
nShield Security World

nShield v12.50.4
nCore Developer Tutorial
4 March 2024

Contents
1 Introduction 22

1.1 Read this guide if ... 22

1.2 Conventions 22

1.2.1 Typographical conventions 22

1.2.2 CLI command conventions 23

1.2.3 Model numbers 23

1.2.4 Document version numbers 24

1.3 Further information 24

1.4 Security advisories 24

251.4.1 Contacting nCipher

Support 2 nCore architecture 26

2.1 Architecture overview 26

2.2 Generating a key 26

2.3 Loading a key 27

2.4 Transacting a command 28

3 C tutorial 30

3.1 Overview 30

3.1.1 nCore API functionality used in this tutorial 31

3.1.1.1 nfkm.h 31

3.1.1.2 nfinttypes.h 31

3.1.1.3 nffile.h 31

3.1.1.4 simplebignum.h 31

3.1.1.5 ncthread-upcalls.h 32

3.1.1.6 rqcard-applic.h 32

3.1.1.7 rqcard-fips.h 32

3.1.2 Variables used in this tutorial 32

3.2 Before connecting to the hardserver 33

nCore - Developer Tutorial Page 3

3.2.1 Declaring a call context 33

3.2.2 Declaring memory allocation upcalls 33

3.2.3 Declaring threading upcalls 34

3.2.4 Initializing the nFast application handle 34

3.3 Connecting to the hardserver 34

3.3.1 Getting Security World information 35

3.3.2 Setting up the authorization mechanism 35

3.3.2.1 Initializing the card-loading libraries 35

3.3.2.2 Obtaining additional FIPS authorization 35

3.3.2.3 Selecting a user interface 36

3.4 Generating a symmetric key 36

3.4.1 Obtaining authorization and selecting a module 38

3.4.1.1 Using card set protection 38

3.4.1.2 Selecting a Security World module 38

3.4.2 Preparing the key-generation command and ACL 39

3.4.3 Freeing memory 42

3.5 Generating an asymmetric key 43

3.5.1 Obtaining authorization and selecting a module 44

3.5.1.1 Using card set protection 45

3.5.1.2 Selecting a Security World module 45

3.5.2 Preparing the key-generation command and ACL 46

3.5.3 Freeing memory 50

3.6 Using a key 50

3.6.1 Finding a key 51

3.6.2 Loading a key 52

3.7 Encrypting a file 53

3.8 Cleaning up resources 56

4 Java tutorial 57

4.1 Overview 57

4.1.1 Creating a softcard 58

Page 4 nCore - Developer Tutorial

4.1.2 nCore classes used in this tutorial 58

4.1.2.1 com.ncipher.km.nfkm.* 58

4.1.2.2 com.ncipher.km.marshall.* 59

4.1.2.3 com.ncipher.jutils.* 59

4.1.2.4 com.ncipher.nfast.* 59

4.1.2.5 com.ncipher.nfast.marshall.* 59

4.1.2.6 com.ncipher.nfast.connect.utils.* 59

4.1.3 Variables used in this tutorial 59

4.2 Before connecting to the hardserver 60

4.3 Connecting to the hardserver 60

4.4 Generating a key 60

4.4.1 Methods used in generate_key() 64

4.5 Using a key 65

4.6 Signing a file 65

4.7 Cleaning up resources 68

Appendix A Java examples 69

A.1 Java key management example utilities (kmjava) 69

A.1.1 AppKeyGen.java 69

A.1.2 GenerateExport.java 69

A.1.3 KMJavaFloodTest.java 69

A.1.4 NFKMInfo.java 69

A.1.5 NVRamRTCUtil.java 69

A.1.6 SimpleCrypt.java 70

A.1.7 SlotPoller.java 70

A.2 Java JCE/CSP example utilities (jcecsp) 70

A.2.1 AsymmetricEncryptionExample.java 70

A.2.2 ECDHExample.java 70

A.2.3 JCEChanTest.java 70

A.2.4 JCEFloodTest.java 70

A.2.5 JCESigTest.java 71

nCore - Developer Tutorial Page 5

A.2.6 KeyLoadTimer.java 71

A.2.7 KeyStorageExample.java 71

A.2.8 NCipherLibraryInteropExample.java 71

A.2.9 PrepareSslExamples.java 71

A.2.10 PrepareSSLServerExamples.sh 71

A.2.11 SignaturesExample.java 71

A.2.12 SslClientExample.java 71

A.2.13 SslServerExample.java 72

A.2.14 SymmetricEncryptionExample.java 72

A.2.15 SignatureTest.java 72

A.3 Java generic stub examples (nfjava) 72

A.3.1 BlobInfo.java 72

A.3.2 Channel.java 72

A.3.3 CheckMod.java 72

A.3.4 CrypTest.java 72

A.3.5 DesKat.java 73

A.3.6 DKTest.java 73

A.3.7 EasyConnection.java 73

A.3.8 Enquiry.java 73

A.3.9 FloodTest.java 73

A.3.10 GenCert.java 73

A.3.11 InitUnit.java 73

A.3.12 NFEnum.java 73

A.3.13 Option.java 74

A.3.14 ParseException.java 74

A.3.15 Parser.java 74

A.3.16 Reference.java 74

A.3.17 ReportVersion.java 74

A.3.18 ScoreKeeper.java 74

A.3.19 SigTest.java 74

Page 6 nCore - Developer Tutorial

Appendix B Key structures 76

B.1 Mechanisms 76

B.1.1 Mech_Any 77

B.2 Key Types 78

B.2.1 Random 81

B.2.1.1 Key data 81

B.2.1.2 Key generation parameters 81

B.2.1.3 Notes 81

B.2.2 ArcFour 82

B.2.2.1 Key data 82

B.2.2.2 Key generation parameters 82

B.2.2.3 Mechanisms 82

B.2.3 Blowfish 82

B.2.3.1 Key data 82

B.2.3.2 Key generation parameters 82

B.2.3.3 Mechanisms 83

B.2.4 CAST 83

B.2.4.1 Mechanisms 83

B.2.5 CAST256 83

B.2.5.1 Mechanisms 83

B.2.6 DES 84

B.2.6.1 Key data 84

B.2.6.2 Key generation parameters 84

B.2.6.3 Notes 84

B.2.6.4 Mechanisms 84

B.2.6.5 CBC 85

B.2.6.5.1 Cipher text 85

B.2.6.5.2 IV 85

B.2.6.6 CBC MAC 85

B.2.6.6.1 Cipher text 85

nCore - Developer Tutorial Page 7

B.2.7 DES2 85

B.2.7.1 Key data 85

B.2.7.2 Key generation parameters 86

B.2.7.3 Notes 86

B.2.7.4 Mechanisms 86

B.2.7.5 CBC 86

B.2.7.5.1 Cipher text 86

B.2.7.5.2 IV 86

B.2.8 Triple DES 87

B.2.8.1 Key data 87

B.2.8.2 Key generation parameters 87

B.2.8.3 Mechanisms 87

B.2.9 Rijndael 88

B.2.9.1 Mechanisms 88

B.2.9.2 Key generation 88

B.2.10 SEED 88

B.2.10.1 Key data 89

B.2.10.2 Key generation parameters 89

B.2.10.3 Mechanisms 89

B.2.11 Serpent 89

B.2.11.1 Key data 89

B.2.11.2 Key generation parameters 90

B.2.11.3 Mechanisms 90

B.2.12 SSLMasterSecret 90

B.2.12.1 Key data 90

B.2.12.2 Key generation parameters 90

B.2.12.3 Mechanisms 90

B.2.13 Twofish 92

B.2.13.1 Key data 92

B.2.13.2 Key generation parameters 92

Page 8 nCore - Developer Tutorial

B.2.13.3 Mechanisms 92

B.2.14 Diffie-Hellman and ElGamal 93

B.2.14.1 Private key 93

B.2.14.2 Public key 93

B.2.14.3 Key generation parameters 93

B.2.14.4 Mechanisms 94

B.2.14.4.1 Diffie-Hellman 94

B.2.14.4.2 ElGamal 95

B.2.14.4.3 DLIES 95

B.2.14.5 Cipher text 95

B.2.14.5.1 Diffie-Hellman 95

B.2.14.5.2 ElGamal 95

B.2.15 DSA 95

B.2.15.1 DSA keys 96

B.2.15.1.1 DSA common key 96

B.2.15.1.2 DSA private key 96

B.2.15.1.3 DSA public key 96

B.2.15.2 DSA common generation parameters 97

B.2.15.3 DSA private key generation parameters 98

B.2.15.4 Cipher text 99

B.2.15.5 Plain text 99

B.2.15.6 Mechanisms 99

B.2.16 Elliptic Curve ECDH and ECDSA 99

B.2.16.1 Elliptic Curve keys 100

B.2.16.1.1 Private keys 100

B.2.16.1.2 Public keys 100

B.2.16.2 Key generation parameters 100

B.2.16.3 Cipher text - ECDH 100

B.2.16.4 Cipher text - ECDSA 101

B.2.16.5 Plain text - ECDH 101

nCore - Developer Tutorial Page 9

B.2.16.6 Plain text - ECDSA 101

B.2.16.7 Mechanisms 101

B.2.17 KCDSA 102

B.2.17.1 KCDSA keys 102

B.2.17.1.1 KCDSA common key 102

B.2.17.1.2 KCDSA private key 103

B.2.17.1.3 KCDSA public key 103

B.2.17.2 Key generation parameters 104

B.2.17.2.1 KCDSA common generation parameters 104

B.2.17.2.2 KCDSA private key generation parameters 105

B.2.17.3 Cipher text 105

B.2.17.4 Plain text 106

B.2.17.5 Mechanisms 106

B.2.18 RSA 106

B.2.18.1 Public key 106

B.2.18.2 Private key 106

B.2.18.3 Generation parameters 107

B.2.18.4 Mechanisms 107

B.2.18.5 Cipher text - PKCS #11 padding 109

B.2.18.6 Cipher text - OAEP padding 110

B.2.19 DeriveKey 110

B.2.19.1 DKTemplate 110

B.2.19.2 Wrapped 110

B.2.19.3 Generation parameters 110

B.2.19.4 Derive Key Mechanisms 111

B.3 Hash functions 118

B.3.1 SHA-1 118

B.3.1.1 Mechanism 118

B.3.1.2 Reply 118

B.3.2 Tiger 118

Page 10 nCore - Developer Tutorial

B.3.2.1 Mechanism 118

B.3.2.2 Reply 119

B.3.3 SHA-224 119

B.3.3.1 Mechanism 119

B.3.3.2 Reply 119

B.3.4 SHA-256 119

B.3.4.1 Mechanism 119

B.3.4.2 Reply 119

B.3.5 SHA-384 119

B.3.5.1 Mechanism 119

B.3.5.2 Reply 120

B.3.6 SHA-512 120

B.3.6.1 Mechanism 120

B.3.6.2 Reply 120

B.3.7 MD2 120

B.3.7.1 Mechanism 120

B.3.7.2 Reply 120

B.3.8 MD5 120

B.3.8.1 Mechanism 120

B.3.8.2 Reply 121

B.3.9 RIPEMD 160 121

B.3.9.1 Mechanism 121

B.3.9.2 Reply 121

B.3.10 HAS160 121

B.3.10.1 Mechanism 121

B.3.10.2 Reply 121

B.4 HMAC signatures 122

B.5 ACLs 122

B.6 Use limits 125

B.7 Actions 128

nCore - Developer Tutorial Page 11

B.8 Action types 129

B.8.1 OpPermissions 129

B.8.2 MakeBlob 130

B.8.3 MakeArchiveBlob 131

B.8.4 NSO 132

B.8.5 NVRAM 133

B.8.6 ReadShare 134

B.8.7 SendShare 134

B.8.8 FileCopy 135

B.8.9 UserAction 135

B.8.10 DeriveKey and DeriveKeyEx 135

B.8.11 Using DeriveKey — an example 137

B.9 Certificates 147

B.9.1 Using a certificate to authorize an action 148

B.9.2 Generating a certificate to authorize another operation 148

B.9.2.1 Structure 149

Appendix C NKFM Functions 152

C.1 Debugging NFKM functions 152

C.2 Functions 152

C.2.1 NKFM_changepp 152

C.2.2 NFKM_checkconsistency 153

C.2.3 NFKM_checkpp 153

C.2.4 NFKM_cmd_generaterandom 153

C.2.5 NFKM_cmd_destroy 154

C.2.6 NFKM_cmd_loadblob 154

C.2.7 NFKM_cmd_getkeyplain 155

C.2.8 NFKM_erasecard 155

C.2.9 NFKM_erasemodule 155

C.2.10 NFKM_hashpp 155

C.2.11 NFKM_initworld_* 156

Page 12 nCore - Developer Tutorial

C.2.11.1 NFKM_initworld_abort 156

C.2.11.2 NFKM_initworld_begin 156

C.2.11.3 NFKM_initworld_done 157

C.2.11.4 NFKM_initworld_gethash 158

C.2.11.5 NFKM_initworld_nextcard 158

C.2.11.6 NFKM_initworld_setinitmoduleparams 158

C.2.12 NFKM_loadadminkeys_* 159

C.2.12.1 NFKM_loadadminkeys_begin 159

C.2.12.2 NFKM_loadadminkeys_done 161

C.2.12.3 NFKM_loadadminkeys_{get,steal}{key,token} 161

C.2.12.4 NFKM_loadadminkeys_getobjects 162

C.2.12.5 NFKM_loadadminkeys_loadtokens 163

C.2.12.6 NFKM_loadadminkeys_nextcard 163

C.2.12.7 NFKM_loadadminkeys_selecttoken 163

C.2.12.8 NFKM_loadadminkeys_selecttokens 163

C.2.12.9 NFKM_loadadminkeys_whichtokens 164

C.2.13 NFKM_loadcardset_* 164

C.2.13.1 NFKM_loadcardset_abort 164

C.2.13.2 NFKM_loadcardset_begin 164

C.2.13.3 NFKM_loadcardset_done 165

C.2.13.4 NFKM_loadcardset_nextcard 165

C.2.14 NFKM_loadworld_* 166

C.2.14.1 NFKM_loadworld_abort 166

C.2.14.2 NFKM_loadworld_begin 166

C.2.14.3 NFKM_loadworld_done 167

C.2.14.4 NFKM_loadworld_nextcard 168

C.2.14.5 NFKM_loadworld_setinitmoduleparams 168

C.2.15 NFKM_makecardset_* 168

C.2.15.1 NFKM_makecardset_abort 168

C.2.15.2 NFKM_makecardset_begin 168

nCore - Developer Tutorial Page 13

C.2.15.3 NFKM_makecardset_done 170

C.2.15.4 NFKM_makecardset_gethash 170

C.2.15.5 NFKM_makecardset_getlogicaltoken 171

C.2.15.6 NFKM_makecardset_makeshareacl 171

C.2.15.7 NFKM_makecardset_nextcard 171

C.2.15.8 NFKM_makecardset_setflags 172

C.2.15.9 NFKM_makecardset_setshareacl 172

C.2.16 NFKM_newkey_* 172

C.2.16.1 NFKM_newkey_makeacl 172

C.2.16.2 NFKM_newkey_makeaclx 175

C.2.16.3 NFKM_newkey_makeblobs 176

C.2.16.4 NFKM_newkey_makeblobsx 177

C.2.16.5 NFKM_newkey_writecert 177

C.2.17 NFKM_operatorcard_changepp 178

C.2.18 NFKM_operatorcard_checkpp 178

C.2.19 NFKM_recordkey 178

C.2.20 NFKM_recordkeys 179

C.2.21 NFKM_replaceacs_* 179

C.2.21.1 NFKM_replaceacs_abort 179

C.2.21.2 NFKM_replaceacs_begin 179

C.2.21.3 NFKM_replaceacs_done 180

C.2.21.4 NFKM_replaceacs_gethash 181

C.2.21.5 NFKM_replaceacs_middle 181

C.2.21.6 NFKM_replaceacs_preflightcheck 181

C.2.21.7 NFKM_replaceacs_readcard 182

C.2.21.8 NFKM_replaceacs_writecard 182

Appendix D nCore API commands 183

D.1 Basic commands 183

D.1.1 ClearUnit 183

D.1.1.1 Arguments 184

Page 14 nCore - Developer Tutorial

D.1.1.2 Reply 184

D.1.1.3 Notes 184

D.1.2 ClearUnitEx 184

D.1.2.1 Arguments 185

D.1.2.2 Module mode settings 185

D.1.2.3 Reply 185

D.1.3 ModExp 185

D.1.3.1 Arguments 186

D.1.3.2 Reply 186

D.1.4 ModExpCrt 186

D.1.4.1 Arguments 186

D.1.4.2 Reply 186

D.1.4.3 Notes 186

D.2 Key-management commands 186

D.2.1 ChangeSharePIN 187

D.2.1.1 Arguments 187

D.2.1.2 Reply 188

D.2.2 ChannelOpen 188

D.2.2.1 Arguments 188

D.2.2.2 Reply 189

D.2.3 ChannelUpdate 190

D.2.3.1 Arguments 190

D.2.3.2 Reply 191

D.2.4 Decrypt 191

D.2.4.1 Arguments 191

D.2.4.2 Reply 191

D.2.5 DeriveKey 192

D.2.5.1 Arguments 192

D.2.5.2 Reply 193

D.2.5.3 Notes 193

nCore - Developer Tutorial Page 15

D.2.6 Destroy 194

D.2.6.1 Arguments 194

D.2.6.2 Reply 194

D.2.7 Duplicate 195

D.2.7.1 Arguments 195

D.2.7.2 Reply 195

D.2.8 Encrypt 195

D.2.8.1 Arguments 195

D.2.8.2 Reply 196

D.2.9 Export 196

D.2.9.1 Arguments 196

D.2.9.2 Reply 196

D.2.10 FirmwareAuthenticate 197

D.2.11 FormatToken 197

D.2.11.1 Arguments 197

D.2.11.2 Reply 197

D.2.12 GenerateKey and GenerateKeyPair 197

D.2.12.1 Arguments 198

D.2.12.2 Reply 202

D.2.12.3 Notes 203

D.2.13 GenerateLogicalToken 203

D.2.13.1 Arguments 203

D.2.13.2 Reply 204

D.2.14 GetChallenge 204

D.2.14.1 Arguments 204

D.2.14.2 Reply 204

D.2.15 GetKML 204

D.2.15.1 Arguments 205

D.2.15.2 Reply 205

D.2.16 GetTicket 205

Page 16 nCore - Developer Tutorial

D.2.16.1 Arguments 205

D.2.16.2 Reply 207

D.2.17 Hash 207

D.2.17.1 Arguments 207

D.2.17.2 Reply 207

D.2.18 ImpathKXBegin 208

D.2.18.1 Arguments 208

D.2.18.2 Reply 209

D.2.19 ImpathKXFinish 209

D.2.19.1 Arguments 209

D.2.19.2 Reply 210

D.2.20 ImpathReceive 210

D.2.20.1 Arguments 210

D.2.20.2 Reply 210

D.2.21 ImpathSend 210

D.2.21.1 Arguments 211

D.2.21.2 Reply 211

D.2.22 InitialiseUnit 211

D.2.22.1 Arguments 212

D.2.22.2 Reply 212

D.2.23 LoadBlob 212

D.2.23.1 Arguments 212

D.2.23.2 Reply 213

D.2.24 LoadLogicalToken 213

D.2.24.1 Arguments 213

D.2.24.2 Reply 214

D.2.25 MakeBlob 214

D.2.25.1 Arguments 214

D.2.25.2 Reply 217

D.2.26 MergeKeyIDs 217

nCore - Developer Tutorial Page 17

D.2.26.1 Arguments 217

D.2.26.2 Reply 217

D.2.26.3 Notes 217

D.2.27 ReadShare 218

D.2.27.1 Arguments 218

D.2.27.2 Reply 219

D.2.27.3 Notes 219

D.2.28 RedeemTicket 219

D.2.28.1 Arguments 219

D.2.28.2 Reply 220

D.2.29 RemoveKM 220

D.2.29.1 Arguments 220

D.2.29.2 Reply 220

D.2.30 RSAImmedSignDecrypt 220

D.2.30.1 Arguments 221

D.2.30.2 Reply 221

D.2.30.3 Notes 221

D.2.31 RSAImmedVerifyEncrypt 221

D.2.31.1 Arguments 221

D.2.31.2 Reply 222

D.2.31.3 Notes 222

D.2.32 SetACL 222

D.2.32.1 Arguments 222

D.2.32.2 Reply 222

D.2.32.3 Notes 223

D.2.33 SetKM 223

D.2.33.1 Arguments 224

D.2.33.2 Reply 224

D.2.33.3 Notes 224

D.2.34 SetNSOPerms 224

Page 18 nCore - Developer Tutorial

D.2.34.1 Arguments 225

D.2.34.2 Reply 226

D.2.34.3 Notes 226

D.2.35 SetRTC 226

D.2.35.1 Arguments 227

D.2.35.2 Reply 227

D.2.36 Sign 227

D.2.36.1 Arguments 228

D.2.36.2 Reply 228

D.2.37 SignModuleState 228

D.2.37.1 Arguments 228

D.2.37.2 Reply 229

D.2.38 StaticFeatureEnable 231

D.2.38.1 Arguments 231

D.2.38.2 Reply 231

D.2.39 UpdateMergedKey 231

D.2.39.1 Arguments 231

D.2.39.2 Reply 232

D.2.39.3 Notes 232

D.2.40 Verify 232

D.2.40.1 Arguments 233

D.2.40.2 Reply 233

D.2.41 WriteShare 233

D.2.41.1 Arguments 234

D.2.41.2 Reply 234

D.3 Commands used by the generic stub only 234

D.3.1 ExistingClient 235

D.3.1.1 Arguments 235

D.3.1.2 Reply 235

D.3.2 NewClient 235

nCore - Developer Tutorial Page 19

D.3.2.1 Arguments 235

D.3.2.2 Reply 236

Appendix E Glossary 237

Authorized Card List 237

Access Control List (ACL) 237

Administrator Card Set (ACS) 237

Advanced Encryption Standard (AES) 237

Audit logging 238

CAST 238

client identifier: RSC 238

Data Encryption Standard (DES) 238

Diffie-Hellman 238

Digital Signature Algorithm (DSA) 238

Digital Signature Standard (DSS) 238

ECDH 238

ECDSA 239

encryption: {A}B 239

Federal Information Processing Standards (FIPS) 239

Hardserver 239

hardware security module (HSM) 239

Hash: H(X) 239

Identifier hash: HID(X) 239

Key blob 240

Key object: KA 240

KeyID: IDKA 240

Logical token: KT 240

MAC: MACKC 240

Module 240

Module key: KM 240

Module signing key: KML 241

Page 20 nCore - Developer Tutorial

241

241

241

241

241

241

241

241

242

242

242

242

242

242

242

243

243

243

243

243

243

nShield master feature enable key KSA

nShield Remote Administration Card

nShield Security Officer's key: KNSO-1

nShield Trusted Verification Device

Null module key: KMWK

Operator Card Set (OCS)

Recovery key: KRA

Remote access solution

Remote Administration

nShield Remote Administration Client

Remote Administration Service

Dynamic Slot

Rijndael

Salt: X

Security World

Security World key: KMSW

Share: KTi

Share key: KSi

Standard nShield Cards

Standard card reader

Triple DES

nCore - Developer Tutorial Page 21

1 Introduction

1 Introduction
This guide describes how to write applications using the nCore API, the native application
programming interface for nShield modules. It also describes various programming libraries and utility
functions that nCipher supplies.

Read this guide in conjunction with the nCore API documentation located in:

l Windows: %NFAST_HOME%\document\ncore\html\index.html (C) and %NFAST_

HOME%\java\docs\index.html (Java)

l Unix-based: /opt/nfast/document/ncore/html/index.html (C) and
/opt/nfast/java/docs/index.html (Java).

1.1 Read this guide if ...
Read this guide if you are an application developer who is writing cryptographic applications using
the nCore API. If you are writing an application using a standard API, such as Java JCE/JCA, MS
CAPI, CAPI NG or PKCS #11, you should read the Cryptographic API Integration Guide.

The nCore Developer Tutorial:

l explains the nCore programming architecture

l presents a tutorial on using the nCore API in C

l presents a tutorial on using the nCore API in Java.

1.2 Conventions

1.2.1 Typographical conventions

This symbol indicates important supplemental information.

This symbol is used to indicate if there is a danger of loss or exposure of key material (or any
other security risk).

Keyboard keys that you must press are represented like this: Enter, Ctrl-C.

Examples of onscreen text from graphical user interfaces are represented by boldface text. Names of
files, command-line utilities, and other system items are represented in monospace text. Variable text
that you either see onscreen or that you must enter is represented in italic.

Examples of onscreen terminal display, both of data returned and of your input, are represented in a
form similar to the following:

nCore - Developer Tutorial Page 22

1 Introduction

install

1.2.2 CLI command conventions

The basic syntax for a CLI command is:

command object <object_name> [parameter] [option] [modifier]

In this syntax, user-defined values are shown in italics and enclosed within the < > characters.
Optional elements are shown enclosed within the [] characters. Mutually exclusive elements are
separated by the | character.

Many system objects require the inclusion of a user-defined keyword value. For example, the user

object is executed against a user-supplied user_name. Throughout this guide, all user-defined keyword
values are shown in italics.

Each CLI command that you run performs an operation against the internal configuration of the
appliance. The specific type of operation is specified by the first user-defined keyword value in the
command string.

1.2.3 Model numbers
Model numbering conventions are used to distinguish different nCipher hardware security devices. In
the table below, n represents any single-digit integer.

Model number Used for

NH2047 nShield Connect 6000

NH2040 nShield Connect 1500

NH2033 nShield Connect 500

NH2068 nShield Connect 6000+

NH2061 nShield Connect 1500+

NH2054 nShield Connect 500+

NH2075-B nShield Connect XC Base

NH2075-M nShield Connect XC Medium

NH2075-H nShield Connect XC High

NH2082 nShield Connect XC SCAP

nC2021E-000, NCE2023E-000 nToken PCIe

nC3nnnE-nnn, nC4nnnE-nnn nCipher nShield Solo PCIe

nC30n5E-nnn, nC40n5E-nnn nCipher nShield Solo XC PCIe

nC30nnU-10, nC40nnU-10. nShield Edge

Page 23 nCore - Developer Tutorial

1.2.4 Document version numbers

1.2.4 Document version numbers
The version number of this document is shown on the copyright page of this guide. Quote the version
number and the date on the copyright page if you need to contact Support about this document.

1.3 Further information
This guide forms one part of the information and support provided by nCipher. You can find
additional documentation in the document directory of the installation media for your product.

The nCore API Documentation is supplied as HTML files installed in the following locations:

l Windows:

l API reference for host:%NFAST_HOME%\document\ncore\html\index.html

l API reference for SEE:%NFAST_HOME%\document\csddoc\html\index.html

l Unix-based:

l API reference for host:/opt/nfast/document/ncore/html/index.html

l API reference for SEE:/opt/nfast/document/csddoc/html/index.html

The Java Generic Stub classes, nCipherKM JCA/JCE provider classes, and Java Key Management
classes are supplied with HTML documentation in standard Javadoc format, which is installed in the
appropriate nfast\java or nfast/java directory when you install these classes.

Release notes containing the latest information about your product are available in the release

directory of your installation media.

We strongly recommend familiarizing yourself with the information provided in the release
notes before using any hardware and software related to your product.

1.4 Security advisories
If nCipher becomes aware of a security issue affecting nShield HSMs, nCipher will publish a security
advisory to customers. The security advisory will describe the issue and provide recommended actions.
In some circumstances the advisory may recommend you upgrade the nShield firmware and or nShield
Connect image file. In this situation you will need to re-present a quorum of administrator smart cards to
the HSM to reload a Security World. As such, deployment and maintenance of your HSMs should
consider the procedures and actions required to upgrade devices in the field.

The Remote Administration feature supports remote firmware upgrade of nShield Solo and
nShield Connects and remote ACS card presentation.

We recommend that you monitor the "nShield Announcements & Security Notices" section of
the nCipher Security Support Portal, where any announcement of nShield Security Advisories
will be made.

nCore - Developer Tutorial Page 24

mailto:nShield-securityadvisories@thales-esecurity.com

1 Introduction

1.4.1 Contacting nCipher Support

To obtain support for your product, visit: https://help.ncipher.com.

Page 25 nCore - Developer Tutorial

2 nCore architecture

2 nCore architecture
This section describes the interaction between your application and an nShield module that occurs
when performing the following cryptographic tasks:

l generating a key

l loading a key

l transacting a command on a module

2.1 Architecture overview
A typical architecture in which one would use the nCore API is illustrated on Programming
environment architecture on page 26:

Figure 1. Programming environment architecture

In Figure 1:

l Client: The computer on which your cryptographic application runs.

l hardserver: An intermediary between applications and module. The hardserver is responsible for
routing commands to modules, and returning the reply from the module to the calling application.

l module: The hardware that performs cryptographic tasks.

2.2 Generating a key
Keys generated using the nCore API are generally stored in encrypted form on the hard disk of the
computer running the cryptographic application. The key blob that contains the encrypted key
information is generated by a module when an application uses the module to generate a key.

nCore - Developer Tutorial Page 26

2 nCore architecture

The interaction between your cryptographic application and the Security World that occurs during the
key-generation process is illustrated on Key-generation process on page 27:

Figure 2. Key-generation process

A key blob can only be decrypted by a module that has a record of the key that was used to encrypt
the information in the key blob. A key blob contains key information and an Access Control List (ACL)
which defines who can use the key and what operations the key can be used for.

2.3 Loading a key
Because key information is encrypted in a key blob, the key itself cannot be used to perform a
cryptographic operation until it is decrypted. To use a key, you first need to load the encrypted key
blob into a module, as illustrated on Key-loading process on page 28. The key blob is decrypted using
a key stored on the module, and a handle or object reference to the key is returned to your application
.

In most cases it is necessary to provide authentication in the form of a smart card and/or a pass phrase
before using a key. The user interaction that prompts for authentication to be provided is handled by
the nCore API.

Page 27 nCore - Developer Tutorial

2.4 Transacting a command

Figure 3. Key-loading process

2.4 Transacting a command
After an application has loaded a key, it can instruct a module to use the key to perform cryptographic
operations such as encryption, decryption, signing and verification. The process of transacting a
command is illustrated on Command transaction process on page 29.

nCore - Developer Tutorial Page 28

2 nCore architecture

Figure 4. Command transaction process

C tutorial on page 30 explains how to write a C application that:

l creates a connection to the hardserver

l generates a key

l loads a key onto a module

l transacts a command with the module to use the key to encrypt a file.

Java tutorial on page 57 explains how to write a similar Java application which signs a file.

Page 29 nCore - Developer Tutorial

3 C tutorial

3 C tutorial
3.1 Overview
This overview section provides a description of how to achieve two fundamental nCore API
programming tasks: connecting to the hardserver and transacting a command. These two tasks are
common to almost all cryptographic applications. The rest of this chapter works through a simple
example of a basic cryptographic application.

All applications that require nCore functionality first need to create a connection to a hardserver
running on an nShield module. The steps required to create a connection to a hardserver running on
nCipher hardware is illustrated on Connecting to the hardserver on page 30:

Figure 5. Connecting to the hardserver

When connected to the hardserver, an application can send an M_Command to a module. The module
processes the command and then returns the results along with any relevant error and status codes.
The process of transacting a cryptographic operation with the module is illustrated on Transacting a
command on page 31.

nCore - Developer Tutorial Page 30

3 C tutorial

Figure 6. Transacting a command

The M_Reply structure contains the results of the operation and an M_Status message that indicates the
outcome of the operation. If a problem was encountered, the M_Status value gives an indication of
what went wrong. The M_Reply contains the results of the command, for example, a key handle or the
bytes of an encrypted file.

3.1.1 nCore API functionality used in this tutorial

This tutorial uses the following libraries from the nCore API. You may find it useful to familiarize
yourself with these libraries by reading the API documentation, which is located at nfast_
dir/document/ncore/html/index.html.

3.1.1.1 nfkm.h

This library provides Security World functionality, for example, card-loading libraries, key-generation,
and key-loading.

3.1.1.2 nfinttypes.h

This library is a utility library that provides standard integer types.

3.1.1.3 nffile.h

This library is a utility library that provides file manipulation functionality.

3.1.1.4 simplebignum.h

This library is a utility implementation of bignum functionality.

Page 31 nCore - Developer Tutorial

3.1.1.5 ncthread-upcalls.h

3.1.1.5 ncthread-upcalls.h

This library is a thread-handling library.

3.1.1.6 rqcard-applic.h

This library is a card-loading library.

3.1.1.7 rqcard-fips.h

This library is a card-loading library for use in a FIPS 140-2 level 3 (Federal Information Processing
Standards) environment.

3.1.2 Variables used in this tutorial

The following table lists and describes the variables used in this tutorial. Throughout this tutorial you
may wish to refer to this table. You may also find it useful to consult the API documentation of the listed
types.

Variable Name Variable Type Description
rc M_Status Status code returned by operations

worldinfo NFKM_WorldInfo Information about a Security World

app NFast_AppHandle The application handle

app_init_args NFastAppInitArgs Used to initialize the application

conn NFastApp_Connection The connection to a hardserver

moduleinfo NFKM_ModuleInfo
Contains information about the module
being used

keyident NFKM_KeyIdent The name of the key

keyinfo NFKM_Key Information about the key

keyid M_KeyID The key loaded into the module

ltid M_KeyID The card set loaded into the module

keytype M_KeyType
The cryptographic key type, for
example, KeyType_DSA

mech M_Mech
The encryption mechanism used, for
example, Mech_DSA

sigbytes M_ByteBlock The marshaled signature

iv M_IV The initialization vector

command M_Command The command sent to module

reply M_Reply The reply returned by the module

idch M_KeyID The ID of the channel used for streaming

rqcard RQCard The card-loader handle

rqcard_fips RQCard_FIPS
The card-loader handle used in a FIPS
140-2 level 3 environment

nCore - Developer Tutorial Page 32

3 C tutorial

3.2 Before connecting to the hardserver
The nCore API provides mechanisms that allow you to control how threading, memory allocation, and
numbers larger than the available C data types are handled, through an upcall mechanism. Specifying
these upcalls is optional. Also optional is the call context structure, which can contain any contextual
information that your application might require to keep track of. If you define your own upcalls and call
context they must be supplied as arguments when initializing a handle to the hardserver.

3.2.1 Declaring a call context

Many nCore functions take a call context argument, cctx or ctx, which is passed on to upcalls. The
call context structure can be used for any purpose required by an application. For example, the call
context could identify an application thread.

The following code shows an example declaration of a call context structure:

struct NFast_Call_Context {

int notused;

};

3.2.2 Declaring memory allocation upcalls

By default the nCore API manages memory by using the standard C library functions malloc, realloc,
and free. To customize memory management, define a collection of memory allocation upcalls and
pass this collection when initializing the application handle. For example, a heavily threaded
application may allocate memory per thread, and have separate application handles per thread, to
avoid contention. In this code example the memory allocation upcalls re-direct back to the default
memory application functions. The call context cctx and the transaction context tctx can contain any
context information required by your application.

const NFast_MallocUpcalls mallocupcalls = {

local_malloc,

local_realloc,

local_free

};

static void *local_malloc(size_t nbytes,

struct NFast_Call_Context *cctx,

struct NFast_Transaction_Context *tctx) {

return malloc(nbytes);

}

static void *local_realloc(void *ptr,

size_t nbytes,

struct NFast_Call_Context *cctx,

struct NFast_Transaction_Context *tctx) {

return realloc(ptr, nbytes);

}

static void local_free(void *ptr,

struct NFast_Call_Context *cctx,

struct NFast_Transaction_Context *tctx) {

free(ptr);

}

Page 33 nCore - Developer Tutorial

3.2.3 Declaring threading upcalls

3.2.3 Declaring threading upcalls

ncthread_upcalls provides a mechanism to specify how threads are implemented on the target
platform. If an application needs to use a non-native thread model then the application can either:

l fill in an nf_thread_upcalls structure with suitable upcalls and optionally write a translation function
xlate_cctx_to_ncthread()

l or fill in an NFast_ThreadUpcalls structure, and use NFAPP_IF_THREAD in the code example below
instead of NFAPP_IF_NEWTHREAD.

const NFast_NewThreadUpcalls newthreadupcalls = {

&ncthread_upcalls,

xlate_cctx_to_ncthread

};

static void xlate_cctx_to_ncthread(NFast_AppHandle app,

struct NFast_Call_Context *cc,

struct nf_lock_cctx **lcc_r) {

*lcc_r = 0;

}

3.2.4 Initializing the nFast application handle

The hardserver application handle is the main access point to nCore functionality. The following code
specifies the application initialization arguments and initializes the application handle. The flags sent
to the application initialization function in the following code example are:

l NFAPP_IF_MALLOC indicates that an application is setting its own memory allocation upcalls

l NFAPP_IF_BIGNUM is necessary for any bignum operations to work. The following code example uses
simplebignum upcalls

l One of NFAPP_IF_NEWTHREAD or NFAST_IF_THREAD is required in threaded applications. This code
example does not perform any multi-threaded operations but the setting are included anyway for
the purposes of the example.

memset(&app_init_args, 0, sizeof app_init_args);

app_init_args.flags = NFAPP_IF_MALLOC|NFAPP_IF_BIGNUM|NFAPP_IF_NEWTHREAD;

app_init_args.mallocupcalls = &mallocupcalls;

app_init_args.bignumupcalls = &sbn_upcalls;

app_init_args.newthreadupcalls = &newthreadupcalls;

rc = NFastApp_InitEx(&app, &app_init_args, cctx);

3.3 Connecting to the hardserver
Now that application handle is initialized, create a connection to the hardserver, as shown in the
following code example. The NFastApp_Connect() automatically determines whether to use pipes, local
sockets, or TCP sockets, as appropriate.

nCore - Developer Tutorial Page 34

3 C tutorial

rc = NFastApp_Connect(app, &conn, 0, cctx);

if(rc) {

NFast_Perror("error calling NFastApp_Connect", rc);

goto cleanup;

}

3.3.1 Getting Security World information

The following code reads in the Security World information that is associated with the application
handle. An application handle will only ever be associated with a single Security World, which
consists of one or more modules.

rc = NFKM_getinfo(app, &worldinfo, cctx);

if(rc) {

NFast_Perror("error calling NFKM_getinfo", rc);

goto cleanup;

}

3.3.2 Setting up the authorization mechanism

The nCore API supports three types of key protection:

l module protection

l pass phrase protection

l card set protection.

The following three code examples demonstrate how to set up an application to use card set
protection.

3.3.2.1 Initializing the card-loading libraries

The following code initializes the card-loading libraries, which are used later in the example. Card-
loading libraries are bound to a single connection and to a single Security World.

rc = RQCard_init(&rqcard, app, conn, worldinfo, cctx);

if(rc) {

NFast_Perror("error calling RQCard_init", rc);

goto cleanup;

}

rqcard_initialized = 1;

3.3.2.2 Obtaining additional FIPS authorization

Strict FIPS 140 mode requires authorization for key-generation, which can be obtained from either an
Operator Card or an Administrator Card. The following code initializes the strict FIPS code library,
which seeks strict FIPS 140 authorization when this is required.

Page 35 nCore - Developer Tutorial

3.3.2.3 Selecting a user interface

rc = RQCard_fips_init(&rqcard, &rqcard_fips);

if(rc) {

NFast_Perror("error calling RQCard_fips_init", rc);

goto cleanup;

}

rqcard_fips_initialized = 1;

3.3.2.3 Selecting a user interface

The following code selects the default user interface for the platform on which the example is running.
The user interface will be displayed to the user when authorization is required to perform an
operation.

rc = RQCard_ui_default(&rqcard);

if(rc) {

NFast_Perror("error calling RQCard_ui_default", rc);

goto cleanup;

}

3.4 Generating a symmetric key
This section describes the key-generation process in detail. The process of generating a symmetric key
differs slightly from the process of generating an asymmetric key, so each is described in a separate
section. There is some repetition in the two sections.

This section does not explain how to use softcards to protect keys. Softcards can be listed with
NFKM_listsoftcards() and loaded with NFKM_loadsoftcard(). For more information about
using softcards, see the information about nkfm.h in the nCore API documentation.

The key-generation process is illustrated on The key-generation process on page 37.

nCore - Developer Tutorial Page 36

3 C tutorial

Figure 7. The key-generation process

The code in this section makes use of the following variables:

Variable Name Variable Type Description
acl_params NFKM_MakeACL_Params Used to construct ACLs

blob_params NFKM_MakeBlobs_Params Used when making blobs

keyinfo NFKM_Key Information about a key

moduleinfo NFKM_ModuleInfo The module to use

mc M_ModuleCert A certificate from a module

fips140authhandle NFKM_FIPS140AuthHandle FIPS authorization

ltid M_KeyID A loaded card set

cardset NFKM_CardSet Information about a card set

moduleid M_ModuleID The ID of a module

cardhash NFKM_CardSetIdent A hash of a card set

rc M_Status A command return code

command M_Command A command structure

reply M_Reply A command reply

Page 37 nCore - Developer Tutorial

3.4.1 Obtaining authorization and selecting a module

3.4.1 Obtaining authorization and selecting a module

Keys are generated on a specific module and protected by some form of authorization. When a key is
generated the type of authorization that is required to use the key is defined, as well as the purposes
for which the key is allowed to be used, for example, only for encryption and decryption, or only for
signing and verification.

3.4.1.1 Using card set protection

The following code prompts the user to provide a card to protect the key that will be generated. The
card set hash populates cardhash when the card-loader completes.

rc = RQCard_logic_ocs_anyone(rqcard, &cardhash,

"Insert a card set to protect the new key");

if(rc) {

NFast_Perror("error calling RQCard_logic_ocs_anyone", rc);

goto cleanup;

}

3.4.1.2 Selecting a Security World module

Now that authorization has been obtained, prompt the user to select a module in the Security World
on which to generate the key. Alternatively you could use the RQCard_whichmodule_specific()

function to dictate which module will be used, or the NFKM_getusablemodule() function to use the first
available module.

The module ID and a key ID for the desired card set on that module are assigned to the moduleid and
ltid variables when the card-loader completes.

rc = RQCard_whichmodule_anyone(rqcard, &moduleid, <id);

if(rc) {

NFast_Perror("error calling RQCard_whichmodule_anyone", rc);

goto cleanup;

}

rc = rqcard->uf->eventloop(rqcard);

if(rc) {

NFast_Perror("error running card loader", rc);

goto cleanup;

}

The moduleid, id, and ltid variables are now populated. Next, populate the moduleinfo variable for
the chosen module, and create a card set handle.

nCore - Developer Tutorial Page 38

3 C tutorial

for(n = 0; n < worldinfo->n_modules; ++n)

if(worldinfo->modules[n]->module == moduleid)

break;

assert(n < worldinfo->n_modules);

moduleinfo = worldinfo->modules[n];

rc = NFKM_findcardset(app, &cardhash, &cardset, cctx);

if(rc) {

NFast_Perror("error calling NFKM_findcardset", rc);

goto cleanup;

}

Up to now in this example the application has performed actions common to generating either
a symmetric key or an asymmetric key. The process from here on differs depending on which
key type is generated.

3.4.2 Preparing the key-generation command and ACL

Start by setting up some command parameters based on the information we have already gathered.

command.cmd = Cmd_GenerateKeyPair;

command.args.generatekey.params.type = keytype;

command.args.generatekey.flags = Cmd_GenerateKey_Args_flags_Certify;

command.args.generatekey.module = moduleinfo->module;

Keys are stored with an ACL, which defines which entities can perform operations with the key. The
next step is to populate the acl_params variable with the information needed to create the ACL that will
be stored in the key blob along with the key we generate. In this example the application sets the acl_

params.f flags parameter to enable key recovery and specify the type of key protection to use. There
are three options:

l card set protection

l module protection

l pass phrase protection.

This following code demonstrates how to indicate that a key should be protected by a card set. In this
case, the card set is the one selected earlier by the user in Selecting a Security World module on page
38.

acl_params.f = NFKM_NKF_RecoveryEnabled|protection;

acl_params.cs = cardset;

The make ACL blob flags (acl_params.f) parameter must be same as the make blob flags parameter
(blob_params.f), so is set accordingly.

blob_params.f = acl_params.f;

Page 39 nCore - Developer Tutorial

3.4.2 Preparing the key-generation command and ACL

The next step is to define in the ACL for which operations the key is allowed to be used. In this
example, the application specifies that the key can be used to sign, verify, encrypt, or decrypt.

acl_params.op_base = (NFKM_DEFOPPERMS_SIGN

|NFKM_DEFOPPERMS_VERIFY

|NFKM_DEFOPPERMS_ENCRYPT

|NFKM_DEFOPPERMS_DECRYPT);

The application is now ready to generate the ACL:

rc = NFKM_newkey_makeaclx(app, conn, worldinfo, &acl_params,

&command.args.generatekey.acl, cctx);

The following code sets up further generate key command parameters. The parameters that are
required differ according to key type. For example, if an application is generating a Rijndael key, you
need to specify the length of the key required, in bytes:

command.args.generatekey.params.params.random.lenbytes = 128/8;

Generating a key in a strict FIPS environment requires that an application obtains authorization (in this
case, card set authorization) before attempting to generate a key. It is possible that the card loader
has already obtained the necessary authorization from a prior card-loading operation. In this case, the
following call will retrieve this authorization:

rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fips140authhandle,

0);

If this call returns Status_RQCardMustContinue, an application must explicitly attempt to obtain the
correct authorization as follows:

rc = RQCard_fips_logic(rqcard);

if(rc) {

NFast_Perror("error calling RQCard_fips_logic", rc);

goto cleanup;

}

rc = RQCard_whichmodule_specific(rqcard, moduleinfo->module, 0);

if(rc) {

NFast_Perror("error calling RQCard_whichmodule_anyone", rc);

goto cleanup;

}

rc = rqcard->uf->eventloop(rqcard);

if(rc) {

NFast_Perror("error running card loader", rc);

goto cleanup;

}

rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fips140authhandle,

0);

nCore - Developer Tutorial Page 40

3 C tutorial

Now that the application has obtained the necessary strict FIPS authorization (or cancelled the
operation if the correct authorization could not be obtained), it can use the authorization to authorize
the creation of the key.

rc = NFKM_newkey_makeauth(app, worldinfo, &command.flags, &command.certs,

fips140authhandle, cctx);

if(rc) {

NFast_Perror("error calling NFKM_newkey_makeauth", rc);

goto cleanup;

}

With or without FIPS authorization, the application has now obtained all the information necessary to
transact a key-generation operation, so is now ready to send the key-generation command to the
selected module. The reply is checked using the reply checking utility function mentioned at the
beginning of the chapter.

rc = NFastApp_Transact(conn, cctx, &command, &reply, 0);

rc = check_reply(rc, &reply, "error generating new key");

if(rc)

goto cleanup;

The application has now generated a new key, but as yet the key exists only in the module’s memory.
Next, construct an NFKM_Key key information structure (keyinfo) and then save it to disk.

keyinfo->v = 8;

keyinfo->appname = keyident.appname;

keyinfo->ident = keyident.ident;

time(&keyinfo->gentime);

The next step is to populate the parameters of the blob_params structure, which contains the
information that is to be written to the key blob. The following code also checks that a key-generation
certificate was included in the reply. The NFKM_MakeBlobsParams flags blob_params.f must be the same
as the flags passed to NFKM_newkey_makeaclx() when the application created the private ACL.

mc = 0;

blob_params.kpriv = reply.reply.generatekey.key;

if(reply.reply.generatekey.flags & Cmd_GenerateKey_Reply_flags_cert_present)

mc = reply.reply.generatekey.cert;

if(cardset) {

blob_params.lt = ltid;

blob_params.cs = cardset;

}

blob_params.fips = fips140authhandle;

The parameters required for the NFKM_newkey_makeblobsx() are now populated, and the application is
ready to create the key blob. As this is a symmetric key type the application need only save a private
key blob.

Page 41 nCore - Developer Tutorial

3.4.3 Freeing memory

rc = NFKM_newkey_makeblobsx(app, conn, worldinfo, &blob_params, keyinfo, cctx);

if(rc) {

NFast_Perror("error calling NFKM_newkey_makeblobsx", rc);

goto cleanup;

}

if(mc) {

rc = NFKM_newkey_writecert(app, conn, moduleinfo, blob_params.kpriv, mc,

keyinfo, cctx);

if(rc) {

NFast_Perror("error calling NFKM_newkey_writecert", rc);

goto cleanup;

}

}

The keyinfo structure is now ready to be saved to disk.

rc = NFKM_recordkey(app, keyinfo, cctx);

if(rc) {

NFast_Perror("error calling NFKM_recordkey", rc);

goto cleanup;

}

rc = Status_OK;

3.4.3 Freeing memory

The final part of the key-generation process is the important step of unloading the key information in
the module.

NFastApp_FreeACL(app, cctx, 0, &command.args.generatekey.acl);

NFKM_cmd_destroy(app, conn, 0, reply.reply.generatekey.key,

"generatekey.key", cctx);

if(ltid) NFKM_cmd_destroy(app, conn, 0, ltid, "ltid", cctx);

If you are running your application in strict FIPS mode, NFKM_newkey_makeauth() creates a certificate
list, which also needs to be freed:

if(command.flags & Command_flags_certs_present)

NFastApp_Free_CertificateList(app, cctx, 0, command.certs);

NFastApp_Free_Reply(app, cctx, 0, &reply);

keyinfo->appname = 0;

keyinfo->ident = 0;

NFKM_freekey(app, keyinfo, cctx);

NFKM_freecardset(app, cardset, cctx);

This concludes the explanation of symmetric key-generation. The next section describes the process of
generating asymmetric keys.

nCore - Developer Tutorial Page 42

3 C tutorial

3.5 Generating an asymmetric key
This section describes the asymmetric key-generation process in detail. The process of generating a
symmetric key differs slightly from the process of generating an asymmetric key, so each is described
in a separate section. There is some repetition in the two sections.

This section does not explain how to use softcards to protect keys. Softcards can be listed with
NFKM_listsoftcards() and loaded with NFKM_loadsoftcard(). See the nCore API
documentation of nkfm.h for more information about using softcards.

The key-generation process is illustrated on The key-generation process on page 43.

Figure 8. The key-generation process

How generated asymmetric keys are stored in the programming environment architecture is shown on
Asymmetric key storage on page 44. See nCore architecture on page 26 for more information about
the programming environment architecture.

Page 43 nCore - Developer Tutorial

3.5.1 Obtaining authorization and selecting a module

Figure 9. Asymmetric key storage

The code in this section makes use of the following variables:

Variable Name Variable Type Description
acl_params NFKM_MakeACL_Params Used to construct ACLs

blob_params NFKM_MakeBlobs_Params Used when making blobs

keyinfo NFKM_Key Information about a key

moduleinfo NFKM_ModuleInfo The module to use

mc M_ModuleCert A certificate from a module

fips140authhandle NFKM_FIPS140AuthHandle FIPS authorization

ltid M_KeyID A loaded card set

cardset NFKM_CardSet Information about a card set

moduleid M_ModuleID The ID of a module

cardhash NFKM_CardSetIdent A hash of a card set

rc M_Status A command return code

command M_Command A command structure

reply M_Reply A command reply

3.5.1 Obtaining authorization and selecting a module

Keys are generated on a specific module and protected by some form of authorization. When a key is
generated the type of authorization that is required to use the key is defined, as well as the purposes

nCore - Developer Tutorial Page 44

3 C tutorial

for which the key is allowed to be used, for example, only for encryption and decryption, or only for
signing and verification.

3.5.1.1 Using card set protection

Proper authorization is required to generate a key. This example handles card set authorization. The
following code prompts the user to provide a card to protect the key that is to be generated. The card
set hash populates cardhash when the card-loader completes.

rc = RQCard_logic_ocs_anyone(rqcard, &cardhash,

"Insert a cardset to protect the new key");

if(rc) {

NFast_Perror("error calling RQCard_logic_ocs_anyone", rc);

goto cleanup;

}

3.5.1.2 Selecting a Security World module

Now that authorization has been obtained, prompt the user to select a module in the Security World
on which to generate the key. Alternatively you could use the RQCard_whichmodule_specific()

function to dictate which module to use or the NFKM_getusablemodule() function to use the first
available module.

The module ID and a key ID for the desired card set on that module are assigned to the moduleid and
ltid variables when the card-loader completes.

rc = RQCard_whichmodule_anyone(rqcard, &moduleid, <id);

if(rc) {

NFast_Perror("error calling RQCard_whichmodule_anyone", rc);

goto cleanup;

}

rc = rqcard->uf->eventloop(rqcard);

if(rc) {

NFast_Perror("error running card loader", rc);

goto cleanup;

}

The moduleid, id and ltid are now populated. The next step is to populate the moduleinfo variable for
the chosen module, and create a card set handle.

for(n = 0; n < worldinfo->n_modules; ++n)

if(worldinfo->modules[n]->module == moduleid)

break;

assert(n < worldinfo->n_modules);

moduleinfo = worldinfo->modules[n];

rc = NFKM_findcardset(app, &cardhash, &cardset, cctx);

if(rc) {

NFast_Perror("error calling NFKM_findcardset", rc);

goto cleanup;

}

Page 45 nCore - Developer Tutorial

3.5.2 Preparing the key-generation command and ACL

Up to now in this example the application has performed actions common to generating either
a symmetric key or an asymmetric key. The process from here on differs depending on which
key type is generated.

3.5.2 Preparing the key-generation command and ACL

Start by setting up some command parameters based on the information we have already gathered.

command.cmd = Cmd_GenerateKeyPair;

command.args.generatekeypair.params.type = keytype;

command.args.generatekeypair.flags = Cmd_GenerateKeyPair_Args_flags_Certify;

command.args.generatekeypair.module = moduleinfo->module;

Keys are stored with an ACL which defines which entities can perform operations with the key. The
next step is to populate the acl_params variable with the information needed to create the ACL that is
stored in the key blob along with the key we generate. The application sets the acl_params.f flags
parameter to enable key recovery, and specify the type of key protection to use. There are three
options:

l card set protection

l module protection

l pass phrase protection.

This following code demonstrates how to indicate that a key should be protected by a card set. In this
case the card set is the one selected earlier by the user in Selecting a Security World module on page
38.

acl_params.f = NFKM_NKF_RecoveryEnabled|protection;

acl_params.cs = cardset;

The make ACL blob flags (acl_params.f) must be same as the make blob flags (blob_params.f), so it is
set accordingly.

blob_params.f = acl_params.f;

The next step is to define in the ACL which operations the key is allowed to be used for. Firstly the
application defines the allowed uses for the private key ACL. The is_signing_only_keytype() function
is not an nCore function:

nCore - Developer Tutorial Page 46

3 C tutorial

if(is_signing_only_keytype(keytype))

acl_params.op_base = NFKM_DEFOPPERMS_SIGN;

else if(is_encryption_only_keytype(keytype))

acl_params.op_base = NFKM_DEFOPPERMS_DECRYPT;

else

acl_params.op_base = (NFKM_DEFOPPERMS_SIGN

|NFKM_DEFOPPERMS_DECRYPT);

The application is now ready to generate the private key ACL:

rc = NFKM_newkey_makeaclx(app, conn, worldinfo, &acl_params,

&command.args.generatekeypair.aclpriv, cctx);

For asymmetric keys the application also defines a public key ACL.

acl_params.f = NFKM_NKF_PublicKey;

if(is_signing_only_keytype(keytype))

acl_params.op_base = NFKM_DEFOPPERMS_VERIFY;

else if(is_encryption_only_keytype(keytype))

acl_params.op_base = NFKM_DEFOPPERMS_ENCRYPT;

else

acl_params.op_base = (NFKM_DEFOPPERMS_VERIFY

|NFKM_DEFOPPERMS_ENCRYPT);

The public key ACL is created in the same manner as the private key ACL:

rc = NFKM_newkey_makeaclx(app, conn, worldinfo, &acl_params,

&command.args.generatekeypair.aclpub, cctx);

The following code sets up further key generation command parameters. The parameters that are
required differ according to key type. For example, an application might use the following code when
generating a 1024 bit DSA key using strict key verification. For details of the parameters required for
the types of key you want to generate, see the relevant nCore API documentation.

command.args.generatekeypair.params.params.dsaprivate.flags =

KeyType_DSAPrivate_GenParams_flags_Strict;

command.args.generatekeypair.params.params.dsaprivate.lenbits = 1024;

Generating a key in a strict FIPS environment requires that an application obtains authorization (in this
case, card set authorization) before attempting to generate a key. It is possible that the card loader
has already obtained the necessary authorization from a prior card-loading operation. In this case, the
following call retrieves this authorization:

Page 47 nCore - Developer Tutorial

3.5.2 Preparing the key-generation command and ACL

rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fips140authhandle,

0);

If this call returns Status_RQCardMustContinue, an application must explicitly attempt to obtain the
correct authorization as follows:

rc = RQCard_fips_logic(rqcard);

if(rc) {

NFast_Perror("error calling RQCard_fips_logic", rc);

goto cleanup;

}

rc = RQCard_whichmodule_specific(rqcard, moduleinfo->module, 0);

if(rc) {

NFast_Perror("error calling RQCard_whichmodule_anyone", rc);

goto cleanup;

}

rc = rqcard->uf->eventloop(rqcard);

if(rc) {

NFast_Perror("error running card loader", rc);

goto cleanup;

}

rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fips140authhandle,

0);

Now that the application has obtained the necessary strict FIPS authorization (or cancelled the
operation if the correct authorization could not be obtained), it can use the authorization to authorize
the creation of the key.

rc = NFKM_newkey_makeauth(app, worldinfo, &command.flags, &command.certs,

fips140authhandle, cctx);

if(rc) {

NFast_Perror("error calling NFKM_newkey_makeauth", rc);

goto cleanup;

}

With or without FIPS authorization, the application has now obtained all the information necessary to
transact a key-generation operation, so is now ready to send the key-generation command to the
selected module. The reply is checked using the reply checking utility function mentioned at the
beginning of the chapter.

rc = NFastApp_Transact(conn, cctx, &command, &reply, 0);

rc = check_reply(rc, &reply, "error generating new key");

if(rc)

goto cleanup;

The application has now generated a new key, but as yet the key exists only in the module's memory.
Next, construct an NFKM_Key key information structure (keyinfo) and then save it to disk.

nCore - Developer Tutorial Page 48

3 C tutorial

keyinfo->v = 8;

keyinfo->appname = keyident.appname;

keyinfo->ident = keyident.ident;

time(&keyinfo->gentime);

The next step is to populate the parameters of the blob_params structure, which contains the
information that will be written to the key blob. The following code also checks that a key-generation
certificate was included in the reply. The NFKM_MakeBlobsParams flags blob_params.f must be the same
as the flags passed to NFKM_newkey_makeaclx() when the application created the private ACL.

mc = 0;

blob_params.kpriv = reply.reply.generatekeypair.keypriv;

blob_params.kpub = reply.reply.generatekeypair.keypub;

if(reply.reply.generatekeypair.flags & Cmd_GenerateKeyPair_Reply_flags_certpriv_present)

mc = reply.reply.generatekeypair.certpriv;

if(cardset) {

blob_params.lt = ltid;

blob_params.cs = cardset;

}

blob_params.fips = fips140authhandle;

The parameters required for the NFKM_newkey_makeblobsx() are now populated and the application can
now create the key blob.

rc = NFKM_newkey_makeblobsx(app, conn, worldinfo, &blob_params, keyinfo, cctx);

if(rc) {

NFast_Perror("error calling NFKM_newkey_makeblobsx", rc);

goto cleanup;

}

if(mc) {

rc = NFKM_newkey_writecert(app, conn, moduleinfo, blob_params.kpriv, mc,

keyinfo, cctx);

if(rc) {

NFast_Perror("error calling NFKM_newkey_writecert", rc);

goto cleanup;

}

}

The keyinfo structure is now ready to be saved to disk.

rc = NFKM_recordkey(app, keyinfo, cctx);

if(rc) {

NFast_Perror("error calling NFKM_recordkey", rc);

goto cleanup;

}

rc = Status_OK;

Page 49 nCore - Developer Tutorial

3.5.3 Freeing memory

3.5.3 Freeing memory

The final part of the key-generation process is the important step of freeing the memory used by the
application, so that no key information remains in memory, which would make the key vulnerable to
attackers.

NFastApp_FreeACL(app, cctx, 0, &command.args.generatekeypair.aclpriv);

NFastApp_FreeACL(app, cctx, 0, &command.args.generatekeypair.aclpub);

NFKM_cmd_destroy(app, conn, 0, reply.reply.generatekeypair.keypriv,

"generatekeypair.keypriv", cctx);

NFKM_cmd_destroy(app, conn, 0, reply.reply.generatekeypair.keypub,

"generatekeypair.keypub", cctx);

if(ltid) NFKM_cmd_destroy(app, conn, 0, ltid, "ltid", cctx);

If you are running your application in strict FIPS mode, NFKM_newkey_makeauth() will have created a
certificate list, which also needs to be freed:

if(command.flags & Command_flags_certs_present)

NFastApp_Free_CertificateList(app, cctx, 0, command.certs);

NFastApp_Free_Reply(app, cctx, 0, &reply);

keyinfo->appname = 0;

keyinfo->ident = 0;

NFKM_freekey(app, keyinfo, cctx);

NFKM_freecardset(app, cardset, cctx);

This concludes the explanation of asymmetric key-generation.

3.6 Using a key
Once a key has been generated on a module the encrypted key information, or key blob, is stored on
the hard disk of the application that requested it. For your application to use a key, you first need to
pass the information contained in the key blob to the hardserver, which will use a module to decrypt
the key and return a key handle to your application.

The process of loading a key is shown on Loading a key on page 51:

nCore - Developer Tutorial Page 50

3 C tutorial

Figure 10. Loading a key

3.6.1 Finding a key

To load a key, first locate the key blob. A key is identified by the name of the application that created it
and the key identifier. The following code tries to find an existing key blob of the requested type. If a
key of this type cannot be found, the code generates a new key.

The following code uses a function called generate_key() to generate a key if a key cannot be found.

rc = NFKM_findkey(app, keyident, &keyinfo, cctx);

if(rc) {

NFast_Perror("error calling NFKM_findkey", rc);

goto cleanup;

}

if(!keyinfo) {

rc = generate_key(app, conn, worldinfo, &rqcard, &rqcard_fips, opt_protect,

keyident, keytype, cctx);

if(rc)

goto cleanup;

rc = NFKM_findkey(app, keyident, &keyinfo, cctx);

if(rc) {

NFast_Perror("error calling NFKM_findkey", rc);

goto cleanup;

}

if(keyinfo == 0) {

fprintf(stderr,

"NFKM_findkey could not find key even after generating it.\n");

rc = -1;

goto cleanup;

}

}

Page 51 nCore - Developer Tutorial

3.6.2 Loading a key

3.6.2 Loading a key

Before a key can be loaded into a module, an application must obtain the appropriate authorization.
In this example the authorization required comes from a card in a card set, so the application must first
initialize the card-loading libraries:

if(keyinfo->flags & Key_flags_ProtectionCardSet) {

M_ModuleID moduleid;

int n;

rc = RQCard_logic_ocs_specific(&rqcard, &keyinfo->cardset,

"Load cardset");

if(rc) {

NFast_Perror("error calling RQCard_logic_ocs_specific", rc);

goto cleanup;

}

}

A Security World often contains multiple modules, many of which may have the key that is needed to
decrypt the key blob an application wants to load. For this example the user is prompted to choose a
module that contains the necessary key, and then prompted to provide the card that authorizes the use
of the key:

rc = RQCard_whichmodule_anyone(&rqcard, &moduleid, <id);

if(rc) {

NFast_Perror("error calling RQCard_whichmodule_anyone", rc);

goto cleanup;

}

rc = rqcard.uf->eventloop(&rqcard);

if(rc) {

NFast_Perror("error running card loader", rc);

goto cleanup;

}

It is also possible for an application to ask the Security World to nominate a usable module by using
the NFKM_getusablemodule() function:

rc = NFKM_getusablemodule(worldinfo, 0, &moduleinfo);

if(rc) {

NFast_Perror("error calling NFKM_getusablemodule", rc);

goto cleanup;

}

Now that the user has selected a module, an application can populate the moduleinfo variable, which
is later used as a parameter to the NFKM_cmd_loadblob() function.

for(n = 0; n < worldinfo->n_modules; ++n)

if(worldinfo->modules[n]->module == moduleid)

break;

assert(n < worldinfo->n_modules);

moduleinfo = worldinfo->modules[n];

nCore - Developer Tutorial Page 52

3 C tutorial

The application has now gathered all the information it needs to load the key onto a module using the
NFKM_cmd_loadblob() function. The next step is to prepare a pointer to the key that will be loaded into
the module. The following code loads the public key blob. An application can load the private key blob
in similar fashion using &keyinfo->privblob.

const M_ByteBlock *blobptr;

blobptr = &keyinfo->pubblob;

The following code attempts to load the key blob. NFKM_cmd_loadblob() fills in the command structure
and handles the reply. Assuming that the command executes successfully, you will now have a handle
on the key loaded onto the selected module.

It is possible to construct an M_Command structure by using Cmd_LoadBlob() directly instead.

rc = NFKM_cmd_loadblob(app,

conn,

moduleinfo->module,

blobptr,

ltid,

&keyid,

"loading key blob",

cctx);

if(rc) {

NFast_Perror("error calling NFKM_cmd_loadblob", rc);

goto cleanup;

}

3.7 Encrypting a file
This section demonstrates how to encrypt the contents of a text file by using a secure channel. For the
sake of simplicity, this example has no error handling.

First, generate an appropriate initialization vector:

iv.mech = Mech_RijndaelmCBCi128pPKCS5;

for (i=0; i<sizeof iv->generic128.iv.bytes; i++)

iv.iv->generic128.iv.bytes[i]=(unsigned char)((i*19) ^ iv.mech);

Next, open a channel to use to encrypt the file. The mechanism that the channel uses to encrypt the
file is specified when the channel is opened:

M_Command channel_open_command;

M_Reply channel_open_reply;

M_Status channel_open_rc;

channel_open_command.cmd = Cmd_ChannelOpen;

channel_open_command.args.channelopen.type = ChannelType_Any;

channel_open_command.args.channelopen.mode = ChannelMode_Encrypt;

channel_open_command.args.channelopen.mech = mech;

Page 53 nCore - Developer Tutorial

3.7 Encrypting a file

Some M_Command arguments are optional. In this example, the application specifies both the key to be
used to encrypt the file and the initialization vector and indicates which optional arguments have been
specified by setting the appropriate flags:

channel_open_command.args.channelopen.flags |= Cmd_ChannelOpen_Args_flags_key_present;

channel_open_command.args.channelopen.key = &keyid;

channel_open_command.args.channelopen.flags |= Cmd_ChannelOpen_Args_flags_given_iv_present;

channel_open_command.args.channelopen.given_iv = iv;

To open the channel, transact the M_Command in the usual way and then set the channel ID pointer idch:

channel_open_rc = NFastApp_Transact(conn, cctx, &channel_open_command, &channel_open_reply,

0);

idch = channel_open_reply.reply.channelopen.idch;

The next step is to load the input file (the file to be encrypted) into a file stream (inputstream) and
prepare the output file stream (outputstream) to which the encrypted file is going to be written.

inputstream = fopen("file_in.txt", "rb");

outputstream = fopen("file_out.txt", "wb");

Now that the application has opened the channel and prepared the input and output streams, start to
prepare an M_Command to process the inputstream through the channel.

M_Command channel_process_stream_command;

M_Reply channel_process_stream_reply;

M_Status channel_process_stream_rc;

int eof = 0;

unsigned char buffer[6144];

size_t bytes_read;

Next, read the bytes of the inputstream into a char buffer, updating the channel on each read.

nCore - Developer Tutorial Page 54

3 C tutorial

do {

bytes_read = fread(buffer, 1, sizeof buffer, inputstream);

if(ferror(inputstream)) {

fprintf(stderr, "error reading from %s: %s\n",

input_path, strerror(errno));

rc = -1;

goto cleanup;

}

if(feof(inputstream))

eof = 1;

command.cmd = Cmd_ChannelUpdate;

if(eof)

command.args.channelupdate.flags |= Cmd_ChannelUpdate_Args_flags_final;

command.args.channelupdate.idch = idch;

command.args.channelupdate.input.ptr = buffer;

command.args.channelupdate.input.len = (M_Word)bytes_read;

rc = NFastApp_Transact(conn, cctx, &command, &reply, 0);

rc = check_reply(rc, 0, "Cmd_ChannelUpdate");

if(rc)

goto cleanup;

if(reply.reply.channelupdate.output.len) {

if(outputstream) {

fwrite(reply.reply.channelupdate.output.ptr,

1, reply.reply.channelupdate.output.len,

outputstream);

/* Check for a write error */

if(ferror(outputstream)) {

fprintf(stderr, "error writing to %s: %s\n",

output_path, strerror(errno));

rc = -1;

NFastApp_Free_Reply(app, cctx, 0, &reply);

goto cleanup;

}

}

if(outputdstr) {

if(nf_dstr_putm(outputdstr, reply.reply.channelupdate.output.ptr,

reply.reply.channelupdate.output.len)) {

fprintf(stderr, "error writing to dstr: %s\n", strerror(errno));

rc = -1;

goto cleanup;

}

}

}

NFastApp_Free_Reply(app, cctx, 0, &reply);

memset(&reply, 0, sizeof reply);

} while(!eof);

If the file was successfully encrypted, save the file to disk:

Page 55 nCore - Developer Tutorial

3.8 Cleaning up resources

if(channel_process_stream_reply.reply.channelupdate.output.len) {

if(outputstream) {

fwrite(channel_process_stream_reply.reply.channelupdate.output.ptr,

1, channel_process_stream_reply.reply.channelupdate.output.len,

outputstream);

writefile(ciphertext_path,

reply->reply.encrypt.cipher.data.generic128.cipher.ptr,

reply->reply.encrypt.cipher.data.generic128.cipher.len);

}

}

The final step is to free memory and close the outputstream.

NFastApp_Free_Reply(app, cctx, 0, &reply);

memset(&reply, 0, sizeof reply);

fclose(outputstream);

3.8 Cleaning up resources
Memory leaks and objects left in memory constitute a security risk. The following code removes all
sensitive information from memory and cleanly shuts down the connection to the hardserver.

free(sigbytes.ptr);

if(keyid) NFKM_cmd_destroy(app, conn, 0, keyid, "keyid", cctx);

if(idch) NFKM_cmd_destroy(app, conn, 0, idch, "idch", cctx);

NFastApp_Free_Reply(app, cctx, 0, &reply);

if(rqcard_fips_initialized) RQCard_fips_free(&rqcard, &rqcard_fips);

if(rqcard_initialized) RQCard_destroy(&rqcard);

NFKM_freekey(app, keyinfo, cctx);

NFKM_freeinfo(app, &worldinfo, cctx);

if(conn) NFastApp_Disconnect(conn, cctx);

NFastApp_Finish(app, cctx);

if(inputstream) fclose(inputstream);

if(outputstream) fclose(outputstream);

nCore - Developer Tutorial Page 56

4 Java tutorial

4 Java tutorial
4.1 Overview
This overview section provides a description of how to achieve two fundamental nCore API
programming tasks: connecting to the hardserver and transacting a command. These two tasks are
common to almost all cryptographic applications. The rest of this chapter works through a simple
example of a basic cryptographic application.

All applications that require nCore functionality will first need to create a connection to a hardserver
running on a nShield module. The steps required to create a connection to a hardserver running on
nCipher hardware is illustrated on Connecting to the hardserver on page 57:

Figure 11. Connecting to the hardserver

Once connected to the hardserver, an application can send an M_Command to a module. The module
processes the command and then returns the results along with any relevant error and status codes.
The process of transacting a cryptographic operation with a module is illustrated on Transacting a
cryptographic operation on page 58.

nCore - Developer Tutorial Page 57

4 Java tutorial

Figure 12. Transacting a cryptographic operation

The M_Reply structure contains the results of the operation and an M_Status message that indicates the
outcome of the operation. If a problem is encountered, the M_Status value gives an indication of what
went wrong. The M_Reply contains the results of the command, for example, a key handle or the bytes
of an encrypted file.

4.1.1 Creating a softcard

This tutorial demonstrates how to protect a key using a softcard. Use the command line utility ppmk to
create a softcard in a manner similar to the following:

In a terminal window, type:

ppmk --new --non-recoverable WorkedExampleSoftcard

ppmk prompts you to provide a pass phrase. Type a pass phrase and press Enter.

ppmk prompts you to confirm the pass phrase you have entered. Type the pass phrase again to confirm
it, and press Enter.

4.1.2 nCore classes used in this tutorial

This tutorial describes some of the functionality in the following nCore classes. You may find it useful to
familiarize yourself with these classes by reading the API documentation, which can be found at nfast_
dir/java/docs/index.html.

4.1.2.1 com.ncipher.km.nfkm.*

Security World classes.

Page 58 nCore - Developer Tutorial

4.1.2.2 com.ncipher.km.marshall.*

4.1.2.2 com.ncipher.km.marshall.*

Marshals Security World objects.

4.1.2.3 com.ncipher.jutils.*

Various utility classes provided by nCipher.

4.1.2.4 com.ncipher.nfast.*

More utility classes.

4.1.2.5 com.ncipher.nfast.marshall.*

Classes which represent nCore commands and related data structures, and which can be used to

marshal and unmarshal them from the nShield byte stream format for transmission.

4.1.2.6 com.ncipher.nfast.connect.utils.*

Connection and Channel utility classes.

The code in this chapter also uses two connection utility classes, Channel and EasyConnection. The
source code for these examples can be found at nfast_install_directory\java\examples\connutils.

4.1.3 Variables used in this tutorial
The following table lists and describes the variables used in this tutorial. You may also find it useful to
view the API documentation of these classes.

Variable name Variable type Variable description
kid M_KeyID Public key ID

c EasyConnection Connection to the hardserver

wcb WorldCallbacks
Callback object which defines how
user interaction is handled

world SecurityWorld Security World object

appname String Application name

ident String Key identity

type String Key type

size int Key size in bytes

chanmech int
Cryptographic mechanism used by the
secure channel

chanop int Secure channel ID

iv M_IV Initialization vector

ch Channel Secure channel object

softcard SoftCard Softcard object

nCore - Developer Tutorial Page 59

4 Java tutorial

4.2 Before connecting to the hardserver
The WorldCallbacks class defines how the hardserver interacts with the user when obtaining
authorization to create or use a key. The WorldCallbacks class extends the DefaultCallBack class to
customize how the user will be prompted to enter a softcard pass phrase. An instance of this class is
used as a parameter when instantiating a SecurityWorld object. If you do not pass an instance of a
similar class the behavior defined in the DefaultCallBack class is used.

class WorldCallbacks extends DefaultCallBack {

public SoftCard configured_softcard = null;

public String reqPPCallBack(String ReqPPAction) throws NFException {

try {

return Passphrase.readPassphrase("Enter softcard pass phrase: ");

} catch(IOException e) {

throw new NFException(e.toString());

}

}

// Callback to choose a softcard

public SoftCard getSoftCardCallback() throws NFException {

return configured_softcard;

};

};

Before connecting to the hardserver, instantiate a WorldCallBacks object and a SecurityWorld object
as follows:

WorldCallbacks wcb = new WorldCallbacks();

SecurityWorld world = new SecurityWorld(null, wcb,

null,

true);

4.3 Connecting to the hardserver
The following code creates the connection to the hardserver using the EasyConnection utility class
constructor to wrap an NFConnection object:

c = new EasyConnection(world.getConnection());

4.4 Generating a key
The first step is to specify the parameters of a key that can be used to sign a file. In this case we
choose to generate a DSA key. We specify the key-generation parameters as follows:

Page 60 nCore - Developer Tutorial

4.4 Generating a key

appname = "simple";

ident = "worked-example-sign";

type = "DSA";

size = 1024;

chanmech = M_Mech.SHA1Hash;

sigmech = M_Mech.DSA;

iv = new M_IV();

chanop = M_ChannelMode.Sign;

Before attempting to generate a key, use the getKey() method of the SecurityWorld class to check if a
key with the given appname and ident already exists. The getKey() method returns null if it cannot find
the specified key.

Key k = world.getKey(appname, ident);

If getKey() returns null this example attempts to generate a key. If no softcard has been named to
protect this key, the key is protected using module protection.

if(k == null) {

if(softcard_name != "") {

k = generate_key(wcb, world, type, size,

NFKM_Key_flags.f_ProtectionPassPhrase,

softcard_name,

appname, ident);

} else {

k = generate_key(wcb, world, type, size,

NFKM_Key_flags.f_ProtectionModule,

null,

appname, ident);

}

}

generate_key() is a utility function written specifically for this example. generate_key() uses an
AppKeyGenerator object which is obtained by calling the getAppKeyGenerator() method of the
SecurityWorld object.

The AppKeyGenerator class requires a AppKeyGenProperty[] array which contains the parameters that
specify the key you want to generate. If a key cannot be generated using the specified parameters,
AppKeyGenerator throws an nfkmInvalidPropValuesException. You can call the check() method to test
whether the AppKeyGenProperty[] contains valid values. The properties themselves differ according to
your Security World configuration.

The generate_key method uses two utility functions written specifically for this tutorial,
setStringProperty() and setMenuProperty(), which are used to set the AppKeyGenProperty[] array.

The process of generating a key is demonstrated on Generating a key on page 62:

nCore - Developer Tutorial Page 61

4 Java tutorial

Figure 13. Generating a key

This tutorial does not cover details of ACL generation.

The parameters of the generate_key() function are:

Parameter name Parameter Type Parameter description

wcb WorldCallbacks
Callback class that defines user
interaction behavior.

world SecurityWorld
Contains information about the
Security World you are using.

type String
The type of key, for example,
AES, RSA, DSA.

len int
The length of the key you want
to generate, in bits.

protection int

The type of key protection to
be used. This can be any of the
flags defined in NFKM_Key_
flags

Page 62 nCore - Developer Tutorial

4.4 Generating a key

Parameter name Parameter Type Parameter description

prot_name String

The name of the softcard /
module / card that is used to
protect the key you want to
generate.

appname String

The name of the application
that is requesting that a key is
generated. The key name is
formed by a combination of the
appname and the ident.

ident String

An arbitrary string that
becomes part of the key name.
The key name is formed by a
combination of the appname and
the ident.

The first step is to obtain an AppKeyGenerator object from the SecurityWorld object:

AppKeyGenerator akg = world.getAppKeyGenerator(appname);

Next, as a safety measure we check that all the required key properties are supported by this
AppKeyGenerator object. In this example, the most likely reason that required key properties are not
supported is that no softcard which can be used to protect the key to be generated exists in the
Security World:

String[] properties = new String[] {

"ident",

"type",

"size",

"protect"

};

for (int i = 0; i < properties.length; i++) {

if (akg.getProperty(properties[i]) == null) {

System.out.println("Property " + properties[i] + " does not exist." +

"Does your security world contain a usable softcard?");

System.exit(0);

}

}

If all properties exist, populate the AppKeyGenProperty[] using the setStringProperty() and
setMenuProperty() functions. The protect property is set, dependent on how the key is to be
protected. This example expects the key to be softcard protected. Failing that the example defaults to
module protection. Card set protection is not supported in this example.

nCore - Developer Tutorial Page 63

4 Java tutorial

setStringProperty(akg, "ident", ident);

setMenuProperty(akg, "type", type);

setStringProperty(akg, "size", Integer.toString(len));

switch(protection) {

case NFKM_Key_flags.f_ProtectionModule:

setMenuProperty(akg, "protect", "module");

break;

case NFKM_Key_flags.f_ProtectionPassPhrase:

setMenuProperty(akg, "protect", "softcard");

SoftCard cards[] = world.getSoftCards();

wcb.configured_softcard = null;

for(int n = 0; n < cards.length; ++n) {

if(cards[n].getName().equals(prot_name)) {

wcb.configured_softcard = cards[n];

}

if(wcb.configured_softcard == null) {

throw new NoSuchSoftCard(prot_name);

break;

}

}

}

Before calling the generate() function of the AppKeyGenerator class to generate the key, it is good
practice to check that the values assigned to the properties are valid. If the properties are valid, call
the generate() function, which returns a reference to the newly created key:

InvalidPropValue badprops[] = akg.check();

if(badprops.length > 0) {

throw new BadKeyGenProperties(badprops);

}

return akg.generate(getUsableModule(world), null);

Finally, call the cancel() method to destroy key information that is resident in memory.

akg.cancel();

4.4.1 Methods used in generate_key()

The getUsableModule() method was written for the purposes of this example and simply cycles through
all the modules in the Security World until it finds one that is suitable:

public static Module getUsableModule(SecurityWorld world)

throws NFException {

Module modules[] = world.getModules();

for(int m = 0; m < modules.length; ++m)

if(modules[m].isUsable())

return modules[m];

throw new NoUsableModules();

}

Page 64 nCore - Developer Tutorial

4.5 Using a key

To select a specific module, use the getModule() function of the SecurityWorld class. The getModule()

function is overloaded to accept either a module number or a module Electronic Serial Number (ESN)
as a parameter.

The setStringProperty() method was written for the purposes of this example and sets a string
property.

public static void setStringProperty(AppKeyGenerator akg,

String propname,

String propvalue)

throws NFException {

PropValueString pvs = (PropValueString)akg.getProperty(propname).getValue();

pvs.value = propvalue;

}

The setMenuProperty() method was written for the purposes of this example and sets a menu property.

public static void setMenuProperty(AppKeyGenerator akg,

String propname,

String propvalue)

throws NFException {

PropValueMenu pvm = (PropValueMenu)akg.getProperty(propname).getValue();

MenuOption options[] = pvm.getOptions();

for(int i = 0; i < options.length; ++i)

if(options[i].getName().equals(propvalue)) {

pvm.value = i;

return;

}

}

throw new InvalidMenuItem(propvalue);

}

4.5 Using a key
Before using a key the key must be loaded onto a module. In this example we expect the key being
loaded to be softcard protected, or failing that, module protected.

Module module = getUsableModule(world);

SoftCard softcard = k.getSoftCard();

if(softcard != null) {

softcard.load(module, wcb);

kid = k.load(softcard, module);

} else {

kid = k.load(module);

}

4.6 Signing a file
Now that the key is loaded onto the module, open a secure channel to use to sign a text file.

nCore - Developer Tutorial Page 65

4 Java tutorial

Channel ch = c.openChannel(chanop, kid, chanmech, iv, true, true);

The openChannel() method of the EasyConnection class returns a subclassed Channel object. For this
example, the openChannel() function transacts an M_Cmd.ChannelOpen command and uses the M_Cmd_

Reply_ChannelOpen object returned in the reply to instantiate and then return a Channel.Sign object.

M_Cmd_Args_ChannelOpen args = new M_Cmd_Args_ChannelOpen(

new M_ModuleID(0), M_ChannelType.Simple, 0, how, mech);

if (!keyless) {

args.set_key(key);

}

if (!generateIV) {

args.set_given_iv(given_iv);

}

M_Reply rep = transactChecked(new M_Command(M_Cmd.ChannelOpen, 0,args));

M_Cmd_Reply_ChannelOpen corep = (M_Cmd_Reply_ChannelOpen) rep.reply;

if (0 != (corep.flags & corep.flags_new_iv)) {

given_iv.mech = corep.new_iv.mech;

given_iv.iv = corep.new_iv.iv;

}

return new Channel.Sign(mech, key, corep.new_iv, corep.idch, this);

Channel.Sign extends the abstract Channel class. The update() function reads the specified byte[] into
the channel. The updateFinal() method reads the specified byte array into the channel, but should
only be called when reading the final byte[] array that you want to process through the channel.

public static class Sign extends Channel {

public Sign(long mech, M_KeyID keyID, M_IV iv, M_KeyID channelID, EasyConnection parent) {

super(M_ChannelMode.Sign, mech, keyID, iv,channelID, parent);

}

public void update(byte[] input) throws MarshallTypeError,

CommandTooBig,

ClientException,

ConnectionClosed,

StatusNotOK {

super.update(input, false, false);

}

public byte[] updateFinal(byte[] input) throws MarshallTypeError,

CommandTooBig,

ClientException,

ConnectionClosed,

StatusNotOK {

return super.update(input, true, false);

}

}

Now that the signing channel is open, open the input file to be signed, and a FileOutputStream for
the signature.

Page 66 nCore - Developer Tutorial

4.6 Signing a file

FileInputStream input = null;

FileOutputStream output = null;

input = new FileInputStream(plaintext_path);

Finally, use the channel to read in the input file bytes:

byte inputbytes[] = new byte[4096];

int len = input.read(inputbytes);

while(len != -1) {

byte outputbytes[] = ch.update(arrayTruncate(inputbytes, len),

false,

false);

if(output != null)

output.write(outputbytes);

len = input.read(inputbytes);

}

}

byte outputbytes[] = ch.update(new byte[0],

true,

false);

The arrayTruncate() function was written specifically for this example, and ensures that the byte[]

used to update the channel is consistently chunked.

static byte[] arrayTruncate(byte[] in, int len) {

byte out[] = new byte[len];

for(int i = 0; i < len; ++i)

out[i] = in[i];

return out;

}

Next, create the hash and plaintext objects.

hash = new M_Hash(outputbytes);

plaintext = new M_PlainText(M_PlainTextType.Hash,

new M_PlainTextType_Data_Hash(hash));

Transact an M_Cmd.Sign operation to sign the hashed plaintext:

cmd = new M_Command(M_Cmd.Sign,

0,

new M_Cmd_Args_Sign(0,

kid,

sigmech,

plaintext));

try {

reply = c.transactChecked(cmd);

} catch (StatusNotOK sno) {

System.exit(0);

}

nCore - Developer Tutorial Page 67

4 Java tutorial

If the M_Cmd.Sign operation succeeded, marshal the signature to a stream of bytes, and saves the
bytes as a signature file:

signature = ((M_Cmd_Reply_Sign)reply.reply).sig;

MarshallContext mc = new MarshallContext();

signature.marshall(mc);

output = new FileOutputStream(signature_path);

output.write(mc.getBytes());

if(output != null) output.close();

4.7 Cleaning up resources
Finally, unload the keys in the module memory.

if(kid != null) c.destroy(kid);

if(pubkid != null) c.destroy(pubkid);

Page 68 nCore - Developer Tutorial

Appendix A Java examples

Appendix A Java examples
The example programs and source code described in this section are supplied on your Developer
installation media. Several of the utilities are not designed to be executed directly but are used by
other programs. For more information on these examples, see the in-line comments in the example
source code and the Javadocs installed in your nfast directory.

The Java example files for the Java examples can be found in subdirectories of:

l Windows: %NFAST_HOME%\java\

l Unix-based: /opt/nfast/java/

A.1 Java key management example utilities (kmjava)

A.1.1 AppKeyGen.java

This example utility demonstrates application key generation and import.

A.1.2 GenerateExport.java

This example utility generates an RSA Key and optionally exports the public key out of a module as
plain text.

It demonstrates the creation of an OCS.

A.1.3 KMJavaFloodTest.java

This example utility demonstrates the use of the mergeKeyIDs method in the Key class.

This method merges all the loaded private keyids into a single keyid that can be used in nCore API
calls when load-sharing is required.

A.1.4 NFKMInfo.java

Displays information about the Security World.

This example Java utility is analogous to its C version except that NFKMInfo.java does not return
information on world/module generation.

A.1.5 NVRamRTCUtil.java

This is an example program to demonstrate interacting with the NVRAM and RTC. The program allows
you to list all files in NVRAM, delete a file in NVRAM, delete all the files in NVRAM, display the
current time in the RTC and to set the RTC to the system clock.

nCore - Developer Tutorial Page 69

Appendix A Java examples

A.1.6 SimpleCrypt.java

This is a simple example that graphically encrypts and decrypts data with a Triple-DES (DES3) key from
the Security World. Cipher Block Chaining mode (CBC) and initialization vectors are selected
randomly. This information is prefixed to the cipher text.

SimpleCrypt.java only works with module protected Triple-DES (DES3) keys.

A.1.7 SlotPoller.java

This example utility polls all the available slots.

You can determine whether the state of the slot has changed by calling getIC() on the slot. This
method is more efficient than using update(). The module serial number, slot number, and insertion
count are displayed when a card is inserted or removed.

A.2 Java JCE/CSP example utilities (jcecsp)

A.2.1 AsymmetricEncryptionExample.java

This example generates an RSA key pair and an X509 public key specification. It performs encryption
and decryption of random plain text.

A.2.2 ECDHExample.java

This example utility demonstrates:

l creation of an ECDH key

l ECDH key agreement handshake

l Encryption / decryption of a message using AES.

A.2.3 JCEChanTest.java

This example measures the data rate achieved by different symmetric encryption and decryption
operations. You can use optional program arguments to change the cipher, key, data, and provider

parameters.

A.2.4 JCEFloodTest.java

This example utility does performance testing for RSA, DSA and ECDSA private key operations.

It demonstrates:

l RSA/DSA/ECDSA Key Pair generation

l RSA/DSA/ECDSA signing

l RSA encryption/decryption

l use of the kmjava classes to load a key to use with the nCipherKM JCE provider

l load-balancing using kmjava and KeyStore-loaded keys.

Page 70 nCore - Developer Tutorial

A.2.5 JCESigTest.java

A.2.5 JCESigTest.java

This example measures the data rate achieved by many threads simultaneously performing signing
and verifying operations. You can use optional program arguments to change the thread, key, data,
provider, and sampling parameters.

A.2.6 KeyLoadTimer.java

This example measures the time taken to get many keys from an nCipher.sworld key store. It also
demonstrates how to create, load and store key stores, as well as how to set and get key entries.

A.2.7 KeyStorageExample.java

This example creates a new KeyStore containing an AES key. It performs load-balanced encryption
and decryption of random plain text using a KeyStore loaded key.

A.2.8 NCipherLibraryInteropExample.java

This example loads an existing AES key from the Security World across all usable modules and
performs load-balanced encryption and decryption of random plain text.

A.2.9 PrepareSslExamples.java

This example creates a KeyStore containing the trusted certificates installed in the local host VM.

Running this example is a prerequisite for running the SslClientExample.java example. For more
information, see SslClientExample.java on page 71

A.2.10 PrepareSSLServerExamples.sh

This example creates a KeyStore.

Running this shell script (or the command line within it) is a prerequisite for running the
SslServerExample.java example. For more information, see SslServerExample.java on page 72.

A.2.11 SignaturesExample.java

This example generates an RSA key pair with which it performs signing and verification of random
plain text.

A.2.12 SslClientExample.java

Before building this example, the user will need to edit SslClientExample.java to insert an appropriate
https web site address in the two relevant places. When run, this example connects to the user-
specified secure web site over an encrypted SSL connection and dumps the index page to the console.

Before running this example, you must run PrepareSslExamples.java. For more information, see
PrepareSslExamples.java on page 71

nCore - Developer Tutorial Page 71

Appendix A Java examples

A.2.13 SslServerExample.java

This example creates a simple SSL Web server instance on the local host that can be accessed with a
Web browser.

Before running this example, you must run PrepareSslExamples.java. For more information, see
PrepareSslExamples.java on page 71

A.2.14 SymmetricEncryptionExample.java

This example generates symmetric keys and uses them to perform encryption and decryption of
random plain text with different cipher modes and padding types.

A.2.15 SignatureTest.java

This example utility demonstrates:

l generation of an RSA/DSA/ECDSA Key Pair

l export of the PublicKey using X509 encoding

l signing some random data

l decoding the PublicKey

l verification of the signature.

A.3 Java generic stub examples (nfjava)

The example utilities described in this section are directly analogous to their namesake C
example utilities supplied with the nShield C generic stub. The Java incarnations are shipped
as source code only.

A.3.1 BlobInfo.java

This example utility displays information in a blob. It demonstrates how to determine information about
the contents of a blob.

BlobInfo.java is analogous to the C Generic Stub call NFast_ExamineBlob.

A.3.2 Channel.java

This example utility is a function-based wrapper to symmetric bulk-encryption channels for use by
EasyConnection.java.

A.3.3 CheckMod.java

This example utility checks modulo-exponentiation operations against a test file.

A.3.4 CrypTest.java

This example utility is a test program for some module algorithms.

It demonstrates:

Page 72 nCore - Developer Tutorial

A.3.5 DesKat.java

l the use of EasyConnection

l symmetric cryptography and channels.

A.3.5 DesKat.java

This example utility is for DES known answer tests.

It demonstrates simple nCore key management usage.

A.3.6 DKTest.java

This example utility provides a simple demonstration of the use of DeriveKey.

A.3.7 EasyConnection.java

This example utility is a function-based interface to a subset of nCore.

A.3.8 Enquiry.java

This example utility displays enquiry information.

It demonstrates:

l simple nCore usage

l the enquiry command.

A.3.9 FloodTest.java

This example utility does performance testing for modexp code.

It demonstrates:

l simple bignum usage

l asynchronous command processing (NFastApp_Wait and NFastApp_Query).

A.3.10 GenCert.java

This example utility generates a certificate.

It demonstrates the use of the BuildCmdCert class.

A.3.11 InitUnit.java

This example utility initializes a module with a dummy HKNSO (like the C initunit utility).

A.3.12 NFEnum.java

This example utility is a helper class used by SigTest. It is an example extension to jnfopt for looking
up an nCore Enumeration class. It cannot be invoked by itself.

nCore - Developer Tutorial Page 73

Appendix A Java examples

A.3.13 Option.java

This file is part of jnfopt, the standard nShield java options parser.

It forms part of the jnfopt example library and cannot be invoked by itself. It is shipped as part of
jutils.jar because some nShield utilities rely on it.

A.3.14 ParseException.java

This file is part of jnfopt, the standard nShield java options parser.

It forms part of the jnfopt example library and cannot be invoked by itself. It is shipped as part of
jutils.jar because some nShield utilities rely on it.

A.3.15 Parser.java

This file is part of jnfopt, the standard nShield java options parser.

It forms part of the jnfopt example library and cannot be invoked by itself. It is shipped as part of
jutils.jar because some nShield utilities rely on it.

A.3.16 Reference.java

This file is part of jnfopt, the standard nShield java options parser.

It forms part of the jnfopt example library and cannot be invoked by itself. It is shipped as part of
jutils.jar because some nShield utilities rely on it.

A.3.17 ReportVersion.java

This example utility reports the embedded version information from the current nfjava component.
ReportVersion.java outputs the version of the nfjava library found on the class path.

These examples are not intended to be invoked directly. They are called by other programs. The
following two utilities, EasyConnection and Channel, form a Java analog of the nCore simple command
functions as shipped to C developers in libexamples.a. You can compare and contrast this example
with the C example simplecmd.h.

You cannot invoke EasyConnection and Channel directly; CrypTest invokes them. For more information,
see the Javadoc documentation.

A.3.18 ScoreKeeper.java

This example utility is shared code used by SigTest and FloodTest and cannot be invoked on its own.
It has helper classes for output reporting by SigTest and FloodTest.

A.3.19 SigTest.java

This example utility does signature performance testing.

It demonstrates asynchronous command processing (NFastApp_Wait and NFastApp_Query).

Page 74 nCore - Developer Tutorial

A.3.19 SigTest.java

Java is not a high-performance language. On slow host systems or systems with multiple
modules, it is very common to be limited by the CPU of the host machine. As a result, this
example often does not show the true performance capabilities of the module. If you want to
test module performance, as distinct from application performance, use the C version of
SigTest instead.

nCore - Developer Tutorial Page 75

Appendix B Key structures

Appendix B Key structures
This chapter describes the data structures used by the nCipher module to represent keys and their ACLs.
It includes information about:

l mechanisms which are the combination of algorithm, padding, and mode that are used to transform
plain text into cipher text or cipher text into plain text.

l plain texts which are the messages being processed. This chapter lists the plain text formats that are
supported by the nCipher module.

l keys which are the secret and public values used in an algorithm. The section of this chapter about
keys describes:

l the format for each key type

l the mechanisms supported for that key type

l the parameters required to generate a key or key pair of this type.
l hash functions which return a fixed-length string from arbitrary-length input. Hash functions can be

used to identify a document without revealing its contents.

l Access Control Lists (ACLs) which describe the actions that can be performed with a specific key.
This chapter describes the format of an ACL.

l certificates which are used to authorize actions on keys.

B.1 Mechanisms
A mechanism is a combination of padding, algorithm, mode, and so forth, which, together with a key,
transforms a plaintext into a ciphertext (or a ciphertext into a plaintext).

Figure 14. Mechanisms

Each mechanism has a single ciphertext format represented by M_CipherText, a tagged union type for
which the tag is an M_Mech. A mechanism may accept or generate various different plain text formats.
The details of the padding and other processing may vary depending on the plain text format supplied
or requested.

nCore - Developer Tutorial Page 76

Appendix B Key structures

Mechanisms with similar forms share the same member name in this union. For example, the
64-bit block ciphers all use Mech_Generic64 .

union M_Mech__Cipher {

M_Mech_SHA384Hash_Cipher sha384hash;

M_Mech_DSA_Cipher dsa;

M_Mech_TLSFinishedMsg_Cipher tlsfinishedmsg;

M_Mech_SHA256Hash_Cipher sha256hash;

M_Mech_DLIESe3DEShSHA1_Cipher dliese3deshsha1;

M_Mech_TigerHash_Cipher tigerhash;

M_Mech_DHKeyExchange_Cipher dhkeyexchange;

M_Mech_HAS160Hash_Cipher has160hash;

M_Mech_ECDHKeyExchange_Cipher ecdhkeyexchange;

M_Mech_SSL3FinishedMsg_Cipher ssl3finishedmsg;

M_Mech_RSApPKCS1_Cipher rsappkcs1;

M_Mech_Imech_Cipher imech;

M_Mech_ArcFourpNONE_Cipher arcfourpnone;

M_Mech_Generic256MAC_Cipher generic256mac;

M_Mech_ElGamal_Cipher elgamal;

M_Mech_RSApPKCS1pPKCS11_Cipher rsappkcs1ppkcs11;

M_Mech_BlobCrypt_Cipher blobcrypt;

M_Mech_Generic128_Cipher generic128;

M_Mech_Generic192MAC_Cipher generic192mac;

M_Mech_ECDSA_Cipher ecdsa;

M_Mech_Generic64_Cipher generic64;

M_Mech_SHA512Hash_Cipher sha512hash;

M_Mech_SHA224Hash_Cipher sha224hash;

M_Mech_Generic256_Cipher generic256;

M_Mech_SSLRecordLayer_Cipher sslrecordlayer;

M_Mech_Generic192_Cipher generic192;

M_Mech_KCDSAHAS160_Cipher kcdsahas160;

M_Mech_Generic64MAC_Cipher generic64mac;

M_Mech_GenericGCM128_Cipher genericgcm128;

M_Mech_RIPEMD160Hash_Cipher ripemd160hash;

M_Mech_Generic128MAC_Cipher generic128mac;

M_Mech_MD5Hash_Cipher md5hash;

M_Mech_SHA1Hash_Cipher sha1hash;

};

B.1.1 Mech_Any
Instead of explicitly specifying a mechanism, you can let the module select the mechanism by
specifying Mech_Any . The nCipher module selects the mechanism as follows:

l for decryption or signature verification, the module uses the mechanism that is defined in the
cipher text

l for encryption or signature generation, the module selects an appropriate mechanism based on the
key type and the operation as listed in the following table.

Page 77 nCore - Developer Tutorial

B.2 Key Types

Key Type Encryption mechanism Signing mechanism

RSAPublic

Mech_RSApPKCS1OAEP, Mech_
RSApPKCS1OAEPhSHA224, Mech_
RSApPKCS1OAEPhSHA256, Mech_
RSApPKCS1OAEPhSHA384 or Mech_
RSApPKCS1OAEPhSHA512 chosen based
on size of key.

RSAPrivate

Mech_RSAhSHA1pPSS, Mech_
RSAhSHA224pPSS, Mech_
RSAhSHA256pPSS, Mech_
RSAhSHA384pPSS or Mech_
RSAhSHA512pPSS chosen based on
size of key.

DHPublic Mech_ElGamal

DSAPrivate

Mech_DSA, Mech_DSAhSHA224, Mech_
DSAhSHA256, Mech_DSAhSHA384, or
Mech_DSAhSHA512 chosen based on
size of key.

ECDSAPrivate

Mech_ECDSA, Mech_ECDSAhSHA224,
Mech_ECDSAhSHA256, Mech_
ECDSAhSHA384, or Mech_
ECDSAhSHA512 chosen based on
size of key.

DES (not available
in strict FIPS
operational mode)

Mech_DESmCBCi64pPKCS5 Mech_DESmCBCMACi0pPKCS5

DES2 Mech_DES2mCBCi64pPKCS5 Mech_DES2mCBCMACi0pPKCS5

DES3 Mech_DES3mCBCi64pPKCS5 Mech_DES3mCBCMACi0pPKCS5

CAST Mech_CASTmCBCi64pPKCS5 Mech_CASTmCBCMACi0pPKCS5

CAST256 Mech_CAST256mCBCi128pPKCS5 Mech_CAST256mCBCMACi0pPKCS5

ArcFour Mech_ArcFourpNone

Rijndael Mech_RijndaelmCBCi128pPKCS5 Mech_RijndaelmCBCMACi0pPKCS5

Blowfish Mech_BlowfishmCBCi64pPKCS5 Mech_BlowfishmCBCMACi0pPKCS5

Twofish Mech_TwofishmCBCi128pPKCS5 Mech_TwofishmCBCMACi0pPKCS5

Serpent Mech_SerpentmCBCi128pPKCS5 Mech_SerpentmCBCMACi0pPKCS5

B.2 Key Types
The following sections list the keys types for the different algorithms and mechanisms that are
supported by the nCipher module. The table below shows which mechanisms are supported by
which key types.

nCore - Developer Tutorial Page 78

Appendix B Key structures

Key type Block size Encrypt Decrypt Sign Verify
ArcFour N/A Y Y - -

Blowfish 64

Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

CAST 64

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

Cast256 128

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

DES 64

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

DES2 64

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

Triple DES 64

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

SEED 128

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

Serpent 128

CBC Y Y - -

CBC MAC - - Y Y

Page 79 nCore - Developer Tutorial

B.2 Key Types

Key type Block size Encrypt Decrypt Sign Verify

ECB Y Y - -

SSLMasterSecret

RecordLayer Y Y - -

FinishedMessage - - Y Y

Rijndael 128

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

GCM Y Y - -

Twofish 128

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

Diffie-Hellman N/A

Key Exchange - Y - -

ElGamal Y Y - -

DSA N/A - - Y Y

ECDSA N/A - - Y Y

ECDH N/A

Key Exchange - Y - -

KCDSA - - Y Y

RSA N/A - - Y Y

HMAC N/A

HMACMD2 - - Y Y

HMACMD5 - - Y Y

HMACSHA-1 - - Y Y

HMACRIPEMD160 - - Y Y

HMACSHA224 - - Y Y

HMACSHA256 - - Y Y

HMACSHA384 - - Y Y

HMACSHA512 - - Y Y

HMACTiger - - Y Y

Random N/A

nCore - Developer Tutorial Page 80

Appendix B Key structures

Key type Block size Encrypt Decrypt Sign Verify
Template N/A - - - -

Wrapped N/A - - - -

For each key type, the tables below list:

l the data that is stored in the key (separately for public and private halves of key pairs)

l the parameters required to generate the key (or key pair):

typedef struct {

 M_KeyType type;

 union M_KeyType__Data data;

} M_PlainText ;

 typedef struct {

 M_KeyType type;

 union M_KeyType__GenParams params;

} M_KeyGenParams;

Key types with similar forms for key data or generation parameters share the same member
name in these unions. For example, keys whose data is a single block of random bytes (CAST,
ArcFour, Random, HMACMD2, HMACMD5, HMACRIPEMD160, and Wrapped) all use the
Random members of these unions.

B.2.1 Random

B.2.1.1 Key data

typedef struct {

 M_ByteBlock k data

} M_KeyType_Random_Data;

B.2.1.2 Key generation parameters

typedef struct {

 M_Word lenbytes; length in bytes

} M_KeyType_Random_GenParams;

B.2.1.3 Notes

The FIPS 46-3 validation requires DES keys to have valid parity bits for which bit 0 of each byte is set
to give odd parity. If you attempt to import a Triple DES key that does not have the parity set correctly,
the module returns Status_InvalidData.

Page 81 nCore - Developer Tutorial

B.2.2 ArcFour

B.2.2 ArcFour

This key type is a symmetric algorithm that is compatible with Ron Rivest’s RC4 cipher. It uses the key
data M_KeyType_Random_Data.

B.2.2.1 Key data

struct M_Mech_ArcFourpNONE_Cipher {

M_ByteBlock cipher; 192-bit key

};

B.2.2.2 Key generation parameters

typedef struct {

M_Word lenbytes; length in bytes

} M_KeyType_Random_GenParams;

B.2.2.3 Mechanisms

Mech_ArcFourpNONE

The cipher text is a byte block. This mechanism has no IV.

B.2.3 Blowfish

Blowfish uses the key data M_KeyType_Random_Data. The key data length must be at least one byte. The
maximum permitted key data length is 56 bytes. Recommended key lengths are 16, 24, 32 and 56
bytes.

B.2.3.1 Key data

typedef struct {

 M_ByteBlock k; data

} M_KeyType_Random_Data;

B.2.3.2 Key generation parameters

typedef struct {

 M_Word lenbytes; length in bytes

} M_KeyType_Random_GenParams;

nCore - Developer Tutorial Page 82

Appendix B Key structures

B.2.3.3 Mechanisms

Mech_BlowfishmECBpNONE ECB

Mech_BlowfishmCBCpNONE CBC

Mech_BlowfishmCBCi64PKCS5 CBC

Mech_BlowfishmCBCMACi64PKCS5 CBC MAC see note

Mech_BlowfishmECBpPKCS5 ECB

Mech_BlowfishmCBCMACi0PKCS5 CBC MAC

The mechanism Mech_BlowfishmCBCMACi64PKCS5 is deprecated and may be withdrawn in future
firmware.

B.2.4 CAST

This key type uses the key data M_KeyType_Random_Data, with a key length from 5 to 16 bytes as
specified in RFC2144.

B.2.4.1 Mechanisms

Mech_CASTmCBCi64pPKCS5 CBC

Mech_CASTmCBCMACi64pPKCS5 see note

Mech_CASTmECBpPKCS5 ECB

Mech_CASTmCBCMACi0pPKCS5 CBC MAC

The mechanism Mech_CASTmCBCMACi64pPKCS5 is deprecated and may be withdrawn in future
firmware.

The cipher text and initialization vectors are the same as for the equivalent DES mechanisms.

B.2.5 CAST256

This uses the same key generation parameters and data as KeyType_Random, and allows key lengths of
16, 20, 24, 28 or 32 bytes as specified in RFC2612.

B.2.5.1 Mechanisms

Mech_CAST256mCBCi128pPKCS5 CBC with PKCS #5 padding

Mech_CAST256mECBpPKCS5 ECB with PKCS #5 padding

Mech_CAST256mCBCpNONE CBC with no padding

Mech_CAST256mECBpNONE ECB with no padding

Mech_CAST256mCBCMACi128pPKCS5 see note

Mech_CAST256mCBCMACi0pPKCS5 CBC MAC

Page 83 nCore - Developer Tutorial

B.2.6 DES

The mechanism Mech_CAST256mCBCMACi128pPKCS5 is deprecated and may be withdrawn in future
versions.

B.2.6 DES

The implementation of DES that is used in the nCipher module has been validated by NIST
as conforming to FIPS 46-2 and FIPS 81, certificate number 24.

B.2.6.1 Key data

typedef struct {

 M_DESKey k; 64 bit key

} M_KeyType_DES_Data;

typedef union {

 unsigned char bytes[8];

 M_Word words[2];

} M_DESKey;

56 bits plus 8 parity bits

B.2.6.2 Key generation parameters

typedef struct {

 M_Word lenbytes; length in bytes

} M_KeyType_Random_GenParams;

B.2.6.3 Notes

The FIPS 46-2 validation requires DES keys to have valid parity bits for which bit 0 of each byte is set
to give odd parity. If you attempt to import a DES key that does not have the parity set correctly, the
module will return Status_InvalidData .

B.2.6.4 Mechanisms

Mech_DESmCBCpNONE CBC no padding

Mech_DESmCBCi64pPKCS5 CBC with PKCS5 padding

Mech_DESmCBCMACi64pPKCS5 see note

Mech_DESmECBpNONE ECB no padding

Mech_DESmECBpPKCS5 ECB with PKCS5 padding

Mech_DESmCBCMACi0pPKCS5 CBC MAC with PKCS5 padding

Mech_DESmCBCMACi0pNONE CBC MAC with no padding

nCore - Developer Tutorial Page 84

Appendix B Key structures

PKCS5 padding is 1 to 8 bytes, valued 1 to 8

The mechanism Mech_DESmCBCMACi64pPKCS5 is deprecated and may be withdrawn in future
versions.

B.2.6.5 CBC

B.2.6.5.1 Cipher text

typedef struct {

 M_ByteBlock cipher;

} M_Mech_Generic64_Cipher;

B.2.6.5.2 IV

typedef struct {

 M_Block64 iv;

} M_Mech_Generic64_IV;

B.2.6.6 CBC MAC

B.2.6.6.1 Cipher text

typedef struct {

 M_Block64 mac;

} M_Mech_Generic64MAC_Cipher;

The DESmCBCMACi0pPKCS5 mechanism uses an IV of all zero bytes. This replaces the
DESmCBCMACi64pPKCS5 mechanism, which required the IV to be passed in. This mechanism is
deprecated: if an attacker is able to manipulate this data he is able to forge a message. For
this reason, if you use -i64 mechanisms you must ensure the IV data is fixed.

B.2.7 DES2

The implementation of DES used in the nCipher module has been validated by NIST
as conforming to FIPS 46-3 certificate numbers 24 and 173.

B.2.7.1 Key data

typedef struct {

 M_DES2Key k; 128 bit key

} M_KeyType_DES2_Data;

Page 85 nCore - Developer Tutorial

B.2.7.2 Key generation parameters

typedef union {

 unsigned char bytes[16];

 M_Word words[4];

} M_DESKey;

112 bit plus 16 parity bits.

B.2.7.2 Key generation parameters

There are no key generation parameters.

B.2.7.3 Notes

The FIPS 46-2 validation requires DES2 keys to have valid parity bits for which bit 0 of each byte is set
to give odd parity. If you attempt to import a DES2 key that does not have the parity set correctly, the
module will return Status_InvalidData.

B.2.7.4 Mechanisms

Mech_DES2mCBCpNONE CBC no padding

Mech_DES2mCBCi64pPKCS5 CBC with PKCS5 padding

Mech_DES2mCBCMACi64pPKCS5 see note

Mech_DES2mECBpNONE ECB no padding

Mech_DES2mECBpPKCS5 ECB with PKCS5 padding

Mech_DES2mCBCMACi0pPKCS5 CBCMAC with PKCS5 padding

Mech_DES2mCBCMACi0pNONE CBC MAC with no padding

The mechanism Mech_DES2mCBCMACi64pPKCS5 is deprecated and may be withdrawn in future
versions.

B.2.7.5 CBC

B.2.7.5.1 Cipher text

typedef struct {

 M_ByteBlock cipher;

} M_Mech_Generic64_Cipher;

B.2.7.5.2 IV

typedef struct {

 M_Block64 iv;

} M_Mech_Generic64_IV;

nCore - Developer Tutorial Page 86

Appendix B Key structures

B.2.8 Triple DES

The implementation of DES used in the nCipher module has been validated by NIST
as conforming to FIPS 46-3 certificate numbers 24 and 173.

B.2.8.1 Key data

typedef struct {

 M_DES3Key k 192 bit key

} M_KeyType_DES3_Data;

typedef union {

unsigned char bytes[24];

 M_Word words[6];

} M_DES3Key;

The key is 3 ×(56+8) bits. nShield performs Triple DES as encrypt, decrypt, and encrypt (using
separate keys for each stage).

B.2.8.2 Key generation parameters

There are no key generation parameters.

B.2.8.3 Mechanisms

Mech_DES3mCBCi64pPKCS5 CBC with PKCS #5 padding

Mech_DES3mCBCMACi64pPKCS5 see note

Mech_DES3mCBCpNONE CBC with no padding

Mech_DES3mECBpNONE ECB with no padding

Mech_DES3mECBpPKCS5 ECB with PKCS #5 padding

Mech_DES3mCBCMACi0pPKCS5 CBCMAC with PKCS #5 padding

Mech_DES3mCBCMACi0pNONE CBC MAC with no padding

The mechanism Mech_DES3mCBCMACi64pPKCS5 is deprecated and may be withdrawn in future
versions.

The cipher text and initialization vectors are the same as for the equivalent DES mechanisms.

nShield uses outer CBC.

Page 87 nCore - Developer Tutorial

B.2.9 Rijndael

B.2.9 Rijndael

Rijndael is now FIPS approved as the AES. The nCipher implementation has been validated
by NIST as conforming to FIPS 197, certificate number 15.

This key type uses the key data M_KeyType_Random_Data.

B.2.9.1 Mechanisms

Mech_RijndaelmCBCpNONE CBC

Mech_RijndaelmCBCi128pPKCS5 CBC with PKCS5 padding

Mech_RijndaelmCBCMACi128pPKCS5 see note

Mech_RijndaelmECBpNONE ECB

Mech_RijndaelmECBpPKCS5 ECB with PKCS5 padding

Mech_RijndaelmCBCMACi128pPKCS5 CBC MAC with PKCS5 padding

Mech_RijndaelmCBCMACi128pNone CBC MAC with no padding

Mech_RijndaelmGCM GCM

The mechanism Mech_RijndaelmCBCMACi128pPKCS5 is deprecated and may be withdrawn in
future versions.

These mechanisms use the Generic128 cipher text and initialization vectors, except Mech_
RijndaelmGCM which uses GenericGCM128.

B.2.9.2 Key generation

Rijndael keys use the same key generation parameters and data format as the Random key type. They
must be either 128, 192, or 256 bits (that is, 16, 24 or 32 bytes long).

B.2.10 SEED

The SEED algorithm was developed by KISA (Korea Information Security Agency) and a group of
experts. SEED is a Korean national industrial association standard (TTA KO-12.0004, 1999) and was
set as a Korean Information Communication Standard (KICS) in the year 2000. This standard is
promoted by the Korean Ministry of Information and Communication.

SEED has been optimized for the security systems most widely used in Korea, in particular the S-boxes
and configurations associated with current computing technology.

If you wish to use the SEED algorithm, you must order and enable it as part of the
nCipher KISAAlgorithms feature, as described in the User Guide.

nCore - Developer Tutorial Page 88

Appendix B Key structures

B.2.10.1 Key data

typedef struct {

M_ByteBlock k; fixed-length 128-bit key

} M_KeyType_SEED;

B.2.10.2 Key generation parameters

typedef struct {

M_Word lenbytes; must be 16 bytes

} M_KeyType_SEED_GenParams;

B.2.10.3 Mechanisms

Mech_SEEDmECBpNONE ECB with no padding

Mech_SEEDmECBpPKCS5 ECB with PKCS #5 padding

Mech_SEEDmCBCpNONE CBC with no padding

Mech_SEEDmCBCi128pPKCS5 CBC with PKCS #5 padding

Mech_SEEDmCBCMACi128pPKCS5 see note

Mech_SEEDmCBCMACi0pPKCS5 CBCMAC

The mechanism Mech_SEEDmCBCMACi128pPKCS5 is deprecated and may be withdrawn in future
versions.

B.2.11 Serpent

Serpent uses the key data M_KeyType_Random_Data. The maximum permitted key data length is 32
bytes. Recommended key lengths are 16, 24 and 32 bytes.

A change was made to the interpretation of the Serpent algorithm specification regarding byte
ordering, which occurred between versions 2.12.x and earlier, and 2.18.x and later, of
module firmware. Thus, later versions of firmware are incompatible with earlier versions when
using Serpent mechanisms.

B.2.11.1 Key data

typedef struct {

M_ByteBlock k; data

} M_KeyType_Random_Data;

Page 89 nCore - Developer Tutorial

B.2.11.2 Key generation parameters

B.2.11.2 Key generation parameters

typedef struct {

M_Word lenbytes; length in bytes

} M_KeyType_Random_GenParams;

B.2.11.3 Mechanisms

Mech_SerpentmECBpNONE ECB with no padding

Mech_SerpentmCBCpNONE CBC with no padding

Mech_SerpentmCBCi128PKCS5 CBC with PKCS #5 padding

Mech_SerpentmCBCMACi128PKCS5 see note

Mech_SerpentmECBpPKCS5 ECB with PKCS #5 padding

Mech_SerpentmCBCMACi0PKCS5 CBCMAC

The mechanism Mech_SerpentmCBCMACi128PKCS5 is deprecated and may be withdrawn in future
versions.

B.2.12 SSLMasterSecret

An SSL Master Secret is used to encrypt messages using the SSL and TLS protocols. nCipher supply

a SEE library CodeSafe SSL that supports a complete SSL stack within SEE.

B.2.12.1 Key data

typedef union M_SSLMasterSecret {

unsigned char bytes[48];

M_Word words[12];

} M_SSLMasterSecret;

B.2.12.2 Key generation parameters

This key type cannot be generated. It can only be derived using DeriveKey with one of the
mechanisms DeriveMech_SSL3withDH, DeriveMech_SSL3withRSA, DeriveMech_TLSwithDH, DeriveMech_
TLSwithRSA.

B.2.12.3 Mechanisms

Mech_SSLRecordLayer see note 1

Mech_SSL3FinishedMsg see note 2

Mech_TLSFinishedMsg see note 3

nCore - Developer Tutorial Page 90

Appendix B Key structures

1. Encrypting with Mech_SSLRecordLayer requires the following IV:

struct M_Mech_SSLRecordLayer_IV {

M_Mech_SSLRecordLayer_IV_flags flags;

SSLClientRandom crnd; 32-byte Client Random field

M_SSLServerRandom srnd; The 32-byte Server Random field.

M_SSLCipherSuite algs; The SSL cipher suite to use

};

The following flag is defined:

Mech_SSLRecordLayer_IV_flags_IsClient

Set this flag if the module is acting as the SSL client.

The module supports the following cipher suites:

l SSLCipherSuite_SSL3_NULL_MD5

l SSLCipherSuite_SSL3_NULL_SHA

l SSLCipherSuite_SSL3_RC4_40_MD5

l SSLCipherSuite_SSL3_RC4_128_MD5

l SSLCipherSuite_SSL3_RC4_128_SHA

l SSLCipherSuite_SSL3_DES_40_SHA

l SSLCipherSuite_SSL3_DES_SHA

l SSLCipherSuite_SSL3_DES3_SHA

l SSLCipherSuite_TLS_NULL_MD5

l SSLCipherSuite_TLS_NULL_SHA

l SSLCipherSuite_TLS_RC4_40_MD5

l SSLCipherSuite_TLS_RC4_128_MD5

l SSLCipherSuite_TLS_RC4_128_SHA

l SSLCipherSuite_TLS_DES_40_SHA

l SSLCipherSuite_TLS_DES_SHA

l SSLCipherSuite_TLS_DES3_SHA

l SSLCipherSuite_TLS_AES_128_SHA

l SSLCipherSuite_TLS_AES_256_SHA

Page 91 nCore - Developer Tutorial

B.2.13 Twofish

2. Used to sign or verify a SSL message. The mechanism uses the following ciphertext:

struct M_Mech_SSL3FinishedMsg_Cipher {

M_Hash16 md5hash;

M_Hash20 sha1hash;

};

Used to sign or verify a TLS message. The mechanism uses the following ciphertext:

struct M_Mech_TLSFinishedMsg_Cipher {

M_Hash12 msg;

};

B.2.13 Twofish

Twofish uses the key data M_KeyType_Random_Data. The maximum permitted key data length is 32
bytes. Recommended key lengths are 16, 24 and 32 bytes.

B.2.13.1 Key data

typedef struct {

 M_ByteBlock k data

} M_KeyType_Random_Data;

B.2.13.2 Key generation parameters

typedef struct {

 M_Word lenbytes; length in bytes

} M_KeyType_Random_GenParams;

B.2.13.3 Mechanisms

Mech_TwofishmECBpNONE ECB with no padding

Mech_TwofishmCBCpNONE CBC with no padding

Mech_TwofishmCBCi128PKCS5 CBC with PKCS #5 padding

Mech_TwofishmCBCMACi128PKCS5 see note

Mech_TwofishmECBpPKCS5 ECB with PKCS #5 padding

Mech_TwofishmCBCMACi0PKCS5 CBCMAC

The mechanism Mech_TwofishmCBCMACi128PKCS5 is deprecated and may be withdrawn in future
versions.

nCore - Developer Tutorial Page 92

Appendix B Key structures

B.2.14 Diffie-Hellman and ElGamal

Diffie-Hellman key exchange shares a common key type with ElGamal encryption and decryption.

B.2.14.1 Private key

typedef struct {

 M_DiscreteLogGroup dlg;

 M_Bignum x;

} M_KeyType_DHPrivate_Data

M_DiscreteLogGroup is a discrete log group that may be shared between users.

B.2.14.2 Public key

typedef struct {

 M_DiscreteLogGroup dlg;

 M_Bignum gx;

} M_KeyType_DHPublic_Data

M_DiscreteLogGroup is a discrete log group that may be shared between users.

B.2.14.3 Key generation parameters

typedef struct {

 M_Word flags;

 M_Word plength;

 M_Word xlength;

 M_DiscreteLogGroup *dlg;

} M_KeyType_DHPrivate_GenParams;

l The following flags are defined:

l KeyType_DHPrivate_GenParams_flags_dlg_present (If this is set, the specified DiscreteLogGroup

will be used.)

l KeyType_DHPrivate_GenParams_flags_SafePrimes (If this is set, the module will generate the key,
so that the key validation code can verify that the key has known good sub-group.)

l KeyType_DHPrivate_GenParams_flags__allflags

l plength is key size in bits up to a maximum of 4096.

The present implementation uses the DSA/FIPS algorithm for generating G and P

parameters, such that P must be a multiple of 64 bits in length and at least 512 bits
long.

l xlength is the length in bits of private key X . DSA specifies 160 bits.

Page 93 nCore - Developer Tutorial

B.2.14.4 Mechanisms

There is no upper limit on the length of P. (P - 1) will have one prime factor of at least 160 bits,
which is required in order to make Pohlig-Hellman discrete logs unworkable. The length of the
private exponent X can be specified separately.

l M_DiscreteLogGroup is a discrete log group that may be shared between users.

typedef struct {

 M_Bignum p prime

 M_Bignum g generator mod P

} M_DiscreteLogGroup;

DSA considers an exponent of 160 bits to be sufficient for security. An attempt to make
the length of X greater than the length of P will have no effect.

B.2.14.4 Mechanisms

Mech_DHKeyExchange

Mech_ElGamal

Mech_DLIESe3DEShSHA1

Mech_DLIESeAEShSHA1

B.2.14.4.1 Diffie-Hellman

There is only one cryptographic operation, Decrypt, which is supported with the mechanism
DHKeyExchange and the key type DHPrivate. A Diffie-Hellman key exchange goes as follows:

1. Alice generates a DH key pair and exports her public key.

2. Bob generates a DH key pair by using Alice’s G and P values and by setting the dlg_present bit in
the flags to GenerateKeyPair. He then exports his public key.

3. Alice takes Bob’s public key and passes it as a ciphertext to Decrypt using her private key. This
returns, in bignum format:

4. Bob takes Alice’s public key and passes it to Decrypt using his private key. This returns, in
bignum format:

This result is the same as that which Alice derived.

5. The session key can then be derived from this multi-precision number.

nCore - Developer Tutorial Page 94

Appendix B Key structures

B.2.14.4.2 ElGamal

At present, ElGamal encryption only takes nShield bignums as the plain text input and the output
format.

B.2.14.4.3 DLIES

The DLIESe3DEShSHA1 and DLIESeAEShSHA1 mechanisms implement the DLIES encryption and decryption
primitive as described in IEEE P1363A (Draft 11, December 16 2002), with the following options:

l DLSVDP-DH as the secret value derivation primitive

l KDF2 key derivation function, using SHA-1 as the underlying hash function

l Triple-DES-CBC-IV0 with 24-byte keys (Mech_DLIESe3DEShSHA1) or AES256-CBC-IV0 with 16-byte
keys (Mech_DLIESeAEShSHA1) as the symmetric encryption scheme

l MAC1 based on SHA-1 as the message authentication scheme, with 160-bit output length and
160-bit key length

The Asymmetric Encryption Scheme (DHAES) mode is not used.

B.2.14.5 Cipher text

B.2.14.5.1 Diffie-Hellman

typedef struct {

 M_Bignum gx;

} M_Mech_DHKeyExchange_Cipher;

B.2.14.5.2 ElGamal

typedef struct {

 M_Bignum a gk mod p

 M_Bignum b M * (gxk) mod p

} M_Mech_ElGamal_Cipher;

where k is a random integer 1 < k < (p—1)

ElGamal signature creation and verification are not currently implemented.

B.2.15 DSA

DSA enables users to share Discrete Log parameters, with each user having their own public and
private key. DSA has 'communities', which are sets of keys that share a common DSADiscreteLogGroup

but that have different (x, y) pairs. These are represented by the key type DSAComm, which consists of a
DSADiscreteLogGroup set of values together with the initialization values (seed, h, and counter) from
which the DSADiscreteLogGroup values were derived (as specified by the FIPS DSA specification).

Page 95 nCore - Developer Tutorial

B.2.15.1 DSA keys

A DSAComm key can be generated once, and then the DSADiscreteLogGroup from this DSAComm
generation can be used in subsequent DSAPrivate generations.

DSAComm key generation also allows seed values to be checked as follows:

1. When generating a DSAComm key, set the iv_present flag bit, and pass in the seed, counter, and
h values.

2. GenerateKey will follow the FIPS algorithm to generate a p, q, and g set, together with the
associated h and counter values.

3. You can now export the resulting DSAComm key and check that p, q, g, h, and counter are what you
were expecting.

4. GenerateKey will return Status_InvalidData if the given seed cannot be used to produce a valid
p, q, or g value.

The implementation of DSA that is used in nCipher modules has been validated by NIST
as conforming to FIPS 186, certificate number 11.

B.2.15.1 DSA keys

B.2.15.1.1 DSA common key

typedef struct {

 M_DSAInitValues iv;

 M_DSADiscreteLogGroup dlg;

} M_KeyType_DSAComm_Data;

B.2.15.1.2 DSA private key

typedef struct {

 M_DSADiscreteLogGroup dlg;

 M_Bignum x;

} M_KeyType_DSAPublic_Data;

B.2.15.1.3 DSA public key

typedef struct {

 M_DSADiscreteLogGroup dlg;

 M_Bignum y;

} M_KeyType_DSAPrivate_Data;

M_DSAInitValues:

nCore - Developer Tutorial Page 96

Appendix B Key structures

typedef struct {

 M_Hash seed seed

 M_Word counter counter

 M_Word h h

} M_DSAInitValues;

These are the initialization values, which can be used to check that the discrete logarithm parameters
have been generated correctly.

M_DSADiscreteLogGroup:

typedef struct {

 M_Bignum p

 M_Bignum q

 M_Bignum g

} M_DSADiscreteLogGroup;

where

l p is a 512-bit to 1024-bit prime number;

l q is a 160-bit prime factor of p—1;

l g is h((p—1)/q, where h < p—1 and h((p—1)/q) mod p > 1.

l This is the discrete logarithm group. These values may be shared between users.

l A 160-bit number < q.

gx mod p (a p-bit number).

B.2.15.2 DSA common generation parameters

typedef struct {

 M_Word flags;

 M_Word lenbits;

 M_DSAInitValues *iv;

} M_KeyType_DSAComm_GenParams;

The following flags are defined:

l KeyType_DSAComm_GenParams_flags_iv_present

l KeyType_DSAComm_GenParams_flags__allflags

lenbits is the length in bits

M_DSAInitValues:

Page 97 nCore - Developer Tutorial

B.2.15.3 DSA private key generation parameters

typedef struct {

 M_Hash seed seed

 M_Word counter counter

 M_Word h h

} M_DSAInitValues;

These are the initialization values, which can be used to check that the discrete logarithm parameters
have been generated correctly.

B.2.15.3 DSA private key generation parameters

typedef struct {

 M_Word flags;

 M_Word lenbits;

 M_DSADiscreteLogGroup *dlg;

} M_KeyType_DSAPrivate_GenParams;

The following flags are defined:

l KeyType_DSAPrivate_GenParams_flags_dlg_present (If this flag is set, GenerateKey will use the
specified DSADiscreteLogGroup.)

l KeyType_DSAPrivate_GenParams_flags_Strict (If this flag is set, the generated key is subjected to
extra consistency tests at the expense of efficiency. There is normally no need to set this flag,
unless you are supplying p, q, and g values and need to check them, or unless you require strict
compliance with the FIPS 140-2 level 3 standard. Setting the Strict flag limits the maximum key
size to 1024 bits. Otherwise, there is no maximum limit on key size.)

l KeyType_DSAPrivate_GenParams_flags__allflags

M_DSADiscreteLogGroup is the discrete logarithm group. These values may be shared between users.

typedef struct {

 M_Bignum p;

 M_Bignum q;

 M_Bignum g;

} M_DSADiscreteLogGroup;

where:

l p is a 512-bit to 1024-bit prime number;

l q is a 160-bit prime factor of p—1;

l g is h((p—1)/q, where h < p—1 and h((p—1)/q) mod p > 1.

nCore - Developer Tutorial Page 98

Appendix B Key structures

B.2.15.4 Cipher text

typedef struct {

 M_Bignum r;

 M_Bignum s;

} M_Mech_DSA_Cipher;

r is gk mod p mod q

s is k -1 (H(m)+xr)) mod q

B.2.15.5 Plain text

Because DSA is defined to sign a SHA-1 hash directly, it has no separate raw plain text format.
Instead, the format Hash is used to indicate that the plain text which has been provided is the SHA-1
hash.

Mech Unhashed plain text
type

Hash used for bytes
plaintext

Mech_DSA Hash

Mech_DSAhSHA224 Hash28 SHA-224

Mech_DSAhSHA256 Hash32 SHA-256

Mech_DSAhSHA384 Hash48 SHA-384

Mech_DSAhSHA512 Hash64 SHA-512

Mech_DSAhRIPEMD160 Hash RIPEMD-160

If the plain text format is Bytes, then the mechanism will hash the plain text itself before signing.

B.2.15.6 Mechanisms

Mech_DSA 10

Mech_DSAhSHA224

Mech_DSAhSHA256

Mech_DSAhSHA384

Mech_DSAhSHA512

Mech_DSAhRIPEMD160

B.2.16 Elliptic Curve ECDH and ECDSA

The nCipher module supports key exchange, ECDH, and signature mechanisms.

The module supports a wide range of curves, including all the the curves listed in FIPS 186-2 and some
curves from X9.62. It also allows a user to specify a custom curve.

Page 99 nCore - Developer Tutorial

B.2.16.1 Elliptic Curve keys

The implementation of ECDSA over curves recommended for US Government use has been
validated by NIST, as conforming to FIPS 186-2, certificate 2.

When you create a key, you must create it as either an ECDSA key or an ECDH key. However, both
keys use the same underlying structure. This ensures keys are used for the correct purpose and
prevents inadvertent use of a signing key for key exchange, or an exchange key for signing message.

B.2.16.1 Elliptic Curve keys

B.2.16.1.1 Private keys

struct M_KeyType_ECPrivate_Data {

 M_EllipticCurve curve;

 M_Bignum d;

};

l curve is the curve used.

l d is an integer up to the order of the group.

B.2.16.1.2 Public keys

struct M_KeyType_ECPublic_Data {

 M_EllipticCurve curve;

 M_ECPoint Q;

};

l curve is the curve used.

l Q is a point on the curve.

B.2.16.2 Key generation parameters

struct M_KeyType_ECPrivate_GenParams {

 M_EllipticCurve curve;

};

l curve is the curve used.

B.2.16.3 Cipher text - ECDH

struct M_Mech_ECDHKeyExchange_Cipher {

 M_ECPoint gd;

};

l gd is the public point provided in the public key supplied in the key exchange.

nCore - Developer Tutorial Page 100

Appendix B Key structures

B.2.16.4 Cipher text - ECDSA

struct M_Mech_ECDSA_Cipher {

 M_Bignum r;

 M_Bignum s;

};

r is x1 mod n

s is s = k -1 (e + dr) mod n.

B.2.16.5 Plain text - ECDH

Mech ECDHKeyExchange can return plaintext as:

l M_ECPoint the canonical form;

l M_Bignum the x coordinate of the point;

l M_Byteblock in uncompressed octet string representation.

B.2.16.6 Plain text - ECDSA

ECDSA can accept plain text as either hash or bytes.

Mech Unhashed plain text
type

Hash used for bytes
plaintext

Mech_ECDSA Hash

Mech_ECDSAhSHA224 Hash28 SHA-224

Mech_ECDSAhSHA256 Hash32 SHA-256

Mech_ECDSAhSHA384 Hash48 SHA-384

Mech_ECDSAhSHA512 Hash64 SHA-512

Mech_ECDSAhRIPEMD160 Hash RIPEMD-160

B.2.16.7 Mechanisms

Mech_ECDSA

Mech_ECDH

Mech_ECDSAhSHA224

Mech_ECDSAhSHA256

Mech_ECDSAhSHA384

Mech_ECDSAhSHA512

Mech_ECDSAhRIPEMD160

Neither Mech_ECDSA nor Mech_ECDH handle normal representations.

Page 101 nCore - Developer Tutorial

B.2.17 KCDSA

B.2.17 KCDSA

KCDSA is a Korean algorithm that has been standardized by the Korean government as KCS221. The
compliance of nShield’s implementation compliance to this standard has not been independently
verified.

If you wish to use the KCDSA algorithm, you must order and enable it as part of the
nCipher KISAAlgorithms feature, as described in the User Guide. If you are outside Korea,
contact nCipher for information about obtaining the appropriate export licence.

KCDS’A enables users to share Discrete Log parameters, with each user having their own public and
private key. KCDSA has ’communities’, which are sets of keys that share a common
KCDSADiscreteLogGroup but that have different (x, y) pairs. These are represented by the key type
KCDSAComm, which consists of a KCDSADiscreteLogGroup set of values together with the initialization
values (seed and counter) from which the KCDSADiscreteLogGroup values were derived (as specified by
the KCDSA specification).

A KCDSAComm key can be generated once, and then the KCDSADiscreteLogGroup from this KCDSAComm
generation can be used in subsequent KCDSAPrivate generations.

KCDSAComm key generation also allows seed values to be checked as follows:

1. When generating a KCDSAComm key, set the iv_present flag bit, and pass in the seed and counter

values.

2. GenerateKey will follow the KCDSA algorithm to generate a p, q, and g set.

3. You can now export the resulting KCDSAComm key and check that p, q, and g are what you were
expecting.

4. GenerateKey will return Status_InvalidData if the given seed and counter cannot be used to
produce a valid p, q, or g value.

B.2.17.1 KCDSA keys

B.2.17.1.1 KCDSA common key

typedef struct {

 M_KCDSAInitValues iv;

 M_KCDSADiscreteLogGroup dlg;

} M_KeyType_KCDSAComm_Data;

M_KCDSAInitValues

typedef struct {

 M_ByteBlock seed; seed

 M_Word counter counter

} M_KCDSAInitValues;

These are the initialization values, which can be used to check that the discrete logarithm parameters
have been generated correctly.

nCore - Developer Tutorial Page 102

Appendix B Key structures

M_KCDSADiscreteLogGroup is the discrete logarithm group. These values may be shared between users.

typedef struct {

 M_Bignum p;

 M_Bignum q;

 M_Bignum g;

} M_KCDSADiscreteLogGroup;

where:

l p is a 1024-bit to 2048-bit prime number which is a multiple of 256 bits long;

l q is always 160 bits long;

l g is h((p—1)/q, where h < p—1 and h((p—1)/q) mod p > 1.

B.2.17.1.2 KCDSA private key

typedef struct {

 M_KCDSADiscreteLogGroup dlg;

 M_Bignum y;

 M_Bignum x;

} M_KeyType_KCDSAPublic_Data;

M_KCDSADiscreteLogGroup is the discrete logarithm group. These values may be shared between users.

typedef struct {

 M_Bignum p;

 M_Bignum q;

 M_Bignum g;

} M_KCDSADiscreteLogGroup;

where:

l p is a 1024-bit to 2048-bit prime number which is a multiple of 256 bits long;

l q is always 160 bits long;

l g is h((p—1)/q, where h < p—1 and h((p—1)/q) mod p > 1.

l x is an arbitrary number where 0 < x < q.

l y is g(1/x mod q) mod p (a number less than p).

B.2.17.1.3 KCDSA public key

typedef struct {

 M_KCDSADiscreteLogGroup dlg;

 M_Bignum y;

} M_KeyType_KCDSAPrivate_Data;

M_KCDSADiscreteLogGroup is the discrete logarithm group. These values may be shared between users.

Page 103 nCore - Developer Tutorial

B.2.17.2 Key generation parameters

typedef struct {

 M_Bignum p;

 M_Bignum q;

 M_Bignum g;

} M_KCDSADiscreteLogGroup;

where:

l p is a 1024-bit to 2048-bit prime number which is a multiple of 256 bits long;

l q is always 160 bits long; ;

l g is h((p—1)/q, where h < p—1 and h((p—1)/q) mod p > 1.

l y is g(1/x mod q) mod p (a number less than p).

B.2.17.2 Key generation parameters

B.2.17.2.1 KCDSA common generation parameters

typedef struct {

 M_Word flags;

 M_Word plen;

 M_Word qlen;

 M_KCDSAInitValues *iv;

} M_KeyType_KCDSAComm_GenParams;

l The following flags are defined:
l KeyType_KCDSAComm_GenParams_flags_iv_present

l KeyType_KCDSAComm_GenParams_flags__allflags

l plen is the length of p in bits, a multiple of 256 where 1024 ≤ plen ≤ 2048.

l qlen is the length of q in bits, a multiple of 32 where 160 ≤ qlen ≤256. This value must currently
be 160.

M_KCDSAInitValues

typedef struct {

 M_ByteBlock seed; seed

 M_Word counter counter

} M_KCDSAInitValues;

These are the initialization values, which can be used to check that the discrete logarithm parameters
have been generated correctly.

nCore - Developer Tutorial Page 104

Appendix B Key structures

B.2.17.2.2 KCDSA private key generation parameters

typedef struct {

 M_Word flags;

 M_Word plen;

 M_Word qlen;

 M_KCDSADiscreteLogGroup *dlg;

} M_KeyType_KCDSAPrivate_GenParams;

l The following flags are defined:

l KeyType_KCDSAPrivate_GenParams_flags_dlg_present (If this flag is set, GenerateKey will use the
specifiedKCDSADiscreteLogGroup.)

l KeyType_KCDSAPrivate_GenParams_flags__allflags

l plen is the length of p in bits.

l qlen is the length of q in bits.

l M_KCDSADiscreteLogGroup is the discrete logarithm group. These values may be shared between
users.

typedef struct {

 M_Bignum p;

 M_Bignum q;

 M_Bignum g;

} M_KCDSADiscreteLogGroup;

where:

l p is a 1024-bit to 2048-bit prime number which is a multiple of 256 bits long;

l q is always 160 bits long; ;

l g is h((p—1)/q, where h < p—1 and h((p—1)/q) mod p > 1.

B.2.17.3 Cipher text

typedef struct {

 M_ByteBlock r;

 M_Bignum s;

} M_Mech_KCDSA_Cipher;

l r is h(gk mod p).

l s is x(k - (r ⊕ h (z||m))) mod q

The symbol ⊕ represents a bit-wise XOR operation. The symbol || represents concatenation of
Byteblocks

Page 105 nCore - Developer Tutorial

B.2.17.4 Plain text

B.2.17.4 Plain text

See Key Types on page 78 for a list of plain text formats.

KCDSA hashes the message m as h(z||m), where z is derived from the public key. For short messages,
m may be supplied directly asPlainTextType_Bytes. For longer messages, the hash h(z||m) may be
computed externally and supplied as PlainTextType_Hash.

B.2.17.5 Mechanisms

Mech_KCDSAHAS160 110

Mech_KCDSASHA1 111

Mech_KCDSARIPEMD160 112

Mech_KCDSASHA224

Mech_KCDSASHA256

B.2.18 RSA

B.2.18.1 Public key

typedef struct {

 M_Bignum e Exponent

 M_Bignum n Modulus

} M_KeyType_RSAPublic_Data;

RSA public keys contain exponent and modulus only. The exponent is usually simple, reducing the
complexity of the modular exponentiation. RSA keys generated by an nCipher module have the
public exponent 0x10001 by default.

B.2.18.2 Private key

typedef struct {

 M_Bignum p

 M_Bignum q

 M_Bignum dmp1

 M_Bignum dmq1

 M_Bignum iqmp

 M_Bignum e Exponent

} M_KeyType_RSAPrivate_Data;

l dmp1 is D MODP -1

l dmq1 is D MODQ -1

l iqmp is Q-1 MOD P

nCore - Developer Tutorial Page 106

Appendix B Key structures

RSA private keys, for which the exponent is usually large, contain additional information that enables
the modular exponentiation to be optimized by using the Chinese Remainder Theorem.

B.2.18.3 Generation parameters

Generation parameters

typedef struct {

 M_Word flags;

 M_Word lenbits;

 M_Bignum *given_e;

 M_Word *nchecks;

} M_KeyType_RSAPrivate_GenParams;

l The following flags are defined:
l KeyType_RSAPrivate_GenParams_flags_given_e_present

If this flag is set, the user can specify which public exponent is to be used. If this flag is not set,
the public exponent will be set to 0x10001 or, for very short keys, 0x11.

l KeyType_RSAPrivate_GenParams_flags_nchecks_present

If this flag is set, the user can specify the number of Rabin-Miller checks that are to be done on
the primes. The default for this number varies with key size to give a 2-100 probability of error.

l KeyType_RSAPrivate_GenParams_flags_UseStrongPrimes

Setting this flag requests key generation in accordance with ANSI X9.31 requirements.
Specifically:

l the key length must be at least 1024 bits, and a multiple of 256 bits

l primes p and q are 'strong' - that is p+1, p-1, q+1 and q-1 each have at least one prime factor
>2100

l primes p and q each pass 8 iterations of the Rabin-Miller test followed by the Lucas test

l p and q differ somewhere in their most significant 100 bits.
l KeyType_RSAPrivate_GenParams_flags__allflags

l *given_e specifies the public exponent to be used. This must be an odd value greater than 1 and
less than half the requested key length.

l *nchecks specifies the number of Rabin-Miller checks to be performed.

B.2.18.4 Mechanisms

For RSAPublic and RSAPrivate keys, the following mechanisms are provided:

Mech_RSApPKCS1= see note 1

Mech_RSAhSHA1pPKCS1= see note 2

Mech_RSAhRIPEMD160pPKCS1= see note 2

Mech_RSApPKCS1OAEP= see note 3

Mech_RSApPKCS1OAEPhSHA224

Page 107 nCore - Developer Tutorial

B.2.18.4 Mechanisms

Mech_RSApPKCS1OAEPhSHA256

Mech_RSApPKCS1OAEPhSHA384

Mech_RSApPKCS1OAEPhSHA512

Mech_RSAhSHA1pPSS

Mech_RSAhRIPEMD160pPSS

Mech_RSAhSHA224pPSS

Mech_RSAhSHA256pPSS

Mech_RSAhSHA384pPSS

Mech_RSAhSHA512pPSS

1. This mechanism has the following behavior:
l Encrypt

l accepts plain text of the type Bignum or Bytes

l for plaintext type Bytes pads and encrypts the message according to PKCS #1

l for plaintext type Bignum encrypts the input directly

l returns a cipher text of the type M_Mech_RSApPKCS1_Cipher

l Decrypt

l accepts cipher text of the appropriate type M_Mech_RSApPKCS1_Cipher

l decrypts the message and strips the padding

l returns plain text in format Bytes
l Sign

l accepts plain text of the type Bignum or Bytes

l for plaintext type Bytes pads and encrypts the message according to PKCS #1

l for plaintext type Bignum signs the input directly

l returns a cipher text of the type M_Mech_RSApPKCS1_Cipher

l Verify

l accepts plain text of the type Bignum or Bytes

l accepts cipher text of the type M_Mech_RSApPKCS1_Cipher, which is decrypted and compared
to the appropriate hash of the plain text.

This mechanism does not hash the message before signing it.

You should use the Hash command in order to produce a hash to pass to the Sign or Verify
command. For PKCS #1 compatible signatures, the ObjectID that identifies the hash algorithm
should be placed before the hash value itself to form a plain text of the type Bytes. Alternatively,
you can use RSAhMD5pPKCS1 and similar mechanisms that hash the plaintext first.

Although the RSApPKCS1 mechanism will accept a hash plain text for signature or
verification, this operation will not result in a valid PKCS #1 signature.

nCore - Developer Tutorial Page 108

Appendix B Key structures

2. These mechanisms will Sign and Verify only. They have the following behavior:

l Sign accepts plain text of the type Bignum, Bytes or appropriate hash.

l for Bignum no padding is performed

l for Bytes, Sign hashes this plain text with the selected hash function, adds the correct
ObjectID, pads the result using PKCS #1 padding.

l the hash must be the correct size for the hash mechanism specified: adds the correct
ObjectID, pads the hash using PKCS #1 padding, the resulting padded string is then
encrypted.

l Verify accepts plain text of type Bytes and cipher text of the type M_Mech_RSApPKCS1_Cipher,
which is decrypted, has its padding stripped, and is then compared to the plain text.

You must make sure that the message fits into a single command block. If the message is too
large to fit into a single block, the server will use channel commands to pass the command,
which will fail because channel commands do not support RSA. If you are not certain that the
data will fit into a single command block, use separate Hash and Sign commands.

3. This mechanism performs encryption and decryption with OAEP padding. It implements the
RSAES-OAEP-ENCRYPT and RSAES-OAEP-DECRYPT primitives as given in PKCS #1 v2.0, using SHA-1
as the Hash option and MGF1-with-SHA1 as the MGF function.

This is similar in concept to, but in practice totally incompatible with, the OAEP as used in
SET.

The input to the Encrypt function must be a Bytes type plain text with a length from 0 to (modulus

length in bytes minus 42) bytes inclusive.

Thus, a 512-bit modulus (of 64 bytes) will be able to encode up to 22 bytes of information.

This quantity is insufficient to make a direct blob. You must use at least a 528-bit modulus
to make a direct blob.

Unlike the SET OAEP mechanism, PKCS #1 OAEP preserves the length of the plain text block.

RSAES-OAEP defines an encoding parameters string, p. This string is a byte block that is used as
extra padding. In order to pass encoding parameters to the Encrypt command, set the given_iv_

present flag, and enter the encoding parameters as the IV. In order to pass encoding parameters
to the Decrypt command, set the IV in the iv member of the cipher parameter. The IV is in the
form of a byte block p, the length of which may be 0.

B.2.18.5 Cipher text - PKCS #11 padding

typedef struct {

 M_Bignum m;

} M_Mech_RSApPKCS1_Cipher;

Page 109 nCore - Developer Tutorial

B.2.18.6 Cipher text - OAEP padding

B.2.18.6 Cipher text - OAEP padding

typedef struct {

 M_Bignum m;

} M_Mech_RSApSETOAEP_Cipher;

B.2.19 DeriveKey

B.2.19.1 DKTemplate

A DKTemplate is a template key whose key data contains a marshalled ACL and application data.
DKTemplate keys cannot be created with GenerateKey because this would produce a random ACL. You
must Import the key.

typedef struct {

 M_ByteBlock appdata;

 M_ByteBlock nested_acl;

} M_KeyType_DKTemplate_Data;

l appdata specifies application data for the new key.

l nested_acl is the marshalled ACL for the new key. Use the function NFastApp_MarshalACL() in order
to produce an ACL in the correct format.

B.2.19.2 Wrapped

A wrapped key contains encrypted key data as a byte block. A wrapped key has the same structure as
a random key, but is a separate type.

You can generate a wrapped key by generating two random numbers and XORing them together to
create a key. If you randomly generate both halves of a DES or a triple DES key, you must use one of
the mechanisms that sets the parity of the resultant key: DeriveMech_DESjoinXORsetParity or
DeriveMech_DES3joinXORsetParity.

Alternatively, you can marshal keys, as described in Mechanisms on page 76.

B.2.19.3 Generation parameters

typedef struct {

 M_Word flags;

 M_Word length;

} M_KeyType_Wrapped_GenParams;

l No flags are defined.

l length specifies the length in bytes:

l 8 bytes for a wrapped DES key

l 24 bytes for a wrapped Triple DES key

nCore - Developer Tutorial Page 110

Appendix B Key structures

B.2.19.4 Derive Key Mechanisms

DeriveMech_DESsplitXOR see note 1

DeriveMech_DESjoinXOR see note 2

DeriveMech_DES2splitXOR see note 1

DeriveMech_DES2joinXOR see note 2

DeriveMech_DES3splitXOR see note 1

DeriveMech_DES3joinXOR see note 2

DeriveMech_DESjoinXORsetParity see note 2

DeriveMech_DES2joinXORsetParity see note 2

DeriveMech_DES3joinXORsetParity see note 2

DeriveMech_RandsplitXOR see note 1

DeriveMech_RandjoinXOR see note 2

DeriveMech_CASTsplitXOR see note 1

DeriveMech_CASTjoinXOR see note 2

DeriveMech_EncryptMarshalled see note 3

DeriveMech_DecryptMarshalled see note 3

DeriveMech_RSAComponents see note 4

DeriveMech_PKCS8Encrypt see note 5

DeriveMech_PKCS8Decrypt see note 5

DeriveMech_RawEncrypt see note 6

DeriveMech_RawDecrypt see note 6

DeriveMech_SSL3withRSA see note 7

DeriveMech_SSL3withDH see note 8

DeriveMech_TLSwithRSA see note 7

DeriveMech_TLSwithDH see note 8

DeriveMech_AESsplitXOR see note 1

DeriveMech_AESjoinXOR see note 2

DeriveMech_SignedKDPKeyWrapDES3 see note 9

DeriveMech_Any

DeriveMech_PublicFromPrivate see note 10

DeriveMech_KDPKeyWrapDES3

DeriveMech_ECCMQV

DeriveMech_ConcatenateBytes

Page 111 nCore - Developer Tutorial

B.2.19.4 Derive Key Mechanisms

DeriveMech_ConcatenationKDF

DeriveMech_

NISTKDFmCTRpRijndaelCMACr32

DeriveMech_RawEncryptZeroPad

DeriveMech_RawDecryptZeroPad

DeriveMech_AESKeyWrap

DeriveMech_AESKeyUnwrap

1. These mechanisms take a base key of the specified type and a wrapping key of type Random to
produce an output key of type Wrapped.

2. These mechanisms take a base key of type Wrapped and a wrapping key of type Random to produce
an output key of the specified type.

nCore - Developer Tutorial Page 112

Appendix B Key structures

3. The EncryptMarshalled and DecryptMarshalled mechanisms are provided to allow export of keys
from a module in Strict FIPS 140-2 mode and import into a module in the same mode.

The EncryptMarshalled mechanism takes a template key, a base key of any marshallable type,
and a wrapping key of any type capable of encrypting, and does the following:

a. Marshals an M_PlainText structure that represents the base key to produce a byte string.

b. Turns the byte string into Bytes plaintext, and encrypts it with the wrapping key to produce
ciphertext.

c. Marshals the ciphertext into a further byte string.

d. Creates a key of the type Wrapped that has the ACL given in the template key and contains
the byte string from step c as data. That is, the wrapped data is a marshalled ciphertext
which is an encryption of the marshalled key data.

All marshalling is done in module-internal format (little-endian arrays of little-
endian words).

Template and Wrapped keys can be imported into the module even in strict FIPS mode. The
import must be authorized by a certificate signed by the nCipher Security Officer's key
KNSO.

The DecryptMarshalled mechanism performs the complementary operation: it unmarshals
and decrypts a ciphertext represented as a Wrapped key, then unmarshals the resulting
plaintext to recover the M_PlainText structure for the output key.

An example of importing keys using the DecryptMarshalled mechanism:

i. Generate an RSA key pair Kpub, Kpriv. Kpub must have export-as-plain permissions; Kpriv
must have a DeriveKey action group that specifies a role of WrapKey and a mechanism of
DecryptMarshalled. Export Kpub.

j. Marshall the key Ki to be imported. Pad the result according to PKCS #1 and encrypt it with
Kpub (for example, using the ModExp command).

k. Marshal the ciphertext: write Mech_RSApPKCS1 as an M_Word (02 00 00 00), the length of the
bignum, then the bytes in little-endian order. Import the resulting byteblock as a key Kw of
type Wrapped.

l. Create a template key Kt that contains the desired ACL for the key to be imported, and
import it.

m. Use DeriveKey with Kt as the template, the Kw as the base key, and Kpriv as the wrapper
key.

The resulting key is Ki imported with the correct ACL.

Page 113 nCore - Developer Tutorial

B.2.19.4 Derive Key Mechanisms

4. The RSAComponents mechanism is provided to allow export of RSAPrivate key types.

This mechanism is not intended for secure transport of key data between nCipher
modules. It has a number of security weaknesses, not least poor protection of key
integrity. It is provided only as an aid to interoperating with other systems when more
secure methods are not available.

The RSAComponents mechanism has the following structure:

typedef M_IV *M_vec_IV;

struct M_DeriveMech_RSAComponents_DKParams {

int n_ivs;

M_vec_IV ivs;

};

The RSAComponents mechanism takes a Base key of type RSAPrivate and a Wrap key of any
symmetric type capable of encrypting byte streams. The ivs table must contain exactly five IV

values. These values can be different, and can specify different mechanisms if required. They
must all be valid encryption mechanisms for the Wrap key type.

The mechanism processes the keys as follows:

a. The block length is determined by taking the greater of the p or q components of the RSA
key (normally p) and rounding its size up to the next 64-bit boundary. For a 1024-bit RSA
key, the lengths of p and q are normally 512 bits (or 64 bytes) each.

b. The value of each of the following key components is written out as a big-endian byte
stream. Leading zeroes are added to bring the size up to the block length.
l p

l q

l d mod (p-1)

l d mod (q-1)

l inv (q) mod p

c. Each block is encrypted using the corresponding entry from the IVs table. That is, ivs[0] is
used to encrypt p, ivs[1] is used for q, and so on.

d. The bytes of the output ciphertext are stored.

e. All five ciphertext blocks are concatenated in order and converted to a key of the type
Wrapped.

f. No corresponding import/decrypt mechanism is currently supported.

nCore - Developer Tutorial Page 114

Appendix B Key structures

5. The PKCS8Encrypt and PKCS8Decrypt mechanisms are provided to allow private key data for
asymmetric algorithms to be imported and exported.

This mechanism is not intended for secure transport of key data between nCipher
modules. It has a number of security weaknesses, not least poor protection of key
integrity. It is provided only as an aid to interoperating with other systems when more
secure methods are not available.

The PKCS8Encrypt and PKCS8Decrypt mechanisms have the following structure:

struct M_DeriveMech_PKCS8Encrypt_DKParams {

 M_IV iv;

};

struct M_DeriveMech_PKCS8Decrypt_DKParams {

 M_IV iv;

};

The PKCS8Encrypt mechanism takes a Base key of type RSAPrivate, DSAPrivate, ECDSAPrivate,
ECDHPrivate or DHPrivate, and a Wrap key of any symmetric type capable of encrypting byte
streams. The private key data is BER-encoded according to PKCS #8. (This process is also
described in the PKCS #11 specification under Wrapping/unwrapping private keys.) The
resulting byte block is encrypted, using the given iv, which includes a mechanism. The data of
the ciphertext is converted into a key of type Wrapped.

The PKCS8Decrypt mechanism performs the opposite process: it takes a Wrapped key type as the
Base key and a symmetric key as the Wrapping key. The data is decrypted using the given iv

and mechanism, and then BER-decodes to give a RSAPrivate, DSAPrivate, ECDSAPrivate or
DHPrivate output key.

The following errors may indicate mechanism-specific problems:

l TypeMismatch: The ciphertext type for the given mechanism is not a simple byteblock, and so
cannot be converted to or from a Wrapped key type.

l NotYetImplemented: During encoding, this error indicates that the Base key is not of a type for
which BER-encoding is supported. During decoding, this error indicates that an element has
been encountered which is not used for the supported key types (for example, a negative
integer value). This may indicate the data has been corrupted.

l UnknownParameter: During decoding, this error indicates that a key type other than those
supported, or an unknown 'version' integer, has been encountered.

l Malformed: The BER-decoding has been unsuccessful, probably due to corrupted data, for
example, because the data is too short, or because an illegal byte value has been
encountered).

Page 115 nCore - Developer Tutorial

B.2.19.4 Derive Key Mechanisms

6. The RawEncrypt and RawDecrypt mechanisms are provided to allow raw key data to be encrypted
and decrypted using any key that accepts a cipher text as Bytes.

This mechanism is not intended for secure transport of key data between nCipher
modules. It has a number of security weaknesses, not least poor protection of key
integrity. It is provided only as an aid to interoperating with other systems when more
secure methods are not available.

These mechanisms have the following structure:

struct M_DeriveMech_RawEncrypt_DKParams {

 M_IV iv;

};

struct M_DeriveMech_RawDecrypt_DKParams {

 M_IV iv;

 M_KeyType dst_type;

};

The RawEncrypt mechanism processes the key as follows:

a. It extracts the key data of the Base key as a byte block and encrypts it using the Wrapping
key, IV and the mechanism specified in the IV, which must be a valid mechanism for the
given Wrapping Key. Mechanisms that do not perform padding cannot encrypt plain texts
which are not multiples of the block length. For example, DESmECBpNONE can encrypt only
base keys that are a multiple of 8 bytes in length.

b. The resulting ciphertext is converted directly into a Wrapped key. No mechanism, IV, or
base key type information is saved with the Wrapped data. This data must be transported
separately.

RawDecrypt performs the reverse process.The type of the key to be created, and the IV to be used
when decrypting, are passed in the dst_type and iv fields, respectively.

The following errors have specific meanings:

l TypeMismatch: The chosen Base key type is not a DES or simple ByteBlock key type (for
example, an RSAPrivate key), so it cannot be converted to or from a byte block plaintext for
encryption. Alternatively, the specified encryption or decryption mechanism doesn't use a byte
block for its ciphertext (for example, it uses ciphertexts containing Bignums) so the ciphertext
cannot be converted to or from Wrapped key data.

l InvalidData: The data cannot be made into a key of the given type. For example, the
decrypted data was too short or too long for the given destination key type, or the destination
key type was a DES, DES2 or DES3 key and the decrypted data had parity errors. You can
force the parity to be set correctly, by using RawDecrypt to produce a key of type Wrapped,
and importing a Random key of the right length with all bytes zero. Then use the
DESjoinXORsetParity mechanisms on these two keys to produce a DES key with correct parity
bits.

nCore - Developer Tutorial Page 116

Appendix B Key structures

7. No Wrapping key is required for the DeriveMech_SSL3withRSA or DeriveMech_TLSwithRSA
mechanism. Instead, the params field in the DeriveKey command must contain the following
details:

struct M_DeriveMech_SSL3withRSA_DKParams {

 M_Bignum ct;

 M_SSLClientRandom crnd;

 M_SSLServerRandom srnd;

};

 Where:

l ct is the ciphertext from the SSL key exchange message, in the form of an M_Bignum

l crnd is the 32-byte Client Random field.

l srnd is the 32-byte Server Random field.

The resulting key is of type SSLMasterSecret, which can be used with the following mechanisms:

l Mech_SSLRecordLayer (encryption/decryption)

l Mech_SSL3FinishedMsg (sign/verify)

l Mech_TLSFinishedMsg (sign/verify)

8. No Wrapping key role is required for the DeriveMech_SSL3withDH or DeriveMech_TLSwithDH
mechanism. Instead, the params field in the DeriveKey command must contain the following
details:

struct M_DeriveMech_SSL3withDH_DKParams {

 M_Bignum y;

 M_SSLClientRandom crnd;

 M_SSLServerRandom srnd;

};

Where:

l y is the ciphertext from the SSL key exchange message, in the form of an M_Bignum

l crnd is the 32-byte Client Random field.

l srnd is the 32-byte Server Random field.

The resulting key is of type SSLMasterSecret, which can be used with the following mechanisms:

l Mech_SSLRecordLayer (encryption/decryption)

l Mech_SSL3FinishedMsg (sign/verify)

l Mech_TLSFinishedMsg (sign/verify)

9. Mechanism for the MicroHSM key delivery protocol. For nCipher internal use only.

Page 117 nCore - Developer Tutorial

B.3 Hash functions

10. DeriveMech_PublicFromPrivate constructs the corresponding public key given one private key of
any type.
The following is a non-exhaustive list of common error returns specific to this key derivation
mechanism:

l TypeMismatch: given key is not a private key.

l InvalidParameter: more than one key supplied.

B.3 Hash functions
Hash functions take an input of arbitrary length and return an output of fixed length.

The Hash function supports the RIPEMD-160, SHA-1, SHA-256, SHA-384, SHA-512, Tiger, MD2, and
MD5 mechanisms.

All the hashes that the module uses internally employ the SHA-1 algorithm.

B.3.1 SHA-1

SHA-1 is a hash function that has been approved by NIST. SHA-1 returns a 20-byte result.

The implementation of SHA-1, SHA-256, SHA-384 and SHA-512 in the nCipher module
has been validated by NIST as conforming to FIPS 18-2, certificate 255.

B.3.1.1 Mechanism

Mech_SHA1Hash

B.3.1.2 Reply

typedef struct {

 M_Hash20 h;

} M_Mech_SHA1Hash_Cipher;

B.3.2 Tiger

Tiger is a hash function designed by Ross Anderson and Eli Biham. It is designed to be efficient on 64-
bit processors and to be no slower than MD5 on 32-bit processors.

B.3.2.1 Mechanism

Mech_TigerHash

nCore - Developer Tutorial Page 118

Appendix B Key structures

B.3.2.2 Reply

typedef struct {

 M_Hash24 h;

} M_Mech_TigerHash_Cipher;

B.3.3 SHA-224

SHA-224 is a member of the SHA-2 hash function family that yields a 28-byte result.

B.3.3.1 Mechanism

Mech_SHA224

B.3.3.2 Reply

typedef struct {

 M_Hash28 h;

} M_Mech_SHA224Hash_Cipher;

B.3.4 SHA-256

SHA-256 is a member of the SHA-2 hash function family that yields a 32-byte result.

B.3.4.1 Mechanism

Mech_SHA256

B.3.4.2 Reply

typedef struct {

 M_Hash32 h;

} M_Mech_SHA256Hash_Cipher;

B.3.5 SHA-384

SHA-384 is a member of the SHA-2 hash function family that yields a 48-byte result.

B.3.5.1 Mechanism

Mech_SHA384Hash

Page 119 nCore - Developer Tutorial

B.3.5.2 Reply

B.3.5.2 Reply

typedef struct {

 M_Hash48 h;

} M_Mech_SHA384Hash_Cipher;

B.3.6 SHA-512

SHA-512 is a member of the SHA-2 hash function family that yields a 64-byte result.

B.3.6.1 Mechanism

Mech_SHA512Hash

B.3.6.2 Reply

typedef struct {

 M_Hash64 h;

} M_Mech_SHA512Hash_Cipher;

B.3.7 MD2

MD2 is a hash function that was designed by Ron Rivest. MD2 returns a 16-byte hash.

B.3.7.1 Mechanism

Mech_MD2Hash

B.3.7.2 Reply

typedef struct {

 M_Hash16 h;

} M_Mech_MD2Hash_Cipher;

B.3.8 MD5

MD5 is a hash function that was designed by Ron Rivest. MD5 returns a 16-byte hash.

B.3.8.1 Mechanism

Mech_MD5Hash

nCore - Developer Tutorial Page 120

Appendix B Key structures

B.3.8.2 Reply

typedef struct {

 M_Hash16 h;

} M_Mech_MD5Hash_Cipher;

B.3.9 RIPEMD 160

RIPEMD 160 is a hash function that was developed as part of the European Union's RIPE project.
RIPEMD 160 returns a 20-byte hash.

B.3.9.1 Mechanism

Mech_RIPEMD160Hash

B.3.9.2 Reply

typedef struct {

 M_Hash20 h;

} M_Mech_RIPEMD160Hash_Cipher;

B.3.10 HAS160

HAS160 is a hash function designed for use with the KCDSA algorithm. (See KCDSA on page 102.)
HAS160 returns a 20-byte hash.

If you wish to use the HAS160 hash function, you must order and enable it as part of the
nCipher KISAAlgorithms feature, as described in the User Guide.

B.3.10.1 Mechanism

Mech_HAS160Hash 109

B.3.10.2 Reply

typedef struct {

 M_Hash20 h;

} M_Mech_HAS160Hash_Cipher;

Page 121 nCore - Developer Tutorial

B.4 HMAC signatures

B.4 HMAC signatures
The sign and verify commands can create and verify MACs that have been created with the HMAC
procedure and any supported hashing algorithm.

See RFC2104 for a description of HMAC.

The nShield implementations of HMAC SHA-1, HMAC SHA-224, HMAC SHA-256, HMAC
SHA-384 and HMAC SHA-512 have been validated by NIST as conforming to FIPS 198,
certificate 3.

The following key types are defined:

l KeyType_HMACMD2

l KeyType_HMACMD5

l KeyType_HMACSHA1

l KeyType_HMACRIPEMD160

l KeyType_HMACSHA224

l KeyType_HMACSHA256

l KeyType_HMACSHA384

l KeyType_HMACSHA512

l KeyType_HMACTiger

All these key types contain random data that is stored in byte blocks of variable length.

They use the key type Random for their data and key generation parameters.

The following mechanisms are defined:

l Mech_HMACMD2

l Mech_HMACMD5

l Mech_HMACSHA1

l Mech_HMACRIPEMD160

l Mech_HMACSHA224

l Mech_HMACSHA256

l Mech_HMACSHA384

l Mech_HMACSHA512

l Mech_HMACTiger

B.5 ACLs
An ACL is a list of actions that are permitted for this object. An ACL consists of a list of permission
groups.

Each permission group is a list of actions combined with an optional set of limits, either numerical
limits or time limits, and optionally the hash of the key needed to authorize these actions.

By creating multiple permission groups with different use limits and certifiers you create an ACL:

nCore - Developer Tutorial Page 122

Appendix B Key structures

typedef struct {

int n_groups

 M_ PermissionGroup *groups;

} M_ACL;

l n_groups is the number of groups.

l *groups This is a list of permission groups. Each permission group consists of the following items:

l optionally, the key hash of a key that must be used to certify all operations within this permission
group. The given key must be used to produce a certificate that accompanies the request. This
certificate can also be required to be ’fresh’. If no key hash is given, this is a public permission
group and defines operations available without a certificate.

l 0 or more use limits for this permission group. If a permission group has use limits, operations
permitted by this group are only allowed if the use limits have not been exhausted. If a
permission group has no use limits, these actions are always permitted.

Each use limit specifies either an identifier for a counter or a time limit. If a permission group
specifies both a counter and a time limit, the action will fail if either limit is exhausted.
Performing any of the actions listed as action elements for this permission group decreases the
count of the specified counter by 1 for each action.

l one or more action elements. These specify the operations to which the use limits apply.

l typedef struct {
 M_Word flags;
 int n_limits;
 M_UseLimit *limits;
 int n_actions;
 M_Action *actions;
 M_KeyHash *certifier;
 M_KeyHashAndMech *certmech;
 M_ASCIIString *moduleserial;
} M_PermissionGroup;

Page 123 nCore - Developer Tutorial

B.5 ACLs

l The following flags are defined:

l PermissionGroup_flags_certmech_present Set this flag if actions in this group must be certified
with a key that matches the given hash and mechanism.

l PermissionGroup_flags_certifier_present Set this flag if actions in this group must be certified
with a key that matches the given hash. If none of flags PermissionGroup_flags_certifier_
present, PermissionGroup_flags_certmech_present, or PermissionGroup_flags_NSOCertified
have been set, then this is a public permission group, and actions can be performed without a
certificate.

The PermissionGroup_flags_certifier_present flag is included for backwards
compatibility only. If you are creating a new ACL, use PermissionGroup_flags_certmech_

present.

l PermissionGroup_flags_FreshCerts Set this flag if the certificate must be freshly produced. If this
flag is not set, certificates may be reused indefinitely.

l PermissionGroup_flags_LogKeyUsage Set this flag if Sign, Verify, Encrypt or Decrypt (and
corresponding Cmd_ChannelOpen) actions in this group should be logged by the NShield Audit
Logging capability.

If Audit Logging is not enabled for the module attempting to use a key with
PermissionGroup_flags_LogKeyUsage set the module returns Status_InvalidACL.

l PermissionGroup_flags_moduleserial_presentSet this flag if the actions in this group can
only be performed on a specific module, whose serial number matches the given serial
number.

l PermissionGroup_flags_NSOCertified Set this flag if the actions in this group must be certified
by the nCipher Security Officer's key KNSO, whatever that is set to for this module at this time.

If you set more than one of PermissionGroup_flags_certifier_present,
PermissionGroup_flags_certmech_present, or PermissionGroup_flags_NSOCertified, the
module returns Status_InvalidACL.

l n_limits is the number of limits.

l *limits is a list of use limits, defined below.

If more than one set of use limits is defined:

l if the use limits are in the same permissions group, all counters and time limits must be valid,
and all referenced counters are decreased by 1

l if the use limits are in different permission groups, the module uses the first permission group
that permits the action.

l n_actions is the number of actions.

l *actions is the list of actions to which the use limits apply.

l *certifier is either the hash of the key that is required to authorize the use of this ACL entry or a
NULL pointer indicating that no further authorization is required.

The certifier field is included for backwards compatibility only. You are encouraged to
use the certmech field. The certifier field may be removed in future releases.

*certmech: M_KeyHashAndMech has the following structure:

nCore - Developer Tutorial Page 124

Appendix B Key structures

typedef struct {

 M_KeyHash hash;

 M_PlainText mech;

} M_KeyHashAndMech;

l hash is the hash of the key that is required to authorize the use of this ACL entry or a NULL pointer,
indicating that no further authorization is required.

l mech is the mechanism that is to be used to sign the certificate. You can specify Mech_Any, in which
case the ACL will behave exactly as if you had used the certifier field.

Signingkey certificates do not check the mechanism.

l *moduleserial is the serial number of the module on which the actions in this permission group
must be performed. This must be the exact string returned by the NewEnquiry command for the
module.

B.6 Use limits

Use limits

typedef struct {

 M_UseLim type;

 union M_UseLim__Details details;

} M_UseLimit;

The following Uselim types are defined:

l UseLim_Global

l UseLim_AuthOld

l UseLim_Time

l UseLim_NonVolatile

l UseLim_Auth

The details depend on the action type:

union M_UseLim__Details {

 M_UseLim_Global_Details global;

 M_UseLim_Time_Details time;

 M_UseLim_NonVolatile_Details nonvolatile;

 M_UseLim_Auth_Details auth;

};

A global use limit has the following structure:

Page 125 nCore - Developer Tutorial

B.6 Use limits

typedef struct {

 M_LimitID id;

 M_Word max;

} M_UseLim_Global_Details;

l id is a unique 20-byte identifier for the counter for this use limit. When a counter is created, it is
set to 0. Any time a user performs an action that requires a use limit, the module compares the
value of the counter to the limit in the ACL. If the counter value is less than the limit, the action is
permitted and the counter's value is increased by 1. Otherwise, the action is prohibited.

Global and per-authorization counters are stored separately on the module. Therefore, a global use
limit may have the same hash as a per-authorization use limit, and these hashes will refer to
separate counters.

Global counters are stored separately for each key, and per-authorization counters are stored
separately for each logical token.

l This means that the two matching LimitID s will only refer to the same counter if either:

l they are both in Global use limits in the same ACL

l they are both in Auth use limits for keys loaded using the same logical token.

l max is the absolute maximum number of times that the actions specified in this permission group can
be performed. Global limit counters are created when a key object is imported, generated or
derived using the DeriveKey command. They are destroyed when that object is destroyed. They are
never reset.

When a key is duplicated (using the Duplicate command), or loaded with the LoadBlob command,
all permission groups containing Global use limits are removed from its ACL. This is to ensure that
actions subject to Global use limits can only be performed when the key was originally imported,
generated or derived.

A time limit has the following structure:

typedef struct {

 M_Word seconds;

} M_UseLim_Time_Details;

l seconds is a per authorization limit that sets the length of time, in seconds, during which the
actions specified in this permission group can be performed before the key needs to be
reauthorized. Time limits only apply to keys protected by a logical token. The time is taken from the
point at which the token was recreated.

If you specify more than one time limit within an ACL, the shortest time limit will apply. If you
specify a time limit and a use count limit, both must be valid in order for an action to be authorized.

If you apply a time limit to a key that is not loaded from a logical token protected blob, all
permission groups with time limits will be unavailable and attempting to use these limits
will return Status_AccessDenied.

nonvolatile limits are only available on nShield modules. The use limit is stored in a NVRAM file. A
non-volatile limit has the following structure:

nCore - Developer Tutorial Page 126

Appendix B Key structures

struct M_UseLim_NonVolatile_Details {

 M_UseLim_NonVolatile_Details_flags flags;

 M_FileID file;

 M_NVMemRange range;

 M_Word maxlo;

 M_Word maxhi;

 M_Word prefetch;

};

l No flags are defined.

l file is the fileId of the NVRAM file containing the use limit.

l range is the memory range within the file for this limit.

l maxlo and maxhi are the values for the limit stored as two 32-bit words.

l prefetch: In order to reduce the number of NVRAM write cycles, you can specify a number of limits
to prefetch. The module will update the limit by this number and decrement an in-memory counter
for each use. When the counter reaches zero the NVRAM value will again update the NVRAM.

A per-authorization use limit (auth) has the following structure:

typedef struct {

 M_LimitID id;

 M_Word max;

} M_UseLim_Auth_Details;

l id is a unique 20-byte identifier for the counter for this use limit. When a counter is created, it is
set to 0. Any time a user performs an action that requires a use limit, the module compares the
value of the counter to the limit in the ACL. If the counter value is less than the limit, the action is
permitted and the counter's value is increased by 1. Otherwise, the action is prohibited.

Global and per-authorization counters are stored separately on the module. Therefore, a global use
limit may have the same hash as a per-authorization use limit, and these hashes will refer to
separate counters.

Global counters are stored separately for each key, and per-authorization counters are stored
separately for each logical token.

This means that the two matching LimitIDs will only refer to the same counter if either:

l they are both in Global use limits in the same ACL

l they are both in Auth use limits for keys loaded using the same logical token.

l max is the number of times that the actions specified in this permission group can be performed
before the logical token needs to be reauthorized.

Per-authorization limit counters are created when a key is loaded from a token blob, unless a
counter with the same LimitID already exists for this token (in which case, the existing counter is
used). This can mean that all the per-authorization use limits for a key have been exhausted already
when it is loaded. In such a case, you must reload the logical token.

Keys that have been loaded from blobs under different tokens have separate counters even if they
have the same LimitID.

Page 127 nCore - Developer Tutorial

B.7 Actions

Firmware versions 2.12.0 or later contain logic to prevent an attacker loading the same logical
token twice and thereby gaining two separate sets of counters. It works as follows:

Every time a smart card is inserted, all the logical token shares on it are marked available. When a
share is loaded for use in a logical token, it is marked used, unless the ReadShare command sets the
UseLimitsUnwanted flag.

If any share is loaded - locally or remotely - when it is already marked used, the logical token is
marked UseLimitsUnavailable. No per-authorization use limits are allowed for any keys loaded
using this second logical token. This ensures only one set of use limits counters can be created for
each physical insertion of a token.

The mechanism for controlling per-authorization limits changed in firmware 2.12.0 to
prevent a possible attack which may have resulted in the limit being circumvented. On
new firmware ACLs using UseLim_Auth and UseLimAuth_Old both use the new
mechanism. However, the nfkmverify program will note use of the old style limit as this
will use the old behavior on old firmware.

Although it is possible to load a logical token on several modules, using remote slots, only one copy
of the logical token can be allocated the per-authorization use limits.

B.7 Actions

typedef struct {

 M_Act type;

 union M_Act__Details details;

} M_Action;

type must be one of the actions listed below:

l Act_NoAction=

l Act_OpPermissions= - see OpPermissions on page 129

l Act_MakeBlob= - see MakeBlob on page 130

l Act_MakeArchiveBlob= - see MakeArchiveBlob on page 131

l Act_NSOPermissions= - see NSO on page 132

l Act_DeriveKey= - see DeriveKey and DeriveKeyEx on page 135

l Act_DeriveKeyEx= - see DeriveKey and DeriveKeyEx on page 135

l Act_NVMemOpPerms= - see NVRAM on page 133

l Act_FeatureEnable= - see NVRAM on page 133
l Act_NVMemUseLimit=

l Act_SendShare= - see SendShare on page 134

l Act_ReadShare= - see ReadShare on page 134
l Act_StaticFeatureEnable=

l Act_UserAction= - see UserAction on page 135

l Act_FileCopy= - see FileCopy on page 135

nCore - Developer Tutorial Page 128

Appendix B Key structures

details depend on the chosen action type:

union M_Act__Details {

 M_Act_FeatureEnable_Details featureenable;

 M_Act_DeriveKey_Details derivekey;

 M_Act_DeriveKeyEx_Details derivekeyex;

 M_Act_SendShare_Details sendshare;

 M_Act_NVMemUseLimit_Details nvmemuselimit;

 M_Act_NVMemOpPerms_Details nvmemopperms;

 M_Act_StaticFeatureEnable_Details staticfeatureenable;

 M_Act_NSOPermissions_Details nsopermissions;

 M_Act_OpPermissions_Details oppermissions;

 M_Act_FileCopy_Details filecopy;

 M_Act_MakeArchiveBlob_Details makearchiveblob;

 M_Act_MakeBlob_Details makeblob;

 M_Act_UserAction_Details useraction;

 M_Act_ReadShare_Details readshare;

};

B.8 Action types

B.8.1 OpPermissions

typedef struct {

 M_Word perms;

} M_Act_OpPermissions_Details;

The following flags (perms) are defined:

l Act_OpPermissions_Details_perms_DuplicateHandle: Setting this flag grants permission to create a
copy of the key with the same ACL. Duplicating a key does not enable you to perform any further
actions, because both copies use the same use counters.

l Act_OpPermissions_Details_perms_UseAsCertificate: Setting this flag allows use of the KeyID to
authorize a command that requires a certificate.

l Act_OpPermissions_Details_perms_ExportAsPlain

l Act_OpPermissions_Details_perms_GetAppData

l Act_OpPermissions_Details_perms_SetAppData

l Act_OpPermissions_Details_perms_ReduceACL

l Act_OpPermissions_Details_perms_ExpandACL

l Act_OpPermissions_Details_perms_Encrypt

l Act_OpPermissions_Details_perms_Decrypt

l Act_OpPermissions_Details_perms_Verify

l Act_OpPermissions_Details_perms_UseAsBlobKey: Setting this flag allows use of this key either in
the MakeBlob command to encrypt a key blob or in the LoadBlob command to decrypt a key from a
blob.

l Act_OpPermissions_Details_perms_UseAsKM: Only DES3 keys can be used for module keys, KM.

Page 129 nCore - Developer Tutorial

B.8.2 MakeBlob

l Act_OpPermissions_Details_perms_UseAsLoaderKey: When this flag is set, an encryption key is only
permitted to perform decryption when loading an SEE machine or SEE World onto the module.

l Act_OpPermissions_Details_perms_Sign

l Act_OpPermissions_Details_perms_GetACL

l Act_OpPermissions_Details_perms_SignModuleCert

l Act_OpPermissions_Details_perms__allflags

B.8.2 MakeBlob

This action type allows the creation of module key, or token, key blobs with the given key (see also
MakeArchiveBlob).

typedef struct {

 M_Word flags;

 M_KMHash *kmhash;

 M_TokenHash *kthash;

 M_TokenParams *ktparams;

 M_MakeBlobFilePerms *blobfile;

} M_Act_MakeBlob_Details;

l The following flags are defined:
l Act_MakeBlob_Details_flags_AllowKmOnly

If this flag is set, you can create blobs directly under a module key or under a logical token. If
this flag is not set, you must use a logical token.

l Act_MakeBlob_Details_flags_AllowNonKm0

If this flag is set, you can create blobs for this key using module keys, or logical tokens based on
module keys, except for the internally generated KM0. If this flag is not set, you must use KM0 or
logical tokens based on KM0.

l Act_MakeBlob_Details_flags_kmhash_present

Set this flag in order to restrict the blobs that can be made with this key to blobs that use the
module key whose hash is specified or to logical tokens that are based on this module key. If this
flag is not set, any module key may be used. If this hash is not KM0, you must set the
AllowNonKM0 flag.

l Act_MakeBlob_Details_flags_kthash_present

Set this flag in order to restrict the blobs that can be made with this key to blobs that use the
token whose hash is specified. If this flag is not set, any token may be used. If this token is not
based on KM0, you must set the AllowNonKM0 flag.

l Act_MakeBlob_Details_flags_ktparams_present

Set this flag in order to restrict the blobs that can be made with this key to blobs that use a token
with either the given parameters or with more restrictive ones. If this flag is not set, any token
can be used.

l Act_MakeBlob_Details_flags_AllowNullKmToken

nCore - Developer Tutorial Page 130

Appendix B Key structures

If this flag is set, the user can create token blobs for this key with a token protected by the null
module key.

l Act_MakeBlob_Details_flags_blobfile_present

If this flag is set the blob will be stored in the NVRAM or smart card file specified - it will not be
returned to the host.

l Act_MakeBlob_Details_flags__allflags

The key blob must meet the requirements of all the flags.

l *kmhash - see Act_MakeBlob_Details_flags_kmhash_present above.

l *kthash - see Act_MakeBlob_Details_flags_kthash_present above.

l *ktparams - see Act_MakeBlob_Details_flags_ktparams_present above.
l *blobfile

The following structure specifies the NVRAM or smart card files to which you want to restrict
writing the blob.

struct M_MakeBlobFilePerms {

 M_MakeBlobFilePerms_flags flags;

 M_PhysToken *devs;

 M_KeyHash *aclhash;

};

l The following flags are defined:
l MakeBlobFilePerms_flags_devs_present

l If set, the blob may only be stored in the storage devices specified by the M_FileDeviceFlags

word.
l MakeBlobFilePerms_flags_aclhash_present

Set this flag if the structure contains a M_KeyHash.

l *devs is the device on which to store the blob.

l *aclhash is the hash of a Template Key defining the ACL to use for the file storing the key. The
key must be provided when making the blob.

If you want to restrict the making of blobs to a set of module keys, or to a set of tokens, then you
must include a MakeBlob entry for each module or token hash.

B.8.3 MakeArchiveBlob

This action type allows the creation of direct and indirect archive key blobs with the given key.

typedef struct {

 M_Word flags;

 M_PlainText mech;

 M_KMHash *kahash;

 M_MakeBlobFilePerms *blobfile;

} M_Act_MakeArchiveBlob_Details;

Page 131 nCore - Developer Tutorial

B.8.4 NSO

l The following flags are defined:
l Act_MakeArchiveBlob_Details_flags_kahash_present

If this flag is set, you can make an archive key blob for this key with the key whose hash is
specified. If this flag is not set, any archive key may be used.

Including an Act_MakeArchiveBlob entry without kahash_present in an open permission
group creates a security loophole.

l Act_MakeArchiveBlob_Details_flags_blobfile_present

If this flag is set the blob will be stored in the NVRAM or smart card file specified - it will not be
returned to the host.

l mech

For making direct archive blobs, this must be Mech_DES3mCBCi64pPKCS5 or Mech_Any; for indirect
blobs this specifies the mechanism which must be used to encrypt the session key. If set to Mech_

Any, any mechanism appropriate for the type of the archiving key is allowed. See Mechanisms on
page 76.

l *kahash is the key hash.

l *blobfile — see MakeBlob on page 130

B.8.4 NSO

This action type is used only in certificates that approve critical functions that have been defined in the
SetKNSO command. It should not be used in an ACL for a key.

typedef struct {

 M_NSOPerms perms;

} M_Act_NSOPermissions_Details;

M_NSOPerms has the following structure:

typedef struct {

 M_Word ops;

} M_NSOPerms;

The following flags (ops) are defined. These are identical to those used in the SetNSOPerms command.

l NSOPerms_ops_LoadLogicalToken

l NSOPerms_ops_ReadFile

l NSOPerms_ops_WriteShare

l NSOPerms_ops_WriteFile

l NSOPerms_ops_EraseShare

l NSOPerms_ops_EraseFile

nCore - Developer Tutorial Page 132

Appendix B Key structures

l NSOPerms_ops_FormatToken

l NSOPerms_ops_SetKM

l NSOPerms_ops_RemoveKM

l NSOPerms_ops_GenerateLogToken

l NSOPerms_ops_ChangeSharePIN

l NSOPerms_ops_OriginateKey

l NSOPerms_ops_NVMemAlloc

l NSOPerms_ops_NVMemFree

l NSOPerms_ops_GetRTC

l NSOPerms_ops_SetRTC

l NSOPerms_ops_DebugSEEWorld

l NSOPerms_ops_SendShare

l NSOPerms_ops_ForeignTokenOpen

l NSOPerms_ops__allflags

B.8.5 NVRAM

This action type allows operations to be performed upon files that have been stored in the nonvolatile
memory or on a smart card or soft token.

struct M_Act_NVMemOpPerms_Details {

 M_Act_NVMemOpPerms_Details_perms perms;

 M_NVMemRange *subrange;

 M_NVMemRange *exactrange;

 M_Word *incdeclimit;

};

l The following operations (perms) are defined.
l Act_NVMemOpPerms_Details_perms_Read

l Act_NVMemOpPerms_Details_perms_Write

l Act_NVMemOpPerms_Details_perms_Incr

l Act_NVMemOpPerms_Details_perms_Decr

l Act_NVMemOpPerms_Details_perms_BitSet

l Act_NVMemOpPerms_Details_perms_BitClear

l Act_NVMemOpPerms_Details_perms_Free

l Act_NVMemOpPerms_Details_perms_subrange_present

l Act_NVMemOpPerms_Details_perms_exactrange_present

l Act_NVMemOpPerms_Details_perms_incdeclimit_present

l Act_NVMemOpPerms_Details_perms_GetACL

l Act_NVMemOpPerms_Details_perms_LoadBlob

Page 133 nCore - Developer Tutorial

B.8.6 ReadShare

This permission allows the contents to be used as a blob by the Loadblob command.
l Act_NVMemOpPerms_Details_perms_Resize

l *subrange

This specifies the subrange to which this operation can be applied; the operation can apply to any
part of the specified range in the ACL.

l *exactrange

This is a subrange to which this operation can be applied only if the range exactly matches the
specified range in the ACL.

l *incdeclimit

This is the maximum amount that this range can be increased or decreased in one operation.

B.8.6 ReadShare

This action type enables a logical token share to be read normally using the ReadShare command.

typedef struct {

 M_ReadShareDetails rsd;

} M_Act_ReadShare_Details;

typedef struct {

 M_ReadShareDetails_flags flags; No flags are defined

} M_ReadShareDetails;

B.8.7 SendShare

This action type enables a logical token share to be read remotely and sent over an impath.

typedef struct {

 M_Act_SendShare_Details_flags flags;

 M_RemoteModule *rm;

 M_ReadShareDetails *rsd;

} M_Act_SendShare_Details;

l The following flags are currently defined:
l Act_SendShare_Details_flags_rm_present

This flag is set if the action contains a RemoteModule structure.
l Act_SendShare_Details_flags_rsd_present

This flag is set if the action contains a ReadShareDetails structure.
l *rm

The impath over which the share data is to be sent must match this RemoteModule structure.

l *rsd — see ReadShare on page 134

nCore - Developer Tutorial Page 134

Appendix B Key structures

B.8.8 FileCopy

This action permits files stored on a smart card, soft token or in NVRAM to be copied to another
location. The action specifies which location the file can be copied to and from.

struct M_Act_FileCopy_Details {

 M_Act_FileCopy_Details_flags flags;

 M_PhysToken to;

 M_PhysToken from;

};

The following flag is defined:Act_FileCopy_Details_flags_ChangeName.

If set the new file may have a different FileID from the original file.

B.8.9 UserAction

This action does not permit any operations. Instead it can be checked by the CheckUserAction

command. This enables applications to make use of all modules ACl checking features - including use
limits, time limits, certifiers and so on - to restrict actions in their own code.

struct M_Act_UserAction_Details {

 M_UserActionInfo allow;

};

B.8.10 DeriveKey and DeriveKeyEx

These action types enable the key to be used in the DeriveKey command. They allow the key to be
used in a single specific role. If you want to create a key that can be used in more than one role, you
must include a separate action entry for each role. If the Cmd_DeriveKey_Args_flags_WorldHashMech

flag has been set in the DeriveKey command, then the DeriveKeyEx action should be used.

typedef struct {

 M_Word flags;

 M_DeriveRole role;

 M_DeriveMech mech;

int n_otherkeys;

 M_KeyRoleID *otherkeys;

 M_DKMechParams *params;

} M_Act_DeriveKey_Details;

typedef struct {

 M_Act_DeriveKeyEx_Details_flags flags;

 M_DeriveRole role;

 M_DeriveMech mech;

int n_otherkeys;

 M_vec_KeyRoleIDEx otherkeys;

 M_DKMechParams *params;

} M_Act_DeriveKeyEx_Details;

Page 135 nCore - Developer Tutorial

B.8.10 DeriveKey and DeriveKeyEx

l The following flags are defined:
l Act_DeriveKey_Details_flags_params_present

l Act_DeriveKeyEx_Details_flags_params_present

l role can be one of the following:

l DeriveRole_TemplateKey (template)

l DeriveRole_BaseKey (base key)

l DeriveRole_WrapKey (wrapping key)

l mech — see Mechanisms on page 76.

l n_otherkeys - the number of keys in the otherkeys table
l *otherkeys

The following keys can be used in the other roles of the DeriveKey command:

typedef struct {

 M_DeriveRole role;

 M_KeyHash hash;

} M_KeyRoleID;

typedef struct {

 M_DeriveRole role;

 M_KeyHashEx hash;

} M_KeyRoleIDEx;

l role

You can define keys for any or all of the roles. You can specify one or more keys for each role. If
you do not specify a key for a particular role, then any key can be used in that role.

l hash is either SHA-1 or a stronger hash determined by the Cmd_DeriveKey_Args_flags_

WorldHashMech, which can be obtained via the GetKeyInfoEx command.
l *params

The mechanism parameters to use for the DeriveKey operation.

struct M_DKMechParams {

 M_DeriveMech mech;

union M_DeriveMech__DKParams params;

};

l mech

The mechanism to use. The module will not permit you to set a M_DKMechParams with a mechanism
that is different to that previously defined in the ACL. If you attempt this the module returns Status_
InvalidACL.

l params

nCore - Developer Tutorial Page 136

Appendix B Key structures

The derive key mechanism parameters— see Derive Key Mechanisms on page 111.

The module applies the following rules to determine which derive key operations are permitted:

l If any of the requested or allowed DeriveMech values mismatch, the operation is never allowed.

l If the allowed DKMechParams are not present, any requested parameters are allowed.

l If the mechanism has an empty DKParams, the operation is allowed

l If the mechanism is of type DeriveMech_KDPKeyWrapDES3, the operation is allowed if and only if all
of the following are true:

l the ExactPolicyMatch flag is set

l the requested kind and details fields exactly match the corresponding allowed fields, or the
allowed kind field is 0xFFFFFFFF.

l the requested duration is nonzero and less than the allowed duration, or the allowed
duration field is zero.

l For other mechanisms, this comparison is not at present defined. The module will return
NotYetImplemented for attempts to set, in a key's ACL, DKMechParams with mechanisms for which
this is the case.

B.8.11 Using DeriveKey — an example

The following example shows how to use the DeriveKey command to split a DES key into two random
halves and then recombine these halves to recreate the original key. This process is illustrated on
DeriveKey process on page 138.

Page 137 nCore - Developer Tutorial

B.8.11 Using DeriveKey — an example

Figure 15. DeriveKey process

First, import the two template keys. A template key contains an ACL and an Appdata file that can be
applied to the results of the DeriveKey operation. By importing these elements first, their key hashes
can be determined, and these hashes can be referenced in the ACLs for the remaining keys. This
ensures that the two derived keys will have the correct ACL.

Next, create the wrapping key. Determine its hash and then that of the base key. After all the input
keys have been have created, use the DeriveKey command to combine the base key and the wrapping
key.

Finally, unwrap the wrapped key. Check that the new DES key has the same hash, and therefore the
same data, as the original. Also check that the new DES key has correctly inherited the ACL and
application data from the template key.

nCore - Developer Tutorial Page 138

Appendix B Key structures

1. Use the Import command with the following parameters to import a template key for an ACL that
allows the use of DeriveKey with this key as the base key, any mechanism, and any other keys:
module 1

type DKTemplate

appdata 02020202

nested_acl
01000000 00000000 00000000 02000000 01000000
6c200000 05000000 00000000 01000000 00000000
00000000

ACL

n_groups 1

groups[0]

flags 0x0

n_limits 0

n_actions 1

actions[0]

type DeriveKey

flags 0x0

role TemplateKey

mech Any

n_otherkeys 0

appdata 0

Create the nested_acl by using the NFastApp_MarshalACL() command.

Such use of the Import command will return

idka= IDKA 0010

2. Get this key's hash by using the GetKeyInfo command with the following parameters:

flags; 0x0

key; IDKA 0010

This command returns

type; DKTemplate

hash; HKA 0010

Page 139 nCore - Developer Tutorial

B.8.11 Using DeriveKey — an example

3. Use the Import command with the following parameters to import a template key for an ACL that
contains oppermissions as follows:
l ExportAsPlain GetAppData Encrypt Decrypt Verify Sign GetACL

module 1

type DKTemplate

appdata 01010101

nested_acl 01000000 00000000 00000000 01000000 01000000
8c330000

ACL

n_groups 1

groups[0]

flags 0x0

n_limits 0

n_actions 1

actions[0]

type DeriveKey

flags 0x0

role TemplateKey

mech Any

n_otherkeys 0

appdata 0

Such use of the Import command will return:

key IDKA 0011

In order to create a nested_acl in C, use the NFastApp_MarshalACL() command.

In order to create a nested ACL in Java, use the marshall() method from the M_ACL class.

The following Java fragment demonstrates the use of this method:

nCore - Developer Tutorial Page 140

Appendix B Key structures

...

 M_ACL acl;

MarshallContext tempMctx;

 M_ByteBlock bb;

 M_KeyType_Data_Template data;

acl = yourACL;

tempMctx = new MarshallContext();

acl.marshall(tempMctx);

bb = new M_ByteBlock (tempMctx.getBytes());

data = new M_KeyType_Data_Template();

data.nested_acl = bb;

...

4. Get this key's hash by using the GetKeyInfo command with the following parameters:

key IDKA 0011

This command returns:

type DKTemplate

hash HKA 0011

Page 141 nCore - Developer Tutorial

B.8.11 Using DeriveKey — an example

5. Make a wrapping key by using the GenerateKey command:

l When wrapping, insist on using template HKA 0010

l When unwrapping, insist on using template HKA 0011.

flags 0x0

module 1

type Random

lenbytes 8

ACL

n_groups 1

groups[0]

flags 0x0

n_limits 0

n_actions 3

actions[0]

type OpPermissions

perms
DuplicateHandle

ExportAsPlain

ReduceACL

GetACL

actions[1]

type DeriveKey

flags 0x0

role WrapKey

mech DESsplitXOR

n_otherkeys 1

role TemplateKey

hash HKA 0010

actions[2]

type DeriveKey

flags 0x0

role WrapKey

mech DESjoinXOR

n_otherkeys 1

nCore - Developer Tutorial Page 142

Appendix B Key structures

role TemplateKey

hash HKA 0011

Such use of the GenerateKey command returns:

key IDKA 0012

6. Get this key's hash by using the GetKeyInfo command:

key IDKA 0012

This command returns:

type Random

hash HKA 0012

Page 143 nCore - Developer Tutorial

B.8.11 Using DeriveKey — an example

7. Use the GenerateKey command with the following parameters to generate a DES key that can only
be wrapped using:

l The DESsplitXOR mechanism

l HKA 0012 as the wrapping key

module 1

type DES

n_groups 1

groups[0]

flags 0x0

n_limits 0

n_actions 2

actions[0]

type OpPermissions

perms ReduceACL

GetACL

actions[1]

type DeriveKey

flags 0x0

role BaseKey

mech DESsplitXOR

n_otherkeys 1

role WrapKey

hash HKA 0012

This returns:

key IDKA 0013

nCore - Developer Tutorial Page 144

Appendix B Key structures

8. Get this key's hash by using the GetKeyInfo command with the following parameters:

key IDKA 0013

This command returns:

type DES

hash HKA 0013

9. The DES key can now be combined with the random key to produce a second random key by
using the DeriveKey command with the following parameters:
flags 0x0

mech DESsplitXOR

n_keys 3

keys[0] IDKA 0010

keys[1] IDKA 0013

keys[2] IDKA 0012

This command returns:

key IDKA 0014

At this point, this process has produced:

l A DES key IDKA 0013

l Two random keys: IDKA 0012 and IDKA 0014

The two random keys can be combined to recreate the key data in the DES key. This can
be demonstrated by combining the keys that use the DeriveKey command and then using
the GetKeyInfo to check that the hash of the new key matches the hash of the DES key
that was determined in [Step 8].

Page 145 nCore - Developer Tutorial

B.8.11 Using DeriveKey — an example

10. Use the DeriveKey command with the following parameters to combine the keys:
flags 0x0

mech DESjoinXOR

n_keys 3

keys[0] IDKA 0011

keys[1] IDKA 0014

keys[2] IDKA 0012

This command returns:

key IDKA 0015

This is a new KeyID because this is a new instance of the key. This instance of the key has
taken its appdata and ACL from the template key that was created earlier: IDKA 0011

11. Get the hash of this new key by using the GetKeyInfo command with the following parameters:

key IDKA 0015

This command returns:

type DES

hash HKA 0013

This is the same hash as before, which proves that the key has been combined correctly

12. Check that the new key has inherited the application data from the template key by using the
GetAppData command with the following parameters:

key IDKA 0015

This command returns:

appdata 01010101

This is the application data that was provided by the template key.

nCore - Developer Tutorial Page 146

Appendix B Key structures

13. Check that the new key has inherited the ACL from the nested ACL in the template key by using
the GetACL command with the following parameters:

key IDKA 0015

This command returns

acl.n_groups 1

groups[0]

flags none 0x00000000

n_limits 0

n_actions 1

actions[0]

type OpPermissions

perms

ExportAsPlain

GetAppData

Encrypt

Decrypt

Verify

Sign

GetACL

B.9 Certificates
The nCipher module uses certificates to enable a given user to authorize another user to perform an
action.

A certificate is a signed message. The key that is used to sign the certificate must match the key hash in
the ACL it is authorizing. The message can contain an ACL; this ACL can be used to restrict the
operation to be approved by the certificate, or it can be used to require a further certificate.

Certificates can be either fresh or reusable.

A fresh certificate includes a challenge value. This is a random number that was generated previously
by the module with the GetChallenge command. The module stores the eight most recent challenges
for which the associated certificates have not yet been presented.

If there are eight outstanding challenges and a user issues the GetChallenge command, the module
deletes the oldest challenge, and any certificate presented that contains that challenge value will be
rejected.

When a user presents a fresh certificate, the module deletes the matching challenge from the list. If the
same certificate is presented a second time, it will be rejected.

The list of challenges is cleared whenever the unit is reset.

Therefore, a fresh certificate:

Page 147 nCore - Developer Tutorial

B.9.1 Using a certificate to authorize an action

l can only be used once

l must be used on the module that generated the challenge

l may become invalid if left too long before it is used

If you submit a certificate containing a challenge that is not on the module's list of current challenges,
the server returns the status Status_UnknownChallenge.

A reusable certificate does not contain a challenge and can be used as often as is required. It can also
be used on any module.

An ACL can specify that the required certificate must be fresh. If you present a reusable certificate
when the ACL requires a fresh certificate, the certificate will be rejected.

If you possess the required key, you can always create a fresh certificate. However, this requires a
certain amount of processing, both on the module and on the host. In order to prevent unnecessary
load, you can authorize a command by presenting a certificate that contains the required key's KeyID .
In order for this certificate to be valid, you must have loaded the key yourself. You cannot pass the
KeyID to another user. In order to authorize another user, you must create a properly signed
certificate.

Code executing in the SEE can be signed by one or more keys by using the signature tools provided
with the CodeSafe Developer Kit. By presenting a certificate of the type CertType_SEECert, code
signed in this way can perform any operation for which the signing key has permission.

B.9.1 Using a certificate to authorize an action

If you are given a certificate, you must include it with the command it authorizes, after all the
arguments for that command.

For situations in which you are presenting a single certificate:

l it must not require further authorization

l the hash of the key that signed the certificate must match the hash that is specified in the ACL

For situations in which you need to present a chain of certificates, the first certificate must not require
any further authorization. For every certificate in the chain, the module checks to see that the hash of
the signing key matches the hash given in the certifier field of the ACL that is included in the next
certificate or, if this is the last certificate in the chain, the certifier field of the ACL for the key being
authorized. The ACL in each certificate in the chain must permit the operation to be performed.

If a certificate, or any certificate in a certificate chain, does not authorize the requested action, the
module will return the status Status_AccessDenied.

B.9.2 Generating a certificate to authorize another operation

It is the responsibility of the cryptographic application to build certificates. This process is assisted by
the NFast_BuildCmdCert() function that is provided in the generic stub library.

nCore - Developer Tutorial Page 148

Appendix B Key structures

B.9.2.1 Structure

typedef struct {

 M_KeyHash keyhash;

 M_CertType type;

 union M_CertType__CertBody body;

} M_Certificate;

l keyhash is the hash of the key that is used to sign the certificate. This hash must match the hash that
is specified in the key's ACL or in the previous certificate in the chain.

l The following type values are defined:
l CertType_Invalid

l CertType_SigningKey

l CertType_SingleCert

l CertType_SEECert

l The certificate body (body) has one of the following formats:

union M_CertType__CertBody {

 M_CertType_SigningKey_CertBody signingkey;

 M_CertType_SingleCert_CertBody singlecert;

};

l A signingkey has the following body:

typedef struct {

 M_PlainText key;

} M_CertType_SigningKey_CertBody;

l Where:

l key is the KeyID of the key that must be loaded in order to authorize this command. The key must
have the following properties:

l the hash of the key must match the hash that was given in the ACL

l the key must have UseAsCertificate permission set in its ACL in an open group.

l A singlecert certificate has the following body:

typedef struct {

 M_PlainText pubkeydata;

 M_CipherText signature;

 M_ByteBlock certsignmsg;

} M_CertType_SingleCert_CertBody;

l signature is the certsignmsg, which is signed with the private key that corresponds to
pubkeydata.

l A certsignmsg has the following structure, which must be marshalled into a byte block:

Page 149 nCore - Developer Tutorial

B.9.2.1 Structure

typedef struct {

 M_MagicValue header;

 M_Word flags;

int n_hks;

 M_KeyHash *hks;

 M_Nonce *nonce;

 M_ACL *acl;

 M_MagicValue footer;

} M_CertSignMessage;

l header

This must be set to the value MagicValue_CertMsgHeader, defined in messages-ags-dh.h.
l flags

The following flags are defined:
l CertSignMessage_flags_nonce_present

l CertSignMessage_flags_acl_present

l CertSignMessage_flags_do_not_cache

l n_hks and *hks

This table can be used to restrict the keys to which this certificate applies. If there are entries in this
table, then the hash of the key object used—or, for an NSO certificate, the hash of the module key
used—must also be in this table. If the table is empty (n_hks = 0), then the certificate can be used
to authorize any operations on a key with a matching ACL.

l *nonce

This is a nonce returned by the GetChallenge command.
l *acl

Optionally, this is a valid ACL that authorizes the action to be performed. If this ACL contains a
certmech or a certifier field in a permission group, then a valid certificate signed by the key
whose hash is in the permission group must precede this certificate in the chain.

l footer

This must be set to the value MagicValue_CertMsgFooter, defined in messages-ags-dh.h.

The certsgnmsg block should be passed to a suitable signature algorithm. For RSA signature keys, use
a mechanism that hashes the block first (for example, RSAhSHA1pPKCS1). The module checks all of the
above and returns:

l Status_BadCertKeyHash if the verification key does not match the given hash

l Status_VerifyFailed if the signature cannot be verified with the given key

l Status_UnknownChallenge if the nonce was not one that the module had issued recently

l Status_AccessDenied if the ACL still does not permit your request for some other reason.

The certificate type CertType_SEECert, however, has an empty CertBody . In order to use certificates of
this type:

1. Specify in the M_Certificate structure the hash of the signing key that was used to sign the SEE
World data that authorized the action.

2. The access control system checks to ensure that the SEE World data was, in fact, signed by the
specified key.

nCore - Developer Tutorial Page 150

Appendix B Key structures

3. If so, the certificate is accepted much as a signingkey certificate would be. However, because a
signingkey certificate is always treated as fresh but an SEE certificate is not, the flag
PermissionGroup_flags_FreshCerts must not be set in the next ACL in the stack.

Thus, code executing within the SEE can authorize itself to perform an action requiring authorization
from a key that signed the code. It can do this by creating an M_Certificate, setting its key hash
appropriately, and setting its type to SEECert.

Page 151 nCore - Developer Tutorial

Appendix C NKFM Functions

Appendix C NKFM Functions
This chapter describes the functions and structures that are used in the C NFKM library. This library
gives access to Security World key-management functions.

C.1 Debugging NFKM functions
Most of the NFKM functions that are described in this chapter can write data to a debug or error log.
However, they do not usually do so except under circumstances outside of those encountered during
normal operation (for example, if the module is not properly initialized). You can control the writing of
data to a debug or error log with the NFKM_LOG environment variable. For more information on the
NFKM_LOG environment variable, see the User Guide.

Use the NFKM_getinfo call to get the current state before using any other call that relies on the data in
the NFKM_SlotInfo structure being up-to-date.

C.2 Functions
Several operations, especially card set creation and loading, require multiple function calls. In this
case there is usually a *_begin function which must be called first. There is a *_nextxxx function that
can be called a number of times. Finally there is a *_done function. If, due to user input you decide not
to complete the operation there is a *_abort function which clears up memory.

C.2.1 NKFM_changepp

Change the pass phrase on a card.

M_Status NFKM_changepp(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_SlotInfo *slot,

unsigned flags,

const M_Hash *oldpp,

const M_Hash *newpp,

NFKM_ShareFlag remove,

NFKM_ShareFlag set,

struct NFast_Call_Context *cctx

);

l const NFKM_SlotInfo *slot is the slot in which the card is loaded

l unsigned flags is a flags word, the following flag is defined:

#define NFKM_changepp_flags_NoPINRecovery 1u

nCore - Developer Tutorial Page 152

Appendix C NKFM Functions

l const M_Hash *oldpp is a pointer to the current pass phrase hash

l const M_Hash *newpp is a pointer to the new pass phrase hash

l NFKM_ShareFlag remove is a list of shares whose pass phrases you want to remove, regardless of
newpp

l NFKM_ShareFlag set is a list of shares whose pass phrases you want to set or change.

The remove and set flags must be disjoint. A default appropriate to the type of card in the slot
is used if both remove and set are zero.

C.2.2 NFKM_checkconsistency

This function checks the general consistency of the Security World data:

M_Status NFKM_checkconsistency(

NFast_AppHandle app,

NFKM_DiagnosticContextHandle callctx,

NFKM_diagnostic_callback *informational,

NFKM_diagnostic_callback *warning,

NFKM_diagnostic_callback *fatal,

struct NFast_Call_Context *cctx

);

It returns Status_OK unless:

l there was a fatal error, in which case it returns the return value from fatal(), which must be
nonzero

l any other diagnostic callback returned nonzero, in which case it returns that callback's return value
(because checking was aborted at that point).

C.2.3 NFKM_checkpp

Verifies that a pass phrase is correct for a given card. Each share on the card which has a pass phrase
set is checked.

M_Status NFKM_checkpp(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_SlotInfo *slot,

const M_Hash *pp,

struct NFast_Call_Context *cctx

);

C.2.4 NFKM_cmd_generaterandom

Utility function: calls the nCore GenerateRandom command. Requires an app handle and an existing
connection.

Page 153 nCore - Developer Tutorial

C.2.5 NFKM_cmd_destroy

M_Status NFKM_cmd_generaterandom(

NFast_AppHandle app,

NFastApp_Connection conn,

M_Word wanted,

unsigned char **block_r,

struct NFast_Call_Context *cctx

);

Sets *block_r to point to newly allocated memory containing the random data.

C.2.5 NFKM_cmd_destroy

Utility function: calls the nCore Destroy command to destroy an nCore object. Requires an app handle
and an existing connection.

M_Status NFKM_cmd_destroy(

NFast_AppHandle app,

NFastApp_Connection conn,

M_ModuleID mn,

M_KeyID idka,

const char *what,

struct NFast_Call_Context *cctx

);

The what argument should describe what sort of thing you are destroying, for the benefit of people
reading log messages created when things go wrong.

C.2.6 NFKM_cmd_loadblob

Utility function: calls the nCore Loadblob command to load a blob. Requires an app handle and an
existing connection.

M_Status NFKM_cmd_loadblob(

NFast_AppHandle app,

NFastApp_Connection conn,

M_ModuleID mn,

const M_ByteBlock *blob,

M_KeyID idlt,

M_KeyID *idk_r,

const char *whatfor,

struct NFast_Call_Context *cctx

);

Set idlt to zero if the blob is module-only.

The whatfor argument should describe what blob you are loading, for the benefit of people reading
log messages created when things go wrong.

nCore - Developer Tutorial Page 154

Appendix C NKFM Functions

C.2.7 NFKM_cmd_getkeyplain

Utility function: calls the nCore Export command to obtain the plain text of a key object. Requires an
app handle and an existing connection.

M_Status NFKM_cmd_getkeyplain(

NFast_AppHandle app, NFastApp_Connection

conn,

M_ModuleID mn,

M_KeyID idka,

M_KeyData *keyvalue_r,

const char *what,

struct NFast_Call_Context *cctx

);

The what argument should describe what sort of key you are querying the plain text of, for the benefit
of people reading log messages created when things go wrong.

When you've finished with the exported key data, call NFastApp_Free_KeyData on it.

C.2.8 NFKM_erasecard

This function erases an operator card in the given slot:

M_Status NFKM_erasecard(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_SlotInfo *slot,

NFKM_FIPS140AuthHandle fips140auth,

struct NFast_Call_Context *cctx

);

C.2.9 NFKM_erasemodule

Erases a module. The module must be in (pre-)init mode. All NSO permissions are granted, and the
security officer's key is reset to its default.

M_Status NFKM_erasemodule(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_ModuleInfo *m,

struct NFast_Call_Context *cc

);

l const NFKM_ModuleInfo *m is a pointer to the module to be erased.

C.2.10 NFKM_hashpp

This function hashes a pass phrase for use as an Operator Card Set pass phrase:

Page 155 nCore - Developer Tutorial

C.2.11 NFKM_initworld_*

M_Status NFKM_hashpp(

NFast_AppHandle app,

NFastApp_Connection conn,

const char *string,

M_Hash *hash_r,

struct NFast_Call_Context *cctx

);

C.2.11 NFKM_initworld_*

C.2.11.1 NFKM_initworld_abort

Destroys a Security World initialization context.

void NFKM_initworld_abort(

NFKM_InitWorldHandle iwh

);

l NFKM_InitWorldHandle iwh is the handle for Security World initialization returned by NFKM_

initworld_begin.

C.2.11.2 NFKM_initworld_begin

Does the initial part of work for a Security World initialization. The paths through the NFKM_initworld
process are illustrated on NFKM_Initworld_* on page 157.

nCore - Developer Tutorial Page 156

Appendix C NKFM Functions

Figure 16. NFKM_Initworld_*

M_Status NFKM_initworld_begin(

NFast_AppHandle app,

NFastApp_Connection conn,

NFKM_InitWorldHandle *iwh,

const NFKM_ModuleInfo *m,

const NFKM_InitWorldParams *iwp,

struct NFast_Call_Context *cc

);

l NFKM_InitWorldHandle *iwh is a pointer to the address of handle to set

l const NFKM_ModuleInfo *m is a pointer to the module to be initialized

l const NFKM_InitWorldParams *iwp is a pointer to the parameters for new world

If this function fails, nothing will have been allocated and no further action need be taken; if it
succeeds, the handle returned must be freed by calling NFKM_initworld_done or NFKM_initworld_abort.

It will help if you call NFKM_getinfo again after this function — otherwise you won't be able to refer to
the module's slots since it was in PreInitialisation mode last time you looked.

C.2.11.3 NFKM_initworld_done

Finishes Security World initialization.

Page 157 nCore - Developer Tutorial

C.2.11.4 NFKM_initworld_gethash

M_Status NFKM_initworld_done(

NFKM_InitWorldHandle iwh

);

l NFKM_InitWorldHandle iwh is the handle for Security World initialization returned by NFKM_

initworld_begin.

If this function succeeds, the handle will have been freed; if it fails, you must still call NFKM_initworld_
abort.

C.2.11.4 NFKM_initworld_gethash

Fetches the identifying hash for new administrator cards created by this job.

void NFKM_initworld_gethash(

NFKM_InitWorldHandle iwh,

M_Hash *hh

);

l NFKM_InitWorldHandle iwh is the handle for Security World initialization returned by NFKM_

initworld_begin.

l M_Hash *hh is a pointer to a memory location to which you want the function to write the hash

C.2.11.5 NFKM_initworld_nextcard

Writes an administrator card.

M_Status NFKM_initworld_nextcard(

NFKM_InitWorldHandle iwh,

NFKM_SlotInfo *s,

const M_Hash *pp,

int *left

);

l NFKM_InitWorldHandle iwh is the handle for Security World initialization returned by NFKM_

initworld_begin.

l NFKM_SlotInfo *s is a pointer to the slot containing the admin card

l const M_Hash *pp is a pointer to the passphrase for the card

l int *left is the address to store number of cards remaining.

C.2.11.6 NFKM_initworld_setinitmoduleparams

Configures the parameters for module initialization at the end of the world initialization.

nCore - Developer Tutorial Page 158

Appendix C NKFM Functions

M_Status NFKM_initworld_setinitmoduleparams(

NFKM_InitWorldHandle iwh,

const NFKM_InitModuleParams *imp

);

l NFKM_InitWorldHandle iwh is the handle for Security World initialization returned by NFKM_

initworld_begin.

l const NFKM_InitModuleParams *imp is a pointer to the module initialization params.

C.2.12 NFKM_loadadminkeys_*

C.2.12.1 NFKM_loadadminkeys_begin

Initializes an operation to load administrator keys. Initially, no tokens are selected for loading. The
paths through the NFKM_loadadminkeys process are illustrated on NFKM_loadadminkeys_* on page
160.

Page 159 nCore - Developer Tutorial

C.2.12.1 NFKM_loadadminkeys_begin

Figure 17. NFKM_loadadminkeys_*

M_Status NFKM_loadadminkeys_begin(

NFast_AppHandle app,

NFastApp_Connection conn,

NFKM_LoadAdminKeysHandle *lakh,

const NFKM_ModuleInfo *m,

struct NFast_Call_Context *cc

);

nCore - Developer Tutorial Page 160

Appendix C NKFM Functions

l NFKM_LoadAdminKeysHandle *lakh is a pointer to the address to which the function writes a handle
for this operation.

l const NFKM_ModuleInfo *m is a pointer to the module on which you wish to load the keys.

C.2.12.2 NFKM_loadadminkeys_done

Frees a key loading context. Any keys and tokens remaining owned by the context are destroyed.

void NFKM_loadadminkeys_done(

NFKM_LoadAdminKeysHandle lakh

);

l NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin

C.2.12.3 NFKM_loadadminkeys_{get,steal}{key,token}

These are convenience functions which offer slightly simpler interfaces than NFKM_loadadminkeys_

getobjects.

The steal functions set the NFKM_LAKF_STEAL flag, which the get functions do not; the key functions
load keys whereas the token functions fetch logical tokens. See NFKM_loadadminkeys_getobjects for full
details about the behavior of these functions.

M_Status NFKM_loadadminkeys_getkey(

NFKM_LoadAdminKeysHandle lakh,

int i,

M_KeyID *k

);

M_Status NFKM_loadadminkeys_stealkey(

NFKM_LoadAdminKeysHandle lakh,

int i,

M_KeyID *k

);

M_Status NFKM_loadadminkeys_gettoken(

NFKM_LoadAdminKeysHandle lakh,

int i,

M_KeyID *k

);

M_Status NFKM_loadadminkeys_stealtoken(

NFKM_LoadAdminKeysHandle lakh,

int i,

M_KeyID *k

);

Page 161 nCore - Developer Tutorial

C.2.12.4 NFKM_loadadminkeys_getobjects

l NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin

l int i is the label for the key or token

l M_KeyID *k is a pointer to the address to store the keyid

A key cannot be loaded once its logical token has been stolen. Therefore, if you want to steal
a key and its token, you must steal the key first.

C.2.12.4 NFKM_loadadminkeys_getobjects

Extracts objects from the admin keys context.

M_Status NFKM_loadadminkeys_getobjects(

NFKM_LoadAdminKeysHandle lakh,

M_KeyID *v,

const int *v_k,

const int *v_lt,

unsigned f

);

l NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin

l M_KeyID *v is a pointer to the output vector of keyids

l const int *v_k is a vector of key labels

l const int *v_lt is a vector of token labels

l unsigned f is a bitmap of flags

Extracts objects from the admin keys context. Logical tokens must have been loaded using the
selecttokens, loadtokens and nextcard interface; keys must have their protecting logical token loaded
already. The KeyIDs for the objects are stored in the array v in the order of their labels in the v_k and
v_lt vectors, keys first. The label vectors are terminated by an entry with the value -1. Either v_k or v_
lt (or both) may be null to indicate that no objects of that type should be loaded.

Usually, the context retains ownership of the objects extracted: the objects will remain available to
other callers, and will be Destroyed when the context is freed. If the flag NFKM_LAKF_STEAL is set in f,
the context will forget about the object; it will not be available to subsequent callers, nor be Destroyed
automatically.

Stealing a logical token will prevent keys from being loaded from blobs until that token is
reloaded. However, note that keys which have already been loaded but not stolen will remain
available.

As an example, consider the case where LTR has been loaded. Two calls are made to getobjects: one
which fetches KRE, and a second which steals the token LTR. It is no longer possible to get KRA
(because LTR is now unavailable), but further requests to get KRE will be honoured.

If an error occurs, the contents of the vector v are unspecified, and no objects will have been stolen.
However, some of the requested keys may have been loaded.

nCore - Developer Tutorial Page 162

Appendix C NKFM Functions

C.2.12.5 NFKM_loadadminkeys_loadtokens

Starts loading the necessary tokens. It might be possible that they're all loaded already, in which case
*left is reset to zero on exit.

M_Status NFKM_loadadminkeys_loadtokens(

NFKM_LoadAdminKeysHandle lakh,

int *left

);

l NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin

l int *left is the address at which to store the number of cards remaining.

C.2.12.6 NFKM_loadadminkeys_nextcard

Reads an admin card.

M_Status NFKM_loadadminkeys_nextcard(

NFKM_LoadAdminKeysHandle lakh,

const NFKM_SlotInfo *s,

const M_Hash *pp, int *left

);

l NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin

l const NFKM_SlotInfo *s is a pointer to slot to read

l const M_Hash *pp is a pointer to pass phrase hash, or NULL if the card has no pass phrase

l int *left is the address at which to store the number of cards remaining.

C.2.12.7 NFKM_loadadminkeys_selecttoken

Selects a single token to be loaded.

M_Status NFKM_loadadminkeys_selecttokens(

NFKM_LoadAdminKeysHandle lakh,

int k

);

l NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin

l int *k is a key or token label. A key label requests that the token protecting that key be loaded.

C.2.12.8 NFKM_loadadminkeys_selecttokens

Selects a collection of tokens to be loaded.

Page 163 nCore - Developer Tutorial

C.2.12.9 NFKM_loadadminkeys_whichtokens

M_Status NFKM_loadadminkeys_selecttokens(

NFKM_LoadAdminKeysHandle lakh,

const int *k

);

l NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin

l const int *k is an array of key or token labels

The array is terminated by an entry containing the value -1. Each entry may be either a key or token
label. A key label requests that the token protecting that key be loaded.

C.2.12.9 NFKM_loadadminkeys_whichtokens

Discovers which logical tokens will be read in the next or current loadtokens operation.

NFKM_ShareFlag NFKM_loadadminkeys_whichtokens(

NFKM_LoadAdminKeysHandle lakh

);

l NFKM_LoadAdminKeysHandle lakh is the handle returned by NFKM_loadadminkeys_begin

Returns a bitmap of logical tokens to be loaded.

C.2.13 NFKM_loadcardset_*

C.2.13.1 NFKM_loadcardset_abort

This function aborts the loading of a card set:

void NFKM_loadcardset_abort(

NFKM_LoadCSHandle state

);

C.2.13.2 NFKM_loadcardset_begin

Use the NFKM_getinfo call to get the current state before using any other call that relies on the
data in the NFKM_SlotInfo structure being up to date.

This function prepares to load a card set. The paths through the NFKM_loadcardset process are
illustrated on NFKM_loadcardset_* on page 165.

nCore - Developer Tutorial Page 164

Appendix C NKFM Functions

Figure 18. NFKM_loadcardset_*

M_Status NFKM_loadcardset_begin(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_ModuleInfo *module,

const NFKM_CardSet *cardset,

NFKM_LoadCSHandle *state_r,

struct NFast_Call_Context *cctx

);

C.2.13.3 NFKM_loadcardset_done

This function completes the loading of a card set:

M_Status NFKM_loadcardset_done(

NFKM_LoadCSHandle state,

M_KeyID *logtokid_r

);

C.2.13.4 NFKM_loadcardset_nextcard

Use the NFKM_getinfo call to get the current state before using any other call that relies on the
data in the NFKM_SlotInfo structure being up to date.

This function attempts to load the next card in a card set:

Page 165 nCore - Developer Tutorial

C.2.14 NFKM_loadworld_*

M_Status NFKM_loadcardset_nextcard(

NFKM_LoadCSHandle state,

const NFKM_SlotInfo *slot,

const M_Hash *pp,

int *sharesleft_r,

struct NFast_Call_Context *cctx

);

It returns Status_OK if the card was loaded successfully. Otherwise, in the event of an error, the return
value will be TokenIOError, PhysTokenNotPresent, DecryptFailed, or potentially something else in the
event of an unrecoverable error. After any error, even a recoverable one, *sharesleft_r is not
changed.

C.2.14 NFKM_loadworld_*

C.2.14.1 NFKM_loadworld_abort

Destroys a Security World loading context.

void NFKM_loadworld_abort(

NFKM_LoadWorldHandle lwh

);

l NFKM_LoadWorldHandle lwh is the handle for the Security World to be loaded returned by NFKM_

loadworld_begin.

C.2.14.2 NFKM_loadworld_begin

Initializes an operation to program a module with an existing Security World. The paths through the
NFKM_loadworld process are illustrated on NFKM_loadworld_* on page 167.

nCore - Developer Tutorial Page 166

Appendix C NKFM Functions

Figure 19. NFKM_loadworld_*

M_Status NFKM_loadworld_begin(

NFast_AppHandle app,

NFastApp_Connection conn,

NFKM_LoadWorldHandle *lwh,

const NFKM_ModuleInfo *m,

struct NFast_Call_Context *cc

);

l NFKM_LoadWorldHandle *lwh is a pointer to the address of handle to fill in

l const NFKM_ModuleInfo *m is a pointer to the module to be initialized

If this function fails, nothing will have been allocated and no further action need be taken; if it
succeeds, the handle returned must be freed by calling NFKM_loadworld_done or NFKM_loadworld_abort.

As with initializing new Security Worlds, it will help if you call NFKM_getinfo again after this function.

C.2.14.3 NFKM_loadworld_done

Finishes Security World loading.

M_Status NFKM_loadworld_done(

NFKM_LoadWorldHandle lwh

);

l NFKM_LoadWorldHandle lwh is the handle for the Security World to be loaded returned by NFKM_

loadworld_begin.

Page 167 nCore - Developer Tutorial

C.2.14.4 NFKM_loadworld_nextcard

If this function succeeds, the handle will have been freed; if it fails, you must still call NFKM_loadworld_
abort.

C.2.14.4 NFKM_loadworld_nextcard

Reads an administrator card.

M_Status NFKM_loadworld_nextcard(

NFKM_LoadWorldHandle lwh,

const NFKM_SlotInfo *s,

const M_Hash *pp, int *left

);

l NFKM_LoadWorldHandle lwh is the handle for the Security World to be loaded returned by NFKM_

loadworld_begin.

l const NFKM_SlotInfo *s is a pointer to the slot containing the admin card

l const M_Hash *pp is a pointer to the passphrase for the card

l int *left is a pointer to the address to store number of cards remaining

C.2.14.5 NFKM_loadworld_setinitmoduleparams

Configures the parameters for module initialization at the end of the world initialization.

M_Status NFKM_loadworld_setinitmoduleparams(

NFKM_LoadWorldHandle lwh,

const NFKM_InitModuleParams *imp

);

l NFKM_LoadWorldHandle lwh is the handle for the Security World to be loaded returned by NFKM_

loadworld_begin

l const NFKM_InitModuleParams *imp is a pointer to the module initialization parameters.

C.2.15 NFKM_makecardset_*

C.2.15.1 NFKM_makecardset_abort

This function aborts the creation of a card set:

void NFKM_makecardset_abort(

NFKM_MakeCSHandle state

);

C.2.15.2 NFKM_makecardset_begin

This function prepares to make a new card set. The paths through the NFKM_makecardset process are
illustrated on NFKM_makecardset_* on page 169.

nCore - Developer Tutorial Page 168

Appendix C NKFM Functions

Figure 20. NFKM_makecardset_*

NFKM_makecardset_setflags, NFKM_makecardset_makeshareacl or NFKM_makecardset_
setshareacl are not recommended for normal use

Use the NFKM_getinfo call to get the current state before using any other call that relies on the
data in the NFKM_SlotInfo structure being up to date.

Page 169 nCore - Developer Tutorial

C.2.15.3 NFKM_makecardset_done

M_Status NFKM_makecardset_begin(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_ModuleInfo *module,

NFKM_MakeCSHandle *state_r,

const char *name,

int n,

int k,

M_Word flags,

int timeout,

NFKM_FIPS140AuthHandle fips140auth,

struct NFast_Call_Context *cctx

);

l const NFKM_ModuleInfo *module is a pointer to the module to use to make the card set

l NFKM_MakeCSHandle *state_r is a pointer to the card set state.

typedef struct NFKM_MakeCSState

*NFKM_MakeCSHandle;

l const char *name is the name to use for this card set.

l int n is the total number of cards in the set

l int k is the the quorum, the number of cards that must be read to recreate the logical token.

l M_Word flags a flags word, the following flag is defined:

NFKM_SAF_REMOTE 1u /*Allow remote reading of shares */

l int timeout is the time out for the card set or 0 for no time out. This is the time in seconds from
the laoding fo the card set after which the module will destroy the logical tokens protected by the
card set.

NFKM_FIPS140AuthHandle fips140auth is only required in FIPS 140-2 level 3 Security Worlds.

C.2.15.3 NFKM_makecardset_done

This function completes the creation of a card set:

M_Status NFKM_makecardset_done(

NFKM_MakeCSHandle state,

NFKM_CardSetIdent *ident_r,

NFKM_FIPS140AuthHandle fips140auth

);

C.2.15.4 NFKM_makecardset_gethash

The functions fetches the identifying hash for cards created by this makecardset job.

nCore - Developer Tutorial Page 170

Appendix C NKFM Functions

void NFKM_makecardset_gethash(

NFKM_MakeCSHandle mch,

M_Hash *hh

);

C.2.15.5 NFKM_makecardset_getlogicaltoken

Fetches the logical token id for a card set which has been written.

M_Status NFKM_makecardset_getlogicaltoken(

NFKM_MakeCSHandle mch,

M_KeyID *ltid,

unsigned f

);

#define NFKM_MCF_STEAL 1u

Only call this function after NFKM_makecardset_nextcard says there are no shares left.

If you set NFKM_MCF_STEAL in f then you get to keep the logical token id and NFKM_makecardset_done

won't destroy it.

C.2.15.6 NFKM_makecardset_makeshareacl

Constructs a share ACL.

M_Status NFKM_makecardset_makeshareacl(

NFKM_MakeCSHandle mch,

M_Word f,

M_ACL *acl

);

Dispose of the ACL using NFastApp_FreeACL when you've finished.

C.2.15.7 NFKM_makecardset_nextcard

Use the NFKM_getinfo call to get the current state before using any other call that relies on the
data in the NFKM_SlotInfo structure being up to date.

This function writes the next card in a new card set:

M_Status NFKM_makecardset_nextcard(

NFKM_MakeCSHandle state,

const char *name,

NFKM_SlotInfo *slot,

const M_Hash *pp,

int *sharesleft_r,

NFKM_FIPS140AuthHandle fips140auth

);

Page 171 nCore - Developer Tutorial

C.2.15.8 NFKM_makecardset_setflags

It returns values and semantics as for NFKM_loadcardset_nextcard.

The per-card name must be NULL for n=1 card sets, and non-NULL for all other card sets.

C.2.15.8 NFKM_makecardset_setflags

M_Word NFKM_makecardset_setflags(

NFKM_MakeCSHandle mch,

M_Word bic,

M_Word xor

);

Returns the current flags; then clears the bits in bic and toggles the bits in xor.

The flags wanted are the Card_flags_* ones.

It is best to avoid using this function; instead, pass appropriate CardSet_flags_ to NFKM_

makecardset_begin and it will automatically set appropriate share flags.

C.2.15.9 NFKM_makecardset_setshareacl

Sets the ACL to be set on subsequent shares of this card set.

void NFKM_makecardset_setshareacl(

NFKM_MakeCSHandle mch,

M_ACL *acl

);

The ACL is not copied: the pointer must remain valid. The initial state is that no ACL is set for shares;
to return to this state, pass a null pointer.

It is best to avoid using this function; instead, pass appropriate CardSet_flags_ to NFKM_

makecardset_begin and it will construct and use an appropriate ACL.

C.2.16 NFKM_newkey_*

C.2.16.1 NFKM_newkey_makeacl

This function creates the ACL for a new key:

nCore - Developer Tutorial Page 172

Appendix C NKFM Functions

M_Status NFKM_newkey_makeacl(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_WorldInfo *world

const NFKM_CardSet *cardset

M_Word flags,

M_Word opperms_base,

M_Word opperms_maskout,

M_ACL *acl

struct NFast_Call_Context *cctx

);

1. const NFKM_WorldInfo *world must be non-NULL.

2. const NFKM_CardSet *cardset must be NULL for module-only protection, or non-NULL for Operator
Card Set protection.

Page 173 nCore - Developer Tutorial

C.2.16.1 NFKM_newkey_makeacl

3. The following flags are defined:
a. NFKM_NKF_IKWID

If this flag is set, NFKM_makeacl does not perform its standard checks. This lets you create
keys with esoteric ACLs. IKWID stands for 'I know what I'm doing'. You should not set this
flag unless you are sure this is true.

c. NFKM_NKF_NVMemBlob

If this flag is set, NFKM_makeacl creates an NVRAM key blob, using the standard ACL
options.

e. NFKM_NKF_NVMemBlobX

If this flag is set, NFKM_makeacl creates an NVRAM key blob, using the extended options.
g. NFKM_NKF_PerAuthUseLimit

If this flag is set, NFKM_makeacl creates an ACL with a per auth use limit.
i. NFKM_NKF_Protection_mask

j. NFKM_NKF_ProtectionCardSet

k. NFKM_NKF_ProtectionModule

It is not necessary to set this flag in conjunction with NFKM_makeacl or NFKM_makeblobs.
m. NFKM_NKF_ProtectionNoKey

This flag can be used when generating only public keys.
o. NFKM_NKF_ProtectionUnknown

It is not necessary to set this flag in conjunction with NFKM_makeacl or NFKM_makeblobs.
q. NFKM_NKF_PublicKey

If this flag is set, NFKM_makeacl creates the ACL for the public half of a key.
s. NFKM_NKF_Recovery_mask

t. NFKM_NKF_RecoveryDefault, NFKM_NKF_RecoveryRequired, NFKM_NKF_RecoveryDisabled, NFKM_
NKF_RecoveryForbidden

If any of these flags are returned by NFKM_findkey, it indicates that recovery is enabled.

Result for a new key if the Security
World has recovery: enabled disabled

NFKM_NKF_RecoveryDefault enabled disabled

NFKM_NKF_RecoveryRequired enabled InvalidACL

NFKM_NKF_RecoveryDisabled disabled disabled

NFKM_NKF_RecoveryForbidden InvalidACL disabled

w. NFKM_NKF_RecoveryNoKey

If this flag is returned by NFKM_findkey, it indicates that there is no private key.
y. NFKM_NKF_RecoveryUnknown

nCore - Developer Tutorial Page 174

Appendix C NKFM Functions

If this flag is returned by NFKM_findkey, it indicates that recovery is unknown.
aa. NFKM_NKF_SEEAppKey

If this flag is set, NFKM_makeacl creates an ACL with a certifier for a SEE World. It has been
superseded by NFKM_NKF_SEEAppKeyHashAndMech

ac. NFKM_NKF_SEEAppKeyHashAndMech

If this flag is set, NFKM_makeacl creates an ACL with a certifier for a SEE World specifying the
key hash and signing mechanism.

ae. NFKM_NKF_TimeLimit

If this flag is set, NFKM_makeacl creates an ACL with a time limit
ag. NFKM_NKF_HasCertificate

4. M_ACL *acl —the ACL will be overwritten and, therefore, should not contain any pointers to
memory that has been operated on by malloc.

Set to have oppermissions values like _Sign, _Decrypt, _UseAsBlobKey, _UseAsCertificate, or
similar. In many cases, you can set oppermissions to be one or more of the following macros,
depending on the capabilities of the key:
l NFKM_DEFOPPERMS_SIGN

l NFKM_DEFOPPERMS_VERIFY

l NFKM_DEFOPPERMS_ENCRYPT

l NFKM_DEFOPPERMS_DECRYPT

You can also use some combination of those macros for keys that can do both, such as RSA and
symmetric keys:

#define NFKM_DEFOPPERMS_SIGN

(Act_OpPermissions_Details_perms_Sign|Act_OpPermissions_Details_perms_UseAsCertificate

|Act_OpPermissions_Details_perms_SignModuleCert)

#define NFKM_DEFOPPERMS_VERIFY (Act_OpPermissions_Details_perms_Verify)

#define NFKM_DEFOPPERMS_ENCRYPT

(Act_OpPermissions_Details_perms_Encrypt|Act_OpPermissions_Details_perms_UseAsBlobKey)

#define NFKM_DEFOPPERMS_DECRYPT

(Act_OpPermissions_Details_perms_Decrypt|Act_OpPermissions_Details_perms_UseAsBlobKey)

If you wish to modify the default ACL, you may do so after calling this function. In such a case,
the ACL will be allocated dynamically.

The Protection flags either must be Unknown or they must be NFKM_Module or NFKM_CardSet and
correspond to whether cardset is non-NULL. In any case, NFKM_CardSet determines the protection.

You must free the ACL at some point, either by using NFastApp_FreeACL or, if the ACL was part of
a command, as part of a call to NFastApp_Free_Command.

C.2.16.2 NFKM_newkey_makeaclx

This is an alternative to NFKM_newkey_makeacl which enables you to define more complex ACLs by
defining input in the NFKM_MakeACLParams structures.

Page 175 nCore - Developer Tutorial

C.2.16.3 NFKM_newkey_makeblobs

M_Status NFKM_newkey_makeaclx(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_WorldInfo *w,

const NFKM_MakeACLParams *map,

M_ACL *acl,

struct NFast_Call_Context *cc

);

typedef struct NFKM_MakeACLParams {

M_Word f;

M_Word op_base, op_bic;

const NFKM_CardSet *cs;

const M_Hash *seeinteg; SEEAppKey

M_Word timelimit; TimeLimit

const M_KeyHashAndMech *seeintegkham; SEEAppKeyHashAndMech

M_Word pa_uselimit; PerAuthUseLimit

NFKM_FIPS140AuthHandle fips; NVMemBlob, maybe others later

const M_Hash *hknvacl; NVMemBlobX

} NFKM_MakeACLParams;

The values for NFKM_WorldInfo and NFKM_CardSet are the same as for NFKM_newkeymakeacl.

If you are creating a key for a SEE application, specify the application signing key using a M_

KeyHashAndMech. Use of an M_Hash is deprecated.

C.2.16.3 NFKM_newkey_makeblobs

This function creates the working and recovery blobs for a newly generated key:

M_Status NFKM_newkey_makeblobs(

NFast_AppHandle app,

const NFKM_WorldInfo *world,

M_KeyID privatekey,

M_KeyID publickey,

const NFKM_CardSet *cardset,

M_KeyID logtokenid,

M_Word flags,

NFKM_Key *newkeydata_io,

struct NFast_Call_Context *cctx

);

l world must be non-NULL.

l One or both of privatekey and publickey may be 0 if only one-half, or possibly even neither, is to
be recorded. If the key is a symmetric key, supply it as privatekey.

l cardset and logtokenid must be set consistently; either both must be NULL or both must be non-
NULL, depending on whether cardset was 0 in NFKM_makeacl.

l flags should be as in NFKM_makeacl for the private half (_PublicKey must not be specified).

This call overwrites the previous contents of newkeydata_io members privblob, -pubblob and
privblobrecov, so these should not contain pointers to any memory that has been operated on by

nCore - Developer Tutorial Page 176

Appendix C NKFM Functions

malloc. This call also fills in the hash member. It does not change the other members, which must be
set appropriately before the caller uses NFKM_recordkey.

C.2.16.4 NFKM_newkey_makeblobsx

This function creates the working and recovery blobs for a newly generated key— it offers more
functionality than NFKM_newkey_makeblobs as you can specify details for the blobs in a parameters
structure. In particular it may be used to create a key blob stored in NVRAM.

M_Status NFKM_newkey_makeblobsx(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_WorldInfo *w,

const NFKM_MakeBlobsParams *mbp,

NFKM_Key *k,

struct NFast_Call_Context *cc

);

typedef struct NFKM_MakeBlobsParams {

M_Word f;

M_KeyID kpriv, kpub, lt;

const NFKM_CardSet *cs;

NFKM_FIPS140AuthHandle fips; NVMemBlob, maybe others later

M_KeyID knv; NVMemBlob[X]

M_KeyID knvacl; NVMemBlobX

} NFKM_MakeBlobsParams;

C.2.16.5 NFKM_newkey_writecert

Sets up the key generation certificate information for a new key.

M_Status NFKM_newkey_writecert(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_ModuleInfo *m,

M_KeyID kpriv,

M_ModuleCert *mc,

NFKM_Key *k,

struct NFast_Call_Context *cctx

);

The argument mc should be the key generation certificate for a symmetric or private key.

To free the data stored in the Key structure, call NFKM_freecert.

Page 177 nCore - Developer Tutorial

C.2.17 NFKM_operatorcard_changepp

C.2.17 NFKM_operatorcard_changepp

This function has been superseded by the NFKM_changepp function, see NKFM_changepp on
page 152.

This function changes the pass phrase on an operator card:

M_Status NFKM_operatorcard_changepp(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_SlotInfo *slot,

const M_Hash *oldpp,

const M_Hash *newpp,

struct NFast_Call_Context *cctx

);

Either oldpp or newpp may be NULL to indicate the absence of a pass phrase.

C.2.18 NFKM_operatorcard_checkpp

This function has been superseded by the NFKM_checkpp function, see NFKM_checkpp on page
153.

This function checks the pass phrase on an operator card:

M_Status NFKM_operatorcard_checkpp(

NFast_AppHandle app,

NFastApp_Connection conn,

const NFKM_SlotInfo *slot,

const M_Hash *pp,

struct NFast_Call_Context *cctx

);

pp may be NULL to indicate the absence of a pass phrase.

C.2.19 NFKM_recordkey

This function writes the key blobs to the kmdata area of the host computer's hard disk:

M_Status NFKM_recordkey(

NFast_AppHandle app,

NFKM_Key *key,

struct NFast_Call_Context *cctx

);

NFKM_recordkey does not take over any of the memory in the key.

Whether the key is module protected, smart-card protected, or has some other kind of protection is
inferred from the privblob details.

nCore - Developer Tutorial Page 178

Appendix C NKFM Functions

The NFKM_Key block should be cleared to all-bits-zero before use. If you use any advanced features, set
the version field (member v) to the correct value before calling recordkey.

C.2.20 NFKM_recordkeys

NFKM_recordkeys does the same job as NFKM_recordkey for multiple keys.

M_Status NFKM_recordkeys(

NFast_AppHandle app,

NFKM_Key **k,

size_t n,

struct NFast_Call_Context *cc

);

Either all the keys are written or none are.

C.2.21 NFKM_replaceacs_*

C.2.21.1 NFKM_replaceacs_abort

Destroys an admin card replacement context.

void NFKM_replaceacs_abort(

NFKM_ReplaceACSHandle rah

);

NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

C.2.21.2 NFKM_replaceacs_begin

Starts a job to replace the Administrator Card Set. The paths through the NFKM_replaceacs process are
illustrated on NFKM_replaceacs_* on page 180.

Page 179 nCore - Developer Tutorial

C.2.21.3 NFKM_replaceacs_done

Figure 21. NFKM_replaceacs_*

M_Status NFKM_replaceacs_begin(

NFast_AppHandle app,

NFastApp_Connection conn,

NFKM_ReplaceACSHandle *rah,

const NFKM_ModuleInfo *m,

struct NFast_Call_Context *cc

);

l NFKM_ReplaceACSHandle *rah is a pointer to the address to which the function will write the job
handle

l const NFKM_ModuleInfo *m is a pointer to the module to use for the transfer

If this function fails, there is nothing else to do; if it succeeds, you must either go all the way through
NFKM_replaceacs_done or call NFKM_replaceacs_abort to throw away all of the state.

C.2.21.3 NFKM_replaceacs_done

Wraps up an admin card replacement job.

nCore - Developer Tutorial Page 180

Appendix C NKFM Functions

M_Status NFKM_replaceacs_done(

NFKM_ReplaceACSHandle rah

);

l NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

C.2.21.4 NFKM_replaceacs_gethash

Fetches the identifying hash for new administrator cards created by this job.

void NFKM_replaceacs_gethash(

NFKM_ReplaceACSHandle rah,

M_Hash *hh

);

l NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

l M_Hash *hh is a pointer to the address to write the hash

C.2.21.5 NFKM_replaceacs_middle

Does the work in the middle of an admin card set replacement job.

M_Status NFKM_replaceacs_middle(

NFKM_ReplaceACSHandle rah

);

NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

C.2.21.6 NFKM_replaceacs_preflightcheck

Verifies that a replaceacs operation is safe.

int NFKM_replaceacs_preflightcheck(

NFast_AppHandle app,

const NFKM_WorldInfo *w,

int *unsafe,

struct NFast_Call_Context *cc

);

l NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

l const NFKM_WorldInfo *w is a pointer to the world information

l int *unsafe is cleared if safe, nonzero if not

Page 181 nCore - Developer Tutorial

C.2.21.7 NFKM_replaceacs_readcard

If the operation is safe, *unsafe is cleared; otherwise it will contain a nonzero value. Later, this might
explain in more detail what the problem is. Currently, the only check is for world file entries which
aren't understood (and therefore might be blobs of keys which would need to be replaced).

C.2.21.7 NFKM_replaceacs_readcard

Reads an administrator card, with a view to replacing it.

M_Status NFKM_replaceacs_readcard(

NFKM_ReplaceACSHandle rah,

const NFKM_SlotInfo *s,

const M_Hash *pp,

int *left

);

l NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

l const NFKM_SlotInfo *s is a pointer to the slot containing the admin card

l const M_Hash *pp is a pointer to the passphrase hash for the card

l int *left is a pointer to the address to store number of cards remaining

C.2.21.8 NFKM_replaceacs_writecard

Writes a replacement administrator card.

M_Status NFKM_replaceacs_writecard(

NFKM_ReplaceACSHandle rah,

NFKM_SlotInfo *s, const M_Hash *pp,

int *left

);

l NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

l NFKM_SlotInfo *s is a pointer to the slot containing admin card

l const M_Hash *pp is a pointer to the passphrase hash for the card

l int *left is a pointer to the address to store number of cards remaining

nCore - Developer Tutorial Page 182

Appendix D nCore API commands

Appendix D nCore API commands
This chapter describes the complete nShield command set. It is divided into the following sections:

l Basic commands

These commands are available on all nShield modules. They do not offer any key-management
functionality

l Key-management commands

These commands are only available on nForce and nShield modules.

l Commands used only by the generic stub

These commands are included for information only. You should not need to call them directly.

Commands are listed alphabetically within each section. For each command, the following information
is listed:

l the command name

l the states in which the command can be issued

l the required inputs

l the expected output

If the module is unable to complete a requested command due to a non-fatal condition, such as
lack of memory or an unknown command, the module sends a response with no reply data.
The reply's cmd value is sent to Cmd_ErrorReturn with the condition indicated by the status word
that was returned in the header.

Unless specified otherwise, there is a limit of 8K on the total message that can be sent to the
nShield server for each command, or in reply. This means that the maximum length of any
byteblock sent for processing must be somewhat less that 8K.

D.1 Basic commands
The following basic commands, described in this section, are available on all nShield modules:

l ClearUnit

l ClearUnitEx

l ModExp

l ModExpCrt

These commands perform cryptographic acceleration without key management.

These commands are intended for use by applications that manage their own keys.

D.1.1 ClearUnit

All non-error states "Privileged" users only

nCore - Developer Tutorial Page 183

Appendix D nCore API commands

This command resets a module, returning it to the same mode that it was previously in. The module
and server negotiate to enable the module to be reset without disturbing the host's PCI subsystem.

When the module is cleared:

l all object handles (IDKA, IDKT, etc.) are invalidated

l any share reassembly process that is currently active is aborted

l the module enters the self-test state.

ClearUnit does not destroy:

l module keys KM

l module signing key KML

l long-term fixed signing key KLF

l nShield Security Officer's key KNSO.

D.1.1.1 Arguments

struct M_Cmd_ClearUnit_Args {

M_ModuleID module; ModuleID

};

D.1.1.2 Reply

The reply structure for this command is empty.

The status is Status_OK or, if the unit is already being reset, Status_UnitReset. The reply is sent
immediately (that is, before the unit is actually cleared).

D.1.1.3 Notes

In versions of the server prior to 1.40, the ClearUnit command caused a hard reset. In release 1.40,
the ClearUnit command was given a new command number, and the old command number was
renamed OldClearUnit, which is included for backward compatibility only. From release 1.40, servers
interpret ClearUnit and OldClearUnit as ClearUnit. The ClearUnit command fails with Status_

UnknownCommand on servers older than release 1.40.

D.1.2 ClearUnitEx

All non-error states "Privileged" users only

This command resets a module, and optionally enables you to change the mode as required.
ClearUnitEx is implemented entirely by the hardserver, which:

l Checks and sets the scratchpad registers

l Sets a want clear state on the command target

Page 184 nCore - Developer Tutorial

D.1.2.1 Arguments

Further behavior is identical to the ClearUnit command, including sending ClearUnit (not
ClearUnixEx) to the module. See ClearUnit on page 183 for more about the ClearUnit command.

D.1.2.1 Arguments

bitmap: flags

harmless: 16-

ModuleID module [module to be reset]

ModuleMode mode [desired module mode]

l Flags are not currently used.

D.1.2.2 Module mode settings

The following desired module mode settings are available:

ModuleMode Default =0

ModuleMode Maintenance =1

ModuleMode Operational =2

ModuleMode Initialisation =3

D.1.2.3 Reply

l The ModuleMode value in the reply corresponds to the bit field in scratchpad 0.

l If the module is already part way through a reset, then @ref Status_UnitReset is returned.

l If the request cannot be completed because the main application of the module does not support
software mode changes, then @ref Status_ModuleApplicationNotSupported is returned.

l If the request cannot be completed because the module monitor does not support software mode
changes, then @ref Status ModuleMonitorNotSupported is returned.

Firmware releases prior to v12 do not support changing the mode without use of the MOI
switch. The mode argument must be 0. With the appropriate firmware, the mode argument can
be used to change the mode.

D.1.3 ModExp

Operational state initialization state

This command performs modular exponentiation on parameters passed by the client.

nCore - Developer Tutorial Page 185

Appendix D nCore API commands

D.1.3.1 Arguments

struct M_Cmd_ModExp_Args {

M_Bignum a; A base

M_Bignum p; P power

M_Bignum n; N modulus

};

D.1.3.2 Reply

struct M_Cmd_ModExp_Reply {

M_Bignum r;

};

where r = AP mod N

D.1.4 ModExpCrt

Operational state initialization state

This command performs modular exponentiation on parameters passed by the client. ModExpCrt uses
the Chinese Remainder Theorem to reduce the time it takes to perform the operation.

D.1.4.1 Arguments

struct M_Cmd_ModExpCrt_Args {

M_Bignum a; A base

M_Bignum p; P modulus larger factor

M_Bignum q; Q modulus smaller factor

M_Bignum dmp1; D mod (P-1)

M_Bignum dmq1; D mod (Q-1)

M_Bignum iqmp; Q-1 mod P

};

D.1.4.2 Reply

Uses M_Cmd_ModExp_Reply.

D.1.4.3 Notes

It is assumed that P >= Q.

D.2 Key-management commands
The commands described in this section, are only available on key-management modules.

Page 186 nCore - Developer Tutorial

D.2.1 ChangeSharePIN

If you send any of these commands to an acceleration-only module, it fails with the status value Status_

InvalidState.

D.2.1 ChangeSharePIN

Operational state initialization state

This command enables a PIN that protects a single share to be changed. The old PIN must be provided
unless the share has no PIN. Likewise, the new PIN must be provided unless the PIN is being
removed.

The module decrypts the share using the old PIN and the KM associated with the token. If the share is
decrypted correctly, the module encrypts it using the new PIN and the KM. It then writes the newly
encrypted share to the smart card or software token.

This operation can be performed regardless of whether or not the logical token associated with this
share is "present". The only requirement is that both the smart card with the share and the KM
associated with the token be present within the module.

D.2.1.1 Arguments

struct M_Cmd_ChangeSharePIN_Args {

M_Cmd_ChangeSharePIN_Args_flags flags;

M_PhysToken token;

M_KMHash hkm;

M_ShortHash hkt;

M_Word i;

M_PIN *oldpin;

M_PIN *newpin;

};

l The following flags are defined:
l Cmd_ChangeSharePIN_Args_flags_oldpin_present

Set this flag if the input contains the old PIN. The old PIN must be specified unless the share was
previously encrypted without a PIN or if the share uses the protected PIN path.

l Cmd_ChangeSharePIN_Args_flags_newpin_present

Set this flag if the input contains the new PIN. The new PIN must be specified unless the share is
to be encrypted without a PIN or if the share uses the protected PIN path.

l Cmd_ChangeSharePIN_Args_flags__allflags

l M_KMHash hkm is Module key hash HKM

l M_ShortHash hkt is a short, 10-byte token hash, such as returned by GetSlotInfo.

l M_Word i is the share number

l M_PIN *oldpin is the old PIN, or NULL

l M_PIN *newpin is the new PIN, or NULL

nCore - Developer Tutorial Page 187

Appendix D nCore API commands

D.2.1.2 Reply

The reply structure for this command is empty.

D.2.2 ChannelOpen

Operational state,
initialization state Requires a ClientID

This command opens a communication channel that can be used for bulk encryption. Data can then be
transferred over this channel by using the ChannelUpdate command.

Channel operations are only available for symmetric algorithms.

D.2.2.1 Arguments

typedef struct {

M_ModuleID module;

M_ChannelType type;

M_Cmd_ChannelOpen_Args_flags flags;

M_ChannelMode mode;

M_Mech mech;

M_KeyID *key;

M_IV *given_iv;

} M_Cmd_ChannelOpen_Args;

l M_ChannelType type is the data transfer mechanism for the channel. At present, only ChannelType_

Simple is supported. Alternatively, ChannelType_Any can be used to let the module pick the"best"
channel type that it supports.

ChannelType_Any

ChannelType_Simple

l M_Cmd_ChannelOpen_Args_flags flags The following flags are defined:
l Cmd_ChannelOpen_Args_flags_key_present

Set this flag if the command contains a KeyID. The command must include a KeyID unless you are
using a hashing mechanism.

l Cmd_ChannelOpen_Args_flags_given_iv_present

Set this flag if the command designates which initialization vector to use. For encryption and
signature mechanisms, if this flag is not set and the mechanism requires an initialization vector,
the module will create a random iv and return it in the reply. For decryption and verification
mechanisms, this flag must be set and the M_IV must be specified or Status_InvalidParameter
will be returned.

Page 188 nCore - Developer Tutorial

D.2.2.2 Reply

l M_ChannelMode mode determines the operation to perform on this channel. The following modes are
defined:
l ChannelMode_Encrypt

l ChannelMode_Decrypt

l ChannelMode_Sign

l ChannelMode_Verify

l M_Mech mech is the mechanism to use. See Mechanisms on page 76 for information on supported
mechanisms.

l M_KeyID *key is the KeyID of the key to use on the channel. The key must have the appropriate
Encrypt, Decrypt, Sign, or Verify permissions in its ACL. It must also be an appropriate type for the
given mechanism. In order to use unkeyed hash mechanisms, this key field must be absent.

l M_IV *given_iv is the initialization vector to use on the channel. This field is optional for the
Encrypt and Sign modes, but it must be given for the Decrypt and Verify modes. Status_
InvalidParameter is returned if this field is not present when it is required or if it has an incorrect
mechanism.

D.2.2.2 Reply

typedef struct {

M_Cmd_ChannelOpen_Reply_flags flags;

M_KeyID idch;

M_IV *new_iv;

M_ChannelOpenInfo openinfo;

} M_Cmd_ChannelOpen_Reply;

l M_Cmd_ChannelOpen_Reply_flags flags

The following flag are defined: Cmd_ChannelOpen_Reply_flags_new_iv_present. This flag is set if the
new_iv field is present.

l M_KeyID idch is the ID of the Channel. It is like a KeyID; it may be used to refer to the channel and
can be destroyed with the Destroy command after use. However, it will be different to the KeyID.

The server will destroy the channel automatically when the last connection associated
with the application that created it closes.

l M_IV *new_iv is an initialization vector for the channel. It is returned only if the channel mode is
Encrypt or Sign and no given_iv has been sent with the command.

l M_ChannelOpenInfo openinfo is extra information about the channel:

struct M_ModuleChannelOpenInfo {

M_ChannelType type;

union M_ChannelType__ExtraMCOI info;

};

l M_ChannelType type is the channel type used.

nCore - Developer Tutorial Page 189

Appendix D nCore API commands

l union M_ChannelType__ExtraMCOI info is extra information that is dependent on the channel type.
It allows the client to access a device driver, if necessary, in order to perform data transfer.

D.2.3 ChannelUpdate

Operational state,
initialization state Requires a ClientID

This command transfers data over a communication channel for bulk encryption. Such a channel must
be opened with the ChannelOpen command before the ChannelUpdate command can be used.

Channel operations are only available for symmetric algorithms.

Data is streamed into an open channel by giving one or more Update commands. The last data block to
be processed should have the final flag set. This final block does not have to contain any input data
(except in Verify mode; see below). Input data does not have to be multiples of the block size for block
ciphers; the module will buffer the data internally as necessary. In general, the output block will
contain all the data that can be encrypted/decrypted unambiguously given the input so far. However,
PKCS #5 padding usually lags behind by a block when decrypting.

For decryption—and for encryption in non-padding modes—you must have supplied a whole number
of input blocks. Otherwise, a status of Status_EncryptFailed or Status_DecryptFailed will be
returned. Status_DecryptFailed is also used if unpadding fails during decryption.

For signing modes, no output will be generated until the final bit is set, in which case the signature or
hash will be output as the byte block.

For verification modes, no output is generated. Instead, the plain text message must be input by
ChannelUpdate commands with their final bit clear, then a ChannelUpdate with the final bit set is given,
with the signature/hash bytes given as the input block. This will return a status of OK or VerifyFailed,
as appropriate.

D.2.3.1 Arguments

struct M_Cmd_ChannelUpdate_Args {

M_Cmd_ChannelUpdate_Args_flags flags;

M_KeyID idch;

M_ByteBlock input;

};

l The following flag is defined: Cmd_ChannelUpdate_Args_flags_final. This flag indicates the last
block of input data.

l M_KeyID idch is the ChannelID returned by ChannelOpen.

l M_ByteBlock input is a byte block of input data (it may be of zero length)

Page 190 nCore - Developer Tutorial

D.2.3.2 Reply

D.2.3.2 Reply

struct M_Cmd_ChannelUpdate_Reply {

M_ByteBlock output;

};

M_ByteBlock output is a byte block containing output data from the channel. This block may be of zero
length.

D.2.4 Decrypt

Operational state,
initialization state Requires a ClientID

This command takes a cipher text and decrypts it with a previously stored key.

The limit of 8K does not apply to data decrypted by this command. This is because the Generic Stub
library splits the command into a ChannelOpen command followed by a number of ChannelUpdate
commands. Only symmetric mechanisms use channels; asymmetric mechanisms cannot.

For information on formats, see Encrypt on page 195.

D.2.4.1 Arguments

struct M_Cmd_Decrypt_Args {

M_Cmd_Decrypt_Args_flags flags;

M_KeyID key;

M_Mech mech;

M_CipherText cipher;

M_PlainTextType reply_type;

};

l No Flags are defined.

l M_KeyID key is IDKA.

l M_Mech mech: See Mechanisms on page 76 for information on supported mechanisms. If mech is not
Mech_Any, then it must match the mechanism of the ciphertext, cipher.mech. If it does not match,
then a MechanismNotExpected error is returned.

D.2.4.2 Reply

struct M_Cmd_Decrypt_Reply {

M_PlainText plain;

}

nCore - Developer Tutorial Page 191

Appendix D nCore API commands

D.2.5 DeriveKey

Operational state,
initialization state Requires a ClientID

This command creates a new key object from a number of other keys that have been stored already on
the module. Then, DeriveKey returns a KeyID for the new key.

There are two special key types used by DeriveKey:

l a template key — the template is used to provide the ACL and application data for the output key

l a wrapped key — a key type for holding encrypted keys.

D.2.5.1 Arguments

struct M_Cmd_DeriveKey_Args {

M_Cmd_DeriveKey_Args_flags flags;

M_DeriveMech mech;

int n_keys;

M_vec_KeyID keys;

union M_DeriveMech__DKParams params;

} M_Cmd_DeriveKey_Args;

l The following flag is defined: Cmd_DeriveKey_Args_flags_WorldHashMech Indicates that the hash
mechanism for Security World keys will be used for identifying keys. By enabling the Cmd_

DeriveKey_Args_flags_WorldHashMech flag, keys shall be identified by the selected world hash
mechanism. See DeriveKey and DeriveKeyEx on page 135.

l M_DeriveMech mech

See Derive Key Mechanisms on page 111 for information on supported mechanisms.
l int n_keys

This value is the number of keys that have been supplied in the key table. For all currently
supported mechanisms, this value must be 3.

l M_vec_KeyID keys

This is a table containing the KeyIDs of the keys that are to be used. You must enter the KeyIDs of
these keys in the following order:

a. template key

b. base key

c. wrapping key(s)

For all currently supported mechanisms, there is at most 1 wrapping key.

Each key must be of the correct type for the mechanism.

Each of these keys must have an ACL that permits them to be used for DeriveKey operations in this
role.

Page 192 nCore - Developer Tutorial

D.2.5.2 Reply

Any of the keys may have an ACL that requires a certificate. If more than one of the
keys requires a certificate, then all the certificates must have the same signing key.

l union M_DeriveMech__DKParams params

Parameters for the specific wrapping mechanism. See Derive Key Mechanisms on page 111.

union M_DeriveMech__DKParams {

M_DeriveMech_ConcatenationKDF_DKParams concatenationkdf;

M_DeriveMech_PKCS8Encrypt_DKParams pkcs8encrypt;

M_DeriveMech_PKCS8Decrypt_DKParams pkcs8decrypt;

M_DeriveMech_RawDecrypt_DKParams rawdecrypt;

M_DeriveMech_AESKeyWrap_DKParams aeskeywrap;

M_DeriveMech_RSAComponents_DKParams rsacomponents;

M_DeriveMech_AESKeyUnwrap_DKParams aeskeyunwrap;

M_DeriveMech_RawDecryptZeroPad_DKParams rawdecryptzeropad;

M_DeriveMech_SignedKDPKeyWrapDES3_DKParams signedkdpkeywrapdes3;

M_DeriveMech_ECCMQV_DKParams eccmqv;

M_DeriveMech_KDPKeyWrapDES3_DKParams kdpkeywrapdes3;

M_DeriveMech_SSL3withRSA_DKParams ssl3withrsa;

M_DeriveMech_ConcatenateBytes_DKParams concatenatebytes;

M_DeriveMech_RawEncrypt_DKParams rawencrypt;

M_DeriveMech_SSL3withDH_DKParams ssl3withdh;

M_DeriveMech_NISTKDFmCTRpRijndaelCMACr32_DKParams nistkdfmctrprijndaelcmacr32;

M_DeriveMech_RawEncryptZeroPad_DKParams rawencryptzeropad;

};

D.2.5.2 Reply

struct M_Cmd_DeriveKey_Reply {

M_KeyID key;

};

The M_KeyID points to the derived key. The ACL and application data for this key are the ACL and
application data that have been stored as the key data of the template key. The key type is defined by
the mechanism used. The key data is determined by the base key, the wrapping key (or wrapping
keys), and the mechanism.

D.2.5.3 Notes

The key derivation mechanisms provide a means of converting keys of many different types into
KeyType_Wrapped and then back again. The type of the original key is usually not preserved in the
Wrapped data format (the EncryptMarshalled mechanism does preserve type).

Therefore, one key may be converted to another of a different type by unwrapping it with a different
mechanism. Indeed, the key data itself may be modified by unwrapping it with a different key.

This feature is provided to increase flexibility and interoperability, which is a major goal of the
DeriveKey command. However, it can be a potential weak point in security. Therefore, nCipher
recommends that whenever a base key is turned into a Wrapped key type, if the new key is to be used
within the nShield environment, the ACL for the new key be set only to allow decoding back to the
original key. This is done by setting the DeriveKey ACL entry in the wrapped key so that:

nCore - Developer Tutorial Page 193

Appendix D nCore API commands

l the mech field identifies the correct decoding mechanism

l the otherkeys table identifies the correct unwrapping key in the right role.

D.2.6 Destroy

Operational state,
initialization state Requires a ClientID

This removes a key object from memory and zeroes any storage associated with it.

This command can be used to destroy:

l a key object by specifying an IDKA

l a logical token by specifying an IDKT

l a ModuleSEEWorld by specifying a KeyID

l an impath by specifying an ImpathID

l an FTSessionID or FileTransferID

l a channel

l a foreign token lock

l multiple objects that were previously merged by means of MergeKeyIDs. Only the merged KeyID is
removed; the underlying keys remain loaded.

When an object has multiple KeyIDs, Destroy only removes the KeyID for the current ClientID or
SEEWorld. The underlying object is removed when the last KeyID for the object is destroyed.

It is an error to Destroy an IDKA that has not been issued previously by the nShield server or that has
already been destroyed.

An IDKA may be reused for a new object after the current object is destroyed.

A key that forms part of a merged set made with MergeKeyIDs (see MergeKeyIDs on page 217) cannot
be destroyed. Attempts to do so will return an ObjectInUse error. Destroy the merged KeyID first.

D.2.6.1 Arguments

struct M_Cmd_Destroy_Args {

M_KeyID key;

};

M_KeyID key can be any object with an M_KeyID, such as an IDKA, an IDKT, or the SEE World's KeyID.

D.2.6.2 Reply

The reply structure for this command is empty.

Page 194 nCore - Developer Tutorial

D.2.7 Duplicate

D.2.7 Duplicate

Operational state,
initialization state Requires a ClientID

This command duplicates a key object within module memory and returns a new handle to it. The new
key object can then be manipulated independently of the original key object.

The new key inherits its ACL from the original key.

D.2.7.1 Arguments

struct M_Cmd_Duplicate_Args {

M_KeyID key;

};

M_KeyID key is IDKA.

D.2.7.2 Reply

struct M_Cmd_Duplicate_Reply {

M_KeyID newkey;

};

M_KeyID newkey is IDKA2.

D.2.8 Encrypt

Operational state,
initialization state Requires a ClientID

This command encrypts data by using a previously loaded key. It returns the cipher text.

The limit of 8K does not apply to data encrypted by this command. This is because the Generic Stub
library splits the command into a ChannelOpen command followed by a number of ChannelUpdate
commands. Only symmetric mechanisms use channels; asymmetric mechanisms cannot.

D.2.8.1 Arguments

struct M_Cmd_Encrypt_Args {

M_Cmd_Encrypt_Args_flags flags;

M_KeyID key;

M_Mech mech;

M_PlainText plain;

M_IV *given_iv;

};

nCore - Developer Tutorial Page 195

Appendix D nCore API commands

l The following flag is defined:
Cmd_Encrypt_Args_flags_given_iv_present

This flag must be set if the command includes the initialization vector. If this flag is not set, the
module will generate a random initialization vector if one is required by this mechanism.

l M_KeyID key is IDKA.
l M_Mech mech

See Mechanisms on page 76 for information on supported mechanisms. If Mech_Any is specified
and an IV is given, the mechanism is taken from that IV. Otherwise, if Mech_Any is not specified, the
given mechanism is used. Moreover, if an IV is given, its mechanism must match the given
mechanism, otherwise Status_MechanismNotExpected will be returned.

l M_IV *given_iv

This can be either the IV to use or otherwise NULL if no IV is defined or if you prefer that the module
choose an IV on its own.

D.2.8.2 Reply

struct M_Cmd_Encrypt_Reply {

M_CipherText cipher;

};

D.2.9 Export

Operational state,
initialization state Requires a ClientID

This command is used to extract key material in plain text.

Most private key objects should have an ACL (or ACLs) that forbid the reading of this data in
plain text.

D.2.9.1 Arguments

struct M_Cmd_Export_Args {

M_KeyID key;

};

D.2.9.2 Reply

struct M_Cmd_Export_Reply {

M_KeyData data;

};

Page 196 nCore - Developer Tutorial

D.2.10 FirmwareAuthenticate

D.2.10 FirmwareAuthenticate

Operational state, initialization state, maintenance state

This command is used to authenticate the firmware in a module by comparing it to a firmware image
on the host. If performed in the maintenance state it can be used to authenticate the monitor.

Use the fwcheck command-line utility to perform this operation.

D.2.11 FormatToken

Operational state,
initialization state

May require a KNSO
certificate

This command initializes a smart card.

D.2.11.1 Arguments

struct M_Cmd_FormatToken_Args {

M_Cmd_FormatToken_Args_flags flags;

M_PhysToken token;

M_KMHash *auth_key;

};

l The following flag is defined:
Cmd_FormatToken_Args_flags_auth_key_present

Set this flag if the input includes a module key hash to use for challenge-response authentication.
This flag can only be used if the smart card supports authentication.

l M_KMHash *auth_key is the HKM of a module key or a NULL pointer. The module key is combined with
the unique identity of the token to produce the key to be used for challenge-response
authentication.

D.2.11.2 Reply

The reply structure for this command is empty.

D.2.12 GenerateKey and GenerateKeyPair

Operational state,
initialization state

Requires a ClientID

May require a KNSO
certificate

The GenerateKey command randomly generates a key object of the given type and with the specified
ACL (or ACLs) and stores it in internal RAM.

The GenerateKeyPair command randomly generates a matching public and private key pair.

nCore - Developer Tutorial Page 197

Appendix D nCore API commands

Use GenerateKey for symmetric algorithms.

For public-key algorithms, use GenerateKeyPair.

D.2.12.1 Arguments

struct M_Cmd_GenerateKey_Args {

M_Cmd_GenerateKey_Args_flags flags;

M_ModuleID module;

M_KeyGenParams params;

M_ACL acl;

M_AppData *appdata;

};

struct M_Cmd_GenerateKeyPair_Args {

M_Cmd_GenerateKeyPair_Args_flags flags;

M_ModuleID module;

M_KeyGenParams params;

M_ACL aclpriv;

M_ACL aclpub;

M_AppData *appdatapriv;

M_AppData *appdatapub;

} M_Cmd_GenerateKeyPair_Args;

l The following flags are defined:
l Cmd_GenerateKey_Args_flags_Certify

If this flag is set, the reply will contain a certificate of data type ModuleCert that describes the
security policy for this key or key pair. This certificate enables an observer, such as an
organization's Security Officer or a certificate authority, to check that the key or key pair was
generated in compliance with a stated security policy before they allow the key to be used. The
certificate contains:

l HKA for the key

l the application data field or fields

l the ACL (or ACLs)

l The certificate is signed by the module's private key.
l Cmd_GenerateKey_Args_flags_appdata_present

You must set this flag if the request contains application data for the symmetric key.
l Cmd_GenerateKey_Args_flags_PairwiseCheck

If this flag is set, the module performs a consistency check on the key by creating a random
message, then encrypting and decrypting this message. The test fails if the encrypted message
is the same as the plain text or if the encrypted message fails to decrypt to the plain text.

l Cmd_GenerateKeyPair_Args_flags_Certify

l Cmd_GenerateKeyPair_Args_flags_appdatapriv_present

You must set this flag if the request contains application data for the private key.

Page 198 nCore - Developer Tutorial

D.2.12.1 Arguments

l Cmd_GenerateKeyPair_Args_flags_appdatapub_present

You must set this flag if the request contains application data for the public key.
l Cmd_GenerateKeyPair_Args_flags_PairwiseCheck

l M_ModuleID module

If the module ID is nonzero, the key is loaded onto the specified module. If the module ID is 0, the
key is loaded onto the first available module. You can use the GetWhichModule command to
determine which modules contain which keys).

l M_KeyGenParams params

The key type and required parameters needed to generate this key or key pair are as follows:

struct M_KeyGenParams {

M_KeyType type;

union M_KeyType__GenParams params;

};

nCore - Developer Tutorial Page 199

Appendix D nCore API commands

l The following key types are defined:

l KeyType_ArcFour Use GenerateKey

l KeyType_Blowfish

l KeyType_CAST Use GenerateKey

l KeyType_CAST256

l KeyType_DES Use GenerateKey

l KeyType_DES2 Use GenerateKey

l KeyType_DES3 Use GenerateKey

l KeyType_DHPrivate Use GenerateKeyPair

l KeyType_DHPublic Do not use for key generation
l KeyType_DKTemplate

l KeyType_DSAComm Use GenerateKey

l KeyType_DSAPrivate Use GenerateKeyPair

l KeyType_DSAPublic Do not use for key generation
l KeyType_HMACMD2

l KeyType_HMACMD5

l KeyType_HMACRIPEMD160

l KeyType_HMACSHA1

l KeyType_HMACSHA256

l KeyType_HMACSHA384

l KeyType_HMACSHA512

l KeyType_HMACTiger

l KeyType_IDEA

l KeyType_KCDSAComm

l KeyType_KCDSAPrivate

l KeyType_KCDSAPublic

l KeyType_Random Use GenerateKey

l KeyType_RC2

l KeyType_RC5

l KeyType_Rijndael

l KeyType_RSAPrivate Use GenerateKeyPair

l KeyType_RSAPublic Do not use for key generation
l KeyType_SEED

l KeyType_Serpent

l KeyType_Skipjack

l KeyType_SSLMasterSecret KeyType_Template_Data Do not use for key generation
l KeyType_Twofish

Page 200 nCore - Developer Tutorial

D.2.12.1 Arguments

l KeyType_Void KeyType_Wrapped Created by DeriveKey

l KeyType_Any Do not use for key generation

l KeyType_None Do not use for key generation

When generating a key pair, you must specify the key type for the private half of the
key pair.

The following key types have key generation parameters:

union M_KeyType__GenParams {

M_KeyType_RSAPrivate_GenParams rsaprivate;

M_KeyType_DSAPrivate_GenParams dsaprivate;

M_KeyType_Random_GenParams random;

M_KeyType_DSAComm_GenParams dsacomm;

M_KeyType_DHPrivate_GenParams dhprivate;

M_KeyType_Wrapped_GenParams wrapped;

};

l M_KeyType_RSAPrivate_GenParams rsaprivate. See RSA on page 106.

l M_KeyType_DSAPrivate_GenParams dsaprivate. See DSA on page 95.

l M_KeyType_Random_GenParams random. See Random on page 81.

l M_KeyType_DSAComm_GenParams dsacomm. See DSA on page 95.

l M_KeyType_DHPrivate_GenParams dhprivate. See Diffie-Hellman and ElGamal on page 93.

l M_KeyType_Wrapped_GenParams wrapped. Generating a wrapped key creates a random key block
— this may be useful in some key derivation schemes.

DES and Triple DES do not have any key generation parameters. ArcFour and CAST use the same
parameters as the key type RANDOM. ElGamal uses key type Diffie-Hellman.

l M_ACL acl

See ACLs on page 122.
l M_AppData *appdata

l This is application data. If the command contains application data, the appropriate flag must be set.
If no appdata is provided, the appdata stored with the key is set to all-bits-zero.

l M_ACL aclpriv

ACL for private half
l M_ACL aclpub

ACL for public half
l M_AppData *appdatapriv

appdata for private half.
l M_AppData *appdatapub

appdata for public half.

nCore - Developer Tutorial Page 201

Appendix D nCore API commands

D.2.12.2 Reply

struct M_Cmd_GenerateKey_Reply {

M_Cmd_GenerateKey_Reply_flags flags;

M_KeyID key;

M_ModuleCert *cert;

};

struct M_Cmd_GenerateKeyPair_Reply {

M_Cmd_GenerateKeyPair_Reply_flags flags;

M_KeyID keypriv;

M_KeyID keypub;

M_ModuleCert *certpriv;

M_ModuleCert *certpub;

};

l The following flags are defined:

l Cmd_GenerateKey_Reply_flags_cert_present

l Cmd_GenerateKeyPair_Reply_flags_cert_present

These flags are set if the reply contains a certificate or a certificate pair.

l M_KeyID key is IDKA.

l M_ModuleCert *cert is a certificate that describes how the key was generated.

struct M_ModuleCert {

M_CipherText signature;

M_ByteBlock modcertmsg;

};

struct M_ModCertMsg {

M_ModCertType type;

union M_ModCertType__ModCertData data;

};

union M_ModCertType__ModCertData {

M_ModCertType_KeyGen_ModCertData keygen;

};

struct M_ModCertType_KeyGen_ModCertData {

M_ModCertType_KeyGen_ModCertData_flags flags:

M_KeyGenParams genparams;

M_ACL acl;

M_Hash hka;

};

Page 202 nCore - Developer Tutorial

D.2.12.3 Notes

l M_ModCertType type From release 1.67.15 and later, this should be type KeyGen with code 2.
The previous type, now called OldKeyGen, did not distinguish between public and private keys
and should no longer be used

The following flag is defined:
l ModCertType_KeyGen_ModCertData_flags_public

Set this flag if this is the public half of a key pair.
l M_KeyGenParams genparams

These are the key generation parameters to be used to generate this key.
l M_ACL acl

This is the ACL that was applied to this key when it was created.
l M_Hash hka

This is the SHA-1 hash of the key value.

D.2.12.3 Notes

If the Strict_FIPS140 flag was set in the SetKNSO command, GenerateKey or GenerateKeyPair will fail
with status Status_StrictFIPS140 if you attempt to generate a secret key that can be exported as plain
text. A secret key is any key that can have Sign or Decrypt permissions.

D.2.13 GenerateLogicalToken

Operational state,
initialization state

Requires a ClientID

May require a KNSO
certificate

This command generates a random token key KT, associates it with the given properties and secret-
sharing parameters (n and t), and encrypts it with the given module key that is identified by its hash,
HKM.

The result is stored internally, and an identifier IDKT and a hash HKT are returned. The token is referred
to by its identifier in commands and by its hash in ACLs.

D.2.13.1 Arguments

struct M_Cmd_GenerateLogicalToken_Args {

M_ModuleID module;

M_KMHash hkm;

M_TokenParams params;

};

l M_ModuleID module

If the module ID is nonzero, the key is loaded onto the specified module. If the module ID is 0, the
token is generated on the first available module.

nCore - Developer Tutorial Page 203

Appendix D nCore API commands

l M_KMHash hkm is the HKM of the module key to use to protect this token. If you supply an all zero
HKM, the module will use the null module key.

D.2.13.2 Reply

struct M_Cmd_GenerateLogicalToken_Reply {

M_KeyID idkt;

M_TokenHash hkt;

};

l M_KeyID idkt is IDKT

l M_TokenHash hkt is HKT

D.2.14 GetChallenge

Operational state,
initialization state Requires a ClientID

The GetChallenge command returns a nonce that is used to build a fresh certificate. See Certificates on
page 147. GetChallenge is also used during impath setup.

D.2.14.1 Arguments

struct M_Cmd_GetChallenge_Args {

M_ModuleID module;

};

D.2.14.2 Reply

struct M_Cmd_GetChallenge_Reply {

M_KMHash nonce;

};

D.2.15 GetKML

Operational state, initialization state

This command is used to retrieve a KeyID for the module's long-term public key. This key is generated
by InitialiseUnit and is held internally. KML has ACL permissions that allow it to be extracted as plain
text, to be used to verify signatures, to view its own ACL, and to extend its ACL.

Page 204 nCore - Developer Tutorial

D.2.15.1 Arguments

D.2.15.1 Arguments

struct M_Cmd_GetKML_Args {

M_ModuleID module;

};

D.2.15.2 Reply

struct M_Cmd_GetKML_Reply {

M_KeyID idka;

};

M_KeyID idka is IDKA for KML

D.2.16 GetTicket

Operational state,
initialization state Requires a ClientID

This command gets a ticket for a specific KeyID. The ticket can then be passed to another client or to
an SEE application, which can redeem the ticket for a KeyID in its name space.

Tickets can be single-use or permanent, and they can specify the destination.

The program should treat tickets as opaque objects. nShield reserves the right to change the
structure of tickets at any time.

D.2.16.1 Arguments

struct M_Cmd_GetTicket_Args {

M_Cmd_GetTicket_Args_flags flags;

M_KeyID obj;

M_TicketDestination dest;

union M_TicketDestination__TicketDestSpec destspec;

};

l The following flags are defined:
l Cmd_GetTicket_Args_flags_Reusable

If this flag is set, the ticket can be used multiple times. Otherwise, the ticket can only be used
once.

l Cmd_GetTicket_Args_flags_HarmlessInfoFlags

Set if the nShield server understands new destinations, TicketDestination_AnyKernelClient and
later. The nShield will set this flag automatically.

l M_KeyID obj

nCore - Developer Tutorial Page 205

Appendix D nCore API commands

The object for which a ticket is required. This may be any object with a KeyID, for example a key,
token or SEEWorld.

l M_TicketDestination dest are destinations at which this ticket can be redeemed:

typedef enum M_TicketDestination {

TicketDestination_Any =

TicketDestination_AnyClient =

TicketDestination_NamedClient =

TicketDestination_AnySEEWorld =

TicketDestination_NamedSEEWorld =

TicketDestination_AnyKernelClient

TicketDestination__Max =

} M_TicketDestination;

l TicketDestination_Any

This specifies any destination. If the nShield server has not set Cmd_GetTicket_Args_flags_
HarmlessInfoFlags this will not include TicketDestination_AnyKernelClient or later destinations.

l TicketDestination_AnyClient

This specifies any client connected to this server.
l TicketDestination_NamedClient

This is the specific client that is named in the M_TicketDestination__TicketDestSpec.
l TicketDestination_AnySEEWorld

This specifies any SEEWorld loaded on this module.
l TicketDestination_NamedSEEWorld

This is the specific SEEWorld that is named in the M_TicketDestination__TicketDestSpec

l TicketDestination_AnyKernelClient

This specifies any client operating in kernel space. This can only be used if the nShield server
reports that the module offers the kernel interface.

l union M_TicketDestination__TicketDestSpec destspec

This specifies a specific destination:

union M_TicketDestination__TicketDestSpec {

M_TicketDestination_NamedSEEWorld_TicketDestSpec namedseeworld;

M_TicketDestination_NamedClient_TicketDestSpec namedclient;

};

l M_TicketDestination_NamedSEEWorld_TicketDestSpec namedseeworld

This is the KeyID of the SEEWorld:

struct M_TicketDestination_NamedSEEWorld_TicketDestSpec {

M_KeyID world;

};

Page 206 nCore - Developer Tutorial

D.2.16.2 Reply

l M_TicketDestination_NamedClient_TicketDestSpec namedclient

This is the SHA-1 hash of the ClientID:

struct M_TicketDestination_NamedClient_TicketDestSpec {

M_Hash hclientid;

};

D.2.16.2 Reply

struct M_Cmd_GetTicket_Reply {

M_nest_Ticket ticket;

};

M_nest_Ticket ticket is a ticket for this object to pass to the destination.

D.2.17 Hash

Operational state, initialization state

This command hashes a message.

There is no limit to the size of the plaintext. This is because the Generic Stub library splits the
command into a ChannelOpen command followed by a number of ChannelUpdate commands. Only
symmetric mechanisms use channels; asymmetric mechanisms cannot.

D.2.17.1 Arguments

struct M_Cmd_Hash_Args {

M_Cmd_Hash_Args_flags flags;

M_Mech mech;

M_PlainText plain;

};

l No flags are defined.

l M_Mech mech - see Mechanisms on page 76.

l M_PlainText plain This must be in the format M_PlainTextType_Bytes_Data.

D.2.17.2 Reply

struct M_Cmd_Hash_Reply {

M_CipherText sig; Hash

};

nCore - Developer Tutorial Page 207

Appendix D nCore API commands

D.2.18 ImpathKXBegin

Operational state,
initialization state Requires a ClientID

This command creates a new intermodule path (impath) and returns a key-exchange message that is to
be sent to the peer module.

An impath is a cryptographically secure channel between two nShield nC-series hardware security
modules. Data sent through such a channel is secure against both eavesdroppers and active
adversaries. The channel can carry arbitrary user data as well as module-protected secrets, such as
share data, to be passed directly between modules.

Modules are identified by means of M_RemoteModule structures. The elements of a M_RemoteModule

describe a specific module or a set of modules—for example, those modules that know a particular
module key—as well as information about how modules must prove their identity. The M_RemoteModule

structures are the primary means for describing security policy decisions about impaths.

In many cases you do not need to define the impath yourself. If you use the nCore remote slot
commands, the nShield server will create the required impaths automatically.

D.2.18.1 Arguments

struct M_Cmd_ImpathKXBegin_Args {

M_Cmd_ImpathKXBegin_Args_flags flags;

M_ModuleID module;

M_RemoteModule me;

M_RemoteModule him;

M_ImpathKXGroupSelection hisgroups;

M_Nonce n;

int n_keys;

M_vec_KeyID keys;

};

l No flags are defined.
l M_ModuleID module

The module ID of the module which is to be the local end of the impath.
l M_RemoteModule me

This is an M_RemoteModule structure describing the local module. It must exactly match the him
structure being used at the other end of the impath.

l M_RemoteModule him

This is an M_RemoteModule structure describing the peer module. It must exactly match the me

structure being used at the other end of the impath.
l M_ImpathKXGroupSelection hisgroups

This is the peer module's list of supported key-exchange groups. This list can be obtained, for
example, by using the NewEnquiry command on the remote module. The list is used to select the
key-exchange group that is to be used when setting up the impath.

Page 208 nCore - Developer Tutorial

D.2.18.2 Reply

l M_Nonce n

This is a challenge obtained from the remote module by using the GetChallenge command.

l int n_keys is the size of the keys table
l M_vec_KeyID keys

This is a table of KeyIDs for the user keys whose hashes are listed in me.hks. The keys must have the
SignModuleCert permission enabled. User keys may be either private or symmetric.

D.2.18.2 Reply

struct M_Cmd_ImpathKXBegin_Reply {

M_ImpathID imp;

M_ByteBlock kx;

};

l M_ImpathID imp

This is the ID for this impath. After the impath is no longer required, it can be disposed of by using
the Destroy command.

l M_ByteBlock kx

This is a key-exchange message that is to be transmitted to the peer module. (See ImpathKXFinish
on page 209.)

D.2.19 ImpathKXFinish

Operational state,
initialization state Requires a ClientID

This command completes an impath (intermodule path) key exchange. It leaves the impath ready for
data transmission and receipt.

D.2.19.1 Arguments

struct M_Cmd_ImpathKXFinish_Args {

M_Cmd_ImpathKXFinish_Args_flags flags;

M_ImpathID imp;

M_NetworkAddress *addr;

int n_keys;

M_vec_KeyID keys;

M_ByteBlock kx;

};

l The following flag is defined:
l Cmd_ImpathKXFinish_Args_flags_addr_present

Indicates whether the M_NetworkAddress *addr is present.

l M_ImpathID imp is the ID for the impath

nCore - Developer Tutorial Page 209

Appendix D nCore API commands

l M_NetworkAddress *addr

This is the network address of the peer host. If supplied, this is compared against the addr field in
the him structure given to the ImpathKXBegin command.

l int n_keys is the size of the keys table.
l M_vec_KeyID keys

This is a table of KeyIDs for the user keys, public or symmetric, whose hashes were listed in the hks

table in the him structure given to the ImpathKXBegin command.
l M_ByteBlock kx

This is the key-exchange message returned by ImpathKXBegin on the peer module.

D.2.19.2 Reply

The reply structure for this command is empty.

D.2.20 ImpathReceive

Operational state,
initialization state Requires a ClientID

This command decrypts a user-data message that was encrypted using an impath.

D.2.20.1 Arguments

struct M_Cmd_ImpathReceive_Args {

M_ImpathID imp;

M_ByteBlock cipher;

};

l M_ImpathID imp is the ID for the impath.

l M_ByteBlock cipher is the cipher text emitted by an ImpathSend command issued to the peer
module. Each cipher text message can be received once only, in order to prevent replay attacks.

D.2.20.2 Reply

struct M_Cmd_ImpathReceive_Reply {

M_ByteBlock data;

};

M_ByteBlock data is a recovered plain text message.

D.2.21 ImpathSend

Operational state,
initialization state Requires a ClientID

Page 210 nCore - Developer Tutorial

D.2.21.1 Arguments

This command encrypts a user message using an impath's keys, ready for transmission to the peer
host.

D.2.21.1 Arguments

struct M_Cmd_ImpathSend_Args {

M_Cmd_ImpathSend_Args_flags flags;

M_ImpathID imp;

M_ByteBlock data;

};

l No flags are defined.

l M_ImpathID imp is the ID for the impath.

l M_ByteBlock data is the message to be sent.

D.2.21.2 Reply

struct M_Cmd_ImpathSend_Reply {

M_ByteBlock cipher;

};

M_ByteBlock cipher is the cipher text corresponding to the given plain text data. The plain text can be
recovered by issuing an ImpathReceive command to the peer module.

D.2.22 InitialiseUnit

Pre-initialization state,
initialization state "Privileged" users only

This command causes a module in the pre-initialization state to enter the initialization state.

When the module enters the initialization state, it erases all module keys KM, including KM0. It also
erases the module's signing key, KML, and the hash of the Security Officer's keys, HKNSO. It does not
erase the long-term KLF key. It then generates a new KML and KM0.

In order to use the module after it has been initialized, you must set a new Security Officer's key.

When the module is in the pre-initialization state, you cannot obtain a ClientID. In order to
use commands that require a ClientID, use the NewClient command after the module enters the
Initialization state.

nCore - Developer Tutorial Page 211

Appendix D nCore API commands

D.2.22.1 Arguments

struct M_Cmd_InitialiseUnit_Args {

M_ModuleID module;

};

D.2.22.2 Reply

The reply structure for this command is empty.

D.2.23 LoadBlob

Operational state,
initialization state Requires a ClientID

This command allows a key blob to be loaded into the module. If this process is successful, a new IDKA
handle will be generated and returned.

For KM blobs, the required KM value must be present in the module's internal storage.

For KT blobs, the logical token containing KT must be "present". This is not possible if the KM
associated with that KT is not present in the module. See GenerateLogicalToken on page 203 and
LoadLogicalToken on page 213.

For the archival key blobs Ki or KAR, the appropriate key object must be loaded.

D.2.23.1 Arguments

struct M_Cmd_LoadBlob_Args {

M_Cmd_LoadBlob_Args_flags flags;

M_ModuleID module;

M_ByteBlock blob;

M_KeyID *idkb;

} M_Cmd_LoadBlob_Args;

l The following flag is defined:
Cmd_LoadBlob_Args_flags_idkb_present

See *idkb below.

l M_ModuleID module is the module id.

l M_ByteBlock blob is a key blob.
l M_KeyID *idkb

In order to load a blob encrypted under a token or recovery key, set the idkb_present flag and
include the identifier of either the token or the recovery key (IDKT for tokens, IDKAR for recovery
keys) in the data as idkb. Otherwise, do not set idkb_present, and set idkb to NULL.

Page 212 nCore - Developer Tutorial

D.2.23.2 Reply

D.2.23.2 Reply

struct M_Cmd_LoadBlob_Reply {

M_KeyID idka;

};

M_KeyID idka is IDKA.

D.2.24 LoadLogicalToken

Operational state,
initialization state

Requires a ClientID

May require a KNSO
certificate

This command is used to initiate loading a token from shares.

The command returns an IDKT. The token and any loaded shares can be removed by issuing the
Destroy command with this identifier.

When this command is issued, the module allocates space for a share-reassembly process. In order to
assemble the token, the application must issue one or more ReadShare commands (see ReadShare on
page 218).

D.2.24.1 Arguments

struct M_Cmd_LoadLogicalToken_Args {

M_ModuleID module;

M_TokenHash hkt;

M_KMHash hkm;

M_TokenParams params;

};

l M_ModuleID module is the module ID of the module. If you enter a module ID of 0, the command
returns with status InvalidParameter.

l M_TokenHash hkt is HKT

l M_KMHash hkm is the HKM of the module key that is to be used to protect this token. If you supply an
all-zero HKM, the module will use the null module key.

l M_TokenParams params

The shares information must match that which was given when the token was generated. The flags
and time limit are read from the token, and values set in the command are ignored.

nCore - Developer Tutorial Page 213

Appendix D nCore API commands

D.2.24.2 Reply

struct M_Cmd_LoadLogicalToken_Reply {

M_KeyID idkt;

};

M_KeyID idkt is the IDKT.

D.2.25 MakeBlob

Operational state,
initialization state Requires a ClientID

This command requests that the module generate a key blob using a key whose identifier is given. The
ACL for the key must allow the key to be exported as a blob, otherwise the command will fail.

The ACL for the key IDKA must have a MakeBlob entry (for Module and Token blobs) or MakeArchiveBlob
entry (for Direct or Indirect blobs) which permits making a blob with the requested parameters.

For a KM key, the relevant key must be stored internally within the module.

For a KT key, the logical token containing this key must be "present". Otherwise, the handle of
another key object can be given to encrypt the blob. To succeed, the key object needs a UseAsBlobKey

permission.

D.2.25.1 Arguments

struct M_Cmd_MakeBlob_Args {

M_Cmd_MakeBlob_Args_flags flags;

M_BlobFormat format;

M_KeyID idka;

union M_BlobFormat__MkBlobParams blobkey;

M_ACL *acl;

M_MakeBlobFile *file;

};

l The following flags are defined:
l Cmd_MakeBlob_Args_flags_acl_present

Set this flag if the command contains a new ACL.
l Cmd_MakeBlob_Args_flags_file_present

Set this flag to store the blob in an NVRAM or smart card file, defined by the M_MakeBlobFile.
l M_BlobFormat format

Page 214 nCore - Developer Tutorial

D.2.25.1 Arguments

The following formats are defined:
l BlobFormat_Module

Blob encrypted by a module key.
l BlobFormat_Token

Blob encrypted by a Logical Token.
l BlobFormat_Direct

Blob encrypted by a symmetric archiving key. Currently only Triple DES keys may be used.
l BlobFormat_Indirect

Blob encrypted by an public archiving key, this requires the private key to decrypt. Currently
only RSA keys may be used.

l BlobFormat_UserKey

Not yet supported.
l union M_BlobFormat__MkBlobParams blobkey

The following MKBlobParams are defined for the four different blob types:

struct M_BlobFormat_Direct_MkBlobParams {

M_KeyID idki;

};

struct M_BlobFormat_Indirect_MkBlobParams {

M_KeyID idkr;

M_Mech mech;

};

struct M_BlobFormat_Module_MkBlobParams {

M_KMHash hkm;

};

struct M_BlobFormat_Token_MkBlobParams {

M_KeyID idkt;

};

struct M_BlobFormat_UserKey_MkBlobParams {

M_KeyID idkr;

M_Mech mech;

};

nCore - Developer Tutorial Page 215

Appendix D nCore API commands

union M_BlobFormat__MkBlobParams {

M_BlobFormat_Module_MkBlobParams module;

M_BlobFormat_Token_MkBlobParams token;

M_BlobFormat_Direct_MkBlobParams direct;

M_BlobFormat_Indirect_MkBlobParams indirect;

M_BlobFormat_UserKey_MkBlobParams userkey;

};

l M_KeyID idki

This is the KeyID of a Triple DES key that is to be used to encrypt the blob.
l M_KeyID idkr

This is the KeyID of the public key that is to be used to encrypt the blob.
l M_Mech mec

This is the public key mechanism that is to be used to encrypt the blob.
l M_KMHash hkm

This is the hash of the module key that is to be used to encrypt the blob.
l M_KeyID idkt

This is the KeyID of the token that is to be used to encrypt the blob.
l M_ACL *acl

This is either an ACL to be used for the key blob or NULL. If no ACL is specified, the loaded key's
existing ACL is recorded in the blob. See ACLs on page 122.

The ACL created for the blob does not include permission groups that have global limits (as
opposed to per-authorization limits).

The permissions of the new ACL must be a subset of those specified by the existing ACL. For more
information, see SetACL on page 222.

l M_MakeBlobFile *file

A structure defining the file in which to store the blob.

struct M_MakeBlobFile {

M_MakeBlobFile_flags flags;

M_KeyID kacl;

M_PhysToken file;

};

l No flags are defined.
l M_KeyID kacl

The KeyID of a template key defining the ACL for this file. This ACL must contain the LoadBlob

permission.
l M_PhysToken file

A FileSpec specifying the location of the file.

Page 216 nCore - Developer Tutorial

D.2.25.2 Reply

D.2.25.2 Reply

struct M_Cmd_MakeBlob_Reply {

M_ByteBlock blob;

};

M_ByteBlock blob is a KeyBlob.

D.2.26 MergeKeyIDs

All non-error states Requires a ClientID

In situations where one key has been loaded onto several modules, this key will have a different KeyID
on each module. The MergeKeyIDs command takes a list of KeyIDs, which are assumed to refer to the
same key, and creates a new KeyID that can be used to refer to the key on any module. This facilitates
load sharing and fail-over strategies.

D.2.26.1 Arguments

struct M_Cmd_MergeKeyIDs_Args {

int n_keys;

M_vec_KeyID keys;

} ;

l int n_keys is the number of keys.

l M_vec_KeyID keys is a list of IDKA.

D.2.26.2 Reply

struct M_Cmd_MergeKeyIDs_Reply {

M_KeyID newkey;

};

M_KeyID newkey is IDKA

D.2.26.3 Notes

MergeKeyIDs does not check to see whether the supplied KeyIDs actually refer to the same key.

Merged KeyIDs may not themselves be supplied to MergeKeyIDs.

A merged KeyID will continue to work even if some of the modules containing the component KeyIDs
are reset or fail, though performance may be reduced in such cases. The merged KeyID will only stop
working after all the modules containing the component KeyIDs are reset or fail.

nCore - Developer Tutorial Page 217

Appendix D nCore API commands

MergeKeyIDs can be used to group keys, logical tokens, SEE Worlds, and any other objects that are
referred to by a KeyID and destroyed by Destroy.

The server does not attempt to ensure that the merged KeyIDs refer to the same underlying data, or
even to the same types of objects.

D.2.27 ReadShare

Operational state,
initialization state Requires a ClientID

This command is used to assemble a logical token from shares.

The smart card architecture keeps public data storage areas separate from the areas that are
used to store logical token shares. Specifically, if a given piece of information can be read or
written with ReadShare or WriteShare, then it cannot be read or written with ReadFile or
WriteFile. The converse is also true.

D.2.27.1 Arguments

struct M_Cmd_ReadShare_Args {

M_Cmd_ReadShare_Args_flags flags;

M_PhysToken token;

M_KeyID idkt;

M_Word i;

M_PIN *pin;

};

l The following flags are defined:
l Cmd_ReadShare_Args_flags_pin_present

This flag must be set if the input includes a PIN.

If the slot uses the ProtectedPINPath, do not include the PIN with the command.

l Cmd_ReadShare_Args_flags_UseLimitsUnwanted

If this flag is set the module does not allocate Per-Authorisation Use limits to this logical token.
Keys protected by the assembled local token will only be permitted to perform actions that do not
have use limits. Per authorisation use limits can only be allocated to one logical token for each
insertion of the card. However, it is possible that the logical token is required on several
modules, or by several clients on one module. Therefore, you should set this flag, if you are
aware that you do not need the uselimits and wish to make them available elsewhere.

l M_KeyID idkt is the IDKT.

l M_Word i is share number i.
l M_PIN *pin

If the share is protected by a PIN, this must be specified in order to successfully decrypt the share,
otherwise pin must be a NULL pointer. If the input includes a PIN, the pin_present flag must be set.

Page 218 nCore - Developer Tutorial

D.2.27.2 Reply

D.2.27.2 Reply

struct M_Cmd_ReadShare_Reply {

M_Word sharesleft;

};

M_Word sharesleft is the number of shares that are still required in order to recreate the token. You
can issue further ReadShare commands when the shares are present.

A sharesleft value of 0 indicates that all shares are present. At that point, the module will
automatically assemble the token.

D.2.27.3 Notes

If an error occurs during an individual share reading operation (because of, for example, an incorrect
PIN or the wrong token), the current state of the logical token is retained, and the operation can
simply be repeated.

If an error occurs during the final share reassembly process (implying that the shares have been
corrupted in some way), the logical token is invalidated, and Status_TokenReassemblyFailed is
returned. The token must then be destroyed, and the whole operation must be restarted.

At any time during the share reassembly sequence, the host can abort it (and clear the reassembly
buffer) by calling Destroy with the given IDKT. If the client closes before the token has been
assembled, the server automatically issues the Destroy command.

D.2.28 RedeemTicket

Operational state,
initialization state Requires a ClientID

This command gets a KeyID in return for a key ticket.

D.2.28.1 Arguments

struct M_Cmd_RedeemTicket_Args {

M_Cmd_RedeemTicket_Args_flags flags;

M_ModuleID module;

M_nest_Ticket ticket;

};

l No flags are defined.
l M_ModuleID module

This specifies the module ID of the module that contains this object.
l M_nest_Ticket ticket

This is the ticket that is supplied by GetTicket.

nCore - Developer Tutorial Page 219

Appendix D nCore API commands

D.2.28.2 Reply

struct M_Cmd_RedeemTicket_Reply {

M_KeyID obj;

};

M_KeyID obj is the new KeyID for this object.

D.2.29 RemoveKM

Operational state,
initialization state

Requires a ClientID

May require a KNSO
certificate

"Privileged" users only

This command deletes a given KM value from permanent storage. The deletion process overwrites the
value in order to ensure its destruction.

KM0 cannot be deleted.

D.2.29.1 Arguments

struct M_Cmd_RemoveKM_Args {

M_ModuleID module;

M_Cmd_RemoveKM_Args_flags flags;

M_KMHash hkm;

};

l M_ModuleID module is the ModuleID.

l No flags are defined.

l M_KMHash hkm is HKM.

D.2.29.2 Reply

The reply structure for this command is empty.

D.2.30 RSAImmedSignDecrypt

Operational state, initialization state

This command performs RSA decryption by using an RSA private key that is provided in plain text.

Page 220 nCore - Developer Tutorial

D.2.30.1 Arguments

D.2.30.1 Arguments

struct M_Cmd_RSAImmedSignDecrypt_Args {

M_Bignum m;

M_Bignum k_p;

M_Bignum k_q;

M_Bignum k_dmp1;

M_Bignum k_dmq1;

M_Bignum k_iqmp;

};

l M_Bignum m Ciphertext

l M_Bignum k_p P modulus first factor

l M_Bignum k_q Q modulus first factor

l M_Bignum k_dmp1 D MODP-1

l M_Bignum k_dmq1 D MODQ-1

l M_Bignum k_iqmp Q-1 MODP

D.2.30.2 Reply

struct M_Cmd_RSAImmedSignDecrypt_Reply {

M_Bignum r;

};

M_Bignum r is plain text .

D.2.30.3 Notes

The plain text and cipher text are in the nShield bignum format.

No padding is done.

D.2.31 RSAImmedVerifyEncrypt

Operational state, initialization state

This command performs RSA encryption with an RSA public key provided in plain text.

D.2.31.1 Arguments

struct M_Cmd_RSAImmedVerifyEncrypt_Args {

M_Bignum a;

M_Bignum k_e;

M_Bignum k_n;

};

nCore - Developer Tutorial Page 221

Appendix D nCore API commands

l M_Bignum a Message

l M_Bignum k_e Key exponent

l M_Bignum k_n Key modulus

D.2.31.2 Reply

Uses M_Cmd_RSAImmedSignDecrypt_Reply .

D.2.31.3 Notes

The plain text and cipher text are in nShield bignum format.

No padding or unpadding is performed.

D.2.32 SetACL

Operational state,
initialization state Requires a ClientID

This command replaces the ACL of a given key object with a new ACL. The existing ACL must have
either ExpandACL or ReduceACL permission. If the existing ACL only includes the ReduceACL permission,
you must set the Cmd_SetACL_Args_flags_reduce flag, and also the new ACL must be a subset of the
existing ACL.

D.2.32.1 Arguments

struct M_Cmd_SetKM_Args {

M_Cmd_SetKM_Args_flags flags;

M_KeyID idka;

M_ACL *acl;

};

l The following flag is defined:
l Cmd_SetACL_Args_flags_reduce

If this flag is not set, the command checks the ExpandACL permission in the existing ACL.
However, if this flag is set:

l the command checks the ReduceACL permission in the existing ACL

l the new ACL must be a subset of the existing ACL

l M_KeyID idka is IDKA.

l M_ACL *acl is the new ACL for the key.

D.2.32.2 Reply

The reply structure for this command is empty.

Page 222 nCore - Developer Tutorial

D.2.32.3 Notes

D.2.32.3 Notes

The new ACL will be a subset of the original ACL if for every action in the new ACL there exists an
entry in the existing ACL in a permission group with:

l the same certifier or no certifier

l the same or more restrictive FreshCerts flag

l use limits that are at least as permissive as those in the new ACL

The use limits are considered to be as permissive as those in the new ACL if for each limit in the
original ACL there is a limit in the new ACL:

l of the same type, global or per-authorization

l with the same limit ID

l with a use count and a time limit that are no greater than those in the original.

The following changes count as reducing an ACL:

l adding a certifier or NSOCertified to a group

l adding UseLimits to a group that did not have them previously

l adding a time limit or a use count to a use limit that did not have one previously

l reducing an existing use count or time limit

l adding a module serial number to a group.

The following changes do not count as reducing an ACL:

l changing the certifier for a group

l changing the module serial number for a group

l changing a use count to a time limit or changing a time limit to a use count

l changing from NSOCertified to a specific certifier or changing from a specific certifier to
NSOCertified.

If the Strict_FIPS140 flag was set in the SetKNSO command, then SetACL will fail with status
Status_FIPS_Compliance if you attempt to add ExportAsPlain to the ACL of a secret key. A
secret key is any key that can have Sign or Decrypt permissions.

If you want to record the new ACL permanently, you must make a new blob of the key.

D.2.33 SetKM

Operational state,
initialization state

Requires a ClientID

May require a KNSO
certificate

"Privileged" users only

nCore - Developer Tutorial Page 223

Appendix D nCore API commands

This command allows a key object to be stored internally as a module key (KM) value. The KM value is
derived from the key material given by IDKA. The ACL and other information associated with IDKA are
not stored.

D.2.33.1 Arguments

struct M_Cmd_SetKM_Args {

M_ModuleID module;

M_Cmd_SetKM_Args_flags flags;

M_KeyID idka;

};

l M_ModuleID module

l No flags are defined.

l M_KeyID idka is IDKA.

KA must be a DES3 key with UseAsKM permission.

D.2.33.2 Reply

The reply structure for this command is empty.

D.2.33.3 Notes

If you attempt to set as a KM a key that has the same hash as an existing KM, then SetKM will overwrite
the existing module key with the new key. If you are attempting to overwrite KM0, the command will
return Status_AccessDenied.

D.2.34 SetNSOPerms

Initialization state only
Requires a ClientID

"Privileged" users only

The SetNSOPerms command stores the key hash HKA, which is returned by GetKeyInfo as the new
Security Officer's key.

It also determines which operations require a KNSO certificate.

The SetNSOPerms command requires you to set a flag if you want an operation to be allowed
without a certificate. This is the opposite behavior to the SetKNSO command.

This command may only be called once after each use of InitialiseUnit (see InitialiseUnit on page
211). After it is set, the Security Officer's key can only be changed by completely reinitializing the
module.

Page 224 nCore - Developer Tutorial

D.2.34.1 Arguments

D.2.34.1 Arguments

struct M_Cmd_SetNSOPerms_Args {

M_ModuleID module;

M_Cmd_SetNSOPerms_Args_flags flags;

M_KeyHash hknso;

M_NSOPerms publicperms;

};

l M_ModuleID module is the module id

l The following flag is defined:
l Cmd_SetNSOPerms_Args_flags_FIPS140Level3

If this flag is set, the module adopts a security policy that complies with FIPS 140-2 level 3. This
enforces the following restrictions:

l the Import command fails if you attempt to import a key of a type that can be used to sign or
decrypt messages

Use of the Import command for other key types requires a KNSO certificate.
l GenerateKey and GenerateKeyPair require KNSO certificates

l GenerateKey and GenerateKeyPair fail if you attempt to generate a key of a type that can be
used to sign or decrypt messages with an ACL that allows ExportAsPlain

l SetACL fails if you attempt to add the ExportAsPlain action to the ACL of a key of a type that
can be used to sign or decrypt messages.

All cryptographic mechanisms which do not use a FIPS-approved algorithm are disabled. (This
restriction is new for firmware versions 2.18.13 and later).

Cryptographic algorithms which are disabled are: ArcFour, Blowfish, CAST, CAST256,
HAS160, KCDSA, MD2, MD5, RIPEMD160, SEED, Serpent, SSLMasterSecret mechanisms,
Tiger, Twofish.

The following algorithms are unaffected: DES, DES2, DES3, Diffie-Hellman, DSA, Rijndael
(AES), RSA, SHA-1, SHA-256, SHA-384 and SHA-512

In order to fully comply with FIPS 140-2 level 3 you must also ensure that none of the
following are set: NSOPerms_ops_ReadFile, NSOPerms_ops_WriteFile, NSOPerms_ops_

EraseShare, NSOPerms_ops_EraseFile, NSOPerms_ops_FormatToken, NSOPerms_ops_

GenerateLogToken, NSOPerms_ops_SetKM, NSOPerms_ops_RemoveKM.

l M_KeyHash hkns is HKA to set as HKNSO
l M_NSOPerms publicperms

nCore - Developer Tutorial Page 225

Appendix D nCore API commands

The NSOPerms word is a bit map that determines which operations do not require a certificate from
the nShield Security Officer. These certificates can be reusable. The following flags are defined:
l NSOPerms_ops_LoadLogicalToken

l NSOPerms_ops_ReadFile

l NSOPerms_ops_WriteShare

l NSOPerms_ops_WriteFile

l NSOPerms_ops_EraseShare

l NSOPerms_ops_EraseFile

l NSOPerms_ops_FormatToken

l NSOPerms_ops_SetKM

l NSOPerms_ops_RemoveKM

l NSOPerms_ops_GenerateLogToken

l NSOPerms_ops_ChangeSharePIN

l NSOPerms_ops_OriginateKey Not allowed in SetKNSO

l NSOPerms_ops_NVMemAlloc Not allowed in SetKNSO

l NSOPerms_ops_NVMemFree Not allowed in SetKNSO

l NSOPerms_ops_GetRTC Not allowed in SetKNSO

l NSOPerms_ops_SetRTC Not allowed in SetKNSO

l NSOPerms_ops_DebugSEEWorld Not allowed in SetKNSO

l NSOPerms_ops_SendShare Not allowed in SetKNSO

l NSOPerms_ops_ForeignTokenOpen Not allowed in SetKNSO

D.2.34.2 Reply

The reply structure for this command is empty.

D.2.34.3 Notes

Modules that are supplied by nShield are initialized with no operations that require KNSO
certificates. This means that the key whose hash is installed as HKNSO is irrelevant.

D.2.35 SetRTC

Operational state,
initialization state

Requires an SEE-Ready
module

May require a KNSO
certificate

"Privileged" users only

Page 226 nCore - Developer Tutorial

D.2.35.1 Arguments

D.2.35.1 Arguments

struct M_Cmd_SetRTC_Args {

M_ModuleID module;

M_Cmd_SetRTC_Args_flags flags;

M_RTCTime time;

};

l M_ModuleID module

The module ID of the module. If you enter a module ID of 0, the command returns with status
InvalidParameter.

l The following flag is defined:
l Cmd_SetRTC_Args_flags_adjust

If this flag is set, the module calculates the difference between the current time according to the
RTC and the time supplied in the command. Next, it divides this difference by the length of time
since the clock was last set in order to determine a drift rate. The result of all future calls to
GetRTC is corrected using this drift rate. The command returns status OutOfRange if the implied
drift rate is larger than the chip's guaranteed maximum drift rate. If, however, this flag is not
set, the module will clear any current drift rate adjustment.

l M_RTCTime time is the new time.

D.2.35.2 Reply

The reply structure for this command is empty.

D.2.36 Sign

Operational state,
initialization state Requires a ClientID

This command signs a message with a stored key.

For information on formats, see Encrypt on page 195.

Sign pads the message as specified by the relevant algorithm, unless you use plaintext of the type
Bignum.

You cannot sign a message that is longer than the maximum size of an nShield command. In
order to sign longer messages, use the Hash command first, and then call Sign with the
appropriate Hash plain text type.

nCore - Developer Tutorial Page 227

Appendix D nCore API commands

D.2.36.1 Arguments

struct M_Cmd_Sign_Args {

M_Word flags;

M_KeyID key;

M_Mech mech;

M_PlainText plain;

M_IV *given_iv

};

l No flags are defined.

l M_KeyID key is the IDKA.

D.2.36.2 Reply

struct M_Cmd_Sign_Reply {

M_CipherText sig;

};

D.2.37 SignModuleState

Operational state,
initialization state Requires a ClientID

SignModuleState makes the module generate a signed Module Certificate that contains data about the
current state of the module. Optionally, a challenge value may be supplied to provide a provably fresh
certificate.

D.2.37.1 Arguments

struct M_Cmd_SignModuleState_Args{

M_ModuleID module;

M_Cmd_SignModuleState_Args_flags flags;

M_SignerType enum;

M_Nonce challenge;

M_wrap_vec_ModuleAttribTag *attribs;

};

l The following flags are defined:
l Cmd_SignModuleState_Args_flags_challenge_present

This flag must be set if the command contains a challenge.
l Cmd_SignModuleState_Args_flags_attribs_present

This flag must be set if the command contains Module Attribute Tags. If not set the module
delivers a default set of attributes.

Page 228 nCore - Developer Tutorial

D.2.37.2 Reply

l SignerType can have the following values:

l KLF: The certificate is signed by the KLF long-term key. Status_NotAvailable is returned if this
key has not been set.

l KML: The certificate is signed by the KML key. This is always available (except in pre-
initialization mode, when the command is not accepted anyway).

l Appkey: The certificate is signed a user key, using the given mechanism (which can be Mech_

Any). The key must have a new OpPermission bit in its ACL, called SignModuleCert.
SignModuleCert is a less generate permission than Sign: the module uses it only to sign well-
formed messages whose content it believes to be true. Sign permission doesn't imply
SignModuleCert permission.

l M_wrap_vec_ModuleAttribTag *attribs is a list of the attributes to include in the signed message

struct M_wrap_vec_ModuleAttribTag {

int n;

M_vec_ModuleAttribTag v;

};

The following attributes are defined:

l ModuleAttribTag_None

l ModuleAttribTag_Challenge (default if included in command)

l ModuleAttribTag_ESN (default)

l ModuleAttribTag_KML (default)

l ModuleAttribTag_KLF (default)

l ModuleAttribTag_KNSO (default)

l ModuleAttribTag_KMList (default)

l ModuleAttribTag_PhysSerial

l ModuleAttribTag_PhysFIPSl3

l ModuleAttribTag_FeatureGoldCert

l ModuleAttribTag_Enquiry

l ModuleAttribTag_AdditionalInfo

l ModuleAttribTag_ModKeyInfo

D.2.37.2 Reply

The reply structure for this command is as follows:

struct M_Cmd_SignModuleState_Reply {

M_ModuleCert *cert;

};

M_ModuleCert *cert is a certificate that describes how the key was generated.

nCore - Developer Tutorial Page 229

Appendix D nCore API commands

struct M_ModuleCert {

M_CipherText signature;

M_ByteBlock modcertmsg;

};

struct M_ModCertMsg {

M_ModCertType type;

union M_ModCertType__ModCertData data;

};

union M_ModCertType__ModCertData {

M_ModCertType_KeyGen_ModCertData keygen;

};

struct M_ModCertType_KeyGen_ModCertData {

M_ModCertType_KeyGen_ModCertData_flags flags:

M_KeyGenParams genparams;

M_ACL acl;

M_Hash hka;

};

l M_ModCertType type is one of the following:
l None

l Challenge: appears if a challenge is present in the SignModuleState command

l ESN: ASCII string

l KML : KML key, defined with key hash and key data

l KLF: KLF key, defined with key hash and key data

l KNSO: not present if module is in initialization mode
l KMList

l The following flag is defined:
l ModCertType_KeyGen_ModCertData_flags_public

Set this flag if this is the public half of a key pair.
l M_KeyGenParams genparams

These are the key generation parameters to be used to generate this key.
l M_ACL acl

This is the ACL that was applied to this key when it was created.
l M_Hash hka

This is the SHA-1 hash of the key value.

Page 230 nCore - Developer Tutorial

D.2.38 StaticFeatureEnable

D.2.38 StaticFeatureEnable

Operational state, initialization state

This command is used to enable a purchased feature. It requires a certificate signed by the nShield
master feature enabling key, KSA, authorizing the feature on the specified module.

Use the fet command-line utility to perform this function.

D.2.38.1 Arguments

struct M_Cmd_StaticFeatureEnable_Args {

M_ModuleID module; Module ID

M_FeatureInfo info;

};

M_FeatureInfo info is a description of the feature to authorize

D.2.38.2 Reply

The reply structure for this command is empty.

D.2.39 UpdateMergedKey

All non-error states Processed by the nShield
Server.

This command allows a merged key set to be manipulated, listed, or both.

D.2.39.1 Arguments

struct M_Cmd_UpdateMergedKey_Args {

M_PlainText mkey; IDKA

M_Cmd_UpdateMergedKeys_Args_flags flags

int n_addkeys;

M_KeyID *addkeys;

int n_delkeys;

M_KeyID *delkeys;

};

nCore - Developer Tutorial Page 231

Appendix D nCore API commands

l M_PlainText mkey (IDKA) is a merged key set created with MergeKeyIDs.

l The following flags are defined:
l Cmd_UpdateMergedKey_Args_flags_ListWorking

If this flag is set, the keys in the resulting merged key that are in working modules are returned.
l Cmd_UpdateMergedKey_Args_flags_ListNonworking

If this flag is set, the keys in the resulting merged key that are not in working modules are
returned.

These two flags can be set together if required.

l M_KeyID *addkeys is a table of keys to be added to the merged key.

Merged key IDs that currently contain no key IDs are allowed.

l M_KeyID *delkeys is a table of keys to be deleted from the merged key.

Including a key in this list deletes all copies of the specified key.

D.2.39.2 Reply

struct M_Cmd_UpdateMergedKey_Reply {

int n_keys;

M_KeyID *keys;

};

M_KeyID *keys is a table containing the merged key that results once the specified keys are added and
deleted from the input merged key.

If ListWorking is set, keys in working modules are included; if ListNonWorking is set, keys not in
working modules are included. If both are set, all keys are included.

D.2.39.3 Notes

You cannot add a merged key to another merged key, or delete a merged key from another merged
key.

The same key can be present more than once in a merged key.

The keys specified in addkeys are added to the target merged key first. The keys specified in delkeys

are then deleted. This means that if the same key is present in both addkeys and delkeys, it is not
present in the resulting merged key.

D.2.40 Verify

Operational state,
initialization state Requires a ClientID

This command verifies a digital signature. It returns Status_OK if the signature verifies correctly and
Status_VerifyFailed if the verification fails.

Page 232 nCore - Developer Tutorial

D.2.40.1 Arguments

The limit of 8K does not apply to data signed by this command. This is because the Generic Stub
library splits the command into a ChannelOpen command followed by a number of ChannelUpdate
commands.

For information on formats, see Sign on page 227.

D.2.40.1 Arguments

struct M_Cmd_Verify_Args {

M_Cmd_Verify_Args_flags flags;

M_KeyID key;

M_Mech mech;

M_PlainText plain;

M_CipherText sig;

};

l No flags are defined.

l M_KeyID key: IDKA

l M_Mech mech: set Mech_Any in order to use the mechanism specified in the signature. If you specify a
mechanism, Verify will compare this with the mechanism in the signature and return Status_

MechanismNotExpected if the mechanisms do not match.

l M_PlainText plain: message.

l M_CipherText sig: signature.

D.2.40.2 Reply

The reply structure for this command is empty.

D.2.41 WriteShare

Operational state,
initialization state

Requires a ClientID

May require a KNSO
certificate

This command creates one share of a logical token and writes it to a smart card identified by the
SlotID, insertion counter pair. The i value identifies the share number. This command needs to be
given once for each share that is to be generated.

nCore - Developer Tutorial Page 233

Appendix D nCore API commands

D.2.41.1 Arguments

struct M_Cmd_WriteShare_Args {

M_Cmd_WriteShare_Args_flags flags;

M_PhysToken token;

M_KeyID idkt;

M_Word i;

M_PIN *pin;

M_ACL *acl;

};

l The following flags are defined:
l Cmd_WriteShare_Args_flags_pin_present

This flag must be set if the input includes a pass phrase.
l Cmd_WriteShare_Args_flags_UseProtectedPINPath

Set this flag if the token reads a pass phrase by means of a protected path. However, this
feature is not currently implemented.

l Cmd_WriteShare_Args_flags_acl_present

Set this flag if the command contains an ACL for the share.

Setting both pin_present and UseProtectedPINPath will cause the command to fail with
InvalidParameter.

l M_KeyID idkt: IDKT

l M_Word i is the share number for the share you are writing. Share numbers start at 0. Each share in
a token can only be written once.

l M_ACL *acl is an ACL for this share. If no ACL is specified, a default ACL is assumed, containing a
single ReadShare action without any flags set and requiring no certification.

If any shares of a logical token are to have an ACL set, you must set an ACL for all of
them. Shares with ACLs cannot be read in modules running firmware earlier than
version 1.75.0.

D.2.41.2 Reply

The reply structure for this command is empty.

D.3 Commands used by the generic stub only
The following commands are used by the generic stub library to connect to the module.

l ExistingClient

l NewClient

Applications usually do not have to call these commands directly.

Page 234 nCore - Developer Tutorial

D.3.1 ExistingClient

D.3.1 ExistingClient

All non-error states Connection must not be
associated with a ClientID

This command identifies a connection as belonging to an existing client. There must be at least one
other connection from this client still open. The ExistingClient command is called automatically by the
generic stub function NFastApp_Connect as appropriate, for example when making an additional
connection to an existing client.

D.3.1.1 Arguments

struct M_Cmd_ExistingClient_Args {

M_Cmd_ExistingClient_Args_flags flags;

M_ClientID client;

};

l No flags are defined.

l M_ClientID client: RSC

D.3.1.2 Reply

struct M_Cmd_ExistingClient_Reply {

M_Cmd_ExistingClient_Reply_flags flags;

};

No flags are defined.

D.3.2 NewClient

Initialization state,
operational state

Connection must not be
associated with a ClientID

This command asks the module for a random number to use as the ClientID for a new connection. It is
called automatically by the generic stub function NFastApp_Connect.

D.3.2.1 Arguments

typedef struct M_Cmd_NewClient_Args {

M_Cmd_NewClient_Args_flags flags;

};

No flags are defined.

nCore - Developer Tutorial Page 235

Appendix D nCore API commands

D.3.2.2 Reply

struct M_Cmd_NewClient_Reply {

M_Cmd_NewClient_Reply_flags flags;

M_ClientID client;

};

l No flags are defined.

l M_ClientID client: RSC

Page 236 nCore - Developer Tutorial

Appendix E Glossary

Appendix E Glossary
Authorized Card List

Controls the use of Remote Administration cards. If the serial number of a card does not appear in the
Authorized Card List, it is not recognized by the system and cannot be used. The list only applies to
Remote Administration cards.

Access Control List (ACL)

An Access Control List is a set of information contained within a key that specifies what operations can
be performed with the associated key object and what authorization is required to perform each of
those operations.

Administrator Card Set (ACS)

Part of the Security World architecture, an Administrator Card Set (ACS) is a set of smart cards used to
control access to Security World configuration, as well as recovery and replacement operations.

The Administrator Cards containing share in the logical tokens that protect the Security World keys,
including KNSO, the key-recovery key, and the recovery authorization keys. Each card contains one
share from each token. The ACS is created using the well-known module key so that it can be loaded
onto any nShield module.

See also Security World, Operator Card Set (OCS)

Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is a block cipher adopted as an encryption standard by the
US government and officially documented as US FIPS PUB 197 (FIPS 197). Originally only used for
non-classified data, AES was also approved for use with for classified data in June 2003. Like its
predecessor, the Data Encryption Standard (DES), AES has been analyzed extensively and is now
widely used around the world.

Although AES is often referred to as Rijndael (the cipher having been submitted to the AES selection
process under that name by its developers, Joan Daemen and Vincent Rijmen), these are not precisely
the same cipher. Technically, Rijndael supports a larger range of block and key sizes (at any multiple
of 32 bits, to a minimum of 128 bits and a maximum of 256 bits); AES has a fixed block size of 128
bits and only supports key sizes of 128, 192, or 256 bits.

See also Data Encryption Standard (DES) on page 238

nCore - Developer Tutorial Page 237

Appendix E Glossary

Audit logging

Audit logging, also known as syslog-sign, adds a number of control messages to the log entries that
are to be audited:

l Logs generated and signed on HSM

l Tamper detection

l Deletion Detection

l Optional key usage logging

l Public key verification of audit logs

l Compatibility with syslog and SIEM.

CAST

CAST is a symmetric encryption algorithm with a 64-bit block size and a key size of between 40 bits to
128 bits (but only in 8-bit increments).

client identifier: RSC

This notation represents an arbitrary number used to identify a client. In the nCore API, all client
identifiers are 20 bytes long.

Data Encryption Standard (DES)

The Data Encryption Standard (DES) is a symmetric cipher approved by NIST for use with US
Government messages that are Secure but not Classified. The implementation of DES used in the
module has been validated by NIST. DES uses a 64-bit block and a 56-bit key. DES keys are padded to
64 bits with 8 parity bits.

See also Triple DES on page 243, Advanced Encryption Standard (AES) on page 237

Diffie-Hellman

The Diffie-Hellman algorithm was the first commercially published public key algorithm. The Diffie-
Hellman algorithm can only be used for key exchange.

Digital Signature Algorithm (DSA)

Also known as the Digital Signature Standard (DSS), the Digital Signature Algorithm (DSA) is a digital
signature mechanism approved by NIST for use with US Government messages that are Secure but
not Classified. The implementation of the DSA used by nShield modules has been validated by NIST as
complying with FIPS 186.

Digital Signature Standard (DSS)

See Digital Signature Algorithm (DSA) on page 238

ECDH

A variant of the Diffie-Hellman anonymous key agreement protocol which uses elliptic curve
cryptography.

See also Diffie-Hellman on page 238.

Page 238 nCore - Developer Tutorial

ECDSA

ECDSA

Elliptic Curve DSA: a variant of the Digital Signature Algorithm (DSA) which uses elliptic curve
cryptography.

See also Digital Signature Algorithm (DSA) on page 238, Diffie-Hellman on page 238.

encryption: {A}B

This notation indicates the result of A encrypted with key B.

Federal Information Processing Standards (FIPS)

The Federal Information Processing Standards (FIPS) were developed by the United States federal
government for use by non-military government agencies and government contractors. FIPS 140 is a
series of publications intended to coordinate the requirements and standards for cryptographic
security modules, including both their hardware and software components.

All Security Worlds are compliant with FIPS 140-2. By default, Security Worlds are created to comply
with FIPS 140-2 at level 2, but those customers who have a regulatory requirement for compliance
with FIPS 140-2 at level 3 can also choose to create a Security World that meets those requirements.

For more details about FIPS 140-2, see http://csrc.nist.gov/publications/fips/fips140-
2/fips1402.pdf.

Hardserver

The hardserver software controls communication between applications and nShield modules, which
may be installed locally or remotely. It runs as a service on the host computer. The behavior of the
hardserver is controlled by the settings in the hardserver configuration file.

The hardserver software controls communication between the internal hardware security module and
applications on the network. The module hardserver is configured using the front panel on the module
or by means of uploaded configuration data. Configuration data is stored on the module and in files in
a specially configured file system on each client computer.

hardware security module (HSM)

A hardware security module (commonly referred to as an HSM) is a hardware device used to hold
cryptographic keys and software securely.

Hash: H(X)

This notation indicates a fixed length result that can be obtained from a variable length input and that
can be used to identify the input without revealing any other information about it. The nShield module
uses the Secure Hash Algorithm (SHA-1) for its internal security.

Identifier hash: H ID(X)

An identifier hash is a hash that uniquely identifies a given object (for example, a key) without
revealing the data within that object. The module calculates the identity hash of an object by hashing
together the object type and the key material. The identity hash has the following properties:

HID is not modified by any operations on the key (for example, altering the ACL, the application data
field, or other modes and flags)

nCore - Developer Tutorial Page 239

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

Appendix E Glossary

HID is the same for both public and private halves of a key pair.

Unique data is added to the hash so that a H ID is most unlikely to be the same as any other hash value
that might be derived from the key material.

Key blob

A key blob is a key object with its ACL and application data encrypted by a module key, a logical
token, or a recovery key. Key blobs are used for the long-term storage of keys. Blobs are
cryptographically secure; they can be stored on the host computer’s hard disk and are only readable
by units that have access to the same module key.

See also Access Control List (ACL).

Key object: KA

This is a key object to be kept securely by the module. A key object may be a private key, a public
counterpart to a private key, a key for a symmetric cipher (MAC or some other symmetric algorithm),
or an arbitrary block of data. Applications can use this last type to allow the module to protect any
other data items in the same way that it protects cryptographic keys. Each key object is stored with an
ACL and a 20-byte data block that the application can use to hold any relevant information.

KeyID: IDKA

When a key object KA is loaded within the module’s RAM, it is given a short identifier or handle that
is notated as IDKA. This is a transient identifier, not to be confused with the key hash HID(KA).

Logical token: KT

A logical token is a key used to protect key blobs. A logical token is generated on the nShield module
and never revealed, except as shares.

MAC: MACKC

This notation indicates a MAC (Message Authentication Code) created using key KC.

Module

See hardware security module (HSM).

Module key: KM

A module key is a cryptographic key generated by each nShield module at the time of initialization
and stored within the module. It is used to wrap key blobs and key fragments for tokens. Module keys
can be shared across several modules to create a larger Security World.

All modules include two module keys:

l module key zero KM0, a module key generated when the module is initialized and never revealed
outside the module.

l null, or well-known module key KMWK.

You can program extra module keys into a module.

See also: Security World, hardware security module (HSM).

Page 240 nCore - Developer Tutorial

Module signing key: KML

Module signing key: KML

The module signing key is the module’s public key. It is used to issue certificates signed by the
module. Each module generates its own unique KML and KML

-1 values when it is initialized. The
private half of this key pair, KML

-1, is never revealed outside the module.

nShield master feature enable key KSA

Certain features of the module firmware are available as options. These features must be purchased
separately from nCipher. To use a feature on a specific module, you require a certificate from nCipher
signed by KSA. These certificates include the electronic serial number for the module.

nShield Remote Administration Card

Smart cards that are capable of negotiating cryptographically secure connections with an HSM, using
warrants as the root of trust. nShield Remote Administration Cards can also be used in the local slot of
an HSM if required. You must use nShield Remote Administration Cards with Remote Administration.

nShield Security Officer's key: KNSO-1

The notation KNSO
-1 indicates the Security Officer’s signing key. This key is usually a key to a public-

key signature algorithm.

nShield Trusted Verification Device

A smart card reader that allows the card holder to securely confirm the Electronic Serial Number (ESN)
of the HSM to which they want to connect, using the display of the device. nCipher supplies and the
nShield Trusted Verification Device and recommends its use with Remote Administration.

Null module key: KMWK

The null module key is used to create tokens that can be loaded onto any module. Such tokens are
required for recovery schemes. The null module key is a Triple DES key of a value 01010101. As this
value is well known, this module key does not have any security. Key blobs cannot be made directly
under the null module key. To make a blob under a token protected by the null module key, the key
must have the ACL entry AllowNullKMToken.

Operator Card Set (OCS)

Part of the Security World architecture, an Operator Card Set (OCS) is a set of smart cards containing
shares of the logical tokens that is used to control access to application keys within a Security World.
OCSs are protected using the Security World key, and therefore they cannot be used outside the
Security World.

See also: Security World, Administrator Card Set (ACS).

Recovery key: KRA

The recovery key is the public key of the key recovery agent.

Remote access solution

The remote access solution, such as SSH or a remote desktop application, which is used as standard
by your organization. Enables you to to carry out Security World administrative tasks from a different

nCore - Developer Tutorial Page 241

Appendix E Glossary

location to that of an nShield Connect or nShield Solo.

For example, the remote access solution is used to run Security World utilities remotely and to enter
passphrases.

nCipher does not provide this software.

Remote Administration

An optional Security World feature that enables Remote Administration card holders to present their
cards to an HSM located elsewhere. For example, the card holder may be in an office, while the HSM
is in a data center. Remote Administration supports the ACS, as well as persistent and non-persistent
OCS cards, and allows all smart card operations to be carried out, apart from loading feature
certificates.

nShield Remote Administration Client

A GUI or command-line interface that enables you to select an HSM located elsewhere from a list
provided by the Remote Administration Service, and associate a card reader attached to your
computer with the HSM. Resides on your local Windows or Linux-based computer.

Remote Administration Service

Enables secure communications between an nShield Remote Administration Card and the hardserver
that is connected to the appropriate HSM. Listens for incoming connection requests from nShield
Remote Administration Clients. Supplies a list of available HSMs to the nShield Remote Administration
Client and maintains an association between the relevant card reader and the HSM.

Dynamic Slot

Virtual card slots that can be associated with a card reader connected to a remote computer. Remote
Administration Slots are in addition to the local slot of an HSM and any soft card slot that may be
available. HSMs have to be configured to support between zero (default) and 16 Remote
Administration Slots.

Rijndael

See Advanced Encryption Standard (AES) on page 237

Salt: X

The random value, or salt, is used in some commands to discourage brute force searching for keys.

Security World

The Security World technology provides an infrastructure for secure lifecycle management of keys. A
Security World consists of at least one HSM, some cryptographic key and certificate data encrypted by
a Security World key and stored on at least one host computer, a set of Administrator Cards used to
control access to Security World configuration, recovery and replacement operations, and optionally
one or more sets of Operator Cards used to control access to application keys.

See also Administrator Card Set (ACS), Operator Card Set (OCS).

Page 242 nCore - Developer Tutorial

Security World key: KMSW

Security World key: KMSW

The Security World key is the module key that is present on all modules in a Security World. Each
Security World has a unique Security World key. This key is generated randomly when the Security
World is created, and it is stored as a key blob protected by the ACS.

Share: KTi

The notation KTi indicates a share of a logical token. Shares can be stored on smart cards or software
tokens. Each share is encrypted under a separate share key.

Share key: KSi

A share key is a key used to protect an individual share in a token. Share keys are created from a
Security World key, a pass phrase, and a salt value.

Standard nShield Cards

Smart cards used in the local slot of an HSM. Standard nShield cards are not supported for use with
Remote Administration.

Standard card reader

A smart card reader for ISO/IEC 7816 compliant smart cards. nCipher recommends that standard
smart card readers are only used with the nShield Remote Administration Client command-line utility,
not the GUI.

Triple DES

Triple DES is a highly secure variant of the Data Encryption Standard (DES) algorithm in which the
message is encrypted three times.

See also Data Encryption Standard (DES) on page 238, Advanced Encryption Standard (AES) on page
237.

nCore - Developer Tutorial Page 243

	1 Introduction
	1.1 Read this guide if ...
	1.2 Conventions
	1.2.1 Typographical conventions
	1.2.2 CLI command conventions
	1.2.3 Model numbers
	1.2.4 Document version numbers

	1.3 Further information
	1.4 Security advisories
	1.4.1 Contacting Thales Support

	2 nCore architecture
	2.1 Architecture overview
	2.2 Generating a key
	2.3 Loading a key
	2.4 Transacting a command

	3 C tutorial
	3.1 Overview
	3.1.1 nCore API functionality used in this tutorial
	3.1.1.1 nfkm.h
	3.1.1.2 nfinttypes.h
	3.1.1.3 nffile.h
	3.1.1.4 simplebignum.h
	3.1.1.5 ncthread-upcalls.h
	3.1.1.6 rqcard-applic.h
	3.1.1.7 rqcard-fips.h

	3.1.2 Variables used in this tutorial

	3.2 Before connecting to the hardserver
	3.2.1 Declaring a call context
	3.2.2 Declaring memory allocation upcalls
	3.2.3 Declaring threading upcalls
	3.2.4 Initializing the nFast application handle

	3.3 Connecting to the hardserver
	3.3.1 Getting Security World information
	3.3.2 Setting up the authorization mechanism
	3.3.2.1 Initializing the card-loading libraries
	3.3.2.2 Obtaining additional FIPS authorization
	3.3.2.3 Selecting a user interface

	3.4 Generating a symmetric key
	3.4.1 Obtaining authorization and selecting a module
	3.4.1.1 Using card set protection
	3.4.1.2 Selecting a Security World module

	3.4.2 Preparing the key-generation command and ACL
	3.4.3 Freeing memory

	3.5 Generating an asymmetric key
	3.5.1 Obtaining authorization and selecting a module
	3.5.1.1 Using card set protection
	3.5.1.2 Selecting a Security World module

	3.5.2 Preparing the key-generation command and ACL
	3.5.3 Freeing memory

	3.6 Using a key
	3.6.1 Finding a key
	3.6.2 Loading a key

	3.7 Encrypting a file
	3.8 Cleaning up resources

	4 Java tutorial
	4.1 Overview
	4.1.1 Creating a softcard
	4.1.2 nCore classes used in this tutorial
	4.1.2.1 com.ncipher.km.nfkm.*
	4.1.2.2 com.ncipher.km.marshall.*
	4.1.2.3 com.ncipher.jutils.*
	4.1.2.4 com.ncipher.nfast.*
	4.1.2.5 com.ncipher.nfast.marshall.*
	4.1.2.6 com.ncipher.nfast.connect.utils.*

	4.1.3 Variables used in this tutorial

	4.2 Before connecting to the hardserver
	4.3 Connecting to the hardserver
	4.4 Generating a key
	4.4.1 Methods used in generate_key()

	4.5 Using a key
	4.6 Signing a file
	4.7 Cleaning up resources

	Appendix A Java examples
	A.1 Java key management example utilities (kmjava)
	A.1.1 AppKeyGen.java
	A.1.2 GenerateExport.java
	A.1.3 KMJavaFloodTest.java
	A.1.4 NFKMInfo.java
	A.1.5 NVRamRTCUtil.java
	A.1.6 SimpleCrypt.java
	A.1.7 SlotPoller.java

	A.2 Java JCE/CSP example utilities (jcecsp)
	A.2.1 AsymmetricEncryptionExample.java
	A.2.2 ECDHExample.java
	A.2.3 JCEChanTest.java
	A.2.4 JCEFloodTest.java
	A.2.5 JCESigTest.java
	A.2.6 KeyLoadTimer.java
	A.2.7 KeyStorageExample.java
	A.2.8 NCipherLibraryInteropExample.java
	A.2.9 PrepareSslExamples.java
	A.2.10 PrepareSSLServerExamples.sh
	A.2.11 SignaturesExample.java
	A.2.12 SslClientExample.java
	A.2.13 SslServerExample.java
	A.2.14 SymmetricEncryptionExample.java
	A.2.15 SignatureTest.java

	A.3 Java generic stub examples (nfjava)
	A.3.1 BlobInfo.java
	A.3.2 Channel.java
	A.3.3 CheckMod.java
	A.3.4 CrypTest.java
	A.3.5 DesKat.java
	A.3.6 DKTest.java
	A.3.7 EasyConnection.java
	A.3.8 Enquiry.java
	A.3.9 FloodTest.java
	A.3.10 GenCert.java
	A.3.11 InitUnit.java
	A.3.12 NFEnum.java
	A.3.13 Option.java
	A.3.14 ParseException.java
	A.3.15 Parser.java
	A.3.16 Reference.java
	A.3.17 ReportVersion.java
	A.3.18 ScoreKeeper.java
	A.3.19 SigTest.java

	Appendix B Key structures
	B.1 Mechanisms
	B.1.1 Mech_Any

	B.2 Key Types
	B.2.1 Random
	B.2.1.1 Key data
	B.2.1.2 Key generation parameters
	B.2.1.3 Notes

	B.2.2 ArcFour
	B.2.2.1 Key data
	B.2.2.2 Key generation parameters
	B.2.2.3 Mechanisms

	B.2.3 Blowfish
	B.2.3.1 Key data
	B.2.3.2 Key generation parameters
	B.2.3.3 Mechanisms

	B.2.4 CAST
	B.2.4.1 Mechanisms

	B.2.5 CAST256
	B.2.5.1 Mechanisms

	B.2.6 DES
	B.2.6.1 Key data
	B.2.6.2 Key generation parameters
	B.2.6.3 Notes
	B.2.6.4 Mechanisms
	B.2.6.5 CBC
	B.2.6.5.1 Cipher text
	B.2.6.5.2 IV

	B.2.6.6 CBC MAC
	B.2.6.6.1 Cipher text

	B.2.7 DES2
	B.2.7.1 Key data
	B.2.7.2 Key generation parameters
	B.2.7.3 Notes
	B.2.7.4 Mechanisms
	B.2.7.5 CBC
	B.2.7.5.1 Cipher text
	B.2.7.5.2 IV

	B.2.8 Triple DES
	B.2.8.1 Key data
	B.2.8.2 Key generation parameters
	B.2.8.3 Mechanisms

	B.2.9 Rijndael
	B.2.9.1 Mechanisms
	B.2.9.2 Key generation

	B.2.10 SEED
	B.2.10.1 Key data
	B.2.10.2 Key generation parameters
	B.2.10.3 Mechanisms

	B.2.11 Serpent
	B.2.11.1 Key data
	B.2.11.2 Key generation parameters
	B.2.11.3 Mechanisms

	B.2.12 SSLMasterSecret
	B.2.12.1 Key data
	B.2.12.2 Key generation parameters
	B.2.12.3 Mechanisms

	B.2.13 Twofish
	B.2.13.1 Key data
	B.2.13.2 Key generation parameters
	B.2.13.3 Mechanisms

	B.2.14 Diffie-Hellman and ElGamal
	B.2.14.1 Private key
	B.2.14.2 Public key
	B.2.14.3 Key generation parameters
	B.2.14.4 Mechanisms
	B.2.14.4.1 Diffie-Hellman
	B.2.14.4.2 ElGamal
	B.2.14.4.3 DLIES

	B.2.14.5 Cipher text
	B.2.14.5.1 Diffie-Hellman
	B.2.14.5.2 ElGamal

	B.2.15 DSA
	B.2.15.1 DSA keys
	B.2.15.1.1 DSA common key
	B.2.15.1.2 DSA private key
	B.2.15.1.3 DSA public key

	B.2.15.2 DSA common generation parameters
	B.2.15.3 DSA private key generation parameters
	B.2.15.4 Cipher text
	B.2.15.5 Plain text
	B.2.15.6 Mechanisms

	B.2.16 Elliptic Curve ECDH and ECDSA
	B.2.16.1 Elliptic Curve keys
	B.2.16.1.1 Private keys
	B.2.16.1.2 Public keys

	B.2.16.2 Key generation parameters
	B.2.16.3 Cipher text - ECDH
	B.2.16.4 Cipher text - ECDSA
	B.2.16.5 Plain text - ECDH
	B.2.16.6 Plain text - ECDSA
	B.2.16.7 Mechanisms

	B.2.17 KCDSA
	B.2.17.1 KCDSA keys
	B.2.17.1.1 KCDSA common key
	B.2.17.1.2 KCDSA private key
	B.2.17.1.3 KCDSA public key

	B.2.17.2 Key generation parameters
	B.2.17.2.1 KCDSA common generation parameters
	B.2.17.2.2 KCDSA private key generation parameters

	B.2.17.3 Cipher text
	B.2.17.4 Plain text
	B.2.17.5 Mechanisms

	B.2.18 RSA
	B.2.18.1 Public key
	B.2.18.2 Private key
	B.2.18.3 Generation parameters
	B.2.18.4 Mechanisms
	B.2.18.5 Cipher text - PKCS #11 padding
	B.2.18.6 Cipher text - OAEP padding

	B.2.19 DeriveKey
	B.2.19.1 DKTemplate
	B.2.19.2 Wrapped
	B.2.19.3 Generation parameters
	B.2.19.4 Derive Key Mechanisms

	B.3 Hash functions
	B.3.1 SHA-1
	B.3.1.1 Mechanism
	B.3.1.2 Reply

	B.3.2 Tiger
	B.3.2.1 Mechanism
	B.3.2.2 Reply

	B.3.3 SHA-224
	B.3.3.1 Mechanism
	B.3.3.2 Reply

	B.3.4 SHA-256
	B.3.4.1 Mechanism
	B.3.4.2 Reply

	B.3.5 SHA-384
	B.3.5.1 Mechanism
	B.3.5.2 Reply

	B.3.6 SHA-512
	B.3.6.1 Mechanism
	B.3.6.2 Reply

	B.3.7 MD2
	B.3.7.1 Mechanism
	B.3.7.2 Reply

	B.3.8 MD5
	B.3.8.1 Mechanism
	B.3.8.2 Reply

	B.3.9 RIPEMD 160
	B.3.9.1 Mechanism
	B.3.9.2 Reply

	B.3.10 HAS160
	B.3.10.1 Mechanism
	B.3.10.2 Reply

	B.4 HMAC signatures
	B.5 ACLs
	B.6 Use limits
	B.7 Actions
	B.8 Action types
	B.8.1 OpPermissions
	B.8.2 MakeBlob
	B.8.3 MakeArchiveBlob
	B.8.4 NSO
	B.8.5 NVRAM
	B.8.6 ReadShare
	B.8.7 SendShare
	B.8.8 FileCopy
	B.8.9 UserAction
	B.8.10 DeriveKey and DeriveKeyEx
	B.8.11 Using DeriveKey — an example

	B.9 Certificates
	B.9.1 Using a certificate to authorize an action
	B.9.2 Generating a certificate to authorize another operation
	B.9.2.1 Structure

	Appendix C NKFM Functions
	C.1 Debugging NFKM functions
	C.2 Functions
	C.2.1 NKFM_changepp
	C.2.2 NFKM_checkconsistency
	C.2.3 NFKM_checkpp
	C.2.4 NFKM_cmd_generaterandom
	C.2.5 NFKM_cmd_destroy
	C.2.6 NFKM_cmd_loadblob
	C.2.7 NFKM_cmd_getkeyplain
	C.2.8 NFKM_erasecard
	C.2.9 NFKM_erasemodule
	C.2.10 NFKM_hashpp
	C.2.11 NFKM_initworld_*
	C.2.11.1 NFKM_initworld_abort
	C.2.11.2 NFKM_initworld_begin
	C.2.11.3 NFKM_initworld_done
	C.2.11.4 NFKM_initworld_gethash
	C.2.11.5 NFKM_initworld_nextcard
	C.2.11.6 NFKM_initworld_setinitmoduleparams

	C.2.12 NFKM_loadadminkeys_*
	C.2.12.1 NFKM_loadadminkeys_begin
	C.2.12.2 NFKM_loadadminkeys_done
	C.2.12.3 NFKM_loadadminkeys_{get,steal}{key,token}
	C.2.12.4 NFKM_loadadminkeys_getobjects
	C.2.12.5 NFKM_loadadminkeys_loadtokens
	C.2.12.6 NFKM_loadadminkeys_nextcard
	C.2.12.7 NFKM_loadadminkeys_selecttoken
	C.2.12.8 NFKM_loadadminkeys_selecttokens
	C.2.12.9 NFKM_loadadminkeys_whichtokens

	C.2.13 NFKM_loadcardset_*
	C.2.13.1 NFKM_loadcardset_abort
	C.2.13.2 NFKM_loadcardset_begin
	C.2.13.3 NFKM_loadcardset_done
	C.2.13.4 NFKM_loadcardset_nextcard

	C.2.14 NFKM_loadworld_*
	C.2.14.1 NFKM_loadworld_abort
	C.2.14.2 NFKM_loadworld_begin
	C.2.14.3 NFKM_loadworld_done
	C.2.14.4 NFKM_loadworld_nextcard
	C.2.14.5 NFKM_loadworld_setinitmoduleparams

	C.2.15 NFKM_makecardset_*
	C.2.15.1 NFKM_makecardset_abort
	C.2.15.2 NFKM_makecardset_begin
	C.2.15.3 NFKM_makecardset_done
	C.2.15.4 NFKM_makecardset_gethash
	C.2.15.5 NFKM_makecardset_getlogicaltoken
	C.2.15.6 NFKM_makecardset_makeshareacl
	C.2.15.7 NFKM_makecardset_nextcard
	C.2.15.8 NFKM_makecardset_setflags
	C.2.15.9 NFKM_makecardset_setshareacl

	C.2.16 NFKM_newkey_*
	C.2.16.1 NFKM_newkey_makeacl
	C.2.16.2 NFKM_newkey_makeaclx
	C.2.16.3 NFKM_newkey_makeblobs
	C.2.16.4 NFKM_newkey_makeblobsx
	C.2.16.5 NFKM_newkey_writecert

	C.2.17 NFKM_operatorcard_changepp
	C.2.18 NFKM_operatorcard_checkpp
	C.2.19 NFKM_recordkey
	C.2.20 NFKM_recordkeys
	C.2.21 NFKM_replaceacs_*
	C.2.21.1 NFKM_replaceacs_abort
	C.2.21.2 NFKM_replaceacs_begin
	C.2.21.3 NFKM_replaceacs_done
	C.2.21.4 NFKM_replaceacs_gethash
	C.2.21.5 NFKM_replaceacs_middle
	C.2.21.6 NFKM_replaceacs_preflightcheck
	C.2.21.7 NFKM_replaceacs_readcard
	C.2.21.8 NFKM_replaceacs_writecard

	Appendix D nCore API commands
	D.1 Basic commands
	D.1.1 ClearUnit
	D.1.1.1 Arguments
	D.1.1.2 Reply
	D.1.1.3 Notes

	D.1.2 ClearUnitEx
	D.1.2.1 Arguments
	D.1.2.2 Module mode settings
	D.1.2.3 Reply

	D.1.3 ModExp
	D.1.3.1 Arguments
	D.1.3.2 Reply

	D.1.4 ModExpCrt
	D.1.4.1 Arguments
	D.1.4.2 Reply
	D.1.4.3 Notes

	D.2 Key-management commands
	D.2.1 ChangeSharePIN
	D.2.1.1 Arguments
	D.2.1.2 Reply

	D.2.2 ChannelOpen
	D.2.2.1 Arguments
	D.2.2.2 Reply

	D.2.3 ChannelUpdate
	D.2.3.1 Arguments
	D.2.3.2 Reply

	D.2.4 Decrypt
	D.2.4.1 Arguments
	D.2.4.2 Reply

	D.2.5 DeriveKey
	D.2.5.1 Arguments
	D.2.5.2 Reply
	D.2.5.3 Notes

	D.2.6 Destroy
	D.2.6.1 Arguments
	D.2.6.2 Reply

	D.2.7 Duplicate
	D.2.7.1 Arguments
	D.2.7.2 Reply

	D.2.8 Encrypt
	D.2.8.1 Arguments
	D.2.8.2 Reply

	D.2.9 Export
	D.2.9.1 Arguments
	D.2.9.2 Reply

	D.2.10 FirmwareAuthenticate
	D.2.11 FormatToken
	D.2.11.1 Arguments
	D.2.11.2 Reply

	D.2.12 GenerateKey and GenerateKeyPair
	D.2.12.1 Arguments
	D.2.12.2 Reply
	D.2.12.3 Notes

	D.2.13 GenerateLogicalToken
	D.2.13.1 Arguments
	D.2.13.2 Reply

	D.2.14 GetChallenge
	D.2.14.1 Arguments
	D.2.14.2 Reply

	D.2.15 GetKML
	D.2.15.1 Arguments
	D.2.15.2 Reply

	D.2.16 GetTicket
	D.2.16.1 Arguments
	D.2.16.2 Reply

	D.2.17 Hash
	D.2.17.1 Arguments
	D.2.17.2 Reply

	D.2.18 ImpathKXBegin
	D.2.18.1 Arguments
	D.2.18.2 Reply

	D.2.19 ImpathKXFinish
	D.2.19.1 Arguments
	D.2.19.2 Reply

	D.2.20 ImpathReceive
	D.2.20.1 Arguments
	D.2.20.2 Reply

	D.2.21 ImpathSend
	D.2.21.1 Arguments
	D.2.21.2 Reply

	D.2.22 InitialiseUnit
	D.2.22.1 Arguments
	D.2.22.2 Reply

	D.2.23 LoadBlob
	D.2.23.1 Arguments
	D.2.23.2 Reply

	D.2.24 LoadLogicalToken
	D.2.24.1 Arguments
	D.2.24.2 Reply

	D.2.25 MakeBlob
	D.2.25.1 Arguments
	D.2.25.2 Reply

	D.2.26 MergeKeyIDs
	D.2.26.1 Arguments
	D.2.26.2 Reply
	D.2.26.3 Notes

	D.2.27 ReadShare
	D.2.27.1 Arguments
	D.2.27.2 Reply
	D.2.27.3 Notes

	D.2.28 RedeemTicket
	D.2.28.1 Arguments
	D.2.28.2 Reply

	D.2.29 RemoveKM
	D.2.29.1 Arguments
	D.2.29.2 Reply

	D.2.30 RSAImmedSignDecrypt
	D.2.30.1 Arguments
	D.2.30.2 Reply
	D.2.30.3 Notes

	D.2.31 RSAImmedVerifyEncrypt
	D.2.31.1 Arguments
	D.2.31.2 Reply
	D.2.31.3 Notes

	D.2.32 SetACL
	D.2.32.1 Arguments
	D.2.32.2 Reply
	D.2.32.3 Notes

	D.2.33 SetKM
	D.2.33.1 Arguments
	D.2.33.2 Reply
	D.2.33.3 Notes

	D.2.34 SetNSOPerms
	D.2.34.1 Arguments
	D.2.34.2 Reply
	D.2.34.3 Notes

	D.2.35 SetRTC
	D.2.35.1 Arguments
	D.2.35.2 Reply

	D.2.36 Sign
	D.2.36.1 Arguments
	D.2.36.2 Reply

	D.2.37 SignModuleState
	D.2.37.1 Arguments
	D.2.37.2 Reply

	D.2.38 StaticFeatureEnable
	D.2.38.1 Arguments
	D.2.38.2 Reply

	D.2.39 UpdateMergedKey
	D.2.39.1 Arguments
	D.2.39.2 Reply
	D.2.39.3 Notes

	D.2.40 Verify
	D.2.40.1 Arguments
	D.2.40.2 Reply

	D.2.41 WriteShare
	D.2.41.1 Arguments
	D.2.41.2 Reply

	D.3 Commands used by the generic stub only
	D.3.1 ExistingClient
	D.3.1.1 Arguments
	D.3.1.2 Reply

	D.3.2 NewClient
	D.3.2.1 Arguments
	D.3.2.2 Reply

	Appendix E Glossary
	Authorized Card List
	Access Control List (ACL)
	Administrator Card Set (ACS)
	Advanced Encryption Standard (AES)
	Audit logging
	CAST
	client identifier: RSC
	Data Encryption Standard (DES)
	 Diffie-Hellman
	Digital Signature Algorithm (DSA)
	Digital Signature Standard (DSS)
	ECDH
	ECDSA
	encryption: {A}B
	Federal Information Processing Standards (FIPS)
	Hardserver
	hardware security module (HSM)
	Hash: H(X)
	Identifier hash: HID(X)
	Key blob
	Key object: KA
	KeyID: IDKA
	Logical token: KT
	MAC: MACKC
	Module
	Module key: KM
	Module signing key: KML
	nShield master feature enable key KSA
	nShield Remote Administration Card
	nShield Security Officer's key: KNSO-1
	nShield Trusted Verification Device
	Null module key: KMWK
	Operator Card Set (OCS)
	Recovery key: KRA
	Remote access solution
	Remote Administration
	nShield Remote Administration Client
	Remote Administration Service
	Dynamic Slot
	Rijndael
	Salt: X
	Security World
	Security World key: KMSW
	Share: KTi
	Share key: KSi
	Standard nShield Cards
	Standard card reader
	Triple DES

	Internet addresses
	cover-12.50.pdf
	nShield Security World: nShield Security World v12.50.4 Release Notes

