alias.Cipher.DES3

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 86/102

....

If the nCipherKM provider is installed but is not registered at the top of the

providers list in the java.security file, the InstallationTest command produces

output that includes the message:

The nCipher provider is installed, but is not registered at the top of the providers list in the java.security
file.
See the user guide for more information about the recommended system configuration.

In such a case, edit the java.security file (located in the security directory for your

local JVM installation) so that the nCipherKM provider is registered in the first

position in that file’s list of providers. For more information about the

java.security file, see Installing the nCipherKM JCA/JCE CSP.

If the nCipherKM provider is not installed at all, or you have not created a Security

World, or if you have not configured ports correctly in the hardserver

configuration file, the InstallationTest command produces output that includes

the message:

The nCipher provider is not correctly installed.

In such case:

• Check that you have configured ports correctly, as described in Installing the

nCipherKM JCA/JCE CSP. For more information about hardserver

configuration file settings, see the User Guide.

• Check that you have created a Security World. If you have not created a

Security World, create a Security World. For more information, see the User

Guide.

• If you have already created a Security World, repeat the nCipherKM JCA/JCE

CSP installation process as described in Installing the nCipherKM JCA/JCE

CSP.

After making any changes to the nCipherKM JCA/JCE CSP installation, run the

InstallationTest command again and check the output.

Whether or not the nCipherKM provider is correctly installed, if the unlimited

strength jurisdiction files are not installed or (not correctly installed), the

InstallationTest command produces output that includes the message:

Unlimited strength jurisdiction files are NOT installed.

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 87/102


The InstallationTest command can only detect this situation if

you are using JRE/JDK version 1.6 or later.

This message means that, because the Java Virtual Machine imposes limits on the

cryptographic strength that you can use by default with JCE providers, you must

replace the default policy configuration files with the unlimited strength policy

files. For information about how to install the unlimited strength jurisdiction files,

see Installing the nCipherKM JCA/JCE CSP.

6.1.2. Named Modules in Java 11

The nCipherKM Provider has been implemented as a named module. THis means

that, for Java 11, if you have added the provider to your java.security file, then you

can run your application with the nCipherKM.jar on the module-path and the Java

ServiceLoader class will automatically find it, for example:

In Linux:

java --module-path /opt/nfast/java/classes com.ncipher.provider.InstallationTest

In Windows:

java --module-path %NFAST_HOME%\java\classes com.ncipher.provider.InstallationTest

Alternatively, you can specify the location of the nCipherKM jar on the classpath:

In Linux:

java --class-path /opt/nfast/java/classes/nCipherKM.jar com.ncipher.provider.InstallationTest

In Windows:

java --class-path %NFAST_HOME%\java\classes\nCipherKM.jar com.ncipher.provider.InstallationTest

6.2. System properties

You can use system properties to control the provider. You set system properties

when starting the Java Virtual Machine using a command such as:

java -D<property>=<value> <MyJavaApplication>

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 88/102

In this example command, <property> represents any system property, <value>

represents the value set for that property, and <MyJavaApplication> is the name of

the Java application you are starting. You can set multiple system properties in a

single command, for example:

java -Dprotect=module -DignorePassphrase=true MyJavaApplication

The available system properties and their functions as controlled by setting

different values for a property are described in the following table:

Property Function for different values

JCECSP_DEBUG This property is a bit mask for which different values specify different

debugging functions; the default value is 0. For details about the effects of

setting different values for this property, see JCECSP_DEBUG property

values.

JCECSP_DEBUGFILE This property specifies a path to the file to which logging output is to be

written. Set this property if the JCECSP_DEBUG property is set to a value

other than the default of 0. For details about the effects of setting

different values for this property, see JCECSP_DEBUG property values.

In a production environment, we recommend that you disable debug

logging to prevent sensitive information being made available to an

attacker.

protect This property specifies the type of protection to be used for key

generation and nCipherKM KeyStore instances. You can set the value of

this property to one of module, softcard:IDENT or cardset. OCS protection

(cardset) uses the card from the first slot of the first usable hardware

security module. To find the logical token hash IDENT of a softcard, run

the command nfkminfo ‑‑softcard‑list.

module This property lets you override the default module and select a specific

module to use for module and OCS protection. Set the value of this

property as the ESN of the module you want to use.

slot This property lets you override the default slot for OCS-protection and

select a specific slot to use. Set this the value of this property as the

number of the slot you want to use.

ignorePassphrase If the value of this property is set to true, the nCipherKM provider ignores

the passphrase provided in its KeyStore implementation. This feature is

included to allow the Oracle or IBM keytool utilities to be used with

module-protected keys. The keytool utilities require a passphrase be

provided; setting this property allows a dummy passphrase to be used.

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 89/102

Property Function for different values

seeintegname Setting the value of this property to the name of an SEE integrity key

causes the provider to generate SEE application keys. These keys may

only be used by an SEE application signed with the named key.

com.ncipher.provider.an

nouncemode

The default value for this property is auto, which uses firmware auto-

detection to disable algorithms in the provider that cannot be supported

across all installed modules. Setting the value of this property to on forces

the provider to advertise all mechanisms at start-up. Setting the value of

this property to off forces the provider to advertise no mechanisms at

start-up.

com.ncipher.provider.en

able

For the value of this property, you supply a comma-separated list of

mechanism names that are to be forced on, regardless of the announce

mode selected.

com.ncipher.provider.di

sable

For the value of this property, you supply a comma-separated list of

mechanism names that are to be forced off, regardless of the announce

mode selected. Any mechanism supplied in the value for the

com.ncipher.provider.disable property overrides the same mechanism if it

is supplied in the value for the com.ncipher.provider.enable property.

6.2.1. JCECSP_DEBUG property values

The JCECSP_DEBUG system property is a bit mask for which you can set different

values to control the debugging functions. The following table describes the

effects of different values that you can set for this property:

JCECSP_DEBUG value Function

0 If this property has no bits set, no debugging information is reported. This

is the default setting.

1 If this property has the bit 1 set, minimal debugging information (for

example, version information and critical errors) is reported.

2 If this property has the bit 2 set, comprehensive debugging information is

reported.

4 If this property has the bit 3 set, debugging information relating to

creation and destruction of memory and module resources is reported.

8 If this property has the bit 4 set, debugFunc and debugFuncEnd generate

debugging information for functions that call them.

16 If this property has the bit 5 set, debugFunc and debugFuncEnd display the

values for all the arguments that are passed in to them.

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 90/102

JCECSP_DEBUG value Function

32 If this property has the bit 6 set, context information is reported with each

debugging message (for example, the ThreadID and the current time.

64 If this property has the bit 7 set, the time elapsed during each logged

function is calculated, and information on the number of times a function

is called and by which function it was called is reported.

128 If this property has the bit 8 set, debugging information for NFJAVA is

reported in the debugging file.

256 If this property has the bit 9 set, the call stack is printed for every debug

message.

To set multiple logging functions, add up the JCECSP_DEBUG values for the

debugging functions you want to set, and specify the total as the value for

JCECSP_DEBUG. For example, if you want to set the debugging to use both function

tracing (bit 4) and function tracing with parameters (bit 5), add the JCECSP_DEBUG

values shown in the table for these debugging functions (8 + 16 = 24) and specify

this total (24) as the value to use for JCECSP_DEBUG.

6.3. Compatibility

The nCipherKM JCA/JCE CSP supports both module-protected keys and OCS-

protected keys. The CSP currently supports 1/N OCSs and a single protection type

for each nCipherKM JCE KeyStore.

You can use the nCipherKM JCA/JCE CSP with Security Worlds that comply with

FIPS 140‑2 at either Level 2 or Level 3.


In a Security World that complies with FIPS 140-2 Level 3, it is

not possible to import keys generated by other JCE providers.

The nCipherKM JCA/JCE CSP supports load-sharing for keys that are stored in the

nCipherKM KeyStore. This feature allows a server to spread the load of

cryptographic operations across multiple connected modules, providing greater

scalability.



We recommend that you use load-sharing unless you have

existing code that is designed to run with multiple modules. To

share keys with load-sharing, you must create a 1/N OCS with at

least as many cards as you have modules. All the cards in the

OCS must have the same passphrase.

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 91/102

Keys generated or imported by the nCipherKM JCA/JCE CSP are not recorded into

the Security World until:

1. The key is added to an nCipherKM KeyStore (by using a call to setKeyEntry()

or setCertificateEntry()).

2. That nCipherKM KeyStore is then stored (by using a call to store()).

The passphrase used with the KeyStore must be the passphrase of the card from

the OCS that protects the keys in the KeyStore.

6.4. Architecture

The nCipherKM JCA/JCE CSP implements its functionality using two underlying

nShield APIs:

• the KM Java library (kmjava)

• the Java Generic Stub (nfjava).

These libraries relay commands generated by the JCE provider to the underlying

hardserver and modules.

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 92/102

6.5. Available functions

The module firmware automatically detects which algorithms it can support.

These algorithms are advertised when the provider first starts up. The provider

conservatively advertises only those mechanisms that are supported by all

installed modules in the system.


Certain algorithms are not supported by older versions of

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 93/102

firmware. We recommend that you ensure that your module is

upgraded to the most recent version of firmware appropriate for

your environment.

The following table indicates the cipher modes available for each cipher.

Cipher CBC CFB CTR ECB OFB GCM

AESWrap X

ArcFour

CAST256 X X X X X

DES2 X X X X X

DES X X X X X

DESede X X X X X

DESedeWrap X

ECIES1

Rijndael X X X X X X

RSA X

In the table above, annotations with the following numbers indicate:

1 These ciphers support key wrap and unwrap only.

The following table indicates the padding types available for each cipher.

Cipher ANSI
X9.23

ISO
10126

ISO 7816 None OAEP PKCS #1 PKCS #5 Zero
byte

AESWrap X

ArcFour

CAST256 X X X X X X

DES2 X X X X X X

DES X X X X X X

DESede X X X X X X

DESedeWrap X

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 94/102

Cipher ANSI
X9.23

ISO
10126

ISO 7816 None OAEP PKCS #1 PKCS #5 Zero
byte

ECIES1

Rijndael X X X X X X

RSA X X

In the table above, annotations with the following numbers indicate:

1 These ciphers support key wrap and unwrap only.

Algorithm Key length
in bits for
generation
or signing

AESWrap Y

Arcfour 8, 16 to 2048 Y1 Y1

CAST256 128, 192, 256 Y1 Y1

DES 64 Y1 Y1

DESede 192 Y Y

DES2 128 Y Y

DESedeWra

p

 Y

DH Y Y Y

DSA 1024 Y Y

ECDH Y Y Y

ECDHwithSH

A1KDF

 Y

ECDHwithSH

A224KDF

 Y

ECDHwithSH

A256KDF

 Y

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 95/102

Algorithm Key length
in bits for
generation
or signing

ECDHwithSH

A384KDF

 Y

ECDHwithSH

A512KDF

 Y

ECDSA Y Y

EdDSA 256 Y1 Y1

Ed25519 256 Y1 Y1

Ed25519ph Y1

HmacMD5 Y1 Y1

HmacRIPEM

D160

8, 16 to 2048 Y1 Y1

HmacSHA1 8, 16 to 2048 Y Y

HmacSHA22

4

8, 16 to 2048 Y Y

HmacSHA25

6

8, 16 to 2048 Y Y

HmacSHA38

4

8, 16 to 2048 Y Y

HmacSHA51

2

8, 16 to 2048 Y Y

HmacTiger 8, 16 to 2048 Y1 Y1

MD5 Y1

MD5andSHA

1withRSA

 Y

MD5withRSA Y

nCipher.swor

ld

 Y

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 96/102

Algorithm Key length
in bits for
generation
or signing

Rijndael Y Y

RawRSA Y

RIPEMD160 Y1

RIPEMD160w

ithRSA

 Y1

RIPEMD160w

ithRSAandM

GF1

322+ Y1

RNG Y

RSA 512+ Y Y Y

SHA1 Y

SHA1withDS

A

 Y

SHA1withEC

DSA

 Y

SHA1withRS

A

 Y

SHA1withRS

AandMGF1

322+ Y

SHA224 Y

SHA224with

DSA

 Y

SHA224with

ECDSA

 Y

SHA224with

RSA

 Y

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 97/102

Algorithm Key length
in bits for
generation
or signing

SHA224with

RSAandMGF

1

450+ Y

SHA256 Y

SHA256with

DSA

 Y

SHA256with

ECDSA

 Y

SHA256with

RSA

 Y

SHA256with

RSAandMGF

1

514+ Y

SHA384 Y

SHA384with

DSA

 Y

SHA384with

ECDSA

 Y

SHA384with

RSA

 Y

SHA384with

RSAandMGF

1

770+ Y

SHA512 Y

SHA512with

DSA

 Y

SHA512withE

CDSA

 Y

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 98/102

Algorithm Key length
in bits for
generation
or signing

SHA512with

RSA

 Y

SHA512with

RSAand

MGF1

1026+ Y

Tiger 8, 16 to 256 Y Y Y1

In the table above, annotations with the following numbers indicate:

1 These algorithms are not supported in FIPS 140-2 Level 3 Security Worlds.

6.6. The KeyStore API

You can load and store nShield module-protected keys by using the standard

KeyStore API. This interface allows access to a KeyStore data file by means of a

passphrase and an InputStream or OutputStream.

nShield KeyStore data files contain only the name-space identifier of the keys

stored in them; the actual keys are stored in the Security World regardless of the

stream used. The name-space identifier is the hash of the root key of the individual

KeyStore. The ident of the KeyStore keys in the Security World begins with this

hash and is followed by key-specific characters. This naming hierarchy allows you

to identify the relevant key in Security World tools (such as KeySafe) and remove

keys from a KeyStore.


To use an existing KeyStore on another machine in the same

Security World, copy both its KeyStore data file and the Security

World’s Key Management Data directory to the other machine.

6.7. Initialization

You create a new KeyStore by passing a null InputStream to the KeyStore load

method. When you create a new KeyStore, the nCipherKM provider generates a

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 99/102

KeyStore key that is used to sign trusted public certificate entries. The relevant

signature is verified when public certificates in the KeyStore are used; this

functionality prevents an attacker inserting new certificates into a KeyStore

without the protection token that is needed to use the KeyStore key.

By default, the KeyStore protection key is OCS-protected. Ensure that the

passphrase argument used with the KeyStore interface matches the passphrase of

that OCS. When the KeyStore method is called, you must present a card with a

matching passphrase from the required OCS. You can use the protect system

property to change the protection type used for the KeyStore key; for more

information about the protect property, see System properties.

An existing KeyStore file is not overwritten if the KeyStore store method is called

on an OutputStream directed at the same file path. Instead, the KeyStore at the

existing path is used to store the keys in the new KeyStore. This operation fails if

the passphrases for the two KeyStores do not match.

6.8. Loading and storing keys

We recommend that separate KeyStores are used for separate purposes; for

example, you can use one KeyStore to hold private keys and a different KeyStore

for Certifying Authorities. With this approach, you need separate OCSs to operate

separate KeyStores. However, you can also use different OCSs to protect keys

within the same KeyStore.

You require a certificate chain to store private keys. The Virtual Machine JCE

implementation enforces this requirement, not the nCipherKM provider.

6.9. keytool

You can use either the Oracle keytool utility or the IBM keytool utility to read and

edit an nShield KeyStore. These utilities are shipped with the Oracle and IBM

JVMs. You must specify the correct nCipher.sworld KeyStore type when you run

the keytool utility, and you must specify the correct package name for the Oracle

or IBM keytool utility.

To generate a new key in an OCS-protected KeyStore with the Oracle or IBM

keytool utility, run the appropriate command:

• Sun Microsystems keytool utility:

For Java 11, use the following command:

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 100/102

java --module-path /opt/nfast/java/classes sun.security.tools.keytool.Main -genkey - storetype
nCipher.sworld -keyalg RSA -sigalg SHA1withRSA -storepass <KeyStore_passphrase> -keystore <KeyStore_path>

For Java 8, use the following command:

java sun.security.tools.keytool.Main -genkey -storetype nCipher.sworld -keyalg RSA - sigalg SHA1withRSA
-storepass <KeyStore_passphrase> -keystore <KeyStore_path>

For Java 7, use the following command:

java sun.security.tools.KeyTool -genkey -storetype nCipher.sworld -keyalg RSA - sigalg SHA1withRSA
-storepass <KeyStore_passphrase> -keystore <KeyStore_path>

• IBM keytool utility:

java com.ibm.crypto.tools.KeyTool -genkey -storetype nCipher.sworld -keyalg RSA -
sigalg SHA1withRSA -storepass <KeyStore_passphrase> -keystore <KeyStore_path>

In these example commands, <KeyStore_passphrase> is the passphrase for the OCS

that protects the KeyStore and <KeyStore_path> is the path to that KeyStore.

To generate a new key in a module-protected KeyStore with the Oracle or IBM

keytool utility, run the appropriate command:

• Sun Microsystems keytool utility:

For Java 11, use the following command:

java --module-path /opt/nfast/java/classes -Dprotect=module -DignorePassphrase=true
sun.security.tools.keytool.Main -genkey -storetype nCipher.sworld -keyalg RSA - sigalg SHA1withRSA
-keystore <KeyStore_path>

For Java 8, use the following command:

java -Dprotect=module -DignorePassphrase=true sun.security.tools.keytool.Main - genkey -storetype
nCipher.sworld -keyalg RSA -sigalg SHA1withRSA -keystore <KeyStore_path>

For Java 7, use the following command:

java -Dprotect=module -DignorePassphrase=true sun.security.tools.KeyTool -genkey - storetype nCipher.sworld
-keyalg RSA -sigalg SHA1withRSA -keystore <KeyStore_path>

• IBM keytool utility:

java -Dprotect=module -DignorePassphrase=true com.ibm.crypto.tools.KeyTool -genkey - storetype

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 101/102

nCipher.sworld -keyalg RSA -sigalg SHA1withRSA -keystore <KeyStore_path>

In these example commands, <KeyStore_path> is the path to the KeyStore.

By default, the keytool utilities use the MD5withRSA signature algorithm to sign

certificates used with a KeyStore. This signature mechanism is unavailable on

modules with firmware version 2.33.60 or later.

6.10. Using keys

Only the nCipherKM provider can use keys stored in an nShield KeyStore because

the underlying key material is held separately in the Security World.

You can always store nShield keys in an nShield KeyStore. You can also store keys

generated by a third-party provider into an nShield KeyStore if both of the

following conditions apply:

• the key type is known to the nCipherKM provider

• the Security World is not compliant with FIPS 140-2 Level 3.

When you generate an nShield key (or create it from imported key material), that

key is associated with an ACL (Access Control List). This ACL prevents the key

from being used for operations for which it is unsuited and enforces requirements

that certain tokens be presented; for example, the ACL can specify that signing

key cannot be used for encryption.

Chapter 6. nCipherKM JCA/JCE CSP

Cryptographic API v12.81 Guide 102/102

	nShield Security World: Cryptographic API v12.81 Guide
	Table of Contents
	1. Introduction
	1.1. Read this guide if …​
	1.2. Model numbers
	1.3. Security World Software default directories
	1.4. Utility help options
	1.5. Further information
	1.6. Security advisories
	1.7. Contacting Entrust nShield Support

	2. nShield architecture
	2.1. Security World Software modules
	2.2. Security World Software server
	2.3. Stubs and interface libraries
	2.4. Using an interface library
	2.5. Writing a custom application
	2.6. Acceleration-only or key management

	3. PKCS #11
	3.1. PKCS #11 developer libraries
	3.2. PKCS #11 with load-sharing mode
	3.3. PKCS #11 with HSM Pool mode
	3.4. PKCS #11 with key reloading
	3.5. PKCS #11 without load-sharing mode or HSM Pool mode
	3.6. Generating and deleting NVRAM-stored keys with PKCS #11
	3.7. PKCS #11 Security Officer
	3.8. nShield-specific PKCS #11 API extensions
	3.9. Compiling and linking
	3.10. Objects
	3.11. Functions supported

	4. Microsoft CAPI CSP
	4.1. Crypto API CSP
	4.2. Supported algorithms
	4.3. Key generation and storage
	4.4. User interface issues
	4.5. Key counting
	4.6. NVRAM-stored keys
	4.7. CSP setup and utilities

	5. Microsoft CNG
	5.1. CNG architecture overview
	5.2. Supported algorithms for CNG
	5.3. Key authorization for CNG
	5.4. Key use counting
	5.5. Using CAPI keys in CNG
	5.6. Utilities for CNG
	5.7. Environment variables that control CNG protection options

	6. nCipherKM JCA/JCE CSP
	6.1. Installing the nCipherKM JCA/JCE CSP
	6.2. System properties
	6.3. Compatibility
	6.4. Architecture
	6.5. Available functions
	6.6. The KeyStore API
	6.7. Initialization
	6.8. Loading and storing keys
	6.9. keytool
	6.10. Using keys

