
nShield Security World

CodeSafe v13.6.5
Developer Guide
08 January 2025

Table of Contents

1. Introduction . 1

1.1. Read this guide if … . 1

1.2. Security World Software . 2

1.2.1. Utility help options. 4

1.3. Requirements . 4

1.4. Further information . 5

1.5. Security advisories . 5

1.6. Contacting Entrust nShield Support . 6

2. About the Secure Execution Engine SEE. 7

2.1. Why use the Secure Execution Engine? . 7

2.1.1. Code integrity . 8

2.1.2. Code confidentiality . 8

2.1.3. Data confidentiality . 9

2.1.4. Data integrity . 9

2.1.5. Authentication and access control . 10

2.2. How SEE works . 11

2.2.1. Code specifics . 12

2.2.2. Security. 12

2.2.3. Internals . 13

2.3. SEE system architecture . 15

2.4. SEE and userdata . 16

2.4.1. What is userdata? . 16

2.4.2. Creating userdata suitable for loading into the HSM . 17

2.5. SEE and Security Worlds . 17

3. Designing SEE machines and SEE-ready HSMs . 19

3.1. Writing SEE machines - Solo XC . 19

3.1.1. Designing for the glibc architecture. 19

3.1.2. Designing for the SEElib architecture . 20

3.1.3. SEE machines for new algorithms . 22

3.1.4. Signing userdata for additional security . 24

3.1.5. Building your SEE machine and host-side application . 26

4. Example SEE machines . 30

4.1. Configure the Windows Build Environment . 30

4.2. Examples for glibc library . 31

4.2.1. Building the HSM-side code . 32

4.2.2. Helloworld example . 33

4.2.3. SEE-Random example. 35

4.2.4. SEE-Enquiry example . 36

4.2.5. TCP proxy example. 37

4.3. Examples for SEElib . 38

4.3.1. Building Linux host examples . 39

4.3.2. Building Windows host examples . 40

4.3.3. Building Solo SEE module examples . 40

4.3.4. Building Solo XC SEE module examples. 42

4.3.5. Example: Hello-World . 43

4.3.6. A3A8 example . 47

4.3.7. Example: RTC . 59

4.3.8. Example: Tickets . 65

4.3.9. Example: Benchmark . 70

5. Debugging SEE machines. 79

5.1. Debugging settings and output . 79

5.1.1. Debugging authorization . 79

5.1.2. Obtaining debugging output . 80

5.2. Finding memory leaks with stattree. 82

5.3. Segment addresses for Solo . 83

5.4. Vulnerability test harness . 84

5.5. Troubleshooting guide. 84

6. Deploying SEE Machines . 87

6.1. About the Feature Enabling Mechanism (FEM) . 87

6.2. Obtaining and using export certificates . 87

6.3. Automatically loading a SEE machine. 88

6.3.1. Automatically loading a glibc SEE machine with userdata. 91

6.3.2. Automatically loading a glibc SEE machine without userdata 91

6.4. Configuring the nShield Connect to use CodeSafe Direct . 92

6.5. Configuring a SEE machine using the front panel . 93

6.5.1. Configuring a glibc SEE machine. 94

6.5.2. Configuring a SEElib SEE machine . 94

6.6. Remotely loading and updating SEE machines . 94

7. Utilities . 98

7.1. cpioc . 98

7.1.1. Usage . 98

7.2. elftool . 99

7.2.1. Usage. 99

7.3. loadmache . 100

7.3.1. Usage . 101

7.4. loadsee-setup . 102

7.4.1. Usage . 102

7.4.2. Output . 104

7.4.3. loadsee-setup --display . 106

7.5. hsc_loadseemachine. 106

7.5.1. Usage. 107

7.6. nfkmverify. 107

7.6.1. Usage . 108

7.6.2. Output . 109

8. Environment variables . 112

9. SEElib functions . 114

9.1. SEElib_init . 114

9.2. SEElib_RecProcessThreads . 114

9.3. SEElib_StartProcessorThreads . 114

9.4. SEElib_GetUserDataLen . 115

9.5. SEElib_ReadUserData . 115

9.6. SEElib_ReleaseUserData. 115

9.7. SEElib_InitComplete . 116

9.8. SEElib_AwaitJob . 116

9.9. SEElib_StartTransactListener . 116

9.10. SEElib_Transact . 116

9.11. SEElib_MarshalSendCommand . 117

9.12. SEElib_GetUnmarshalResponse . 117

9.13. SEElib_FreeCommand . 118

9.14. SEElib_FreeReply . 118

9.15. SEElib_ReturnJob . 118

9.16. SEElib_SubmitCoreJob. 118

9.17. SEElib_GetCoreJob . 119

9.18. SEElib_GetUserDataLen . 119

9.19. SEElib_Submit . 119

9.20. SEElib_Query . 119

9.21. SEElib_StartSEEJobListener. 120

9.22. SEElib_QuerySEEJob . 120

9.23. SEElib_ReleaseSEEJob . 121

10. Differences between glibc and bsdlib (SoloXC only) . 122

10.1. glibc Compatibility exceptions. 123

11. Allowlist for SEE machines . 124

1. Introduction
CodeSafe is a runtime on the Entrust nShield HSM that allows third-party developers to run

their own code within the secure boundary of the module. Using the CodeSafe Developer

Kit, developers write their own CodeSafe Apps, cross-compile them and package them to

run on the HSM. While on the HSM, the CodeSafe App is segregated from the actual keys

loaded onto the module: even the keys the App uses. This means that CodeSafe can be

used without affecting the FIPS 140 validation of the module it runs on.

Where the HSMs provide security controls on key usage, CodeSafe provides control over

application code. Depending on the runtime used, you’re either sending nCore commands

to the HSM, or designing your own protocol to send data and commands back and forth.

The CodeSafe™ Developer Kit includes the Secure Execution Engine (SEE) technology. The

CodeSafe product comprises a suite of cross-compilers and support tools that allow you to

develop SEE machines.

With CodeSafe, you can build and deploy Trusted Agents to perform application-specific

security functions on your behalf on unattended servers, or in unprotected environments

where the operation of the system is outside of your direct control. Examples of Trusted

Agents include digital meters, authentication agents, time-stamps, audit loggers, digital

signature agents and custom encryption processes.

Traditionally, HSMs have protected cryptographic keys within a defined security boundary;

SEE allows you to extend that security boundary to include code that utilizes those

protected keys. The code itself can be signed and encrypted to provide additional

protection.

This manual applies to both the nShield Solo XC and to the nShield Solo

PCIe.

1.1. Read this guide if …

Read this guide if you are writing and running SEE applications in C with a SEE-Ready HSM.

This guide:

• Introduces the concept of the Secure Execution Engine (SEE)

• Explains how to use the example SEE machines provided on the installation media

• Describes how to write your own SEE applications in C using the CodeSafe Developer

Kit

• Describes how to run your secure SEE applications using a SEE-Ready HSM

Chapter 1. Introduction

CodeSafe v13.6.5 Developer Guide 1/125

• Describes how to obtain export certificates for SEE applications, if required

This guide assumes that you are familiar with the concept of Security World. For

information on using keys, including the options and parameters available for the

generatekey utility, see https://nshielddocs.entrust.com/security-world-docs/key-mgmt/

intro.html.

This guide assumes that you are familiar with the following documentation:

• The nShield API guides that describe the use of hardware security modules with third-

party software products

• The nCore Developer Tutorial, which explains how to write applications using a

hardware security module

• The nCore API Documentation (supplied as HTML), which describes the nCore C API

1.2. Security World Software

The default locations for Security World Software and program data directories on English-

language systems are summarized in the following table:

Directory

name

Linux default path Windows environment

variable

Windows Server 2016 or later

nShield

Installation

/opt/nfast/ NFAST_HOME C:\Program

Files\nCipher\nfast

Key

Management

Data

/opt/nfast/kmdata/ NFAST_KMDATA C:\ProgramData\nCipher\Key

Management Data

Dynamic

Feature

Certificates

/opt/nfast/femcerts/ NFAST_CERTDIR C:\ProgramData\nCipher\Feat

ure Certificates

Static Feature

Certificates

/opt/nfast/kmdata/hsm-

ESN/features

%NFAST_KMDATA%\hsm-

esn\features

C:\ProgramData\nCipher\Key

Management Data

Log Files /opt/nfast/log NFAST_LOGDIR C:\ProgramData\nCipher\Log

Files

User Log Files /home/<user>/nshieldlogs NFAST_USER_LOGDIR C:\Users\<user>\nshieldlogs

Remote Static

Feature

Certificates

%NFAST_KMDATA%\hsm-

ESN\features

Chapter 1. Introduction

CodeSafe v13.6.5 Developer Guide 2/125

https://nshielddocs.entrust.com/security-world-docs/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/key-mgmt/intro.html
https://nshielddocs.entrust.com/security-world-docs/key-mgmt/intro.html

Directory

name

Linux default path Windows environment

variable

Windows Server 2016 or later

Remote Static

Feature

Certificates

%NFAST_KMDATA%\hsm-

ESN\features

Dynamic feature certificates must be stored in the directory stated

above. The directory shown for static feature certificates is an example

location. You can store those certificates in any directory and provide

the appropriate path when using the Feature Enable Tool. However, you

must not store static feature certificates in the dynamic features

certificates directory.

The instructions in this guide refer to the locations of the software installation and program

data directories as follows:

• By name (for example, Key Management Data).

• Linux: By absolute path (for example, /opt/nfast/kmdata).

• Windows: By nShield environment variable names enclosed with percent signs (for

example, %NFAST_KMDATA%).

NFAST_KMDATA cannot be a symbolic link.

If the software has been installed into a non-default location:

• Linux: Create a symbolic link from /opt/nfast/ to the directory where the software is

actually installed.

• Windows: Ensure that the associated nShield environment variables are re-set with the

correct paths for your installation. For more information about creating symbolic links,

see your operating system’s documentation.

Windows only

By default, the Windows C:\ProgramData\ directory is a hidden

directory. To see this directory and its contents, you must enable the

display of hidden files and directories in the view settings of the Folder

Options.

The absolute paths to the Security World Software installation directory

and program data directories are stored in the indicated nShield

environment variables at the time of installation If you are unsure of the

location of any of these directories, check the path set in the

environment variable.

Chapter 1. Introduction

CodeSafe v13.6.5 Developer Guide 3/125

With previous versions of Security World Software, the Key

Management Data directory was located by default in C:\nfast\kmdata.

The Feature Certificates directory was located by default in

C:\nfast\fem, and the Log Files directory was located by default in

C:\nfast|log.

1.2.1. Utility help options

Unless noted, all the executable utilities provided in the bin subdirectory of your nShield

installation have the following standard help options:

• -h|--help displays help for the utility

• -v|--version displays the version number of the utility

• -u|--usage displays a brief usage summary for the utility.

1.3. Requirements

To write and run a SEE C application on the HSM, you need:

• A SEE-Ready hardware security module

To determine whether your HSM is SEE-Ready, refer to the product

data sheet for your HSM.

Encrypted SEE machines are not currently supported for use with

nShield Connects. When the SEEMachine binary is installed on the

Connect itself for automated loading at boot, the SEE

Confidentiality key is not available. However, when a client host

loads a SEEMachine, it has access to the SEE Confidentiality key

and can cause the binary to be decrypted. In this scenario, the

Connect works fine with encrypted SEEMachine binaries.

• A Feature Enable smart card for activating the SEE capabilities of your HSM

• The CodeSafe Developer Kit (supplied on this installation media)

• An appropriate GCC compiler (supplied on this installation media) for the target HSM.

You must have installed your SEE-Ready HSM and the necessary Security World for nShield

for the CodeSafe Developer Kit. You must install at least the following software component

bundles included on the installation media:

• hwsp Hardware Support

Chapter 1. Introduction

CodeSafe v13.6.5 Developer Guide 4/125

• ctls Core Tools

• csd CodeSafe Developer

• gccsrc Prebuilt PowerPC GCC for CodeSafe/C

When you have installed and configured your SEE-Ready HSM, to make full use of SEE, you

must create a Security World by using one of the following tools:

• https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html

• the front panel (only on network-attached HSMs).

1.4. Further information

This guide forms one part of the information and support provided by Entrust.

The nCore API Documentation is supplied as HTML files installed in the following locations:

• API reference for host:

◦ Linux: /opt/nfast/document/ncore/html/index.html

◦ Windows: %NFAST_HOME%\document\ncore\html\index.html

• API reference for SEE:

◦ Linux: /opt/nfast/document/csddoc/html/index.html

◦ Windows: %NFAST_HOME%\document\csddoc\html\index.html

We recommend that you monitor the Announcements & Security

Notices section on Entrust nShield Support,

https://nshieldsupport.entrust.com, where any announcement of

Security advisories will be made.

1.5. Security advisories

If Entrust becomes aware of a security issue affecting nShield HSMs, Entrust will publish a

security advisory to customers. The security advisory will describe the issue and provide

recommended actions. In some circumstances the advisory may recommend you upgrade

the nShield firmware and or image file. In this situation you will need to re-present a quorum

of administrator smart cards to the HSM to reload a Security World. As such, deployment

and maintenance of your HSMs should consider the procedures and actions required to

upgrade devices in the field.

The Remote Administration feature supports remote firmware upgrade

of nShield HSMs, and remote ACS card presentation.

Chapter 1. Introduction

CodeSafe v13.6.5 Developer Guide 5/125

https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshieldsupport.entrust.com

We recommend that you monitor the Announcements & Security Notices section on

Entrust nShield, https://nshieldsupport.entrust.com, where any announcement of nShield

Security Advisories will be made.

1.6. Contacting Entrust nShield Support

To obtain support for your product, contact Entrust nShield Support,

https://nshieldsupport.entrust.com.

Chapter 1. Introduction

CodeSafe v13.6.5 Developer Guide 6/125

https://nshieldsupport.entrust.com
https://nshieldsupport.entrust.com

2. About the Secure Execution Engine SEE
The Secure Execution Engine (SEE) enables application code to run within the secure

environment of a SEE-Ready HSM.

To use SEE, you must order and enable it first, see

https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/

hsm-mgmt/features.html. You must order the developer and user

environments separately. SEE machines cannot be loaded on HSMs on

which SEE is not enabled.

The CodeSafe Developer Kit includes the following:

• The CodeSafe Developer Libraries

• A built GCC compiler, plus source and makefile to customize your own version, if

required

• The CodeSafe Utilities (described in Utilities):

◦ https://nshielddocs.entrust.com/security-world-docs/utilities/tct2.html (the

Trusted Code Tool)

◦ https://nshielddocs.entrust.com/security-world-docs/utilities/elftool.html

◦ https://nshielddocs.entrust.com/security-world-docs/utilities/loadsee-setup.html

◦ https://nshielddocs.entrust.com/security-world-docs/utilities/loadmache.html (for

use with SEElib)

◦ https://nshielddocs.entrust.com/security-world-docs/utilities/

hsc_loadseemachine.html

◦ seessl-migrate.py

◦ a set of host utilities (for use with the Solo XC glibc-based SEE machines) that

enable the standard IO and socket connections: https://nshielddocs.entrust.com/

security-world-docs/utilities/see-serv.html:

▪ see-sock-serv

▪ see-stdoe-serv

▪ see-stdioe-serv

▪ see-stdioesock-serv.

2.1. Why use the Secure Execution Engine?

The main uses of cryptography are:

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 7/125

https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/hsm-mgmt/features.html
https://nshielddocs.entrust.com/security-world-docs/utilities/tct2.html
https://nshielddocs.entrust.com/security-world-docs/utilities/tct2.html
https://nshielddocs.entrust.com/security-world-docs/utilities/tct2.html
https://nshielddocs.entrust.com/security-world-docs/utilities/tct2.html
https://nshielddocs.entrust.com/security-world-docs/utilities/tct2.html
https://nshielddocs.entrust.com/security-world-docs/utilities/tct2.html
https://nshielddocs.entrust.com/security-world-docs/utilities/tct2.html
https://nshielddocs.entrust.com/security-world-docs/utilities/elftool.html
https://nshielddocs.entrust.com/security-world-docs/utilities/elftool.html
https://nshielddocs.entrust.com/security-world-docs/utilities/elftool.html
https://nshielddocs.entrust.com/security-world-docs/utilities/elftool.html
https://nshielddocs.entrust.com/security-world-docs/utilities/elftool.html
https://nshielddocs.entrust.com/security-world-docs/utilities/elftool.html
https://nshielddocs.entrust.com/security-world-docs/utilities/elftool.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadsee-setup.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadsee-setup.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadsee-setup.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadsee-setup.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadsee-setup.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadsee-setup.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadsee-setup.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadmache.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadmache.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadmache.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadmache.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadmache.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadmache.html
https://nshielddocs.entrust.com/security-world-docs/utilities/loadmache.html
https://nshielddocs.entrust.com/security-world-docs/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/utilities/hsc_loadseemachine.html
https://nshielddocs.entrust.com/security-world-docs/utilities/see-serv.html
https://nshielddocs.entrust.com/security-world-docs/utilities/see-serv.html
https://nshielddocs.entrust.com/security-world-docs/utilities/see-serv.html
https://nshielddocs.entrust.com/security-world-docs/utilities/see-serv.html
https://nshielddocs.entrust.com/security-world-docs/utilities/see-serv.html
https://nshielddocs.entrust.com/security-world-docs/utilities/see-serv.html
https://nshielddocs.entrust.com/security-world-docs/utilities/see-serv.html

• Integrity

• Confidentiality

• Authentication

Using an HSM to protect your cryptographic keys provides all these advantages. Your keys

are only ever available in unencrypted form when they are loaded into the HSM: when key

blobs are stored on the host, their integrity is protected by a Message Authentication Code

(MAC). Access to the keys is controlled by using a Security World or an Operator Card Set

(OCS).

However, traditionally, the code that uses the keys remains on the server. This means that

the code is open to attack. It is possible that the code could be modified in such a way as to

leak important information or compromise your business rules. For example, it could fail to

enforce such rules as “the books must balance” or “traders shall balance their positions by

the close of trading”.

By implementing a solution with the SEE, you not only protect your cryptographic keys but

also extend the security boundary to include your security critical code and data.

Using the techniques of code signing, data wrapping, and secure storage, the SEE enables

you to maintain the confidentiality and integrity of application code and data and to bind

them together so that only code in which you have confidence has access to confidential

data.

2.1.1. Code integrity

In many secure applications, the primary concern is for the code to execute the correct

sequence of operations and to not do anything else, such as leak information or key data.

You can use the supplied Trusted Code Tool (tct2) to sign the HSM-side code and

initialization data (if required) that make up a SEE machine. Application authors can use

signatures to delegate authority to use key material and other resources.

2.1.2. Code confidentiality

When you use the SEE, the code that runs on an HSM can be stored in an encrypted

format. The encryption key can be either a Triple Data Encryption Standard (Triple DES) or

Advanced Encryption Standard (AES) key protected by either a Security World or an OCS.

Encrypted SEE machines are not currently supported for use with

nShield Connects. When the SEEMachine binary is installed on the

Connect itself for automated loading at boot, the SEE Confidentiality

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 8/125

key is not available. However, when a client host loads a SEEMachine, it

has access to the SEE Confidentiality key and can cause the binary to

be decrypted. In this scenario, the Connect works fine with encrypted

SEEMachine binaries.

The Access Control List (ACL) entry, UseAsLoaderKey, enables a key to be used to decrypt

SEE objects on the HSM but that does not allow you to use it for standard decryption

where the answer is returned to the host. This ensures that the code itself is not available

“in the clear” outside of the HSM/SEE and; therefore, that any intellectual property

embodied in the code is protected.

To load encrypted code, the user must first load the encryption key. Therefore, if the

encryption key is protected by an OCS, only users with sufficient smart cards from that

OCS can load the code. Because this SEE confidentiality key does not have decryption

permissions (only the UseAsLoaderKey ACL entry), from a security standpoint, it is not

essential that it be protected by an OCS.

HSM-protected SEE confidentiality keys can be useful in situations

where the server or HSM is unexpectedly reset, because, in such a case,

the SEE machine can then be reloaded without user intervention.

2.1.3. Data confidentiality

There are two main issues regarding data confidentiality:

• Transient confidentiality of data in the running system

• Long-term confidentiality of data when the code is not loaded.

The SEE protects the program’s information in the running system by enabling the

programmer to determine the interface by which data can come in and out of the system

and then rigorously enforce that interface.

Long-term confidentiality is preserved by using the non-volatile memory on the HSM. The

SEE program can access this storage by using nCore API commands. Small quantities of

highly sensitive information can be stored directly in the nonvolatile random access

memory (NVRAM). When the amount of information to be stored exceeds the capacity of

the NVRAM, data can be stored in an encrypted blob with a much smaller key stored in the

NVRAM. This functionality allows the amount of secure storage to be limited only by the

capacity of the host. For more information, see the nCore Developer Tutorial.

2.1.4. Data integrity

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 9/125

Confidential data is of little use if it can be changed by an attacker. Data stored in the

HSM’s NVRAM could only be altered if the Access Control List (ACL) were to allow this to

happen or if the physical security of the HSM were compromised. When a large volume of

data is made into a blob, a hash of that blob can be stored in the NVRAM so that changes

can be detected.

Another option for maintaining data that is not likely to change (such as root CA keys) is to

place it in the application initialization space and then use code integrity techniques to

protect the application initialization space.

2.1.5. Authentication and access control

A key feature of the SEE is the way that it can tie the integrity of the code to access control

of the resources that the code uses.

The key-management architecture controls access to objects such as keys by means of

ACLs. These lists specify sets of operations and verification keys that are used to check the

credentials authorizing these operations.

With SEE, you can create keys that can only be used to encrypt or sign SEE machines (the

SEE HSM-side code and, if required, its userdata). Encrypted application code is effectively

bound to the encryption key, thereby ensuring that it can only be loaded onto an HSM on

which you have already loaded the key. This functionality effectively gives you OCS

protection on application code.

Encrypted SEE machines are not currently supported for use with

nShield Connects. When the SEEMachine binary is installed on the

Connect itself for automated loading at boot, the SEE Confidentiality

key is not available. However, when a client host loads a SEEMachine, it

has access to the SEE Confidentiality key and can cause the binary to

be decrypted. In this scenario, the Connect works fine with encrypted

SEEMachine binaries.

SEE also extends the authorization credentials to include signatures on code. This simple

extension turns out to be very powerful. When a body of code issues a command to use a

resource that is controlled by an ACL, it may present a certificate indicating that the

signatures on the code should be examined by the ACL checking system. If the signature

on the code verifies with one of the keys listed in the ACL, the operations delegated to that

key can be carried out in that command.

Therefore, this extension of the authorization credentials means that you can create keys

that can only be used by the SEE-resident code. These keys can be protected by the

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 10/125

Security World or by OCSs.

The SEE code has access to the HSM’s NVRAM. Files stored in the HSM’s non-volatile

memory also have ACLs. These ACLs describe not only who can access the file but what

changes can be made to the file. For example, this feature enables you to create secure

counters that you know can never be zeroed or that you know can be zeroed only by a

trusted application running in the SEE.

2.2. How SEE works

A hardware security module maintains strict separation between the

nShield core functions and the user code.

The application starts with the code for a SEE machine stored in a file on the host. A SEE

machine is a binary executable of a type appropriate for the HSM. It communicates with the

nShield Solo XC core by means of the interprocess communication (IPC).

Applications may be written in C and compiled to form the SEE machine itself.

Alternatively, the SEE machine may consist of a language interpreter and the HSM code

supplied as a script or byte code by means of userdata. For more information, see SEE and

userdata.

If a separate host-side program is required, you can write the host-side code in C, using the

nCore API. Alternatively, you can use the language of your choice. Example utilities written

in Java are provided in the component jhsee in /opt/nfast/java/examples (Linux) or

%NFAST_HOME%\java\examples (Windows).

These example utilities provide equivalent functionality to the C examples of similar names.

You can adapt them as required. See the supplied Javadocs for full information about the

Java example utilities.

The SEE machine can be signed, encrypted, or both, with the Trusted Code Tool (tct2). For

more information about this command-line utility, see Utilities.

Encrypted SEE machines are not currently supported for use with

nShield Connects. When the SEEMachine binary is installed on the

Connect itself for automated loading at boot, the SEE Confidentiality

key is not available. However, when a client host loads a SEEMachine, it

has access to the SEE Confidentiality key and can cause the binary to

be decrypted. In this scenario, the Connect works fine with encrypted

SEEMachine binaries.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 11/125

The first step is to load the SEE machine onto the HSM. The hardserver software, supplied

on this installation media, automatically loads the SEE machine whenever the HSM is reset,

provided that:

• The HSM is SEE-Ready

To determine whether your HSM is SEE-Ready, refer to the product

data sheet for your HSM.

• The HSM sets the enquiry level 4 HasSEE flag

• A suitable machine image file is configured

• The load_seemachine section of the configuration file is configured to enable the

loading of SEE machines on startup.

You can perform this configuration with the loadsee-setup command-

line utility. See Utilities.

For development purposes, you can also load SEE machines manually by running the

loadmache command-line utility or, optionally, you can load SEE machines that require

support from a host-side see-*-serv utility by specifying the -M option when you run the

utility. See Utilities.

2.2.1. Code specifics

To use the functions provided by the SEE machine, the host application creates a SEE

World, supplying the initialization data, which includes the HSM resident portion of the

application code, initialization flags and any other SEE World initialization information

required. The functions provided by the HSM-resident code can then be accessed by the

SEE machine on command from the host-side portion of the application. The SEE World is a

private work space and has a handle, an M_KeyID. As with other identifiers, this handle is

associated with a ClientID. A host application can only access a SEEWorld on the

connection that created the SEEWorld or on connections that have the same ClientID.

The CreateSEEWorld command takes a byte block called the SEE user data. This block can

be used to pass initialization data when a SEE machine is started. This file also carries the

signatures for the SEEWorld.

Refer to the nCore CodeSafe API Documentation for detailed

information about the CreateSEEWorld command.

2.2.2. Security

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 12/125

When the SEE machine has been initialized, the host application can call the functions that

the SEE machine provides. These calls are sent using the nCore API command SEEJob.

For example, if you write code to implement a custom algorithm, the host application no

longer calls the nCore API Encrypt command. Instead, it calls the encrypt function of the

SEE machine. The algorithm in the SEE machine then asks the core for the key, uses the key

to encrypt the message, and returns the result. This is explained in detail for the Solo XC in

Designing SEE machines and SEE-ready HSMs.

The SEE machine can then make calls into the nShield core with the standard nCore API.

The replies are returned directly to the SEE machine without ever leaving the protection of

the HSM.

The SEE machine can access keys, or other objects that are protected

by the HSM, only by making nCore API calls to the nShield core. HSM-

side SEE code has the same privileges and access to the cryptographic

functionality of the HSM as that given to the host-side programs using

the nCore API. However, it is possible to create SEE application keys

that can be used only by particular SEE applications and not by the

host.

2.2.3. Internals

CodeSafe uses two command queues; The following diagram gives an overview of how

they function. The hardserver sends commands to the input queue. The input queue looks

at the commands and directs them to either the nCore API core or to the SEEWorld.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 13/125

In this release you can only create a single SEEWorld for each HSM at

any one time.

The nCore API core takes commands from the input queue, processes them in turn, and

places them on the output queue. These commands may have come from the server or

from the SEEWorld.

The output queue receives the completed jobs from the core. It determines whether the

command was issued by the SEEWorld or the hardserver and sends the result to the

appropriate place.

While any command sent to the SEEWorld may cause a number of calls to the nCore API

core (and these calls circulate within the HSM), a given command only ever produces a

single reply that is returned to the server. After the SEEWorld has completed the job, it

returns a reply. The core returns this reply to the hardserver and on to the application; this is

the reply to the SEEJob command, handled in exactly the same manner as for any other

nCore API command.

The SEEJob reply is returned with Status_OK provided that the SEE machine returns a reply

to the nShield core. The return of this kind of reply does not mean that the command itself

was completed successfully in the SEE machine, only that communication between the

core and the SEE machine was completed successfully. The SEE machine returns its own

errors (if any) in the reply.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 14/125

The application running in the SEEWorld does not have direct access to the user interface.

Therefore, all interaction with the user must be performed by the host application. In some

cases, especially when loading tokens that are protected by multiple smart cards, it can be

useful to have the host application load an object and then pass control to the application

in the Status_OK. You cannot pass the ObjectID because this is specific to the ClientID.

Therefore, to pass control to the application in the Status_OK, you must use key tickets.

Key tickets were introduced to the nCore API specifically for SEE, although they can also be

used to pass keys between different clients on the host. The client (or SEE application) that

creates a key asks for a ticket for the key. It passes the ticket to the other client, which

redeems the ticket for an ObjectID. There is only ever one copy of the object, and all

commands have to comply with the ACL.

2.3. SEE system architecture

There are different architectural strategies that you can use when designing a CodeSafe

SEE system, distinguished by the library they utilize:

Before designing your CodeSafe SEE system, decide which architecture best suits your

requirements:

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 15/125

• glibc: This architecture allows the use of TCP sockets and a high performance GNU C

library in CodeSafe. This makes it possible to communicate with a SEE machine using a

generic approach.

glibc can only be used if you are using an nShield Solo XC module and supports ISO C,

POSIX, and System V standards.

A design using this architecture is well suited for SEE machines that implement

applications such as Web servers and proxies.

If you are designing a CodeSafe Direct system, you must use the

glibc architecture. The SEElib library is not supported for use with

CodeSafe Direct.

If you are designing a CodeSafe SEE system using the glibc library,

you can use headers as normal for a Unix-based system (for

example, stdio.h, stdlib.h, pthread.h).

• SEElib: A design using this legacy architecture is well suited to protecting custom

cryptography within a SEE machine. The A3A8 example program provides a simple

demonstration of how to achieve this; see Designing SEE machines and SEE-ready

HSMs for additional information.

If you are designing a CodeSafe SEE system using the SEElib

library, you can use the header file seelib.h, which contains

wrapper functions for the software interrupts, in addition to a

limited subset of the standard C library. See SEElib functions for

additional information.

Unless you have a specific reason to use the SEElib architecture, Entrust recommend using

the glibc architecture, as it provides a more familiar standards-based programming

environment using standard socket and standard IO interfaces. Note that SEElib typically

requires additional work on the host application to interface to the SEE code. This is not

required when using the standards-based glibc approach.

2.4. SEE and userdata

2.4.1. What is userdata?

A userdata file can contain any data that is useful to the SEE machine. For example, you can

use a CPIO archive to supply many different data files in a single directory structure

(examples are provided in Designing SEE machines and SEE-ready HSMs.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 16/125

All SEE machines built with glibc must be provided with a valid ASCII-

format CPIO archive. This archive forms the base of the file system

available to your SEE machine. Even if your SEE machine does not use

this file system, you must still create and supply it with dummy userdata

as a place-holder.

2.4.2. Creating userdata suitable for loading into the HSM

You can create a userdata file suitable for loading into the HSM by turning it into a SAR file

with the tct2 command-line utility. Signing the userdata file in this way offers improved

security.

2.5. SEE and Security Worlds

Within a Security World, the following actions may be configured to require authorization

from the nShield Security Officer Key (KNSO) , or a key with authority delegated from the

KNSO:

• Allocation and forced freeing of nonvolatile memory

• Setting the real-time clock

• Enabling the run-time debugging options.

Each of these features can be enabled individually.

At Security World creation time, certificates may be created delegating authority from KNSO

to keys protected by logical tokens which are split amongst the Administrator Card Set

(ACS) in the usual way, but may require a different K/N threshold to reassemble. For

example, you may wish to require that only one of five Administrator Cards be presented to

set the real-time clock on an HSM, but three of them to replace the ACS.

The tools that create these certificates are:

• KeySafe (version 2 and later)

• Windows: The nShield CSP Wizard

• https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html

• the front panel (only on network-attached HSMs)

A Security World created using some older tools does not have any of

these delegation certificates to support nonvolatile memory and real-

time clock operations or to allow debugging of SEE applications.

Therefore, such operations would require full KNSO authorization.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 17/125

https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html

To sign or encrypt the HSM-side code, the signing and encryption keys must belong to the

Security World to which the HSM belongs.

To test code outside a Security World, you can use the initunit command-line utility to

remove the HSM from the Security World. In this case you cannot sign or encrypt your

code, and the code cannot access keys protected by the Security World.

If you use the initunit command-line utility to initialize the HSM, any

user can set the clock and create or free NVRAM files. This means that

any user can free an existing file and allocate another file with the same

name but with different contents or with a different ACL. Most security

policies forbid this.

Chapter 2. About the Secure Execution Engine SEE

CodeSafe v13.6.5 Developer Guide 18/125

3. Designing SEE machines and SEE-ready
HSMs
This manual addresses SEE for the Solo XC and Connect XC.

For Solo XC, see Writing SEE machines - Solo XC

3.1. Writing SEE machines - Solo XC

This chapter describes how to write a SEE machine for use on SEE-Ready HSMs.

An SEE machine is an executable binary file of a type appropriate for the HSM that

communicates with the nShield core (which runs in kernel mode) using a defined set of

software interrupts. These interrupts, and their wrapper functions, provide a run-time

environment that includes memory and thread management as well as an interface for

accepting and returning jobs and calling nCore API commands.

C source code is compiled using one of the GCC cross-compilers supplied with the

CodeSafe Developer Kit. For details of required compiler options; see Example SEE

machines and the makefiles supplied with the examples.

The compiled code can then be signed, packed, and encrypted by using the Trusted Code

Tool (tct2 utility) to produce a secure archive; see Utilities.

In CodeSafe versions prior to 13.3, the Solo XC only supports SEE

machines smaller than 70 MB. From 13.3 onwards, the Solo XC can

support SEE machines up to 800 MB.

3.1.1. Designing for the glibc architecture

The GNU C library glibc is supplied together with libpthreads, librt and a system call

underlay for use with CodeSafe SEE development.

A rich set of C function calls is available to use in SEE machine development. Native

support for Unix-based system calls is provided, only restricted by an allowlist of the

system calls (Allowlist for SEE machines) allowed in the SEE environment.

A subset of the Unix-based system calls, implemented in terms of the inter-process

communication interface (IPC), allows access to the cryptographic HSM kernel. The

provided system calls include a virtual file system and associated set of input and output

devices with which you interact in the standard manner.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.6.5 Developer Guide 19/125

The virtual file system is supported as an extension to the file system.

Also provided are some link-time plug-ins that extend the virtual file system to provide

additional capabilities:

• hoststdioe.o: stdin, stdout, and stderr facility hooks; seestream_stdio(7see)

• hoststdoe.o: stdout and stderr facility hooks; seestream_stdio(7see)

• hostinetsocks.o: TCP socket facility hooks; seestream_inet(7see)

• hoststdioeinetsocks.o: TCP socket facility and stdin, stdout, and stderr facility

hooks; seestream_inet(7see)seestream_stdio(7see)

The link-time plug-in vulnerability.o is provided for the purposes of

debugging (see Vulnerability test harness). Entrust recommends that

you do not link vulnerability.o into a production SEE machine.

3.1.2. Designing for the SEElib architecture

This section describes how to design SEE machines using the SEElib architecture. This kind

of architecture requires host-side software to create the SEE World and communicate with

the HSM.

To start the SEE machine running with a particular SEE userdata, the host application calls

the nCore API command CreateSEEWorld. This command creates a SEE World using data

previously loaded into the HSM with the LoadBuffer command from a buffer created with

the CreateBuffer command. See the nCore API Documentation (supplied as HTML) for

information about the nCore API commands.

You can also use or adapt the supplied example Java class SEEWorld to initialize the SEE

machine.

When the host application calls CreateSEEWorld, the HSM allocates memory for the SEE

World and sets up its input and output job queues. It then runs the SEE machine’s main()

function.

The SEE machine’s main() function must:

• Call SEElib_init() before any other SEE library function to initialize the SEE library and

to check that the HSM is running the expected version of the library

• If the machine accepts userdata:

◦ call SEElib_GetUserDataLen to determine the length of the byte block that was

passed with CreateSEEWorld

◦ call SEElib_ReadUserData to load the byte block

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.6.5 Developer Guide 20/125

◦ determine whether the byte block is valid

◦ initialize any required structures

• Start at least one thread which receives and processes commands (this thread must

call SEElib_AwaitJob)

The SEElib_StartProcessorThreads function can be used for this

purpose.

• Call SEElib_InitComplete and return a status.

The status passed to SEElib_InitComplete is returned to the calling application in the reply

to CreateSEEWorld The application can determine the status values, with one exception: if

the machine fails before calling SEElib_InitComplete(), the CreateSEEWorld command

returns a value of 1 (SEEInitStatus_MachineFailed) in this field. You should therefore avoid

choosing the value 1 to indicate successful initialization.

When the application receives the reply to CreateSEEWorld with Status_OK and an

acceptable initstatus, it can start to submit jobs with the nCore API command SEEJob.

You can also use or adapt the supplied example Java class SEEJob to submit jobs to the SEE

machine.

The SEEJob command takes a byte block, which is passed to the SEElib_AwaitJob function

without being interpreted in any way. It is up to the host application to assemble this byte

block and the SEE machine to interpret it.

After the job has been processed, assemble the reply into a byte block and call

SEElib_ReturnJob to return it using the nShield core.

The nShield core assembles this byte block into a reply and returns it to the host

application. Provided that the job is returned before the command times out, the reply has

the status OK. The SEE machine must include any necessary status information within the

byte block it returns. The calling application must remember to check this status as well as

the status of the SEEJob nCore API function and the transport call, for example

NFastApp_Transact().

The SEE machine can call nCore API functions with SEElib_Transact or

SEElib_MarshalSendCommand and SEElib_GetUnmarshalResponse. It may submit these as part

of its initialization, before it calls SEElib_InitComplete(). However, if it does not call

SEElib_InitComplete() within 30 seconds of start-up, the CreateSEEWorld command

returns SEEInitStatus_MachineFailed. For this reason, you should not perform (for

example) lengthy key generation operations during initialization.

SEElib_Transact has syntax equivalent to the NFastApp_Transact function in the C generic

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.6.5 Developer Guide 21/125

stub. It takes a command structure and returns a reply structure.

SEElib_MarshalSendCommand takes a command structure and submits it.

SEElib_GetUnmarshalResponse reads a response from a buffer and returns a reply structure.

SEElib_StartTransactListener must be called successfully before you

use SEElib_Transact to communicate with the nShield core.

3.1.3. SEE machines for new algorithms

In addition to being able to perform basic cryptographic operations, any SEE machine that

implements an algorithm must also be able to:

• Generate keys

• Import keys

• Store keys as key blobs.

The SEE machine can use the nCore API functions GenerateRandom and GeneratePrime to

acquire random numbers and random prime numbers from the HSM’s hardware random

number generator.

The SEE machine can perform its own multiprecision arithmetic. Otherwise, it can use the

nCore API BignumOp command to perform multiprecision arithmetic and the ModExp and

ModExpCrt commands to perform modular exponentiation.

If you are using keys as session keys, there is no requirement for them ever to be placed in

the nShield core. The only time that you need to transfer a key to the core is if you need to

create a key blob for long-term storage. However, if you need to keep track of several keys,

you may want to make use of the nShield core’s object store rather than having to create a

similar structure in your own code.

For an example of how See machines can implement a non-standard algorithm, see A3A8

example.

3.1.3.1. Key type

The SEE machine stores keys using the random key type. This is a plain byte block with no

structure.

If the key contains several values, for example, exponent and modulus, the SEE machine

must implement its own routines for marshalling and unmarshalling the byte block into the

correct structure.

 SEE machines using standard algorithms do not use the random key

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.6.5 Developer Guide 22/125

type. Instead, they use standard nCore key types.

3.1.3.2. ACL

The ACL needs to be constructed so that the SEE machine and only the SEE machine can

access the key. To transfer a key from the nShield core to the SEE machine, the key must

have the ExportAsPlain flag set in its ACL. The permission group with ExportAsPlain must

be protected by a certifier so that this operation can only be performed by the SEE

machine.

Although one obvious solution is to use the key that was used to sign the SEE machine,

KInteg, as the certifier, using KInteg in this way means that whoever signed the SEE machine

could potentially access any key for this algorithm. A better solution is to add an extra

signature to the SEE machine by using a second key, KAuth The KInteg signature proves that

the code has not changed since it was signed. The KAuth signature is then used to control

access to keys.

You can use the generatekey command-line utility to generates keys for use as KAuth and

KInteg by specifying the seeinteg application as a key generation parameter.

The ACL must also have the correct MakeBlob permissions. If you want to use the standard

Security World tools for key management and recovery, the host application can use these

tools to create the ACL.

SEE machines using standard algorithms generally do not need to get

the key as plain text in the SEE machine.

3.1.3.3. Storage

For long-term storage, the key needs to be encapsulated in a key blob that is protected by

the Security World or an OCS. To provide OCS replacement and recovery, you may also

require additional key blobs protected by other card sets.

You could write a function where your SEE machine calls MakeBlob and returns the blob to

the host. Alternatively, you could write a method that returns a key ticket and have the host

application create the key blobs.

If you are using a Security World, the host application can use nfkm library calls to create

and store the key blobs.

3.1.3.4. Loading stored keys

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.6.5 Developer Guide 23/125

In general, it is easier for the host application to manage tokens, because it has direct

access to the user interface and can prompt the user to insert cards and enter passphrases.

When the token has been loaded, the host application can load the key and pass a key

ticket to the SEE machine. The SEE machine can then redeem the key ticket for a KeyID and

use this to access the key. If you have several keys that are protected by a token, it usually

makes sense to pass a ticket for the KeyID of the logical token, rather than passing tickets

for each key.

You should also pass in a ticket for the logical token if the host application that loads the

token exits afterwards. When it exits, it destroys the logical token’s ID, which invalidates all

loaded keys that were using it. Passing the logical token’s ID in to the SEE machine prevents

its destruction when the application exits.

3.1.3.5. C run-time library

Entrust supplies a customized version of the GNU C (glibc) library for Solo XC SEE

machines. Common features such as threading and mutexes are provided by glibc.

See SEElib functions for reference information about glibc functions.

3.1.4. Signing userdata for additional security

Signing userdata files can help increase the security of CodeSafe SEE applications. Both

types of SEE machine architecture, using glibc and using SEElib, can take advantage of the

security benefits offered by signing userdata files.

For example, if your SEE machine is intended to perform some cryptography functions

using a given key, it would be advantageous to prevent that key from being accessed by

any unauthorized SEE machines. This can be achieved by signing the userdata file for your

SEE machine.

The following figure provides an overview diagram of the process of signing a SEE

machine’s userdata file.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.6.5 Developer Guide 24/125

The following sequence, in which an original SEE machine is represented by machine.elf

and an original userdata file is represented by userdata.bin, demonstrates the process of

signing a SEE machine’s userdata file:

1. Create the key Kseemach of type seeinteg to sign the SEE machine by running a

command similar to:

generatekey seeinteg plainname=seemach ...

2. Create the key Kuserdata of type seeinteg to sign the userdata by running a command

similar to:

generatekey seeinteg plainname=userdata ...

3. Run the generatekey command-line utility to create a key Kcrypto (the key with which

your SEE machine is to perform its cryptography functions), specifying Kuserdata for its

seeintegname:

generatekey simple plainname=crypto --seeintegname=userdata ...

 This example assumes Kcrypto is being created as a Triple DES key.

4. Run the tct2 command-line utility to sign the userdata file for your SEE machine with

the key Kuserdata, specifying Kseemach as the SEE machine key:

tct2 --sign --key=userdata --machine-key-ident=seemach --infile=userdata.bin --outfile=userdata.sar

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.6.5 Developer Guide 25/125

 For information about the tct2 command-line utility, see tct2.

5. Run the tct2 command-line utility to sign the SEE machine with the key Kseemach:

tct2 --sign --key=seemach -- machine-type=PowerPCELF --is-machine --infile=machine.elf
--outfile=machine.sar

The result of the process demonstrated in this sequence of steps is that no SEE machine

can use the key Kcrypto unless at least one of the following conditions is met:

• It has been signed by the correct Kseemach and is used in conjunction with the correct

userdata file

• You make use of the key recovery feature.

3.1.5. Building your SEE machine and host-side application

The following steps provide an overview of the process you follow to use your application

with SEE:

1. If you want to sign or encrypt your application, generate code-signing and

confidentiality keys as applicable.

2. Compile and link the host application’s source files using the native compiler on the

host. See the diagram in the following step.

3. Compile and link the SEE machine source using the GCC cross compiler. See the

following diagram.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.6.5 Developer Guide 26/125

4. If required, use the Trusted Code Tool (tct2) to sign the SEE machine with the code-

signing keys. See Utilities for additional information.

5. Use the Trusted Code Tool (tct2) to pack the HSM files and create a SAR file. You

must pack the binary file even if signatures are not required. See Utilities for additional

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.6.5 Developer Guide 27/125

information.

6. Use the Trusted Code Tool (tct2) to pack (and, if required, sign with the code-signing

keys) the userdata file and create a SAR file. You must pack the userdata file even if

signatures are not required (unless you use one of the see-*-serv host utilities with the

--userdata-raw option. See Utilities for additional information.

7. If required, use the Trusted Code Tool (tct2) to encrypt the userdata file, using the

confidentiality key.

8. Place the userdata SAR file and the host application in an appropriate location to be

used at runtime.

9. For SEE machines using the SEElib architecture, userdata file can either be either

loaded automatically or can be loaded by running the loadmache command-line utility.

For SEE machines that require support from a host-side see-*-serv utility, the host

utility loads the userdata file automatically.

The following diagram shows these different methods for loading a SEE machine.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.6.5 Developer Guide 28/125

For more information, see Automatically loading a SEE machine.

Chapter 3. Designing SEE machines and SEE-ready HSMs

CodeSafe v13.6.5 Developer Guide 29/125

4. Example SEE machines
This chapter documents the example SEE machines.

The supplied C examples consist of the source files and associated makefiles (Linux) and

Cmake files (Windows) needed to compile and run the examples. To run the compiled

examples correctly, you must have the latest version of the Security World for nShield. If

you are using a Linux operating system, you must have version 2.22.34 or later of the HSM

firmware. If you are using a Windows operating system, you must be on the latest version

of the HSM firmware.

The latest versions of both the Security World for nShield and HSM

firmware are supplied on the installation media.

Encrypted SEE machines are not currently supported for use with

nShield Connects. When the SEEMachine binary is installed on the

Connect itself for automated loading at boot, the SEE Confidentiality

key is not available. However, when a client host loads a SEEMachine, it

has access to the SEE Confidentiality key and can cause the binary to

be decrypted. In this scenario, the Connect works fine with encrypted

SEEMachine binaries.

4.1. Configure the Windows Build Environment

The Windows build environment requires that the following tools be already installed:

• CMake for Windows, minimum version 3.9.

• Visual Studio 2022 Build Tools.

• Ninja build system for Windows.

Each example is supplied with CMake files for each HSM architecture and Windows host

environment.

The specifics of building the C code for the HSM architectures and the Windows host

environment are described in the next sections.

In order to build the examples, you must use the Visual Studio Developer Command

Prompt. This command prompt needs to be initialized to use the 64-bit compilation tools in

the following manner:

1. Open a Windows command prompt, using Run as Administrator.

2. Navigate to the Visual Studio Build Tools installation directory. The default location for

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 30/125

this is C:\Program Files (x86)\Microsoft Visual

Studio\2022\BuildTools\VC\Auxiliary\Build.

3. At the command prompt, execute the initialization batch file, vcvars64.bat. The batch

file sets the required environment variables for using the 64-bit compilation tools.

4. At this point you may wish to enter the PowerShell environment. This can be done by

executing the powershell command at the command prompt.

If you exit (close) the initialized Windows command prompt (or

PowerShell), then these initialization steps must be repeated when

you open a new command prompt in order to build the examples.

For information on the different library paths necessary to perform a

64-bit build of your own code, see the nCore API Documentation

(supplied as HTML).

We strongly recommend that you familiarize yourself with the process

of building the example programs supplied on the CodeSafe installation

media before you attempt to adapt the makefiles to any other

environments.

4.2. Examples for glibc library

This section is relevant when using a glibc based SEE machine with an nShield Solo XC or

an nShield Connect XC.

In default CodeSafe installations, the following C examples are supplied in directories under

the path /opt/nfast/c/csd/examples/ (Linux) or %NFAST_HOME%\c\csd\examples\ (

Windows):

Location Description

glibsee/helloworld.c This example is a simple, introductory test program.

glibsee/see-random.c This example demonstrates basic usage of the generic stub within SEE.

glibsee/see-enquiry.c This example demonstrates host code running within SEE with no large

modifications.

glibsee/tcp-proxy.c This example is a multithreaded TCP-TCP proxy that forwards all connections on

port 8080 to 127.0.0.1:80.

If the nShield Connect is configured to use see-sock-serv directly, any supplied glibc

examples that use see-sock-serv can be run directly on the nShield Connect, rather than

via a client machine.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 31/125

The examples here show how to run a SEE machine from a command line. Alternatively, if

you wish to run a SEE machine directly, please see Deploying SEE Machines.

If you are running see-sock-serv directly on an nShield Connect, port

numbers in the examples should be modified to bind to ports within the

range 8000-8999.

All supplied examples for glibc, both standard and SSL-related, require one of the see-*-

serv host-side utilities. For more information about these utilities, see see-*-serve utilities.

The SEE machine type must be specified as --machine-type=PowerPCELF

when running the tct2 tool.

4.2.1. Building the HSM-side code

1. Create a directory in your home (Linux) or Documents (Windows) location to contain

the platform examples. For example, to create and enter a directory called

buildGLIBmod:

Linux

cd ~
mkdir buildGLIBmod
cd buildGLIBmod

Windows

cd Documents
mkdir buildGLIBmod
cd buildGLIBmod

2. Configure the module examples build using the command:

Linux

cmake -DCMAKE_TOOLCHAIN_FILE=<path to GLIB tool chain> <path to GLIB SEE examples>

For example, using the default locations for the tool chain and the GLIB SEE

examples:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-linux-xc-glibsee.cmake
/opt/nfast/c/csd/examples/

Windows

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 32/125

cmake -G "Ninja" -DCMAKE_TOOLCHAIN_FILE=<path to GLIB tool chain> <path to GLIB SEE examples>

For example, using the default locations for the tool chain and the GLIB SEE

examples:

cmake -G "Ninja" -DCMAKE_TOOLCHAIN_FILE="C:\Program Files\nCipher\nfast\c\csd\cmake\codesafe-linux-xc-
glibsee.cmake" "C:\Program Files\nCipher\nfast\c\csd\examples"

3. Build the module examples using the command:

Linux

cmake --build <build output location>

For example:

cmake --build .

Here, the . specifies the location where the build products should be placed, in this

case to the current directory.

Windows

Ninja

This results in the creation of a directory, glibsee, which contains all the compiled

examples. The build process will create a file for each example, with an .elf suffix.

4.2.2. Helloworld example

This example source code is a simple example of an SEE machine written in C. It is not

intended to be the basis for any real world applications. It is intended only to demonstrate

how to write SEE machines in C and the use of an appropriate host utility to handle output

to stdout and stderr.

4.2.2.1. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable Format) file

into a SAR (Secure or SEE ARchive) file as follows:

tct2 --pack --machine-type=PowerPCELF --infile=helloworld.elf --outfile=helloworld.sar

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 33/125

For additional security, you can also choose to set options in this command that sign or

encrypt the file. For more information, see tct2.

4.2.2.2. Creating a userdata file

All SEE machines built with the glibc C library must be provided with a

valid ASCII-format CPIO archive. This archive forms the base of the file

system available to your SEE machine. You can use the cpioc

command-utility that we provide to create CPIO archives of the correct

type.

Although the helloworld example does not use its file system, you must

still create and supply it with dummy userdata as a place-holder.

Create a dummy userdata file as follows:

echo dummy > dummy
cpioc userdata.cpio dummy

Output:

F dummy
Written 'userdata.cpio': 1 files, 0 directories, 0 errors

4.2.2.3. Running the example

To run the helloworld example on a PowerPC-based SEE machine, use the following

commands:

see-stdoe-serv --machine helloworld.sar --userdata-raw userdata.cpio

Output:

nC SEE glibc entering main
Hello world!

If you are using a nShield Connect, you must also set the --no-feature

-check option when running the see-stdoe-serv utility.

Before rerunning this example, run the following command to clear all HSMs:

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 34/125

nopclearfail --clear --all

4.2.3. SEE-Random example

This example shows basic usage of the generic stub from within SEE. It requests 128 bytes

of random material from the HSM and prints the result in hexadecimal.

Before running or rerunning this example, run the following command to clear all HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the compiled

examples (both SXF and ELF files).

4.2.3.1. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable Format) file

into a SAR (Secure or SEE ARchive) file:

tct2 --pack --machine-type=PowerPCELF --infile=see-random.elf --outfile=see-random.sar

For additional security, you can also set options in this command to sign or encrypt the file.

For more information, see tct2.

4.2.3.2. Running the example

To run the SEE-Random example on a PowerPC-based SEE machine, use the following

commands:

see-stdoe-serv --machine see-random.sar --userdata-raw userdata.cpio

Output:

nC SEE glibc entering main
52 D1 C4 73 28 49 79 62 CD E6 64 14 1C 3B E1 B2 70 3D 6B D5 DF DE CE 7F 47 50 70 06 B6
C0 52 7F 19 3A 0A 7D E4 73 83 D8 EB F4 E5 82 F3 53 38 45 2A E3 08 49 1A 58 77 35 5F 5C
7C D9 7B 57 4A A9 C4 F4 67 C7 30 91 4A CA 0C 15 1F A7 F2 E1 2B 61 E2 3A CE EF BD FF ED
49 07 68 7B 76 D2 AC 8B 98 AA 02 FD 30 01 68 60 49 4C 0F 7E 23 7F AC EC B5 6A DE 0B CD
45 72 89 96 DD E2 96 C2 B8 7B 97 AA

If you are using an nShield Connect, you must also set the --no-feature

-check option when running the see-stdoe-serv utility.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 35/125

4.2.4. SEE-Enquiry example

This example shows how to cross-compile example code, originally written for use from the

host environment, to be run within the SEE without any substantial modifications.

Before running or rerunning this example, run the following command to clear all HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the compiled

examples (both SXF and ELF files).

This example code is based on enquiry.c provided elsewhere in the

software distribution.

4.2.4.1. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable Format) file

into a SAR (Secure or SEE ARchive file):

tct2 --pack --machine-type=PowerPCELF --infile=see-enquiry.elf --outfile=see-enquiry.sar

For additional security, you can also set options in this command to sign or encrypt the file.

For more information, see tct2.

4.2.4.2. Running the example

To run the SEE-Enquiry example on a PowerPC-based SEE machine, use the following

commands:

see-stdoe-serv --machine see-enquiry.sar --userdata-raw userdata.cpio

Output:

nC SEE glibc entering main
Server:
 enquiry reply flags none
 enquiry reply level Six
 serial number 1BD7-DE7B-A370
 mode operational
 version 2.38.7
 speed index 4240
 rec.queue 35..152
 [etc]

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 36/125

If you are using an nShield Connect, you must also set the --no-feature

-check option when running the see-stdoe-serv utility.

4.2.5. TCP proxy example

The TCP proxy example demonstrates how to set up a conduit between the local host and a

destination IP address.

Before running or rerunning this example, run the following command to clear all HSMs:

nopclearfail --clear --all

The following assumes that the user is working in the directory that contains the compiled

examples (both SXF and ELF files).

The default destination address is declared in the source code file tcp-proxy.c as follows:

#define BACKEND_ADDR "127.0.0.1"

For the TCP proxy example to work correctly, you must change this default destination

address. You can replace the default address with the IP address of any valid website.

By default, the example TCP proxy code sets the front end port to 8080 and the back end

port to 80. The remainder of this example assumes the use of these values, but you can

change them as necessary.

4.2.5.1. Re-building the HSM-side code

If the file tcp-proxy.c has been modified as described in section [TCP], then the example

needs to be rebuilt in order for the changes to be effective. The example can be rebuilt by

executing the cmake build command from within the appropriate directory as described in

section Examples for glibc library for example:

Linux

cd ~/buildGLIBmod
cmake --build .

In this example the directory path would be ~/buildGLIBmod/glibsee.

Windows

cd C:\Users\<USER-NAME>\Documents\buildGLIBMod

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 37/125

Ninja

In this example the directory path would be C:\Users\<USER-

NAME>\Documents\buildGLIBMod\glibsee\.

If the example has been rebuilt, before continuing ensure that you are

working in the directory that contains the compiled examples.

4.2.5.2. Packing the SEE machine

Use the tct2 command-line utility to convert the ELF (Executable and Linkable Format) file

into a SAR (Secure or SEE ARchive) file:

tct2 --pack --machine-type=PowerPCELF --infile=tcp-proxy.elf --outfile=tcp-proxy.sar

You can also set options in this command to sign or encrypt the file. For more information,

see tct2.

4.2.5.3. Running the example

Run the example on a PowerPC-based SEE machine as follows:

see-sock-serv --trace --machine tcp-proxy.sar --userdata-raw userdata.cpio

You can check that the example is working correctly by entering the URL

http://localhost:8080/ into any browser. If the example is working correctly, the browser

displays the website at the address specified in the tcp-proxy.c file.

4.3. Examples for SEElib

In default CodeSafe installations, the following C examples are supplied in directories under

the path /opt/nfast/c/csd/examples/csee (Linux) or %NFAST_HOME%\c\csd\examples\csee

(Windows).

Location Description

csee/hello/ This example source code demonstrates a simple SEE machine in C and how you

can use it from a C program on the host.

csee/a3a8/ This example code demonstrates how to write an SEE machine in C code and how

to use it from a C program on the host.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 38/125

Location Description

csee/nvram/ This example shows the simple use of NVRAM in an SEE machine written in C.

csee/rtc/ This example demonstrates the use of an SEE machine written in C that

implements a very simple timestamp service.

csee/tickets/ This example provides an API demonstration showing how an SEE machine can be

written in C.

csee/benchmark/ This example implements a very simple utility that uses an SEE machine written in

C to time stamp requests to benchmark the speed of response to requests.

We also supply a Java version of the HelloWorld example. This consists of the source files

for host-side applications that you can run with the example SEE machines written in C (or

any other SEE machines written in any language) in order to understand how simple SEE

machines work, see About the Java example.

The nvram, rtc, and benchmark C examples can extract debugging information from the SEE

trace buffer in all Security Worlds. If the Security World has restricted or authorized-only

access to SEE debugging, the example prompts the user for the number of Administrator

Cards required to gain authorization. Therefore, to avoid unnecessary exposure of the

Administrator Cards, do not try to run these examples on an HSM in a production Security

World. Debugging information from the trace buffer is not available for the A3A8 or tickets

C examples.

4.3.1. Building Linux host examples

1. Create a directory in your home location to contain the host platform examples. For

example, create a directory called buildhost, and enter this directory:

mkdir ~/buildhost
cd ~/buildhost

2. Configure the host platform examples using the command:

cmake <path to SEElib examples>

For example:

cmake /opt/nfast/c/csd/examples/

Here, the location of the examples is the default location, /opt/nfast/c/csd/examples.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 39/125

3. Build the host platform examples using the command:

cmake --build <build output location>

For example

cmake --build .

Here, the . specifies the location where the build products should be placed, in this

case to the current directory.

This results in the creation of a directory, csee, which contains a subdirectory for each

of the examples. For example ~/buildhost/csee/a3a8.

4.3.2. Building Windows host examples

1. Create a directory in your Documents location to contain the host examples. For

example, create a directory called host, and enter this directory:

cd Documents
mkdir host
cd host

2. Configure the host platform examples using the command:

cmake -G "Ninja" -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=cl "C:\Program
Files\nCipher\nfast\c\csd\examples"

3. Build the host examples using the command:

ninja

This results in the creation of a directory, csee, which contains a subdirectory for each

of the examples.

Each example’s subdirectory contains a directory, module, which contains the complied

module code.

4.3.3. Building Solo SEE module examples

1. Create a directory in your home (Linux) or Documents (Windows) location to contain

the module examples. For example, create a directory, buildSoloMod, and enter this

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 40/125

directory.

Linux

cd ~
mkdir buildSoloMod
cd buildSoloMod

Windows

cd Documents
mkdir buildSoloMod
cd buildSoloMod

2. Configure the module examples build using the command:

Linux

cmake -DCMAKE_TOOLCHAIN_FILE=<path to Solo + module tool chain> <path to CSEE examples>

For example, using default locations for the Solo + module tool chain and the CSEE

examples:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-linux-solo-csee.cmake
/opt/nfast/c/csd/examples/

Windows

cmake -G "Ninja" -DCMAKE_TOOLCHAIN_FILE="C:\Program Files\nCipher\nfast\c\csd\cmake\codesafe-linux-
solo-csee.cmake" "C:\Program Files\nCipher\nfast\c\csd\examples"

3. Build the modules using the command:

Linux

cmake --build <build output location>

For example:

cmake --build .

Here the . specifies the location where the build products should be placed, in this

case to current directory.

Windows

Ninja

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 41/125

This will result in the creation of a directory, csee, which contains a subdirectory for

each of the examples. Each example’s subdirectory contains a directory, module, which

contains the compiled module code. For example, ~/buildSoloMod/csee/a3a8/module.

The compiled module executables have the suffix sxf.

4.3.4. Building Solo XC SEE module examples

1. Create a directory in your home (Linux) or Documents (Windows) location to contain

the module platform examples. For example, create a directory, buildXCmod, and enter

this directory:

Linux

cd ~
mkdir buildXCmod
cd bukdXCmod

Windows

cd Documents
mkdir buildXCmod
cd buildXCmod

2. Configure the module examples build using the command:

Linux

cmake -DCMAKE_TOOLCHAIN_FILE=<path to Solo XC module tool chain> <path to SEElib examples>

For example, using the default locations for the Solo XC module tool chain and the

SEELib examples, the command would be:

cmake -DCMAKE_TOOLCHAIN_FILE=/opt/nfast/c/csd/cmake/codesafe-linux-xc-csee.cmake
/opt/nfast/c/csd/examples/

Windows

cmake -G "Ninja" -DCMAKE_TOOLCHAIN_FILE="C:\Program Files\nCipher\nfast\c\csd\cmake\codesafe-linux-xc-
csee.cmake" "C:\Program Files\nCipher\nfast\c\csd\examples"

3. Build the module examples using the command:

Linux

cmake --build <build output location>

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 42/125

For example:

cmake --build .

Here the . specifies the location where the build products should be placed, in this

case to current directory.

Windows

Ninja

This will result in the creation of a directory, csee, which contains a subdirectory for

each of the examples Each example’s subdirectory contains a directory, module, which

contains the compiled module code. For example, ~/buildXCMod/csee/a3a8/module.

The compiled module executables have the suffix .elf.

4.3.5. Example: Hello-World

This example source code demonstrates a simple SEE machine in C and how you can use it

from a C program on the host. The SEE machine examines the characters in the SEE job

passed to it and replaces each lowercase alphabetic character with the corresponding

uppercase character, returning the result as the SEE job reply. Additionally, if the SEE World

is created with a userdata file, any characters found in the userdata file are replaced in the

input SEE job with the character X.

The Hello-World example is not intended to be the basis for any real

world applications. It is intended only to demonstrate how to write SEE

machines in C and host-side use of an SEE machine by code written in

C.

There is also an example of the host-side code written in Java, supplied

in the nCipherKM-SEE-Examples.jar found in

/opt/nfast/java/examples/ (Linux) or %NFAST_HOME%\java\examples\

(Windows).

4.3.5.1. Signing, packing, and loading the SEE machine

1. Generate a key with which to sign the SEE machine:

generatekey -m 1 seeinteg

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 43/125

2. Complete the prompts as follows:

recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
plainname: Key name? [] > hellomachine
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application seeinteg
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 plainname Key name hellomachine
 nvram Blob in NVRAM (needs ACS) no

Loading `dev-ocs':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `dev-ocs' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.
Key successfully generated.
Path to key: <path-to-key>

Where <path-to-key> is /opt/nfast/kmdata/local/key_seeinteg_hellomachine (Linux)

or C:\ProgramData\nCipher\Key Management Data\local\key_seeinteg_hellomachine

(Windows).

3. Change to the module directory.

For nShield Solo:

Linux

cd ~/buildSoloMod/csee/hello/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\hello\module

For nShield Solo XC:

Linux

cd ~/buildSoloXC/csee/hello/module

Windows

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 44/125

cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\hello\module

4. Use the tct2 command line utility to convert the file into a SAR file.

For nShield Solo:

Convert the hello.sxf file to a SAR file:

Linux

tct2 --sign-and-pack --is-machine -i hello.sxf --machine-type=PowerPCSXF -o hello.sar -k hellomachine

Windows

tct2 -m 1 --sign-and-pack --is-machine -i .\hello.sxf --machine-type=PowerPCSXF -o hello.sar -k
hellomachine

Output:

Signing machine as `PowerPCSXF'.

Loading `dev-ocs':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `dev-ocs' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

For nShield Solo XC:

Convert the hello.elf file to a SAR file:

Linux

tct2 --sign-and-pack --is-machine -i hello.elf --machine-type=PowerPCELF -o hello.sar -k hellomachine

Windows

tct2 --sign-and-pack --is-machine -i .\hello.elf --machine-type=PowerPCELF -o hello.sar -k
hellomachine

Output:

Signing machine as `PowerPCELF'.

Loading `dev-ocs':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `dev-ocs' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 45/125

 For more information about this command, see tct2.

5. Load the SEE machine into the HSM by running the command:

loadmache -m 1 hello.sar

This example describes how to load the SEE machine by running

the loadmache command-line utility. In a production environment,

you can choose to configure the load_seemachine section of the

host or client configuration file so that an SEE machine is loaded

automatically. See Automatically loading an SEE machine.

4.3.5.2. Preparing example userdata

You do not need to create real userdata for this example. Instead, you can simply pack a

small text file with tct2 and pass the packed file to the SEE machine to serve as userdata.

However, you can also choose to create and sign a real userdata file in the same way as for

the A3A8 example; see A3A8 example

When you run the Hello-World example, because the characters in the

userdata you supply are converted from lower case to replaced by the

character X in the output file, including a new line sequence in the

userdata can produce unexpected results.

4.3.5.3. Running the example

To run the C example change to the host application directory by running the command:

Linux

cd ~/buildHost/csee/hello/hostside

Windows

cd C:\Users\<USER-NAME>\Documents\hostside\csee\hello\hostside

Pack the desired user data in the SAR file suitable for loading onto the HSM. Optionally, you

could use the Trusted Code Tool (tct2) to create a signed and packed SAR file for this step.

4.3.5.4. Usage

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 46/125

The hello example program has the following arguments:

hello <FILENAME> [<USERDATA>.sar]

FILENAME

This parameter is the name of the input file that contains the source string.

USERDATA

This optional parameter is the name of a file that contains letters to be replaced by the

ASCII character X in the output file.

4.3.5.4.1. What the code actually does

The host-side C code performs the following tasks:

1. It prompts the user to supply a file name and an optional USERDATA file.

2. It sends the string in the file, converted if necessary to standard output.

The HSM-side code awaits jobs from the host and performs the following:

1. It transforms the contents of the input file, capitalizing all input and replacing any

characters that appear in the optional USERDATA file with an ASCII character X.

2. It sends the result as output.

4.3.6. A3A8 example

This example code demonstrates how to write an SEE machine in C code and how to use it

from a C program on the host.

The A3A8 example is not intended to be the basis for any real world

applications. The algorithm used, known as ACOMP128, has been shown

to be insecure and is not appropriate for production use. It is used here

only to demonstrate the implementation of an algorithm in an SEE

application, not to endorse it in any way.

This example does not support debugging when the SEE debug level is

set to Generate Authorization Key.

The SEE machine is used to process data with the A3/A8 algorithm in conjunction with a

Triple-DES key as follows:

1. Data comes in the form of a sequence of 16-byte input values.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 47/125

2. These values are split into two 8-byte halves that are each Triple-DES ECB decrypted

with the master key and reassembled to give a 16-byte key.

3. Then a 16-byte random value is generated and, along with the 16-byte key, is fed into

the A3/A8 algorithm to produce a 12-byte output value.

4. The output from the HSM consists of a sequence of 28-byte blocks comprising the

random value and the output value.

There is also an example of the host-side code written in Java, supplied

in the nCipherKM-SEE-Examples.jar found in opt/nfast/java/examples

(Linux) or %NFAST_HOME%\java\examples (Windows).

4.3.6.1. Signing, packing, and loading the SEE machine

To sign, pack, and load the SEE machine:

1. Generate a key with which to sign the SEE machine:

generatekey -m 1 seeinteg

2. Complete the prompts as follows:

recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
plainname: Key name? [] > a3a8machine
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application seeinteg
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 plainname Key name a3a8machine
 nvram Blob in NVRAM (needs ACS) no

Loading `dev-ocs':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `dev-ocs' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: <path-to-key>

<path-to-key> is /opt/nfast/kmdata/local/key_seeinteg_a3a8machine (Linux) or

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 48/125

C:\ProgramData\nCipher\Key Management Data\local\key_seeinteg_a3a8machine

(Windows).

3. Change to the directory by running the command:

For nShield Solo

Linux

cd ~/buildSoloMod/csee/a3a8/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\a3a8\module

For nShield Solo XC

Linux

cd ~/buildXCMod/csee/a3a8/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\a3a8\module

4. Use the tct2 command line utility to convert the file into a SAR file.

$ generatekey -m 1 seeinteg
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
plainname: Key name? [] > a3a8machine
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application seeinteg
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 plainname Key name a3a8machine
 nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 49/125

Path to key: /opt/nfast/kmdata/local/key_seeinteg_a3a8machine

5. Change to the directory by running the command:

For nShield Solo

Convert the a3a8mach.sxf file into a SAR file.

tct2 -m 1 --sign-and-pack --is-machine -i a3a8mach.sxf --machine-type=PowerPCSXF -o a3a8mach.sar -k
a3a8machine

Output:

Signing machine as `PowerPCSXF'.

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

For nShield Solo XC

Convert the a3a8mach.elf file into a SAR file.

tct2 -m 1 --sign-and-pack --is-machine -i a3a8mach.elf --machine-type=PowerPCELF -o a3a8mach.sar -k
a3a8machine

Output:

Signing machine as `PowerPCELF'.

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

6. Load the SEE machine into the HSM by running the command:

loadmache -m 1 a3a8mach.sar

This example describes how to load the SEE machine by running the

loadmache command-line utility. In a production environment, you can

choose to configure the load_seemachine section of the host or client

configuration file so that an SEE machine is loaded automatically. See

Automatically loading an SEE machine

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 50/125

4.3.6.2. Creating and signing userdata

To create and sign the userdata file:

1. Change to the host-side code directory by running the command:

Linux

$ cd ~/buildhost/csee/a3a8/hostside

Windows

cd C:\Users\<USER-NAME>\Documents\hostside\csee\a3a8\hostside

2. Generate a key with which to sign a dummy userdata file for the example by running

the command:

generatekey -m 1 seeinteg

3. Complete the prompts as follows:

recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
plainname: Key name? [] > a3a8userdata
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application seeinteg
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 plainname Key name a3a8userdata
 nvram Blob in NVRAM (needs ACS) no

Loading `dev-ocs':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `dev-ocs' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: <path-to-key>

<path-to-key> is /opt/nfast/kmdata/local/key_seeinteg_a3a8userdata (Linux) or

C:\ProgramData\nCipher\Key Management Data\local\key_seeinteg_a3a8userdata

(Windows).

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 51/125

4. Create a dummy userdata file. Because the A3/A8 algorithm does not use the

initialization data, the dummy userdata need contain only one arbitrary character to

use as userdata.

5. Use the tct2 command-line utility to sign and pack a dummy userdata file for the

example:

For nShield Solo

Linux

tct2 --sign-and-pack --machine-type=PowerPCSXF --infile a3a8userdata --outfile=a3a8userdata.sar
--machine-key-ident=a3a8machine -k a3a8userdata

Output:

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.[sudo] password for XXX:

Windows

tct2 --sign-and-pack --machine-type=PowerPCSXF --infile=a3a8userdata --outfile=a3a8userdata.sar
--machine-keyident=a3a8machine -k a3a8userdata

Output:

No module specified, using 1
Signing machine as 'PowerPCSXF'.

For nShield Solo XC:

Linux

tct2 --sign-and-pack --machine-type=PowerPCELF --infile a3a8userdata --outfile a3a8userdata.sar
--machine-key-ident=a3a8machine -k a3a8userdata

Output:

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 52/125

Windows

tct2 --sign-and-pack --machine-type=PowerPCELF --infile=a3a8userdata --outfile=a3a8userdata.sar
--machine-keyident=a3a8machine -k a3a8userdata

Output:

No module specified, using 1
Signing machine as 'PowerPCELF'.

 For more information about this command, see tct2

4.3.6.2.1. Running and testing the example

The a3test example application takes the following arguments:

a3test [-m <MODULEID>] <USERDATA>.sar

-m <MODULEID>

This option specifies the ModuleID of the HSM to use.

<USERDATA>.sar

This parameter specifies a userdata file (packed as a SAR) to use.

Thus, you can run the a3test program created in this example with a command of the form:

Linux

./a3test -m 1 a3a8userdata.sar

Windows

a3test -m 1 a3a8userdata.sar

The a3test example then processes data for approximately 20 seconds. If the example

program runs successfully, its final output is of the form:

Getting Sarfile info (400 bytes)....
Creating world: init status was 0 (OK)
Making Master Key:
Get ticket.......
Sending ticket to SEEWorld:
181000 triples, 21 sec
Releasing context
Thank you for watching. The end.

If the output from a3test takes any other form, this indicates an error. In case of an error,

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 53/125

use the enquiry command-line utility to check:

• Whether the correct firmware is installed

• Whether the correct server is running

• Whether the HSM is in the operational state.

4.3.6.3. NVRAM example

The NVRAM example shows the simple use of NVRAM in an SEE machine written in C. It uses

a file in NVRAM as a sort of postage meter. The contents of the file are interpreted as a

little-endian integer that determines how many 'stamps' can be issued. Each time the host

program is invoked, it requests one or more stamps from the machine, and the NVRAM

counter is decreased accordingly.

The NVRAM example is not intended to be the basis for any real world applications. It is

intended only to demonstrate how to write SEE machines in C that access the HSM’s

NVRAM.

4.3.6.3.1. Signing, packing, and loading the SEE machine

To sign, pack, and load the SEE machine:

1. Generate a key with which to sign the SEE machine:

generatekey seeinteg

2. Complete the prompts as follows:

module: Module to use? (1, 2) [1] >
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA) [RSA] >
size: Key size? (bits, minimum 1024) [1024] >
OPTIONAL: pubexp: Public exponent for RSA key (in hex)? []
>
plainname: Key name? [] > nvrammachine
key generation parameters:
 operation Operation to perform generate
 application Application seeinteg
 module Module to use 1
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 1024
 pubexp Public exponent for RSA key (in hex)
 plainname Key name nvrammachine
Key successfully generated.
Path to key: <path-to-key>

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 54/125

<path-to-key> is /opt/nfast/kmdata/local/key_seeinteg_nvrammachine (Linux) or

%NFAST_KMDATA%\local\key_seeinteg_nvrammachine (Windows).

3. Change to the directory by running the command:

For nShield Solo

Linux

cd ~/buildSoloMod/csee/nvram/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\nvram\module

For nShield Solo XC

Linux

cd ~/buildXCMod/csee/nvram/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\nvram\module

4. Use the tct2 command line utility to convert the file.

For nShield Solo

Convert the nvram.sxf file into a SAR file.

Linux

tct2 --sign-and-pack --is-machine -i nvram.sxf --machine-type=PowerPCSXF -o nvram.sar -k nvrammachine

Windows

tct2 -m 1 --sign-and-pack --is-machine -i nvram.sxf --machine-type=PowerPCSXF -o nvram.sar -k
nvrammachine

Output:

Signing machine as 'PowerPCSXF'.

Loading `ocs-dev':
Module 1: 0 cards of 1 read
Module 1 slot 0: `ocs-dev' #1
Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 55/125

For nShield Solo XC

Convert the nvram.elf file into a SAR file.

Linux

tct2 --sign-and-pack --is-machine -i nvram.elf --machine-type=PowerPCELF -o nvram.sar -k nvrammachine

Windows

tct2 -m 1 --sign-and-pack --is-machine -i nvram.elf --machine-type=PowerPCELF -o nvram.sar -k
nvrammachine

Output:

Signing machine as 'PowerPCELF'.

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

 For more information about this command, see tct2.

5. Load the packed SEE machine into the HSM by running the command:

loadmache nvram.sar

This example describes how to load the SEE machine by running the

loadmache command-line utility. In a production environment, you can

choose to configure the load_seemachine section of the host or client

configuration file so that an SEE machine is loaded automatically. For

information about configuration files, see

https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/

na/module-client-config.html (network-attached HSMs) or

https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/

pcie/hardserver-config-files.html (PCIe and USB HSMs).

4.3.6.3.2. Creating NVRAM and userdata files

You must now use the setup example application to create:

• An NVRAM file

• A userdata file that contains only the exact name of the specified NVRAM file.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 56/125

https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html

1. Change to the host-side application directory by running the command:

Linux

cd ~/buildhost/csee/nvram/hostside

Windows

cd C:\Users\<USER-NAME>\Documents\hostside\csee\nvram\host

2. Create these files by running the setup command with 'root' (Linux) or

Administrator (Windows) privileges:

Linux

./setup nvramfile 100 nvramuserdata

Windows

setup.exe nvramfile 100 nvramuserdata

3. Complete the on-screen instructions:

Please insert the next administrator card and press enter.
Please enter card passphrase:
allocated NVRAM file `nvramfile'.

4.3.6.3.3. setup

The setup example application takes the following arguments:

setup [-k|--key <APPNAME>,<IDENT>] <nvram-filename> <stamp-count> <userdatafile>

-k|--key <APPNAME>,<IDENT>

This option specifies a signing key identified by APPNAME and IDENT. Specifying a

signing key creates an NVRAM file that can only be accessed with authorization from

that key (for example, by signing the userdata with the same key). A signing key is

optional.

<nvram-filename>

This parameter specifies the name of an NVRAM file to create. The name must contain

no more than 11 characters.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 57/125

<tampcount>

This parameter specifies the number of stamps to issue.

<userdatafile>

This parameter specifies the name of the userdata SAR file created when the setup

example application is run.

You can also use the setup example application to delete an existing NVRAM file. To delete

a file, run setup with the --delete option, as follows:

setup --delete <nvram-filename>

In this case, setup deletes the NVRAM file specified by nvram-filename.

4.3.6.3.4. Signing and packing the userdata

Run the Trusted Code Tool (tct2) to sign and pack the created userdata file you created

with the setup example application:

Linux

tct2 -m 1 --pack --infile nvramuserdata --outfile nvramuserdata.sar

Windows

tct2 --pack --infile nvramuserdata --outfile nvramuserdata.sar

If the NVRAM file created by the setup example application is bound to

a key (that is, if you specified the -k|--key option when running setup),

use that same key when signing the userdata file with tct2.

4.3.6.3.5. Running and testing the example

Run the nvram example application as follows:

Linux

./nvram ./nvramuserdata.sar 50

Windows

nvram.exe nvramuserdata.sar 50

Output:

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 58/125

SEEJob: read 1 bytes...
Stamp Request Accepted.
SEEJob: read 1 bytes...
Stamp Request Accepted.
SEEJob: read 1 bytes...
.
.
.

4.3.6.3.6. nvram

The nvram example application takes the following arguments:

nvram <userdatafile>.sar [<iterations>]

<userdatafile>.sar

This parameter specifies the name of the userdata SAR file to use. Normally, this file has

been created by the setup example application (its name specified by that utility’s

userdatafile parameter).

<iterations>

This parameter specifies an integer that is the amount by which the nvram example

application is to decrease its counter (as it issues virtual stamps).

4.3.6.3.7. What the code actually does

The host-side code performs the following tasks in order:

1. It allocates an NVRAM file with an access control list that requires the permission of a

specified key for reading or writing.

2. It requests the name of a file to be loaded as a packed user data block and, optionally,

the number of virtual stamps to request.

The HSM-side code awaits jobs from the host and returns a single byte to indicate whether

or not a stamp has been issued.

4.3.7. Example: RTC

This source code provides an example of an SEE machine written in C that implements a

very simple timestamp service.

Your SEE-Ready HSM must have an onboard real-time clock for this

example to run correctly, and you must have set the clock using the rtc

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 59/125

command-line utility.

The rtc example code is deficient in a number of ways and is not intended to be the basis

for any real world applications. It is intended only to demonstrate some important concepts

in writing SEE machines in C to perform time-stamping.

4.3.7.1. Signing, packing, and loading the SEE machine

To sign, pack, and load the SEE machine:

1. Generate a key with which to sign the SEE machine:

generatekey -m 1 seeinteg

2. Complete the prompts as follows:

recovery: Key recovery? (yes/no) [yes] >
type: Key type? (RSA, DSA, ECDSA, KCDSA) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
plainname: Key name? [] > rtccode
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application seeinteg
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 plainname Key name rtccode
 nvram Blob in NVRAM (needs ACS) no

Loading `dev-ocs':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `dev-ocs' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.
Key successfully generated.
Path to key: <path-to-key>

<path-to-key is /opt/nfast/kmdata/local/key_seeinteg_rtccode (Linux) or

C:\ProgramData\nCipher\Key Management Data\local\key_seeinteg_rtccode

(Windows).

3. Change to the directory by running the command:

For nShield Solo:

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 60/125

Linux

cd ~/buildSoloMod/csee/rtc/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\rtc\module

For nShield Solo XC:

Linux

cd ~/build-XC/csee/rtc/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\rtc\module

4. Use the tct2 command-line utility to convert the file into a SAR file.

For nShield Solo

tct2 -m 1 --sign-and-pack --is-machine -i rtc.sxf --machine-type=PowerPCSXF -o rtc.sar -k rtccode

Output:

Signing machine as `PowerPCSXF'.

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card

Card reading complete.

For nShield Solo XC:

tct2 -m 1 --sign-and-pack --is-machine -i rtc.elf --machine-type=PowerPCELF -o rtc.sar -k rtccode

Output:

Signing machine as `PowerPCELF'.

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 61/125

Card reading complete.

5. Load the packed SEE machine into the HSM by running the command:

loadmache rtc.sar

This example describes how to load the SEE machine by running

the loadmache command-line utility. In a production environment,

you can choose to configure the load_seemachine section of the

host or client configuration file so that an SEE machine is loaded

automatically. For information about configuration files, see

https://nshielddocs.entrust.com/security-world-docs/hsm-user-

guide/na/module-client-config.html (network-attached HSMs) or

https://nshielddocs.entrust.com/security-world-docs/hsm-user-

guide/pcie/hardserver-config-files.html (PCIe and USB HSMs).

4.3.7.1.1. rtc

The rtc example application takes the following arguments:

rtc [-y|--verify <file>] [-a|--userdata <SEEDATA>] <userdatafile> <APPNAME>,<IDENT>

-y|---verify

This option verifies the returned time-stamp for the file named file.

-a|---userdata <SEEDATA>

This option specifies use of the file SEEDATA for SEE userdata.

<userdatafile>

This parameter specifies a userdata file that contains at least one character.

<APPNAME>,<IDENT>

These parameters specify the APPNAME and IDENT of the key for the rtc example

application to use.

4.3.7.1.2. Running the example

1. Enter the host-side application directory by running the command:

Linux

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 62/125

https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html

cd ~/buildhost/csee/rtc/hostside/

Windows

cd C:\Users\<USER-NAME>\Documents\host\csee\rtc\hostside

2. Create the test userdata file to be time-stamped by running the command:

Linux

cp /opt/nfast/c/csd/examples/csee/rtc/host/rtc.c ./mytestuserdata

Windows

copy "C:\Program Files\nCipher\nfast\c\csd\examples\csee\rtc\hostside\rtc.c" mytestuserdata

3. Generate an RSA key for the RTC example to use by running the command and

completing the prompts in the output as follows:

Linux

generatekey simple

Output:

protect: Protected by? (token, module) [token] >
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,HMACRIPEMD160, HMACSHA1,
HMACSHA256, HMACSHA384, HMACSHA512, HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
ident: Key identifier? [] > rtctest
plainname: Key name? [] > rtctest
OPTIONAL: seeintegname: SEE integrity key?
(a3a8machine, nvrammachine, a3a8userdata, hellomachine, rtccode) []
>
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
operation Operation to perform generate
application Application simple$./rtc mytestuserdata simple,rtctest >
mytestuserdata.stamp
Please insert the next operator card and press enter.
Please enter card passphrase:
rtc: timestamp issued.

protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes
type Key type RSA
size Key size 2048
pubexp Public exponent for RSA key (hex)
ident Key identifier rtctest

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 63/125

plainname Key name rtctest
seeintegname SEE integrity key
nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_simple_rtctest

Windows

generatekey -m 1 simple

Output:

protect: Protected by? (token, module) [token] >
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
 HMACRIPEMD160, HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512,
 HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
ident: Key identifier? [] > rtctest
plainname: Key name? [] > rtctest
OPTIONAL: seeintegname: SEE integrity key?
(a3a8machine, a3a8userdata, hellomachine, rtccode) [] >
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application simple
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 ident Key identifier rtctest
 plainname Key name rtctest
 seeintegname SEE integrity key
 nvram Blob in NVRAM (needs ACS) no

Loading `dev-ocs':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `dev-ocs' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: C:\ProgramData\nCipher\Key Management Data\local\key_simple_rtctest

 The rtc example application only supports the use of RSA keys.

4. Run the RTC example by executing the following command:

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 64/125

Linux

./rtc mytestuserdata simple,rtctest > mytestuserdata.stamp

Windows

rtc.exe mytestuserdata simple,rtctest > mytestuserdata.stamp

5. Complete the on-screen instructions:

Please insert the next operator card annvramd press enter.
Please enter card passphrase:
rtc: timestamp issued.

4.3.7.1.3. What the code actually does

The host-side code performs the following tasks in order:

1. It sends a session key to the HSM.

2. When a time-stamped command is returned, it verifies the time-stamp using the

session key.

The HSM-side code performs the following tasks in order:

1. It awaits a job from the host.

2. It time-stamps the contents of the job and signs the result with the session key.

3. It returns the job to the host.

4.3.8. Example: Tickets

This example source code is an API demonstration showing how an SEE machine can be

written in C.

The Tickets example is not intended to be the basis for any real world applications. In

particular, it does not support the loading of keys protected by card sets with the -k option.

It is intended to demonstrate:

• How to write SEE machines in C

• Simple, custom-built marshalling and unmarshalling of jobs

• The use of tickets. See Internals for information about key tickets; also, for information

about the consumption of single ticket, see Loading stored keys.

Windows only

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 65/125

%NFAST_HOME%\c\csd\examples\csee\tickets\

The C code consists of the following parts:

• In the module directory, the source for the SEE machine:

◦ armtickets.c (SEE machine start-up and job-processing threads)

◦ usrjobs.c (job processing code)

• In the host directory, source for the host application:

◦ hosttickets.c (starts the SEE machine, sends jobs and traces debug).

• The common directory contains a simple header file (common.h) for shared data structures

between the HSM and the host code.

Sample makefiles are provided for building the HSM and host-side code (Makefile-host)

and can be found in their respective directories.

4.3.8.1. Signing, packing, and loading the SEE machine

To sign, pack, and load the SEE machine:

1. Change to the module directory by running the command:

For nShield Solo

Linux

cd ~/buildSoloMod/csee/tickets/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\tickets\module

For nShield Solo XC

Linux

cd ~/buildXCMod/csee/tickets/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\tickets\module

2. Use the tct2 command line utility to convert the file into a SAR file.

For nShield Solo

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 66/125

Convert the armtickets.sxf file into a SAR file.

tct2 -m 1 --pack --infile armtickets.sxf --outfile armtickets.sar

For nShield Solo XC

Convert the armtickets.elf file into a SAR file.

tct2 -m 1 --pack --infile armtickets.elf --outfile armtickets.sar

3. Load the SEE machine into the HSM by running the command:

loadmache armtickets.sar

This example describes how to load the SEE machine by running

the loadmache command-line utility. In a production environment,

you can choose to configure the load_seemachine section of the

host or client configuration file so that an SEE machine is loaded

automatically. For information about configuration files, see

https://nshielddocs.entrust.com/security-world-docs/hsm-user-

guide/na/module-client-config.html (network-attached HSMs) or

https://nshielddocs.entrust.com/security-world-docs/hsm-user-

guide/pcie/hardserver-config-files.html (PCIe and USB HSMs).

4. Generate a key for the example to use by running the command and completing the

prompts in the output as follows:

Linux

generatekey simple

Output:

protect: Protected by? (token, module) [token] >
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
HMACRIPEMD160, HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512,
HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
ident: Key identifier? [] > ticketkey
plainname: Key name? [] > ticketkey
OPTIONAL: seeintegname: SEE integrity key?
(a3a8machine, nvrammachine, a3a8userdata, hellomachine, rtccode) []
>
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 67/125

https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html

operation Operation to perform generate
application Application simple
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes
type Key type RSA
size Key size 2048
pubexp Public exponent for RSA key (hex)
ident Key identifier ticketkey
plainname Key name ticketkey
seeintegname SEE integrity key
nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_simple_ticketkey

Windows

generatekey -m 1 simple

Output:

protect: Protected by? (token, module) [token] >
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
 HMACRIPEMD160, HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512,
 HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
ident: Key identifier? [] > ticketkey
plainname: Key name? [] > ticketkey
OPTIONAL: seeintegname: SEE integrity key?
(a3a8machine, a3a8userdata, hellomachine, rtccode) [] >
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application simple
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 ident Key identifier ticketkey
 plainname Key name ticketkey
 seeintegname SEE integrity key
 nvram Blob in NVRAM (needs ACS) no

Loading `dev-ocs':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `dev-ocs' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 68/125

Key successfully generated.
Path to key: C:\ProgramData\nCipher\Key Management Data\local\key_simple_ticketkey

4.3.8.2. hosttickets

The hosttickets example application takes the following arguments:

hosttickets [-f|--file <userdatafile>][-k|--key <APPNAME>,<IDENT>]

-k|--key <APPNAME>,<IDENT>

These options specify a Security World key.

For the public/private key pair, a Security World key can be specified with the -k option.

The specified Security World key must be an RSA key of the type simple that is not tied

to an SEE code-signing key. Otherwise, a fresh RSA key pair is generated automatically.

-f|--file <userdatafile>

These options specify a file for the userdata block.

The option to load a file for the userdata block is included only for

example purposes.

4.3.8.3. Running the example application

1. Change to the host application directory by running the following command:

Linux

cd ~/buildhost/csee/tickets/hostside/

Windows

cd C:\Users\<USER-NAME>\Documents\hostside\csee\tickets\hostside

2. Run the hosttickets example application, specifying the simple key created earlier:

Linux

./hosttickets -k simple,ticketkey

Windows

hosttickets.exe -k simple,ticketkey

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 69/125

3. Complete the on-screen instructions:

Enter string to be encrypted (256 characters maximum): lskjfdljsdlfjsdlk
HostSide> Loading security world key (simple,ticketkey)

Please present the cardset protecting the key:
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

HostSide> Creating World: init status was 0 (OK)
HostSide> Sending ticket for private RSA key to module
HostSide> Generating AES session key and creating blob under public RSA key
HostSide> Sending key blob to module
HostSide> Sending cipher-text to module
HostSide> decrypted cipher text received from SEE machine:
"lskjfdljsdlfjsdlk"
HostSide> Thank you for watching. The end.

4.3.8.4. What the code actually does

The host-side code performs the following tasks in order:

1. It prompts the user for a string.

2. It acquires an RSA key pair, either freshly created or loaded from the Security World

(only HSM protected key pairs are supported).

3. It sends a ticket for the private half of the RSA key to the HSM-side code.

4. It generates a session key (DES3).

5. It encrypts the session key as a blob with the public half of the RSA key.

6. It sends the resulting blob to the HSM-side code.

7. It encrypts the string with the session key.

8. It sends the encrypted string to the HSM-side code.

9. It receives the decrypted string back from the HSM.

The HSM-side code awaits jobs from the host and performs the following tasks in order:

1. It receives and redeems the ticket for the private RSA key.

2. It receives the session key blob and decrypts it with the private RSA key.

3. It receives the encrypted string and decrypts it with the session key.

4. It sends the decrypted string back to the HSM.

4.3.9. Example: Benchmark

This example source code implements a very simple utility that uses an SEE machine

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 70/125

written in C to time stamp requests to benchmark the speed of response to requests. You

can use it for benchmarking during the development of other SEE machines or adapt it as

required.

Your SEE-Ready HSM must have an onboard real-time clock for this

example to run correctly, and you must have set the clock using the rtc

command-line utility

 This utility does not accept encrypted user data.

4.3.9.1. bm-test

The bm-test example application takes the following arguments:

bm-test [-l|--log <LOGFILE>][-a|--userdata <userdatafile>] <APPNAME>,<IDENT>

-l|--log <LOGFILE>

These options specify a file name to which to write time-stamps. If no log file is

specified, no logging occurs.

-a|--userdata <userdatafile>

These options specify a file for an (optional) userdata block.

<APPNAME>,<IDENT>

These parameters specify the APPNAME and IDENT of a key that is to be into the SEE

machine (and that SEE machine thereafter uses for signing purposes).

This utility does not have the --slot or --debug standard options.

4.3.9.2. bm-verify

The bm-verify example application takes the following arguments:

bm-verify <LOGFILE>

The LOGFILE parameter specifies the name of the log file created by the bm-test example

application (specified by that application’s -l|--log option).

4.3.9.3. Packing and loading the SEE machine

To pack and load the SEE machine:

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 71/125

1. Change to the module directory by running the command:

For nShield Solo

Linux

cd ~/buildSoloMod/csee/benchmark/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildSoloMod\csee\benchmark\module

For nShield XC

Linux

cd ~/buildXCMod/csee/benchmark/module

Windows

cd C:\Users\<USER-NAME>\Documents\buildXCMod\csee\benchmark\module

2. Use the tct2 command line utility to convert the file into a SAR file.

For nShield Solo

Convert the bm-machine.sxf file into a SAR file.

tct2 -m 1 --pack --infile bm-machine.sxf --outfile bm-machine.sar

For nShield XC

Convert the bm-machine.elf file into a SAR file.

tct2 -m 1 --pack --infile bm-machine.elf --outfile bm-machine.sar

3. Load the SEE machine into the HSM by running the command:

loadmache bm-machine.sar

This example describes how to load the SEE machine by running

the loadmache command-line utility. In a production environment,

you can choose to configure the load_seemachine section of the

host or client configuration file so that an SEE machine is loaded

automatically. For information about configuration files, see

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 72/125

https://nshielddocs.entrust.com/security-world-docs/hsm-user-

guide/na/module-client-config.html (network-attached HSMs) or

https://nshielddocs.entrust.com/security-world-docs/hsm-user-

guide/pcie/hardserver-config-files.html (PCIe and USB HSMs).

4. Generate a key for the benchmark application to use by running the command and

completing the prompts in the output as follows:

Linux

generatekey simple

Output:

protect: Protected by? (token, module) [token] >
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
HMACRIPEMD160, HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512,
HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
ident: Key identifier? [] > benchmark-test
plainname: Key name? [] > benchmark
OPTIONAL: seeintegname: SEE integrity key?
(a3a8machine, nvrammachine, a3a8userdata, hellomachine, rtccode) []
>
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
operation Operation to perform generate
application Application simple
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes
type Key type RSA
size Key size 2048
pubexp Public exponent for RSA key (hex)
ident Key identifier benchmark-test
plainname Key name benchmark
seeintegname SEE integrity key
nvram Blob in NVRAM (needs ACS) no

Loading `ocs-dev':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `ocs-dev' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_simple_benchmark-test

Windows

generatekey -m 1 simple

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 73/125

https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html

Output:

protect: Protected by? (token, module) [token] >
recovery: Key recovery? (yes/no) [yes] >
type: Key type? (AES, DES2, DES3, DH, DHEx, DSA, EC, ECDH, ECDSA, Ed25519,
 HMACRIPEMD160, HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512,
 HMACTiger, KCDSA, Rijndael, RSA, X25519) [RSA] >
size: Key size? (bits, minimum 1024) [2048] >
OPTIONAL: pubexp: Public exponent for RSA key (hex)? []
>
ident: Key identifier? [] > benchmark-test
plainname: Key name? [] > benchmark-test
OPTIONAL: seeintegname: SEE integrity key?
(a3a8machine, a3a8userdata, hellomachine, rtccode) [] >
nvram: Blob in NVRAM (needs ACS)? (yes/no) [no] >
key generation parameters:
 operation Operation to perform generate
 application Application simple
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type RSA
 size Key size 2048
 pubexp Public exponent for RSA key (hex)
 ident Key identifier benchmark-test
 plainname Key name benchmark-test
 seeintegname SEE integrity key
 nvram Blob in NVRAM (needs ACS) no

Loading `dev-ocs':
 Module 1: 0 cards of 1 read
 Module 1 slot 0: `dev-ocs' #1
 Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: C:\ProgramData\nCipher\Key Management Data\local\key_simple_benchmark-test

4.3.9.4. Running the example application

To use the example change to the host application directory by running the command:

Linux

cd ~/buildhost/csee/benchmark/hostside/

Windows

cd C:\Users\<USER-NAME>\Documents\host\csee\benchmark\hostside

Run the bm-test example application as follows, completing any on-screen instructions in

the output:

Linux

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 74/125

./bm-test -l bmtest.log simple benchmark-test

Windows

bm-test.exe -l bmtest.log simple benchmark-test

Output:

Please insert the next operator card and press enter.
Please enter card passphrase:
1 878 878.00
2 1758 879.00
3 2639 879.67
4 3522 880.50
5 4406 881.20
6 5284 880.67
.
.
.

The application will run indefinitely, the user must terminate the

application manually by using Ctrl-C.

Run the bm-verify example application, specifying the log file, bm-test.log, created in the

previous step by the bm-test application.

Linux

./bm-verify bmtest.log

Windows

bm-verify.exe bmtest.log

Output:

Verified timestamp #1.
Verified timestamp #2.
Verified timestamp #3.
Verified timestamp #4.
Verified timestamp #5.
Verified timestamp #6.

.

.

.

4.3.9.5. What the code actually does

The host program performs the following tasks in order:

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 75/125

1. It tickets a generated key into the SEE machine.

2. The SEE machine uses that key for signing purposes.

3. Each request is concatenated with the current time and then signed.

4. The signature is concatenated with the time and then returned to the host side.

On the host side, two programs are generated:

• bm-test

• bm-verify.

The bm-test command is used to generate pseudo-random values that are sent to the

HSM-side code to be signed. Every second, the total number of completed time-stamp

requests is printed, along with the average number completed each second.

The bm-verify command looks for the file specified as LOGFILE on the host. From this file,

bm-verify extracts the public key and verifies the time-stamp requests until it finds an

invalid request or reaches the end of the file.

4.3.9.6. About the Java example

We supply a Java version of the HelloWorld example. This consists of the source files for

host-side applications that you can run with the example SEE machines written in C (or any

other SEE machines written in any language) in order to understand how simple SEE

machines work.

For information about the C examples for SEElib, see Examples for

SEElib

The Java SEE example files can be found within the nCipherKM-SEE-Examples jar located in

/opt/nfast/java/examples (Linux) or %NFAST_HOME%\java\examples (Windows). A common

directory is also supplied which contains files that are used by more than one of the

examples.

The Java examples have the same options as their equivalent, similarly named C examples.

4.3.9.6.1. Supported versions of Java

The following versions of Java have been tested to work with, and are supported by, your

nShield Security World Software:

• Java7 (or Java 1.7x)

• Java8 (or Java 1.8x)

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 76/125

• Java11

We recommend that you ensure Java is installed before you install the Security World

Software. The Java executable must be on your system path.

If you can do so, please use the latest Java version currently supported by Entrust that is

compatible with your requirements. Java versions before those shown are no longer

supported. If you are maintaining older Java versions for legacy reasons, and need

compatibility with current software, please contact https://www.oracle.com/java/

technologies/javase-jdk11-downloads.html for Java downloads.

4.3.9.6.2. HelloWorld.java

The HelloWorld.java example is not intended to be the basis for any

real world applications. It is intended only to demonstrate host-side use

of an SEE machine by code written in Java.

First, ensure you have already built the file hello.sxf as described in Examples for SEElib

converted this into the file hello.sar and loaded it into the HSM as described in Signing,

packing, and loading the SEE machine.

To build the example:

1. Change to the example directory by running the command:

Linux

cd /opt/nfast/java/examples

Windows

cd %NFAST_HOME%\java\examples

2. Extract the example files by running the command:

Linux

jar xf nCipherKM-SEE-Examples.jar
jar xf ../classes/nCipherKM-jhsee.jar

Windows

jar xf nCipherKM-SEE-Examples.jar
jar xf ..\classes\nCipherKM-jhsee.jar

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 77/125

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html

3. Compile the example using this command:

Linux

javac -cp /opt/nfast/java/classes/nCipherKM.jar com/ncipher/see/hostside/*.java
javac -cp
.:/opt/nfast/java/classes/nCipherKM.jar com/ncipher/see/hostside/examples/helloworld/HelloWorld.java

Windows

javac -cp "%NFAST_HOME%\java\classes\nCipherKM.jar com\ncipher\see\hostside*.java"
javac -cp "%NFAST_HOME%\java\classes\nCipherKM.jar ^
com\ncipher\see\hostside\examples\helloworld\HelloWorld.java"

To run the helloworld example:

1. Ensure you are in the example’s directory by running the command:

Linux

cd /opt/nfast/java/examples

Windows

cd %NFAST_HOME%\java\examples

2. Run the example:

Linux

java -cp .:/opt/nfast/java/classes/nCipherKM.jar
com/ncipher/see/hostside/examples/helloworld/HelloWorld <FILENAME> [<USERDATA>]

Windows

java -cp "%NFAST_HOME%\java\classes\nCipherKM.jar ^
com\ncipher\see\hostside\examples\helloworld\HelloWorld <FILENAME> [<USERDATA>]"

In this example, <FILENAME> is the name of an input file to pass to the SEE machine as an

SEE job, and <USERDATA> the name of an (optional) userdata file. The SEE machine

transforms the input by replacing all lowercase alphabetic characters in <FILENAME> with

their uppercase equivalents and replacing any characters in <FILENAME> that are also found

in <USERDATA> (if supplied) with the character X.

Chapter 4. Example SEE machines

CodeSafe v13.6.5 Developer Guide 78/125

5. Debugging SEE machines
This chapter provides some guidance on debugging an SEE machine.

5.1. Debugging settings and output

To debug an SEE application effectively, you must have:

• Enabled SEE debugging when creating the Security World in which the application is

to run, see https://nshielddocs.entrust.com/security-world-docs/utilities/new-

world.html (dsee and dseeall options).

• Set Cmd_CreateSEEWorld_Args_flags_EnableDebug when creating the SEE World.

If you try to set the Cmd_CreateSEEWorld_Args_flags_EnableDebug

flag in a Security World that does not allow SEE debugging, the

CreateSEEWorld command returns AccessDenied. This also occurs if

you call CreateSEEWorld in a Security World where SEE debugging

is restricted and an appropriate certifier is not present.

5.1.1. Debugging authorization

Access to the SEE trace buffer is controlled by the Security World in which the SEE

machine runs. Every Security World has exactly one of the following properties:

• Restricted SEE debugging

This is the default setting. When SEE debugging is restricted, there is no delegation

key from KNSO for accessing the SEE trace buffer. All Security Worlds created by

software released before the introduction of SEE have restricted SEE debugging. A full

quorum of Administrator Cards is required to access the SEE trace buffer in such

Security Worlds.

• Authorized SEE debugging

In this case, a delegation key from KNSO exists to allow access to the SEE trace buffer. A

subset of a full quorum of the Administrator Cards is required to access the SEE trace

buffer in such Security Worlds. This delegation key must have been created and the

number of cards required to authorize access to the SEE trace buffer must have been

specified when the Security World was created.

• No access-control SEE debugging

Chapter 5. Debugging SEE machines

CodeSafe v13.6.5 Developer Guide 79/125

https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html
https://nshielddocs.entrust.com/security-world-docs/utilities/new-world.html

In this case, no authorization of any kind is required for accessing the SEE trace buffer.

No cards are required to access the SEE trace buffer in such Security Worlds. This

property must have been specified when the Security World was created.

5.1.2. Obtaining debugging output

For SEE machines that require support from a host-side see-*-serv utility, you can run the

see-*-serv utilities with the --trace or --plain-trace option to perform tracing

automatically.

For SEE machines using the SEElib architecture, the TraceSEEWorld() command can be

used to return debugging information. An example of this is provided in the a3a8 host-side

example code. See A3A8 example.

Data written to standard output and standard error on the HSM is written to the SEE

World’s Trace Buffer. The Trace Buffer is a 3000 character circular buffer: if more than

3000 characters are written to it without being retrieved, information is lost on a first-

in/first-out basis. The TraceSEEWorld command retrieves the contents of the buffer so that

the host can analyze or display them.

If the SEE machine crashes, a SEE register dump is printed to the SEE Trace Buffer for the

nShield Solo, but not for the nShield Solo XC.

For example, assume that the HSM code calls the following command:

printf("Hello World!\n");

The string Hello World!\n is pushed into the Trace Buffer. A host-side call to TraceSEEWorld

would then return this string and empty the buffer.

If a SEE World is terminated by the HSM (for instance, if its last remaining thread exits or it

causes a fatal signal to be raised), a diagnostic message is usually sent to the Trace Buffer

to help debug the problem.

5.1.2.1. Example Debug

If an illegal access violation (segmentation fault) occurs, the tail of the Trace Buffer looks

similar to this:

 *** World exits: thread 28 caused CPU exception
DSI exception:
Exception vector 00300h
 r0 =001D9E40h r1 =001D9F38h r2 =00C4E090h r3 =00000008h
 r4 =00000000h r5 =00C00444h r6 =00000000h r7 =001C21B1h

Chapter 5. Debugging SEE machines

CodeSafe v13.6.5 Developer Guide 80/125

 r8 =00C39CB8h r9 =00000019h r10=40000000h r11=00002000h
 r12=00000000h r13=00D08048h r14=00000000h r15=00000000h
 r16=00000000h r17=00000000h r18=00000000h r19=00000000h
 r20=00000000h r21=00000000h r22=00000000h r23=00C40000h
 r24=FFFC5CD0h r25=00C3A750h r26=00C40000h r27=00C40000h
 r28=00000000h r29=00000000h r30=00000000h r31=00D00000h
 XER=20000000h CR =20000000h LR =00C00444h CTR=00C39B9Ch
 PC =00C00448h MSR=0000F030h
 f0 =0000000000000000h f1 =0000000000000000h
 f2 =0000000000000000h f3 =0000000000000000h
 f4 =0000000000000000h f5 =0000000000000000h
 f6 =0000000000000000h f7 =0000000000000000h
 f8 =0000000000000000h f9 =0000000000000000h
 f10 =0000000000000000h f11 =0000000000000000h
 f12 =0000000000000000h f13 =0000000000000000h
 f14 =0000000000000000h f15 =0000000000000000h
 f16 =0000000000000000h f17 =0000000000000000h
 f18 =0000000000000000h f19 =0000000000000000h
 f20 =0000000000000000h f21 =0000000000000000h
 f22 =0000000000000000h f23 =0000000000000000h
 f24 =0000000000000000h f25 =0000000000000000h
 f26 =0000000000000000h f27 =0000000000000000h
 f28 =0000000000000000h f29 =0000000000000000h
 f30 =0000000000000000h f31 =0000000000000000h
 FPSCR=00000000h

The program counter, which is currently at position 00C00448h in the PowerPC-based

compilation shows where this access occurs.

The following excerpt from the PowerPC based map file created at application link time (by

specifying the -map option to the linker) indicates that the problem address is in main.o:

.text 0x00c00000 0x3a0ac
 (.text.stub.text..gnu.linkonce.t.*)
 .text 0x00c00000 0xa5c usermain.o
 0x00c00160 main
 .text 0x00c00a5c 0x544 .\lib-ppc-gcc\seelib.a(nfstrerr.o)
 0x00c00a5c NFast_StrError

To find out which instruction is causing the segmentation fault, calculate the offset into

main.o. The formula is:

program_counter - object_base_address

The calculation is as follows:

00C00448h -
00C00000

0x00448h

Once the location of the problem is located in this way, investigate it as follows:

1. Recompile the source with the -g option and no optimization (if you did not originally

Chapter 5. Debugging SEE machines

CodeSafe v13.6.5 Developer Guide 81/125

compile it with these options).

2. Run an object dump utility on the object files powerpc-codesafe-linux-gnu-objcopy.

The head of the generated object is now similar to the following for PowerPC based

objects:

434: 38 7a 03 34 addi r3,r26,820
438: 38 80 00 08 li r4,8
43c: 4c c6 31 82 crclr 4*cr1+eq
440: 48 00 00 01 bl 440 <main+0x2e0>
444: 38 60 00 08 li r3,8
448: 80 03 00 00 lwz r0,0(r3)
44c: 4b ff fe 74 b 2c0 <main+0x160>
450: 3c 80 00 00 lis r4,0

From this output is it possible to see that the segmentation fault is caused by an illegal

access to the pointer held in R4 (which the register dump showed to be 80000004h, an

obviously invalid user mode memory address). The source shows plainly that the instruction

at offset 0458h in usermain.o is trying to assign to *i, but i has not been allocated. The bug

can now be fixed and the program rebuilt.

5.2. Finding memory leaks with stattree

You can use the stattree command-line utility to find memory leaks. Run the command:

Linux

stattree | grep Mem

Windows

stattree | find "Mem"

For each HSM in the Security World, this command produces output that reports values for

the total memory (MemTotal), the memory currently allocated to the kernel (

MemAllocKernel), and the memory currently allocated to the loaded SEE machine

(MemAllocUser).

If no SEE machine is loaded, the output from this stattree command (if there is only one

HSM) looks similar to the following:

-MemTotal 128921600
-MemAllocKernel 1355776
-MemAllocUser 0

Chapter 5. Debugging SEE machines

CodeSafe v13.6.5 Developer Guide 82/125

If an SEE machine is loaded, the output from this stattree command (if there is only one

HSM) looks similar to the following:

-MemTotal 128921600
-MemAllocKernel 1355776
-MemAllocUser 1032192

You can monitor a loaded SEE machine’s memory usage by either repeatedly running and

checking output from stattree or by writing code to call the nCore statistics APIs directly.

In any case, if any reported memory value appears to being growing continuously over time,

this probably indicates some kind of memory leak.

5.3. Segment addresses for Solo

SEE executables are non-relocatable; that is, they are loaded in memory at the addresses

specified in the image. Ensure that you choose these addresses carefully so that they map

onto usable RAM and do not overlap with memory being used by the kernel. Typically, this

means you must choose an address at the high end of RAM.

Different HSM types have different mappable memory ranges.

• The CodeSafe compiler sets all values for Solo XC and later HSM models.

• You have to set the ranges in the CodeSafe application code if you are developing for

Solo +.

The rest of this section describes guidelines for Solo +.

To determine your HSM type, run the enquiry command-line utility and check the SEE

Machine Type output. You can then determine where the mappable memory range starts

from this table:

SEE Machine Type Start of mappable range

PowerPCSXF 0x00400000

These ranges follow the approximately 4MB of RAM reserved for use by the kernel.

You can use the stattree command-line utility to find the total length of the mappable

range. Run the command:

Linux

stattree | grep MemTotal

Chapter 5. Debugging SEE machines

CodeSafe v13.6.5 Developer Guide 83/125

Windows

stattree | find "MemTotal"

This command produces output that reports values for the total memory (MemTotal) for

each HSM in the Security World.

For Solo +, we recommend the following segment addresses as starting points:

SEE Machine Type PowerPCSXF

text segment start 0xa00000

data segment start 0x00d00000

Arguments to the linker -Ttext 0xa00000 -Tdata 0xd00000

For large SEE machines more space may be needed in the text segment, causing a linker

error of the following form:

powerpc-codesafe-linux-gnu-ld: section .data [00d00000 -> 00d0327f] overlaps section .text [00c00000 -> 00d7bd8b]
powerpc-codesafe-linux-gnu-ld: section .sdata [00d03280 -> 00d035ef] overlaps section .text [00c00000 ->
00d7bd8b]
powerpc-codesafe-linux-gnu-ld: section .sbss [00d035f0 -> 00d036ab] overlaps section .text [00c00000 -> 00d7bd8b]
powerpc-codesafe-linux-gnu-ld: section .bss [00d036b0 -> 00d0854f] overlaps section .text [00c00000 -> 00d7bd8b]

To resolve this example error, you could move the data segment start point upward (for

example, to 0x00e00000) as necessary to prevent the overlap. Alternatively (or additionally),

you could move the text segment start point downward.

5.4. Vulnerability test harness

We supply a test harness called vulnerability.o that can be used for debugging SEE

machines. It supplies a standard set of command-line arguments and environment variables

to the SEE environment, as well as providing the standard stdioe and socket support.

Because the vulnerability.o test harness is insecure, we recommend

that you not link vulnerability.o into a production SEE machine.

5.5. Troubleshooting guide

Chapter 5. Debugging SEE machines

CodeSafe v13.6.5 Developer Guide 84/125

Symptom Possible problems Solution

SEEJob takes a long time then fails

with HardwareFailed

The SEE machine has deadlocked or

entered an infinite loop which

prevents the job from returning and

causes the SEEJob to trigger the

command time-out.

Check the code for possible

deadlocks or infinite loops. Non-

obvious problems can be debugged

by writing progress reports to the

Trace Buffer and calling

TraceSEEWorld after the job returns

HardwareFailed.

CreateSEEWorld fails with

BadMachineImage

No SEE machine is loaded. Load an SEE machine

SEE machine loading fails with

BadMachineImage

The file being loaded is not a

correctly formatted SAR file.

Ensure that the correct SEE

machine file is being loaded. Ensure

that the SEE machine has been

properly processed by the Trusted

Code Tool into a SAR file.

The SEE machine file is corrupted. Rebuild the SEE machine, or revert

to a known good back-up.

The SEE machine has been

compiled or linked with the wrong

options.

SEE machines must be

nonexecutable, uncompressed,

non-relocatable AIFs or SXFs,

packaged as SAR files.

CreateSEEWorld fails with

InvalidCertificate

The machine signing hash on

userdata signatures does not

match any signature hash on the

currently loaded machine.

Ensure the correct SEE machine

with the correct signatures is

loaded.

Ensure the correct user data is

being passed to CreateSEEWorld.

Ensure the user data signatures are

correct.

SEE machine loading fails with

InvalidCertificate.

The SEE machine signatures were

created incorrectly.

SEE machine signatures must be

created with the machine key

specification --is-machine.

Recreate the SEE machine SAR

with correct signatures.

The SEE machine crashes, and

Trace Buffer output shows raised

signal.

Dependent on signal number. Check stdh.h and signal.h for

signal descriptions then check the

code to see how that signal could

be raised.

Chapter 5. Debugging SEE machines

CodeSafe v13.6.5 Developer Guide 85/125

Symptom Possible problems Solution

AccessDenied from CreateSEEWorld. SEE World debugging is not

available in Security World.

Check the Security World’s SEE

debugging policy.

SEE machine is returning

AccessDenied in

SEElib_initComplete.

Check the SEE machine set-up

code to see where it might be

passing AccessDenied to

SEElib_initComplete, and fix the

cause of that, if necessary.

All SEEJobs return with

Status_Cancelled.

SEElib transaction listener is not

running.

If you are using SEElib_Transact

you must call

SEElib_StartTransactListener

before making use of

SEElib_Transact.

NoModuleMemory is returned from the

CreateSEEWorld command.

Segment addresses clash with

kernel pages.

Adjust segment positions away

from kernel RAM; see Segment

addresses for Solo

.

Segment addresses overlap. Adjust segment away from each

other; see Segment addresses for

Solo

.

Segment addresses are not usable

RAM.

Adjust segment positions to usable

RAM; see Segment addresses for

Solo

.

NoModuleMemory is returned when

loading a SEE machine.

Userdata has been specified but is

not expected.

Exclude the userdata.

The previous SEE machine has not

been cleared

Clear the previous SEE machine;

see clearing a SEE machine from

the front panel or clearing a SEE

machine remotely

Error from link: section .data

[hhhhhhhh → hhhhhhhh] overlaps

section .text [hhhhhhhh →
hhhhhhhh]

Segment addresses overlap. Adjust segment away from each

other; see Segment addresses for

Solo

.

Chapter 5. Debugging SEE machines

CodeSafe v13.6.5 Developer Guide 86/125

6. Deploying SEE Machines
This chapter discusses the deployment of SEE machines after their development is

complete. It includes information about Feature Enabling as this applies to SEE.

Deploying a SEE machine involves the following steps:

1. Sign and encrypt the SEE machine. See Signing methods and Encryption.

2. Obtain an export certificate for the SEE machine from Entrust and incorporate the

certificate in the distribution. See Obtaining and using export certificates.

3. Distribute the SEE machine to customers.

6.1. About the Feature Enabling Mechanism (FEM)

Entrust provides a Feature Enabling Mechanism (FEM) that controls the software that any

given HSM can use. This is used to control access to the SetSEEMachine command that

loads the SEE machines.

The SetSEEMachine command can be authorized in either of the following ways:

• The GeneralSEE static feature is set with a bit in the EEPROM. If this bit is set, the

command can load any SEE machine without further certificates or authorization.

• If the GeneralSEE static feature is not applied, the command requires a dynamic

Feature Enabling certificate chain to load a SEE machine.

All CodeSafe development environments have the GeneralSEE static feature. However, to

deploy an already-developed SEE machine, you require the dynamic Feature Enabling

certificate chain.

Customers who require the dynamic certificate chain can load a SEE machine only when

the key used to sign the SEE machine is export approved by Entrust through the provision

of a signing certificate (an ADDER certificate). See Obtaining and using export certificates.

The SEE machine signing (ADDER) certificate authorizes SetSEEMachine on any HSM, but

the dynamic Feature Enabling certificate chain is valid only on the specified HSM.

6.2. Obtaining and using export certificates

You must understand and agree to the conditions for exporting SEE

machines. Contact Entrust for full details of these conditions.

Chapter 6. Deploying SEE Machines

CodeSafe v13.6.5 Developer Guide 87/125

To obtain an export certificate for a SEE machine:

Users with a Restricted SEE, [SEE(R)], enabled Connect will need to run

update world files to pull the ADDER cert onto the Connect file

system to load a SEE machine.

1. Generate a signing key and send the hash to Entrust together with a description of the

SEE machine.

Entrust approves the SEE machine for export and sends you an ADDER certificate to

allow the SEE machine signed by the specified key to run.

2. Sign the SEE machine with the signing key supplied to Entrust and, optionally, encrypt

it.

3. Develop an installation process that places the certificate in the /opt/nfast/femcerts

(Linux systems) or %NFAST_CERTDIR% (Windows) directory.

4. Distribute the signed SEE machine and the certificate to end-users with the

appropriate installation instructions.

6.3. Automatically loading a SEE machine

The figures below outline different methods for loading a SEE machine.

Loading SEE machines for Solo XC:

Chapter 6. Deploying SEE Machines

CodeSafe v13.6.5 Developer Guide 88/125

Loading SEE machines for Solo PCIe:

Chapter 6. Deploying SEE Machines

CodeSafe v13.6.5 Developer Guide 89/125

You can load SEE machines manually by running the loadmache command-line utility or,

optionally, you can load SEE machines that require support from a host-side see-*-serv

utility by specifying the -M option when you run the utility.

However, you can also configure the hardserver to load SEE machines automatically

whenever the HSM is initialized (that is, when the hardserver starts, or restarts, or after the

HSM receives a ClearUnit command).

To configure the hardserver to load a SEE machine automatically, you must edit the

settings in the host systems hardserver configuration file. Entrust provides the loadsee-

setup command-line utility to help you set up, display, and remove settings in the

hardserver configuration file that control the automatic loading of SEE machines.

For a usage description of the loadsee-setup command-line utility, see

Loadsee setup. For more information about the configuration files, see

https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/

na/module-client-config.html (network-attached HSMs) or

https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/

pcie/hardserver-config-files.html (PCIe and USB HSMs)

The loadsee-setup utility configures the hardserver settings that specify:

• The name of the SEE machine file to be automatically loaded

• If appropriate, the name of an accompanying userdata file.

• If appropriate (if userdata is specified), the published-object name for the SEE

machine

• The name of an appropriate post-load program (to perform setup and initialization

tasks for the SEE machine) and any necessary arguments for it (a -m option to specify

an HSM is automatically added)

For SEE machines that require support from a host-side see-*-serv utility, Entrust provides

the postload-bsdlib post-load program, which runs the appropriate host utility, in

restricted mode, while returning control back to the hardserver. The postload-bsdlib

program takes the same arguments as the see-*-serv host utilities (see see-*-serv utilities),

together with a --provision argument that takes one of the following parameters to

specify which utility to run:

• stdoe

• stdioe

• sock

• stdioesock

Chapter 6. Deploying SEE Machines

CodeSafe v13.6.5 Developer Guide 90/125

https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/pcie/hardserver-config-files.html

For SEE machines using the SEElib architecture, it is usually necessary to write a custom

post-load program.

6.3.1. Automatically loading a glibc SEE machine with userdata

To configure the hardserver configuration file to automatically load a glibc SEE machine

and its accompanying userdata file, run a command similar to the following example:

Linux

loadsee-setup -m1 -M /tmp/MySEEMachine.sar -U /tmp/MyUserdata.sar -p MyPublishedObjectName -P glibc -A "--
provision sock -p MyPublishedObjectName"

Windows

loadsee-setup -m1 -M C:\MySEEMachine.sar -U C:\MyUserdata.sar -p MyPublishedObjectName -P glibc -A "--provision
sock -p MyPublishedObjectName"

In this example, MySEEMachine.sar is the SEE Machine (packed as a SAR file),

MyUserdata.sar is the userdata (packed as a SAR file), MyPublishedObjectName is the name

to use for publishing the KeyID of the started SEE machine, and the glibc parameter

specifies use of the postload-bsdlib post-load program.

The sock parameter in this example tells postload-bsdlib to run the see-sock-serv host

utility. If a different host utility were necessary, you would specify the appropriate

parameter for the appropriate utility (stdoe, stdioe, or stdioesock).

When running a command of this form, ensure that the parameters

specifying name of the published object (in this example,

MyPublishedObjectName) are the same for both the loadsee-setup utility

and the postload-bsdlib program.

For more information about the loadsee-setup command-line utility, see Loadsee setup.

6.3.2. Automatically loading a glibc SEE machine without userdata

To configure the hardserver configuration file to automatically load a glibc SEE machine

without its accompanying userdata file (which instead is to be loaded by the host utility),

run a command similar to the following example:

Linux

loadsee-setup -m1 -M /tmp/MySEEMachine.sar -P glibc -A "--provision sock --userdata-sar /opt/nfast/nc-

Chapter 6. Deploying SEE Machines

CodeSafe v13.6.5 Developer Guide 91/125

seemachines/MyUserdata.sar"

Windows

loadsee-setup -m1 -M C:\MySEEMachine.sar -P glibc -A "--provision sock --userdata-sar C:\MyUserdata.sar"

In this example, MySEEMachine.sar is the SEE Machine (packed as a SAR file) and the glibc

parameter specifies use of the postload-bsdlib post-load program.

The sock parameter in this example tells postload-bsdlib to run the see-sock-serv host

utility. If a different host utility were necessary, you would specify the appropriate

parameter for the appropriate utility (stdoe, stdioe, or stdioesock).

The MyUserdata.sar parameter in this example, passed to the postload-bsdlib program,

specifies a userdata file (packed as a SAR) that is to be loaded by the host utility.

To specify userdata that has not been packed as a SAR file, use the

--userdata-raw option instead of --userdata-sar.

To turn on SEE debugging, pass one of the options --trace or --plain

-trace as an argument for the post-load program. See also Debugging

SEE machines.

 The host utility will be run in restricted mode, using the -r option.

6.4. Configuring the nShield Connect to use CodeSafe
Direct

The CodeSafe client can be any OS platform (including mainframe, Non-Stop or embedded

device). The use of CodeSafe Direct eliminates proxy devices, complexity and points of

failure.

Chapter 6. Deploying SEE Machines

CodeSafe v13.6.5 Developer Guide 92/125

The nShield Connect can be configured to receive direct socket connections from the SEE

machine via see-sock-serv, removing the need for a client machine. You do this by

specifying postload_prog and postload_args in the load_seemachine section of the nShield

Connect hardserver configuration file, located in NFAST_KMDATA/hsm-<ESN>, where <ESN> is

the Electronic Serial Number of the HSM. (For more information about this section of the

configuration file, see load_seemachine.

CodeSafe Direct is supported on glibc-based SEE machines only: the

functionality is not available on SEElib-based machines.

The configuration file can be managed in two ways: via the front panel of the nShield

Connect (see Configuring a SEE machine using the front panel), and by using the remote

configuration functions to push a config.new file, containing the postload_prog and

postload_args settings, to the HSM.

For more information, see https://nshielddocs.entrust.com/security-

world-docs/hsm-user-guide/na/module-client-config.html.

6.5. Configuring a SEE machine using the front panel

To use see-sock-serv directly, you must create a glibc SEE machine.

Ensure that the SEE machine for the application is in the /opt/nfast/custom-seemachines

Chapter 6. Deploying SEE Machines

CodeSafe v13.6.5 Developer Guide 93/125

hsm-user-guide:na/module-client-config.pdf#load-see
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html
https://nshielddocs.entrust.com/security-world-docs/hsm-user-guide/na/module-client-config.html

(Linux) or %NFAST_HOME%\custom-seemachines (Windows) directory on the remote file

system.

If a SEE machine has previously been loaded on a network-attached HSM with a front

panel, such as an nShield Connect, clear the current SEE machine from memory in one of

the following ways:

• Press the Clear button on the front of the HSM.

• Log in to a host machine as a user in the nfast group and run the following command

(m1 is the Security World’s module number for the HSM whose front panel you used in

the previous steps):

sudo /opt/nfast/bin/nopclearfail -c -w -m1

6.5.1. Configuring a glibc SEE machine

Select the CodeSafe menu option, and enter the following information when prompted:

1. The name of the SEE machine file.

2. The name of the userdata file.

For CodeSafe Direct, the userdata file must be packed as a SAR

file.

3. The type of custom SEE machine you are using (BSDlib sockserv). worldid_pubname,

postload_prog, and postload_args will be passed to load_seemachine. For detailed

descriptions of the options in this section, see load_seemachine.

6.5.2. Configuring a SEElib SEE machine

Select the CodeSafe menu option, and enter the following information when prompted:

1. The name of the SEE machine file.

2. The name of the userdata file, if required.

The userdata file must be packed as a SAR file.

3. The type of custom SEE machine you are using (SEElib).

4. The ID of the SEE World to create.

6.6. Remotely loading and updating SEE machines

Chapter 6. Deploying SEE Machines

CodeSafe v13.6.5 Developer Guide 94/125

hsm-user-guide:na/module-client-config.pdf#load-see

The SEE remote push facility allows the remote deployment of CodeSafe SEE machines to

an nShield Connect, negating the need to physically visit the HSM to load or update the

SEE machine. This is achieved by editing the configuration file on the RFS for a specific

nShield Connect to specify the new SEE machine, then setting a configuration flag in the

config file to true.

Before configuring an HSM to autonomously run a SEE machine and accept updates using

the RFS, that HSM must first be set up to accept remotely-pushed configurations. Refer to

https://nshielddocs.entrust.com/security-world-docs/remote-admin/intro.html for more

information.

For more information about configuring log file storage options, see Configuring log file

storage.

Both SEElib and BSDlib sockserv SEE machines are supported on the nShield Connect.

To configure an nShield Connect to autonomously run a SEE machine and accept updates

using the RFS:

1. Place the SEE machine in the following location:

◦ Linux: /opt/nfast/custom-seemachines

◦ Windows:C:\Program Files\nCipher\nfast\custom-seemachines

2. Copy the existing config file to a new file called config.new.

3. In the load_seemachine section of the config.new file for the remote HSM, add or

amend the following settings:

module=1
pull_rfs=yes
machine_file=mymachinename.sar
userdata=myuserdata.sar
worldid_pubname=publ_name

These settings specify the type, name and user data of the SEE

machine you wish to load. For more information about each setting,

see load_seemachine.

For CodeSafe Direct, the userdata file must be packed as a SAR

file.

The remote HSM will load the new SEE machine in place of any

existing SEE machine. If no machine_file value is set, then pushing

the config file will remove any existing machines on the HSM.

Chapter 6. Deploying SEE Machines

CodeSafe v13.6.5 Developer Guide 95/125

https://nshielddocs.entrust.com/security-world-docs/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/remote-admin/intro.html
https://nshielddocs.entrust.com/security-world-docs/remote-admin/intro.html
hsm-user-guide:na/config-na.pdf#ConfigureLogStorage
hsm-user-guide:na/config-na.pdf#ConfigureLogStorage
hsm-user-guide:na/module-client-config.pdf#load-see

4. In the sys_log section of the config.new file for the remote HSM, add or amend the

following settings:

[sys_log]
behaviour=push
push_interval=1

This allows the HSM to push its hardserver.log to the RFS every

minute (push_interval=1). This change is recommended for

troubleshooting and verification purposes. The default is 60

(minutes).

These settings control how and where log messages are written.

Using the example above, messages will be written to the

system.log and hardserver.log files of the HSM, which are

accessible using the remote file system. You may wish to revise the

push_interval to a higher value once the nShield Connect has

successfully loaded the new SEE machine.

5. Run https://nshielddocs.entrust.com/security-world-docs/utilities/nopclearfail.html to

clear the module.

6. Run https://nshielddocs.entrust.com/security-world-docs/utilities/enquiry.html to

check that the module is ready.

7. From the location of the HSM config file, run https://nshielddocs.entrust.com/security-

world-docs/utilities/cfg-pushnethsm.html to push the new config file to the HSM:

cfg-pushnethsm --address=module_IP_address config.new

Location:

◦ Linux: /opt/nfast/kmdata/hsm-####-####-###/config

◦ Windows: C:\ProgramData\nCipher\Key Management Data\hsm-####-####-

###\config

8. Run nopclearfail -c -w.

9. If you are loading a new or different SEE machine, search the HSM’s hardserver log for

the string hsc_loadseemachine to check whether the SEE machine loaded or whether it

reported an error.

10. Verify the SEE machine has loaded by running https://nshielddocs.entrust.com/

security-world-docs/utilities/stattree.html:

stattree PerModule 1 ModuleEnvStats

Chapter 6. Deploying SEE Machines

CodeSafe v13.6.5 Developer Guide 96/125

https://nshielddocs.entrust.com/security-world-docs/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/utilities/nopclearfail.html
https://nshielddocs.entrust.com/security-world-docs/utilities/enquiry.html
https://nshielddocs.entrust.com/security-world-docs/utilities/enquiry.html
https://nshielddocs.entrust.com/security-world-docs/utilities/enquiry.html
https://nshielddocs.entrust.com/security-world-docs/utilities/enquiry.html
https://nshielddocs.entrust.com/security-world-docs/utilities/enquiry.html
https://nshielddocs.entrust.com/security-world-docs/utilities/enquiry.html
https://nshielddocs.entrust.com/security-world-docs/utilities/enquiry.html
https://nshielddocs.entrust.com/security-world-docs/utilities/cfg-pushnethsm.html
https://nshielddocs.entrust.com/security-world-docs/utilities/cfg-pushnethsm.html
https://nshielddocs.entrust.com/security-world-docs/utilities/cfg-pushnethsm.html
https://nshielddocs.entrust.com/security-world-docs/utilities/cfg-pushnethsm.html
https://nshielddocs.entrust.com/security-world-docs/utilities/cfg-pushnethsm.html
https://nshielddocs.entrust.com/security-world-docs/utilities/cfg-pushnethsm.html
https://nshielddocs.entrust.com/security-world-docs/utilities/cfg-pushnethsm.html
https://nshielddocs.entrust.com/security-world-docs/utilities/cfg-pushnethsm.html
https://nshielddocs.entrust.com/security-world-docs/utilities/stattree.html
https://nshielddocs.entrust.com/security-world-docs/utilities/stattree.html
https://nshielddocs.entrust.com/security-world-docs/utilities/stattree.html
https://nshielddocs.entrust.com/security-world-docs/utilities/stattree.html
https://nshielddocs.entrust.com/security-world-docs/utilities/stattree.html
https://nshielddocs.entrust.com/security-world-docs/utilities/stattree.html
https://nshielddocs.entrust.com/security-world-docs/utilities/stattree.html

A non-zero MemAllocUser value indicates that the SEE machine is loaded.

You can do this on any working client, including the RFS if it is also

a client, of the nShield Connect. On "XC" HSMs, this requires a

firmware version of 12.50.2 or greater.

The HSM pushes the config file back to the RFS with changes:

• The pull_rfs flag is set to no, because the SEE machine is now loaded.

• The machine_file and userdata values are now set to the paths to their respective

locations in the embedded OS of the HSM.

To load a new SEE machine to multiple nShield Connects, we recommend scheduling down

time for each HSM, upgrading them on a per HSM basis. Each nShield Connect

configuration file is specific to an individual HSM and each configuration file should be

updated separately to load the new SEE machine.

Chapter 6. Deploying SEE Machines

CodeSafe v13.6.5 Developer Guide 97/125

7. Utilities
Entrust supplies the following SEE-specific nShield command-line utilities:

• elftool.

• loadmache.

• loadsee-setup.

• hsc_loadseemachine

• The see-*-serv host-side utilities:

◦ see-sock-serv.

◦ see-stdoe-serv.

◦ see-stdioe-serv.

◦ see-stdioesock-serv.

• seessl-migrate.py.

• tct2 (the Trusted Code Tool)

This appendix also describes the following general nShield command-line utilities:

• nfkmverify

For a list of all supplied nShield utilities, see https://nshielddocs.entrust.com/security-

world-docs/utilities/summary.html.

7.1. cpioc

The cpioc command-line utility takes a collection of files and packs them up into a userdata

archive file that the SEE machine can use.

7.1.1. Usage

cpioc userdata.cpio <MyFile1> <MyFile2> <MyFile3> <[...]>

In this command, <MyFile1>, <MyFile2>, and <MyFile3> represent the files being packed into

the userdata.cpio file that is generated by the command. You can specify as many files as

appropriate.

You can also specify one or more directories; the command automatically packs their

contents (including any subdirectories) into the generated userdata.cpio file.

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 98/125

https://nshielddocs.entrust.com/security-world-docs/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/utilities/summary.html
https://nshielddocs.entrust.com/security-world-docs/utilities/summary.html

7.2. elftool

The elftool command-line utility lets you convert ELF format executables into a format

suitable for loading as an SEE machine.

7.2.1. Usage

elftool [<options>] <infile> [<outfile>]

This utility has the following options:

-d|--dump-fields

These options dumps (display) all fields in the input file infile as they are read.

-q|--quiet

These options suppresses informative messages.

--single-section

This option checks that exactly one of each section type is present in the input file

infile. If more than one section of a type is present, an error is displayed.

--aif

This option generates an output file outfile in nonexecutable AIF output (ARM only,

deprecated).

--bin

This option generates an output file outfile in raw binary format.

--sxf

This option generates an output file outfile in nShield SEE Executable Format (SXF).

-n|--no-output

These options check the input file infile without generating any output.

To view the loadable sections of an ELF file, use the following command:

elftool --dump-fields <infile>

This command displays details of the sections of the file under one of the following

categories:

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 99/125

Read Only

This category includes program code and constant data (either Read or Read+Execute

permissions).

Read/Write

This category includes non-constant data initialized to particular values (Read+Write

permissions).

Zero Init

This category includes non-constant data initialized to zero.

To generate an AIF or SXF format output file correctly, the ELF input file must have the

following characteristics:

• The address range for one category of data (for example, Read Only) must not overlap

with the address range for another (for example, Read/Write).

• All Zero Init data must come after all Read/Write data in memory (that is, Zero Init

data must occupy a higher memory address).

The default options for most linkers ensure that ELF files meet these requirements.

To convert a ELF file into SXF, a format specifically for SEE machines, use the following

command:

elftool --sxf <infile> <outfile>

SXF format files can be loaded on all existing SEE-enabled HSMs. This is the preferred

format.

To convert a ELF file into binary format, use the following command:

elftool --bin <infile> <outfile>

The output file consists of the Read Only data immediately followed by the Read/Write

data, without a header. This may be useful in applications other than SEE Machine images.

7.3. loadmache

The loadmache command-line utility supplied with the Secure Execution Engine (SEE) loads

an SEE machine into an SEE-enabled HSM. The hardserver can automatically use this utility

to load an SEE machines.

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 100/125

To use this command, you must be logged in to the host computer as a user in the group

nfast (Linux) or as a user who is permitted to create privileged connections (Windows).

 SEE machines that require support from a host-side see-*-serv utility

If your SEE machine requires support from a host-side see-*-serv

utility, you must run one of those utilities as appropriate to serve the

SEE machine before its networking or stdioe provisions can work.

7.3.1. Usage

loadmache [-m|--module=<MODULE>] [-s|--slot=<SLOT>] [-U|--unencrypted] [-e|--encryptionkey=<IDENT>] [-a|--
sighash=<HASH>] [-n|--noprompt] <machine-filename>

In this command, the machine-filename parameter specifies the path of the SEE machine.

If machine-filename is not specified, loadmache tries to select a machine from the location

specified by the `NFAST_SEE_MACHINEIMAGE_`* environment variables. See

https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html

for more information about environment variables.

7.3.1.1. HSM options

-m|--module=<MODULE>

These options specify the hardware security module to use.

-s|--slot=<SLOT>

These options specify the slot from which to load cards.

7.3.1.2. SEE machine loading options

-a|--sighash=<HASH>

These options specify that the SEE machine is to be signed with a key whose hash is

HASH.

-n|--noprompt

These options specify that you are never prompted for missing smart cards.

-U|--unencrypted

These options specify that the SEE machine is to be unencrypted. This is the default. If

set, these options override any previously specified `NFAST_SEE_MACHINEENCKEY_`*

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 101/125

https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html

variable. See https://nshielddocs.entrust.com/security-world-docs/secworld-

admin/env-variables.html for more information about environment variables.

-e|--encryptionkey=<IDENT>

These options specify that the SEE machine is to be encrypted with the key identified

by IDENT. If set, these options override the -U|--unencrypted options.

If neither the -e|--encryptionkey nor the -U|--unencrypted options are

specified, a decryption key is used only if the name of a suitable one is

found in the location specified by the

NFAST_SEE_MACHINEENCKEY_DEFAULT environment variable. See

https://nshielddocs.entrust.com/security-world-docs/secworld-admin/

env-variables.html for more information about environment variables.

7.4. loadsee-setup

The loadsee-setup command-line utility helps you set up, display, or remove settings in the

hardserver configuration file that control the automatic loading of SEE machines.

You can use loadsee-setup for one of three types of action by specifying the appropriate

option:

• Specifying the --setup option selects the setup action, used to add a new

configuration or replace an existing configuration

• Specifying the --remove option selects the remove action, used to remove an existing

configuration (without replacing it)

• Specifying the --display option selects the display action, used to display the

configuration of one or all HSMs

7.4.1. Usage

loadsee-setup -s|--setup -m <MODULE>
loadsee-setup -r|--remove -m <MODULE>
loadsee-setup -d|--display [-m <MODULE>]

7.4.1.1. Action selection

-s|--setup

This option selects the setup action, enabling you to set up the hardware configuration

file for the HSM specified by -m|--module=<MODULE> to provide automatic loading for the

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 102/125

https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html

SEE machine specified by -M|--machine=<MACHINE>.sar.

You must always specify the -m|--module=<MODULE> and -M|

--machine=<MACHINE>.sar options when using the --setup option. See

the comments in the hardserver configuration file for information about

the effects of specifying or omitting other options.

-r|--remove

This option selects the remove action, enabling you to remove settings that control

automatic SEE machine loading from the hardware configuration file for the HSM

specified by -m|--module=<MODULE>

-d|--display

This option selects the display action, enabling you to display the current configuration

of automatic SEE machine loading for the HSM specified by -m|--module=<MODULE> or, if

no HSM is specified, all HSMs in the Security World.

7.4.1.2. Setup options

-M|--machine=<MACHINE>.sar

This option specifies the SEE machine file (packed as a SAR). You must supply a value

for this option when using setup mode.

-U|--userdata=<USERDATA>.sar

This option specifies the name of the userdata file (packed as a SAR) to be passed to

SEE machine.

-k|--key=<IDENT>

This option identifies the seeconf key protecting the SEE machine. You must supply this

option is the SEE machine is encrypted. Only HSM-protected keys are supported.

-S|--sighash=<HASH>

This option identifies the hash of the key that the SEE machine is signed with. You only

need to supply this option if the SEE machine is encrypted and you are using a dynamic

SEE feature. This option is not required if the SEE machine is not encrypted or if you

have the GeneralSEE static feature.

-p|--published-object=<NAME>

This option specifies the PublishedObject name to use for publishing the KeyID of the

started SEE machine.

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 103/125

-P|--postload-prog=<PROGRAM>

This option specifies the post-load program to be run after the SEE machine is loaded.

In most cases, SEE machines using the bsdlib/glibc architecture

should supply the value bsdlib/glibc to specify use of the provided

postload-bsdlib program.

-A|--postload-args="<ARGUMENTS>"

This option specifies an argument string to pass to the post-load program specified by

the --postload-prog option. Supply the individual arguments within the double

quotation marks, each argument separated from the next by a single space.

7.4.1.3. General options

-m|--module=<MODULE>

This option specifies the HSM with the hardware configuration file that is to be acted

upon by the command. You must supply a value for this option in either setup or

remove mode.

-c|--configfile=<FILENAME>

This option specifies name of (or path to) the hardserver configuration file to be acted

upon by the command. The default is /opt/nfast/kmdata/config/config (Linux) or

%NFAST_KMDATA%\config\config (Windows).

-f|--force

Setting this option allows the command to make configuration changes without

prompting you.

--no-reset

This option prevents resetting HSMs with changed configurations.

7.4.2. Output

7.4.2.1. loadsee-setup --setup

This section provides an example of loadsee-setup used in --setup mode.

When --setup mode is specified, the only other required options are -m|--module=<MODULE>

and -M|--machine=<MACHINE>.sar. However, if you supply the -A|--postload

-args="<ARGUMENTS>" option, you must also supply the -P|--postload-prog=<PROGRAM>

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 104/125

option.

To set up a hardware configuration file to provide automatic loading for an SEE machine,

run a command similar to the following Solo XC example:

loadsee-setup --setup -m1 --machine /tmp/test.sar --postload-prog=glibc --postload-args="--provision stdoe
--userdata-sar /tmp/userdata.sar --trace"

If automatic SEE machine loading has already been configured for the specified HSM,

loadsee-setup warns you before it is overwritten:

Module #1 new SEE configuration saved, new configuration follows:
Module #1:
 Machine file: /tmp/test-helloworld.sar
 Userdata file:
 WorldID published object:
 Postload helper: glibc
 Postload args: --provision stdoe --userdata-sar /tmp/test.cpio.sar
--trace
Clear modules now to reload new configuration? (yes/no): yes

You can use the -f|--force option to bypass this warning and overwrite the existing

configuration.

After setting up the configuration, loadsee-setup resets the affected HSM (unless you

specified the --no-reset option).

7.4.2.2. loadsee-setup --remove

This section provides an example of loadsee-setup used in --remove mode.

When --remove mode is specified, the only other required option is -m|--module=<MODULE>.

This specifies the HSM with the hardserver configuration file that needs the settings for

automatic SEE machine loading removed.

To remove settings for automatic SEE machine loading from an HSM’s hardware

configuration file, run a command similar to the following example:

loadsee-setup --remove -m1

If the HSM specified by -m|--module=<MODULE> does not exist or is not currently configured

to automatic SEE machine loading configured, an error is displayed. Otherwise, the current

configuration is displayed and loadsee-setup prompts you to continue:

Module #1:
 Machine file: /tmp/test-helloworld.sar
 Userdata file:

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 105/125

 WorldID published object:
 Postload helper: glibc
 Postload args: --provision stdoe --userdata-sar /tmp/test.cpio.sar
--trace
Erase this configuration? (yes/no): yes
Module #1 SEE auto-loading configuration removed.
Clear modules now to reload new configuration? (yes/no): yes

You can use the -f|--force option to bypass warnings and remove the existing

configuration without being prompted.

After removing the configuration, loadsee-setup resets any HSM with a configuration that

has changed (unless you specified the --no-reset option). After running loadsee-setup

command in --remove mode, no SEE machines are automatically loaded onto the specified

HSM.

7.4.3. loadsee-setup --display

This section provides an example of loadsee-setup used in --display mode.

You are not required to specify any additional options with --remove mode. You can specify

the -m|--module=<MODULE> option to display the settings for automatic SEE machine loading

in a particular HSM’s hardserver configuration file; without specifying this option, loadsee-

setup displays the settings for automatic SEE machine loading in the hardserver

configuration files for any HSM in the Security World for which these settings exist.

To display settings for automatic SEE machine loading for all HSMs, run a command similar

to the following example:

$ loadsee-setup --display

This command produces output similar to the following:

Module #1:
 Machine file: /tmp/test-helloworld.sar
 Userdata file:
 WorldID published object:
 Postload helper: glibc
 Postload args: --provision stdoe --userdata-sar /tmp/test

7.5. hsc_loadseemachine

The hsc_loadseemachine utility enables you to publish an SEE machine. The utility:

1. Loads an SEE machine into each HSM configured.

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 106/125

2. Publishes a newly created SEE world, if appropriate.

7.5.1. Usage

hsc_loadseemachine [<options>]

7.5.1.1. Options

-m|--module

This option specifies the HSM number into which the configuration data must be read.

The default value is 0.

The SEE machine can be loaded only if you specify this option. If you do not specify this

option, the utility examines the configuration file to check the changes that are made to

the load_seemachine section and then reset any HSM that has had its entry modified.

The hardserver loading script then calls hsc_loadseemachine -m MODULE for each HSM

that has been reset.

-c|--configfile=<FILENAME>

This option specifies the name of the configuration file that must be read.

7.6. nfkmverify

The nfkmverify command-line utility verifies key generation certificates. You can use

nfkmverify to confirm how a particular Security World and key are protected. It also returns

some information about the Security World and key.

The nfkmverify utility compares the details in the ACL of the key and those of the card set

that currently protects the key.

A key that has been recovered to a different card set shows a discrepancy for every

respect that the new card set differs from the old one. For example, a key recovered from a

2-of-1 card set to a 1-of-1 card set has a different card-set hash and a different number of

cards, so two discrepancies are reported. The discrepancy is between the card set

mentioned in the ACL of the key and the card set by which the key is currently protected

(that is, the card set mentioned in the key blobs).

A key that has been transferred from another Security World shows

discrepancies and fails to be verified. We recommend that you verify

keys in their original Security World at their time of generation.

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 107/125

If you must replace your Security World or card set, we recommend that you generate new

keys whenever possible. If you must transfer a key, perform key verification immediately

before transferring the key; it is not always possible to verify a key after transferring it to a

new Security World or changing the card set that protects it.

7.6.1. Usage

nfkmverify [-f|--force] [-v|--verbose] [-U|--unverifiable] [-m|--module=<MODULE>] [appname ident [appname ident
[...]]]

7.6.1.1. Help options

-h|--help

This option displays help for nfkmverify.

-V|--version

This option displays the version number for nfkmverify.

-u|--usage

This option displays a brief usage summary for nfkmverify.

7.6.1.2. Program options

-m|--module=<MODULE>

This option performs checks with module MODULE.

-f|--force

This option forces display of an output report that might be wrong.

-U|--unverifiable

This option permits operations to proceed even if the Security World is unverifiable.

If you need the -U|--unverifiable option, there may be some

serious problems with your Security World.

-v|--verbose

This option prints full public keys and generation parameters.

-C|--certificate

This option checks the original ACL for the key using the key generation certificate. This

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 108/125

is the default.

-L|--loaded

These options check the ACL of a loaded key instead of the generation certificate.

-R|--recov

This option checks the ACL of the key loaded from the recovery blob.

--allow-dh-unknown-sg-group

This option allows an operation to proceed even if a Diffie-Hellman key is using an

unrecognized Sophie-Germain group.

7.6.2. Output

Output returned from nfkmverify can take a variety of forms, depending on the parameters

of the given key generation certificate, Security World, and key concerned. Examples of

possible output resulting from several different situations are provided below.

Under normal circumstances, issuing a command of the form:

nfkmverify --verbose --unverifiable myapp o20010621a13h25m02

returns output of the form:

** [Security world] **
 1 Administrator Cards
 (Currently in Module #1 Slot #0: Card #1)
 Cardset recovery ENABLED
 Passphrase recovery disabled
 Strict FIPS 140 level 3 (does not improve security) disabled
 SEE application nonvolatile storage disabled
 real time clock setting disabled
 SEE debugging disabled
 Generating module ESN 0A42-E645-7A75 currently #1 (in same incarnation)
** [Application key myapp o20010621a13h25m02] **
 [Named 'test Thu, 21 Jun 2001 13:25:02 +0100']
 Useable by HOST applications.
 Recovery ENABLED.
 MODULE-ONLY protection
 Type RSAPrivate 1024 bits keygenparams.type= RSAPrivate 2
 .params.rsaprivate.flags= none 0x00000000
 .lenbits= 0x00000400 1024
 .given_e absent
 .nchecks absent

 Generating module ESN 0A42-E645-7A75 currently #1 (in same incarnation)
 nCore hash 23a901f3329aa9e29cd79d3bb7b32d549b725fc3
 public_half.type= RSAPublic 1
 .data.rsapublic.e= 4 bytes
 00010001

 .n= 128 bytes

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 109/125

 8a6ab219 183de558 48c8379e 840895ff 0ba64bae 392848c6 c0aeb7f9 d10b046d
 4a214b70 4878b518 8e599c69 1cd61db0 bab4f852 425c70f5 b9c000e5 4ceda15f
 c062b5dd 01852380 f70275a1 870a6947 68ef59f0 db5d2e84 d6ae8dc1 7542e94d
 adedece8 cb3c9fb6 98fab8af 52c94137 a76ab7dd 38648134 0df55ca8 2f45e8b7

Verification successful, check details above.

Output of the form shown above indicates successful verification of the relevant key

generation certificate.

The following examples indicate forms of output that could be returned if you try to verify

the generation certificate of a key generated in a Security World that was created with an

insufficiently up-to-date version of Security World for nShield.

In such a case, issuing a command of the form:

nfkmverify --verbose myapp spong

returns output of the form:

PROBLEM: no world generation certificates
PROBLEM: application key myapp spong: no key generation signature
 2 issues found, NOT VERIFIED

Adding the --unverifiable option to the same command:

nfkmverify --verbose --unverifiable myapp spong

returns output of the form:

PROBLEM: application key myapp spong: no key generation signature
1 issues found, NOT VERIFIED

Then, also adding the --force option to this same command:

nfkmverify --force --verbose --unverifiable myapp spong

returns output of the form:

PROBLEM: application key myapp spong: no key generation signature
PROBLEMS BUT FORCING POSSIBLY-WRONG OUTPUT
 ** [Security world] **
 UNVERIFIED SECURITY WORLD !
 proceeding anyway as requested
 ** [Application key myapp spong] **
 [Not named]
 Useable by HOST applications.
 Recovery ENABLED.

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 110/125

 MODULE-ONLY protection

 1 issues found, NOT VERIFIED

Chapter 7. Utilities

CodeSafe v13.6.5 Developer Guide 111/125

8. Environment variables
This appendix describes the environmental variables used by Security World Software to

control SEE functionality:

Variable Description

NFAST_SEE_MACHINEENCKEY_DEFAULT This variable is the name of the SEEConf key needed to

decrypt SEE-machine images. Running the command

loadmache --encryptionkey=<IDENT> (or loadmache

--unencrypted) overrides any value set by this variable.

NFAST_SEE_MACHINEENCKEY_<module> This variable is the name of the SEEConf key needed to

decrypt the SEE-machine image targeted for the

specified HSM. It overrides

NFAST_SEE_MACHINEENCKEY_DEFAULT for the specified

HSM. Running the command loadmache

--encryptionkey=<IDENT> (or loadmache --

unencrypted) overrides any value set by this variable.

NFAST_SEE_MACHINEIMAGE_DEFAULT This variable is the path of the SEE machine image to

load on to any HSM for which a specific image is not

defined. Supplying the machine-filename parameter

when running the loadmache command-line utility

overrides this variable. This variable is not affected

when running the loadsee-setup or

hsc_loadseemachine utilities.

NFAST_SEE_MACHINEIMAGE_<module> This variable is the path of the SEE machine image to

load on to the specified HSM. If set, this variable

overrides the use of NFAST_SEE_MACHINEIMAGE_DEFAULT

for the specified HSM. Supplying the machine-

filename parameter when running the loadmache

command-line utility overrides the

NFAST_SEE_MACHINEIMAGE_<module> variable. This

variable is not affected when running the loadsee-

setup or hsc_loadseemachine utilities.

NFAST_SEE_MACHINESIGHASH_DEFAULT This variable is the default key hash of the vendor

signing key (seeinteg) that signs SEE machine images.

This variable is only required if you are using a dynamic

SEE feature with an encrypted SEE machine. Running

the command loadmache --sighash=<HASH> any value

set in this variable.

Chapter 8. Environment variables

CodeSafe v13.6.5 Developer Guide 112/125

Variable Description

NFAST_SEE_MACHINESIGHASH_<module> This variable is the key hash of the vendor signing key

(seeinteg) that signs SEE machine images for the

specified HSM. It overrides

NFAST_SEE_MACHINESIGHASH_DEFAULT for the specified

HSM. This variable is only required if you are using a

dynamic SEE feature with an encrypted SEE machine.

Running the command loadmache --sighash=<HASH>

any value set in this variable.

Windows-only

When the hardserver is running normally as a service, these are System

variables only; not the User Variables. The hardserver checks first for

these variables, but if any given value is not set in the environment, the

hardserver next searches for a string value in the Registry under

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\nFast

Server\Environment.

For information on additional (non-SEE) environment variables used by Security World

Software, see https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-

variables.html.

Chapter 8. Environment variables

CodeSafe v13.6.5 Developer Guide 113/125

https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/secworld-admin/env-variables.html

9. SEElib functions
The file seelib.h contains wrapper functions for the software interrupts.

9.1. SEElib_init

extern void SEElib_init(void);

This function initializes the SEElib library.

It also checks that the SWI interface that was implemented by the nShield core matches

the version that the SEE machine implements.

 This function does not return on error.

9.2. SEElib_RecProcessThreads

int
SEElib_RecProcessThreads(void);

This function returns the recommended number of processing threads on this system.

9.3. SEElib_StartProcessorThreads

struct ProcessThreadCtx; /* User-defined */
typedef struct SEElib_ProcessContext
{
 struct ProcessThreadCtx *uc;

 unsigned char *iobuf;
 int iobuf_maxlen;
}
 SEElib_ProcessContext;

typedef struct ProcessThreadCtx * (*SEEJobInitFn) (SEElib_ProcessContext *pC);
/* Function called during thread initialisation */
typedef int (*SEEJobFn) (SEElib_ProcessContext *pC, M_Word tag, int in_len);
/* Function to process an SEEJob; data is sent in & out via pC->iobuf.
Returns length being returned.
*/
extern int SEElib_StartProcessorThreads(int nthreads, int stacksize, SEEJobInitFn
pfnInit, SEEJobFn pfnProcess);

This function causes the SEE library to start a number of processing threads. Each thread

has its own SEElib_ProcessContext allocated, which remains constant throughout the life

Chapter 9. SEElib functions

CodeSafe v13.6.5 Developer Guide 114/125

of the thread.

A working buffer for a given thread is allocated; the iobuf member points to this buffer and

iobuf_maxlen is set to the size. Data for the SEEJob is passed in and out through this buffer.

For each thread, the supplied SEEJobInitFn is called first, and the ProcessThreadCtx pointer

it returns is stored in the SEElib_ProcessContext structure. This structure is typically some

convenient thread-local storage. The pointer may be NULL if it is not required.

When a job arrives for the given thread, the supplied SEEJobFn is called. It is passed the

SEElib_ProcessContext pointer pC, a tag, and a length (in_len). The SEEJob data is at

pC→iobuf, length in_len. The tag is merely for information. The function should process the

data and leave a reply at pC→iobuf. The return value from the function indicates the

number of bytes to be returned from this buffer.

9.4. SEElib_GetUserDataLen

extern M_Word SEElib_GetUserDataLen (void);

This function gets the length in bytes of the UserData block that was passed in to create

this SEE World. The function returns 0 if the UserData block has been freed with

SEElib_ReleaseUserData().

9.5. SEElib_ReadUserData

extern int SEElib_ReadUserData (M_Word offset, unsigned char *buf, M_Word len);

This function reads selected bytes from the UserData block, starting at offset bytes in and

continuing for len bytes. It returns an M_Status value.

9.6. SEElib_ReleaseUserData

extern void SEElib_ReleaseUserData(void);

This function frees the resources associated with the UserData block. Typically, if an SEE

machine copies the UserData block into some internal format on initialization, it should call

this function on completion to avoid having two copies of the data in memory.

Chapter 9. SEElib functions

CodeSafe v13.6.5 Developer Guide 115/125

9.7. SEElib_InitComplete

extern void SEElib_InitComplete(M_Word status);

This function must be called as soon as the SEE World has been initialized. This call must be

made as soon as the SEE World is ready to accept jobs or has decided that it cannot accept

jobs.

The status value forms the initstatus value in the reply to the CreateSEEWorld nCore API

command.

9.8. SEElib_AwaitJob

extern int SEElib_AwaitJob(M_Word *tag_out, , unsigned char *buf, M_Word *len_io);

This function blocks and waits for the next SEEJob in from the nShield core. On entry, *buf

and *len_io give the base and length of a buffer area to receive the job. On return, *len_io

is set to the length delivered (if the job is received successfully). This buffer is a copy of the

seeargs field that was sent in to the SEEJob command.

The *tag_out value is the tag for this command. It must be returned in the

SEElib_ReturnJob so that the nShield core associates the reply with this command.

The SEElib_AwaitJob function returns an M_Status, which is only likely to be OK or

BufferFull.

If you use SEElib_StartProcessorThreads(), it calls this function

automatically, and you should not call this function yourself.

9.9. SEElib_StartTransactListener

extern void SEElib_StartTransactListener(void);

This function starts the thread that listens for SEElib_Transact calls and dispatches them.

This function must be called before any use is made of SEElib_Transact.

9.10. SEElib_Transact

extern int SEElib_Transact(struct M_Command *cmd, struct M_Reply *buf);

Chapter 9. SEElib functions

CodeSafe v13.6.5 Developer Guide 116/125

This function marshals a command, submits it, waits for the response, and unmarshals it

into a reply structure.

9.11. SEElib_MarshalSendCommand

extern int SEElib_MarshalSendCommand(M_Command *cmd);

This function marshals a command and places it on the input queue for processing by the

nShield core.

The command takes a reference to an M_Command structure, as described in the nCore

CodeSafe API Documentation.

The SEE machine can submit any of the nCore API commands listed in the Basic commands

and Key-Management commands sections of the nCore CodeSafe API Documentation

except:

• RetryFailedModule

• GetWhichModule

• MergeKeyIDs.

If the SEE machine attempts to submit one of these commands, the nShield core returns a

response with the status code NotAvailable.

The SEElib_MarshalSendCommand function returns an M_Status value. This value is OK if the

command was marshalled and transferred to the nShield core correctly.

Do not mix calls to SEE_Transact() and SEElib_MarshalSendCommand()

and SEElib_GetUnmarshalResponse(), because the replies may be

misdirected.

9.12. SEElib_GetUnmarshalResponse

extern int SEElib_GetUnmarshalResponse(M_Reply *buf);

If there is a reply in the input queue for this SEE World, this function returns the first job in

the queue. Otherwise, it blocks and waits for the nShield core to return a job.

On return, M_Reply contains the unmarshalled reply.

The SEElib_GetUnmarshalResponse function returns an M_Status value. This value is OK if the

Chapter 9. SEElib functions

CodeSafe v13.6.5 Developer Guide 117/125

reply was unmarshalled successfully. The return of this value does not necessarily mean

that the command was completed successfully, only that the reply was unmarshalled. You

must also check the M_Status within the reply.

9.13. SEElib_FreeCommand

extern int SEElib_FreeCommand(struct M_Command *cmd);

This function frees a command structure and is equivalent to the generic stub function

NFastApp_FreeCommand (described in the nCore CodeSafe API Documentation).

9.14. SEElib_FreeReply

extern int
SEElib_FreeReply(struct M_Reply *reply);

This function frees a reply structure and is equivalent to the generic stub function

NFastApp_FreeReply (described in the nCore CodeSafe API Documentation).

9.15. SEElib_ReturnJob

extern void SEElib_ReturnJob(M_Word tag, const unsigned char *data, unsigned int len);

This function returns an SEEJob reply to the nShield core so that the core can pass it to the

calling application.

If you use the SEElib_StartProcessorThreads() function, it calls

SEElib_ReturnJob() for you.

The tag field must match the tag supplied in the SEElib_AwaitJob() call that created the

job.

The given data is copied away and forms the seereply field of the SEEJob reply (see the

description of the SEEJob command in the nCore CodeSafe API Documentation).

9.16. SEElib_SubmitCoreJob

extern int SEElib_SubmitCoreJob(const unsigned char *data, unsigned int len);

Chapter 9. SEElib functions

CodeSafe v13.6.5 Developer Guide 118/125

This function puts a job on the input queue for processing by the core. The byte block is

passed in data and len. It should be a full marshalled M_Command with a valid tag at the start.

This function returns an M_Status, which is typically OK or BufferFull (if len is too big).

9.17. SEElib_GetCoreJob

extern int SEElib_GetCoreJob (unsigned char *buf, M_Word *len_io);

This function blocks and waits for a job submitted to the core to be returned. On entry, buf

points to a buffer of length (*len_io) max. On exit, if successful, *len_io is the length of

bytes returned.

This function returns an M_Status, which is typically OK or BufferFull (if len_io is too big).

9.18. SEElib_GetUserDataLen

extern M_Word SEElib_GetUserDataLen (void);

This function gets the length in bytes of the UserData block passed in to create this SEE

World.

If this data has been discarded because SEElib_ReleaseUserData() has been called, this

function returns 0.

9.19. SEElib_Submit

extern int SEElib_Submit(M_Command *cmd, M_Reply *reply, PEVENT ev, SEElib_ContextHandle tctx);

This function submits the command specified in cmd. The transaction listener thread calls

EventSet ev, if ev is non-NULL, when the reply returns for this command. The reply is

unmarshalled into reply and tctx is returned to the caller in SEElib_Query.

Unlike SEElib_SubmitCoreJob this function can be called at the same time as another thread

is blocking in SEElib_Transact.

SEElib_StartTransactListener must have been called before this function is called.

9.20. SEElib_Query

Chapter 9. SEElib functions

CodeSafe v13.6.5 Developer Guide 119/125

extern int SEElib_Query(M_Reply **replyp, SEElib_ContextHandle *tctx_r);

This function is called to receive a reply that is being held by the transaction listener thread.

It is typically called after having been woken from EventWait as a result of the transaction

listener thread posting to the event passed in to SEElib_Submit.

If *replyp is NULL, SEElib_Query accepts any returned reply, and *replyp is changed to

point to that reply. If *replyp is not NULL, the function accepts the reply specified; other

replies are queued internally.

tctx_r may be NULL. If it is not, the tctx used when submitting the reply is stored in

*tctx_r. SEElib_Query can return, in addition to the usual return values,

TransactionNotYetComplete if the reply (or any reply if *replyp was NULL) has not come

back from the core yet.

SEElib_StartTransactListener must have been called before this function is called.

9.21. SEElib_StartSEEJobListener

extern int SEElib_StartSEEJobListener(PEVENT ev);

This function starts the SEEJob listener thread which blocks calling SEElib_AwaitJob, caches

the new job and then sets the event ev if ev is non-NULL.

Use SEElib_QuerySEEJob to receive any SEEJobs that have been cached by this listener

thread, followed by SEElib_ReturnJob to reply to the SEEJob, then followed by

SEElib_ReleaseSEEJob to free the buffer.

It is safe to call this function multiple times. Calls after the first call will have no effect.

9.22. SEElib_QuerySEEJob

extern M_Status SEElib_QuerySEEJob(M_Word *tag_out, unsigned char **buf, M_Word *len);

This function is called to receive a SEEJob that is being held by the SEEJob listener thread. It

is typically called after having been woken from EventWait as a result of the SEEJob listener

thread setting the event passed in to SEElib_StartSEEJobListener.

buf is set to the buffer containing the SEEJob, len is set to the length of the data contained

in buf.

Chapter 9. SEElib functions

CodeSafe v13.6.5 Developer Guide 120/125

This function returns TransactionNotYetComplete if there were no outstanding SEEJobs.

9.23. SEElib_ReleaseSEEJob

extern void SEElib_ReleaseSEEJob(unsigned char **buf);

This function is called to release a buffer which was returned from SEElib_QuerySEEJob. This

function must be called after the buffer specified by buf in a call to SEElib_QuerySEEJob has

been finished with. This function is safe to call even if *buf is NULL. In addition, this

function sets *buf to NULL on completion.

Chapter 9. SEElib functions

CodeSafe v13.6.5 Developer Guide 121/125

10. Differences between glibc and bsdlib
(SoloXC only)
In order to provide CodeSafe developers the ability to write standard POSIX calls and be

able to run in the SEE environments, gcc wrappers are used in Solo XC programs to

override certain standard GNU C library (glibc) functions. Older SEE programs built to run

on Solo+ use the BSD C Library (bsdlib). For example, both CodeSafe and Libc, have a

definition for the function socket:

socket(int __domain, int __type, int __protocol)

At link time, the function call is overridden and resolved to the CodeSafe implementation. A

linker options is used to accomplish that.

-Wl,-wrap=socket

The standard POSIX socket() function can still be used calling real_socket(). The

applicability of the standard (real_*) familiarity of functions is limited in the SEE

environment due to embedded system constraints.

All the wrapped functions were replaced by equivalent ones with the underlying IPC

support to communicate with nShield core and provide the same functionality as in legacy

systems.

List functions that were wrapped and redefined:

• socket()

• bind()

• listen()

• accept()

• connect()

• read()

• write()

• send()

• setsockopt()

• poll()

• select()

Chapter 10. Differences between glibc and bsdlib (SoloXC only)

CodeSafe v13.6.5 Developer Guide 122/125

10.1. glibc Compatibility exceptions

As a consequence of some function redefinitions and the underlying differences, some

standard C functions may not work as expected in CodeSafe.

FILE *fdopen(int fd, const char *mode): associates a stream with an existing file

descriptor, fd. In the case of a socket fd (returned by CodeSafe socket() implementation)

the association result may fail or cause unexpected errors in subsequent calls. Developers

should avoid using fdopen with non-standard Unix file descriptors.

Chapter 10. Differences between glibc and bsdlib (SoloXC only)

CodeSafe v13.6.5 Developer Guide 123/125

11. Allowlist for SEE machines
Classic and GLIBC SEE machines are restricted to a subset of Linux system calls they can

execute.

An SEE machine that attempts to execute a system call that is not allowed will be

immediately terminated by a safeguarding process.

Allowed system calls

1 __NR_exit 2 __NR_fork

3 __NR_read 4 __NR_write

5 __NR_open 6 __NR_close

7 __NR_waitpid 8 __NR_creat

9 __NR_link 10 __NR_unlink

11 __NR_execve 12 __NR_chdir

13 __NR_time 15 __NR_chmod

19 __NR_lseek 21 __NR_mount

22 __NR_umount 24 __NR_getuid

29 __NR_pause 33 __NR_access

37 __NR_kill 38 __NR_rename

39 __NR_mkdir 40 __NR_rmdir

41 __NR_dup 42 __NR_pipe

45 __NR_brk 49 __NR_geteuid

54 __NR_ioctl 60 __NR_umask

63 __NR_dup2 64 __NR_getppid

65 __NR_getpgrp 78 __NR_gettimeofday

83 __NR_symlink 85 __NR_readlink

90 __NR_mmap 91 __NR_munmap

94 __NR_fchmod 99 __NR_statfs

102 __NR_socketcall 106 __NR_stat

107 __NR_lstat 108 __NR_fstat

114 __NR_wait4 119 __NR_sigreturn

Chapter 11. Allowlist for SEE machines

CodeSafe v13.6.5 Developer Guide 124/125

Allowed system calls

120 __NR_clone 125 __NR_mprotect

140 __NR_llseek 141 __NR_getdents

145 __NR_readv 146 __NR_writev

160 __NR_sched_get_priority_min 162 __NR_nanosleep

163 __NR_mremap 172 __NR_rt_sigreturn

173 __NR_rt_sigaction 174 __NR_rt_sigprocmask

175 __NR_rt_sigpending 176 __NR_rt_sigtimedwait

177 __NR_rt_sigqueueinfo 178 __NR_rt_sigsuspend

179 __NR_pread64 181 __NR_chown

182 __NR_getcwd 190 __NR_ugetrlimit

195 __NR_stat64 196 __NR_lstat64

197 __NR_fstat64 202 __NR_getdents64

204 __NR_fcntl64 205 __NR_madvise

207 __NR_gettid 221 __NR_futex

232 __NR_set_tid_address 234 __NR_exit_group

250 __NR_tgkill 252 __NR_statfs64

286 __NR_openat 300 __NR_set_robust_list

326 __NR_socket 327 __NR_bind

328 __NR_connect 329 __NR_listen

330 __NR_accept 331 __NR_getsockname

332 __NR_getpeername 333 __NR_socketpair

334 __NR_send 335 __NR_sendto

336 __NR_recv 337 __NR_recvfrom

338 __NR_shutdown 339 __NR_setsockopt

340 __NR_getsockopt

Chapter 11. Allowlist for SEE machines

CodeSafe v13.6.5 Developer Guide 125/125

	nShield Security World: CodeSafe v13.6.5 Developer Guide
	Table of Contents
	1. Introduction
	1.1. Read this guide if …
	1.2. Security World Software
	1.2.1. Utility help options

	1.3. Requirements
	1.4. Further information
	1.5. Security advisories
	1.6. Contacting Entrust nShield Support

	2. About the Secure Execution Engine SEE
	2.1. Why use the Secure Execution Engine?
	2.1.1. Code integrity
	2.1.2. Code confidentiality
	2.1.3. Data confidentiality
	2.1.4. Data integrity
	2.1.5. Authentication and access control

	2.2. How SEE works
	2.2.1. Code specifics
	2.2.2. Security
	2.2.3. Internals

	2.3. SEE system architecture
	2.4. SEE and userdata
	2.4.1. What is userdata?
	2.4.2. Creating userdata suitable for loading into the HSM

	2.5. SEE and Security Worlds

	3. Designing SEE machines and SEE-ready HSMs
	3.1. Writing SEE machines - Solo XC
	3.1.1. Designing for the glibc architecture
	3.1.2. Designing for the SEElib architecture
	3.1.3. SEE machines for new algorithms
	3.1.4. Signing userdata for additional security
	3.1.5. Building your SEE machine and host-side application

	4. Example SEE machines
	4.1. Configure the Windows Build Environment
	4.2. Examples for glibc library
	4.2.1. Building the HSM-side code
	4.2.2. Helloworld example
	4.2.3. SEE-Random example
	4.2.4. SEE-Enquiry example
	4.2.5. TCP proxy example

	4.3. Examples for SEElib
	4.3.1. Building Linux host examples
	4.3.2. Building Windows host examples
	4.3.3. Building Solo SEE module examples
	4.3.4. Building Solo XC SEE module examples
	4.3.5. Example: Hello-World
	4.3.6. A3A8 example
	4.3.7. Example: RTC
	4.3.8. Example: Tickets
	4.3.9. Example: Benchmark

	5. Debugging SEE machines
	5.1. Debugging settings and output
	5.1.1. Debugging authorization
	5.1.2. Obtaining debugging output

	5.2. Finding memory leaks with stattree
	5.3. Segment addresses for Solo
	5.4. Vulnerability test harness
	5.5. Troubleshooting guide

	6. Deploying SEE Machines
	6.1. About the Feature Enabling Mechanism (FEM)
	6.2. Obtaining and using export certificates
	6.3. Automatically loading a SEE machine
	6.3.1. Automatically loading a glibc SEE machine with userdata
	6.3.2. Automatically loading a glibc SEE machine without userdata

	6.4. Configuring the nShield Connect to use CodeSafe Direct
	6.5. Configuring a SEE machine using the front panel
	6.5.1. Configuring a glibc SEE machine
	6.5.2. Configuring a SEElib SEE machine

	6.6. Remotely loading and updating SEE machines

	7. Utilities
	7.1. cpioc
	7.1.1. Usage

	7.2. elftool
	7.2.1. Usage

	7.3. loadmache
	7.3.1. Usage

	7.4. loadsee-setup
	7.4.1. Usage
	7.4.2. Output
	7.4.3. loadsee-setup --display

	7.5. hsc_loadseemachine
	7.5.1. Usage

	7.6. nfkmverify
	7.6.1. Usage
	7.6.2. Output

	8. Environment variables
	9. SEElib functions
	9.1. SEElib_init
	9.2. SEElib_RecProcessThreads
	9.3. SEElib_StartProcessorThreads
	9.4. SEElib_GetUserDataLen
	9.5. SEElib_ReadUserData
	9.6. SEElib_ReleaseUserData
	9.7. SEElib_InitComplete
	9.8. SEElib_AwaitJob
	9.9. SEElib_StartTransactListener
	9.10. SEElib_Transact
	9.11. SEElib_MarshalSendCommand
	9.12. SEElib_GetUnmarshalResponse
	9.13. SEElib_FreeCommand
	9.14. SEElib_FreeReply
	9.15. SEElib_ReturnJob
	9.16. SEElib_SubmitCoreJob
	9.17. SEElib_GetCoreJob
	9.18. SEElib_GetUserDataLen
	9.19. SEElib_Submit
	9.20. SEElib_Query
	9.21. SEElib_StartSEEJobListener
	9.22. SEElib_QuerySEEJob
	9.23. SEElib_ReleaseSEEJob

	10. Differences between glibc and bsdlib (SoloXC only)
	10.1. glibc Compatibility exceptions

	11. Allowlist for SEE machines

