@

ENTRUST

nShield Post-Quantum Software Development Kit

PQSDK v1.1.0 User Guide

10 April 2024

© 2024 Entrust Corporation. All rights reserved.

Table of Contents

L Introduction 1
2. Software Prerequisites 2
2.1. Security World software 2
2.2.CodeSafe. 3
2.3. HSM Firmware 3
2.4. Third party software. 4
2.5. Remove existing nShield Post-Quantum Software Development Kit. 4

3. Installation ... 5
3.1. nShield XC installation. 5
3.2.nShield 5 installation. 6
3.2.1. nShield 5 HSM installation. 6

3.2.2. nShield 5 client installation 8

3.2.3. nShield 5 client SSH configuration. 8

4. Uninstallation 10
5. Supported Post-Quantum Algorithms N
5.1. Digital Signature Algorithms N
5.2. Key Encapsulation Mechanisms 12

6. Application Programming Interface. 13
6.1. Integration 13
6.2. HostCommands 13
6.2.1. Constants 13

6.2.2. Methods 16

7. EXamples. . . 29
7.1. Installation with no pre-built examples 29

7.2. Installations with pre-built examples., .. 29

Chapter 1. Introduction

1. Introduction

The nShield Post-Quantum Software Development Kit (PQSDK) provides users of
Security World Software with the ability to generate and use keys with public-key
cryptographic algorithms selected by NIST as part of the Post-Quantum
Cryptography standardisation process.

PQSDK is installed on top of your Security World Software, allowing you to use
your existing keys and algorithms alongside post-quantum algorithms.

The PQSDK provides the user with the opportunity to
experiment with the use of PQC digital signature algorithms and
signatures but at this moment the underlying Security World
o protection mechanisms still use classical (non Post-Quantum)
crypto. It should not be used in an environment where a full

post-quantum resistance security solution is required.

PQSDK v1.1.0 User Guide 1/29

Chapter 2. Software Prerequisites

2. Software Prerequisites
Before you install PQSDK:

* Refer to the latest Release Notes at https://nshieldsupport.entrust.com/hc/en-
us/sections/360001115837-Release-Notes for hardware and software
compatibility, and known and fixed issues.

» Check you have the Security World software installed, and a working Security
World configured. See Security World software.

* Check you have the CodeSafe software installed. See CodeSafe.

» Check that you have a suitable firmware version on your nShield HSM. See
HSM Firmware.

* Remove any previous installations of PQSDK. See Remove existing nShield
Post-Quantum Software Development Kit.

* Check that you have a usable OCS, and that it is present.

* Check that you have the required third party software installed. See Third
party software.

This release of PQSDK is compatible with Linux only. See the PQSDK Release
Notes for the list of compatible operating systems and versions.

2.1. Security World software

PQSDK requires nShield Security World software to be installed, and a working
Security World to be configured. To confirm that there is a usable Security World,
use the nfkminfo command:

nfkminfo

If the Security World is usable then the state line in the nfkminfo output shows
Usable.

World

generation 2

state 0x37270008 Initialised Usable Recovery !PINRecovery !ExistingClient RTC NVRAM FTO AlwaysUseStrongPrimes
IDisablePKCS1Padding !PpStrengthCheck !Auditlogging SEEDebug

Additionally, your hardserver should have appropriately configured priv_port and
nonpriv_port settings.

PQSDK v1.1.0 User Guide 2/29

https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes

Chapter 2. Software Prerequisites

[server_startup]
nonpriv_port=9000
priv_port=9001

For further information on installing Security World software and creating a
Security World, see the User Guide shipped with your nShield Security World
software.

See the PQSDK Release Notes for supported Security World Software versions.

2.2. CodeSafe

The requirements for PQSDK remote and local HSM installations are different.

« PQSDK remote installations require only Security World software.

e Local HSM installations require nShield CodeSafe software to be installed for
building examples with the PQSDK. To confirm that CodeSafe is installed, use
the elftool command:

elftool --version

If CodeSafe is installed, a message similar to the following will be printed in your
terminal:

elftool, nshield (12.70.4-265-4efbadd)

See the PQSDK Release Notes for supported CodeSafe versions.

2.3. HSM Firmware

PQSDK requires a supported version of the nShield HSM firmware to be installed.
To confirm the installed version, use the enquiry command.

Module #1:
version 13.4.3
speed index 20000
rec. queue 120..250
level one flags Hardware HasTokens SupportsCommandState SupportsHotReset
version string 13.4.3-338-6cbbaald
checked in 00000000649dc17¢ Thu Jun 29 13:38:04 2023
level two flags none

PQSDK v1.1.0 User Guide 3/29

Chapter 2. Software Prerequisites
In this example, the installed firmware version is 13.4.3. See the PQSDK Release
Notes for supported firmware versions.

In addition, for nShield XC, you must enable the Unrestricted SEE feature. This is
indicated by the presence of SEE Activation (EU+10) in the enabled features seen in
FET.

For nShield 5, you must enable the SEE Activation feature. This is indicated by the
presence of SEE Activation, Codesafe 5 in the enabled features seen in FET.

2.4. Third party software

PQSDK requires following third party software to be installed:

CMake 3.13.0 (or higher).
e GCC version 4.8.5 (or higher).
GNU Make version 3.82 (or higher).

» Java Development Kit (Java 8) version 1.8.0_362 (or higher).
* Apache Ant version 1.9.4 (or higher).

2.5. Remove existing nShield Post-Quantum Software
Development Kit

Please see Uninstallation for uninstallation instructions.

PQSDK v1.1.0 User Guide 4/29

Chapter 3. Installation

3. Installation

The nShield Post-Quantum Software Development Kit (PQSDK)
requires that an OCS is present and usable. Please refer to the
appropriate user guide for your product for further information.

To install the PQSDK:

1. Sign in as a user with root privileges.

2. Open a terminal window and create a temporary directory to mount the
PQSDK ISO to:

sudo mkdir /mnt/pqsdk

3. Mount the PQSDK ISO to the temporary directory created above:

sudo mount -o loop pqsdk-1.1.0.iso /mnt/pgsdk

4. Change to the root directory and extract the appropriate .tar.gz file in the
mounted PQSDK ISO.

The following three installation files are provided in the PQSDK ISO:

* pgsdk-xc-1.1.0.tar.gz : nShield XC local HSM installation with SDK sources and

builder, no pre-built binaries.

* pgsdk-n5-hsm-1.1.0.tar.gz : nShield 5 local HSM installation with SDK sources,

builder and pre-built examples.

* pgsdk-n5-client-1.1.0.tar.gz : nShield 5 remote client installation (without a
local HSM installed) with pre-built examples and sources.

An installation file can be extracted as follows:

This installs all files required by PQSDK to /opt/nfast.

cd /
sudo tar -xzf /mnt/pgqsdk/pqsdk-<VERSION>.tar.gz -C /

o ‘ Only install one of the PQSDK installation files at a time.

3.1. nShield XC installation

In the case of a Solo XC or a Connect XC installation, the PQSDK can now be

PQSDK v1.1.0 User Guide

5/29

Chapter 3. Installation

installed using the following commands:

/opt/nfast/pgsdk/sbin/install_pqsdk_java_pkg
/opt/nfast/pgsdk/sbin/install_pgsdk_see_xc

The installation process can be customised for your needs. Use --help for more
information.

o PQSDK is built from source during the installation. This may take
a short while.

PQSDK is provided as a source-code release so that you may
0 experiment with it. Changes to the code require re-installation of

PQSDK. Repeat the last step to rebuild and reinstall the product.

3.2. nShield 5 installation

There are two possible nShield 5 installations, the nShield 5 HSM installation and
the nShield 5 remote installation. Each is described in detail in the following
sections.

3.2.1. nShield 5 HSM installation

In this deployment, administration of the HSM is performed by the customer (for
example, initializing the Security World on the HSM). The CodeSafe container is
started from a local host and a local bootstrap program sends the
CreateSEEConnection command and publishes the obtained worldid as an HSM
object. After this, the client applications retrieves the published worldid and
connects to the SEE machine using the IP address.

0 For more information about the CreateSEEConnection command,
see the Codesafe Developer Guide.
REMOTE HOST LOCAL HOST
Remote Local HSM ncoreapi
hardserver “| hardserver senvice
Shared Public OD}EC[J CreareSEE Connection
Publish SEE World Id as a
f Shared Public Object Random Key Import
Java Client [TCP Local Bootstrap
\ SemP Program
Java Client | TGP s | ——— |
I K~ SSHIPVE
SSHIP—— |
Java Client | TCP

PQSDK v1.1.0 User Guide 6/29

Chapter 3. Installation

Loading and running the SEE Machine uses HSM Keys with Combined Certs. In the
case of the nShield 5 HSM installation, the PQSDK can now sign the SEE Machine
image, install and run it using the following command:

sudo /opt/nfast/pqsdk/sbin/install_pqsdk_see_n5 --install local --askeyname codesafe-ask --devkeyname
testdeveloperkey --devintcert devinter_certs.pem --bin /opt/nfast/pqsdk/bin/see/pqsdk-1.1.0.bin --sign true

0 The signing process will always look for the required certificates
under: /opt/nfast/pqsdk/n5_signing_certs/*

o A signed PQSDK c¢s5 image can only be run on the same
machine it was generated and signed on.

As seen in the example above, in
/opt/nfast/pgsdk/n5_signing_certs/* the intermediate and
0 development certificates can be combined as a single file. For
example, devinter_certs.pem. Use the --devintcert option to
specify the combined cert.
/opt/nfast/pgsdk/n5_signing_certs/devinter_certs.pem

The --csb flag allows the re-running of a signed cs5 image again:

sudo /opt/nfast/pqsdk/sbin/install_pqsdk_see_n5 --install local --devintcert devinter_certs.pem --csb
/opt/nfast/pqsdk/bin/see/pgsdk-1.1.0-signed.cs5

The HSM Keys created and used for signing can be specified using --askeyname and
--devkeyname

/opt/nfast/pqsdk/n5_signing_certs$ nfkminfo -k

Key list - 2 keys

AppName simple Ident codesafe-ask
AppName simple Ident testdeveloperkey

If the default names for certificates and key files are different, then they can be
specified with the following option flags when executing install_pqgsdk_see_ n5:

* -askeyname, --askeyname [string] : The ask key name for signing the image.

* -askeyfile, --askeyfile [string]: The ask key file for signing the image.

* -devkeyfile, --devkeyfile [string] : The developer signing key File used for
signing.

* -devcert, --devcert [string] : The signed developer certificate PEM file, used
for loading or signing.

PQSDK v1.1.0 User Guide 7/29

Chapter 3. Installation

e -intcert, --intcert [string] : The signed intermediate certificate PEM file, used
for loading image.

Bootstrap is automatically started by the script (ie.
/opt/nfast/python3/bin/python3

0 ./src/pqsdk/source/python/n5/bootstrap.py --cshfile
/opt/nfast/pgsdk/bin/see/<pgsdk.cs5> --uuid <uuid>)

3.2.2. nShield 5 client installation

In this scenario, administration of the HSM and the CodeSafe container is
performed by Entrust. The remote client application will need to have a
Hardserver that is remotely connected to the Hardserver at the HSM location. The
client installation will retrieve the published worldid via a shared public object and
connect to the SEE Machine using the remote IP address to the SEE machine
container.

For reference, the java examples could be run using the following command:

java -cp .:/opt/nfast/pqsdk/bin/java/pgsdk.jar com.entrust.pqsdk.examples.<example> <IP_ADDRESS> <PORT>

3.2.3. nShield 5 client SSH configuration

For security, an SSH tunnel is to be configured between the Java Client and the
CodeSafe container running the SEE Machine. The container SSHD will only start
when the state for that container has been set to enabled. By default, it is
disabled. It can be enabled with the csadmin SSHD state enable subcommand. The
enable subcommand will also return the port and address on which the SSHD is
listening on. Example output is shown below:

csadmin sshd state enable -u 81c4f72f-586d-48c8-8020-7a6975159b37
F973-CCA4-370B SUCCESS

SSHD PORT: 3006

LISTENING ADDRESS: fe80::53:89ff:fe92:3260

Once the container SSHD is enabled, started, and its keys are set, to forward
connections to the container SSHD, the user will establish port forwarding on the
host machine. Use of a secure tunnel over an open TCP connection to
communicate with the container is recommended and so we use local port
forwarding to enable SSH tunneling. This is done with the SSH local port forward
command (can be IPv4 or IPv6 depending on the required network configuration).
The basic usage is as follows:

PQSDK v1.1.0 User Guide 8/29

Chapter 3. Installation

ssh -i [PATH_TO_PRIV_KEY] -L [LOCAL_IP]:[LOCAL_PORT]:[CONTAINER_IP_ADDR%1xcbr@]:[CONTAINER_PORT] -f -N -p
[SSHD_PORT] launcher@[LISTENING_ADDRESS]%nshield@

Where:

* PRIV_KEY is the private key to the public client key that was set with the
setclient command.

e LOCAL_PORT is the port on the local client where traffic to be forwarded will
be sent.

e CONTAINER_IP_ADDR is the ip address of the container. This is the address
returned when the container is started.

e CONTAINER_PORT is the port on the container that is listening for forwarded
traffic which is set in the network-conf.json file as "ssh_tunnel” (note valid
range 1024-65535).

» SSHD_PORT is the port the SSH daemon is listening on. This port is returned
when SSHD is enabled and can also be found with the csadmin sshd state get
command.

 LISTENING_ADDRESS is the address the host clients use to communicate with
the HSM (on the hsm side). This address is returned when SSHD is enabled
and can also be found with the csadmin sshd state get command.

As an example, in the local host, using an IPv4 LOCAL_IP and LOCAL_PORT:

ssh -i /home/.../test_key -L [10.194.147.71]:6000:[fe80::216:3eff:fe41:995%1xcbr@]:8888 -f -N -p 3000
launcher@fe80::53:89ff:fe92:3260%nshieldd

And in the remote host:

java -cp /opt/nfast/pgsdk/bin/java/pgsdk-examples.jar com.entrust.pqsdk.examples.KEM 10.194.147.71 6000

Further information on enabling SSH port forwarding is available in the CodeSafe
5 Developer Guide.

PQSDK v1.1.0 User Guide 9/29

Chapter 4. Uninstallation

4. Uninstallation

Before uninstalling the nShield Post-Quantum Software Development Kit
(PQSDK), Entrust advises that you create a full back up of /opt/nfast/pqsdk.
Removing the PQSDK will not affect your existing Security World, or your Security
World Software installation. Once the PQSDK is removed, you will no longer be
able to use keys created with PQSDK.

To uninstall the PQSDK, run the following command:

/opt/nfast/pgsdk/sbin/uninstall

The following options are available for the uninstall command (the full list is
available with --help):

* -p, --product [string] : Use to specify "xc" or "n5" (default "xc")

* -i, --install_type [string] : The type of install to uninstall for n5 only. "local”
or "remote"” (default "remote”).

Uninstall by default runs for the nShield Solo XC. Use n5 with the
o -p option as well as the appropriate -1 option when you are
uninstalling for that platform.

PQSDK v1.1.0 User Guide 10/29

Chapter 5. Supported Post-Quantum Algorithms

5. Supported Post-Quantum Algorithms

5.1. Digital Signature Algorithms

This version of PQSDK supports the following signing algorithms:

Algorithm

Falcon

CRYSTALS-Dilithium

SPHINCS+-Haraka

Variants

Falcon-512
Falcon-1204

Dilithium2
Dilithium2-AES
Dilithium3
Dilithium3-AES
Dilithium5
Dilithium5-AES

SPHINCS+-Haraka-128f-robust
SPHINCS+-Haraka-128f-simple
SPHINCS+-Haraka-128s-robust
SPHINCS+-Haraka-128s-simple
SPHINCS+-Haraka-192f-robust
SPHINCS+-Haraka-192f-simple
SPHINCS+-Haraka-192s-robust
SPHINCS+-Haraka-192s-simple
SPHINCS+-Haraka-256f-robust
SPHINCS+-Haraka-256f-simple
SPHINCS+-Haraka-256s-robust
SPHINCS+-Haraka-256s-simple

PQSDK v1.1.0 User Guide

11/29

Chapter 5. Supported Post-Quantum Algorithms

Algorithm

SPHINCS+-SHA256

SPHINCS+-SHAKE256

Variants

SPHINCS+-SHA256-128f-robust
SPHINCS+-SHA256-128f-simple
SPHINCS+-SHA256-128s-robust
SPHINCS+-SHA256-128s-simple
SPHINCS+-SHA256-192f-robust
SPHINCS+-SHA256-192f-simple
SPHINCS+-SHA256-192s-robust
SPHINCS+-SHA256-192s-simple
SPHINCS+-SHA256-256f-robust
SPHINCS+-SHA256-256f-simple
SPHINCS+-SHA256-256s-robust
SPHINCS+-SHA256-256s-simple

SPHINCS+-SHAKE256-128f-robust
SPHINCS+-SHAKE256-128f-simple
SPHINCS+-SHAKE256-128s-robust
SPHINCS+-SHAKE256-128s-simple
SPHINCS+-SHAKE256-192f-robust
SPHINCS+-SHAKE256-192f-simple
SPHINCS+-SHAKE256-192s-robust
SPHINCS+-SHAKE256-192s-simple
SPHINCS+-SHAKE256-256f-robust
SPHINCS+-SHAKE256-256f-simple
SPHINCS+-SHAKE256-256s-robust
SPHINCS+-SHAKE256-256s-simple

5.2. Key Encapsulation Mechanisms

Algorithm

CRYSTALS-Kyber

Variants

Kyber512
Kyber512-90s
Kyber768
Kyber768-90s
Kyber1024
Kyber1024-90s

PQSDK v1.1.0 User Guide

12/29

Chapter 6. Application Programming Interface

6. Application Programming Interface

The nShield Post-Quantum Software Development Kit (PQSDK) can build and load
a CodeSafe SEE machines onto nShield HSMs:

* Legacy CodeSafe SEE machines for nShield Solo XC HSMs
* CodeSafe 5 SEE machines for nShield 5s HSMs.

During this process, a Java binary is produced that enables you to interface with
the SEE machine.

See Examples for example programs that show how to use the PQSDK API.

6.1. Integration

To integrate the PQSDK within your own Java code, please include
/opt/nfast/pgsdk/bin/java/pqsdk.jar in your classpath. pgsdk.jar exposes a Java API
for you to integrate with. The source files describing the API exist at
/opt/nfast/pgsdk/src/pgsdk/source/java.

You should also ensure that the nCipherkM. jar is installed.

6.2. HostCommands

The HostCommands class provides you with a Java interface into the SEE machine.
You may then use the exposed API to perform key generation, signing, and
verification activities.

HostCommands hc = new HostCommands();

6.2.1. Constants

Modifier and Type Name Value
public static final int algorithm_dilithium_2 1
public static final int algorithm_dilithium_3 2
public static final int algorithm_dilithium_4 3
public static final int algorithm_falcon_512 4

PQSDK v1.1.0 User Guide 13/29

Chapter 6. Application Programming Interface

Modifier and Type

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

Name

algorithm_falcon_1024

algorithm_sphincs_haraka_128f
_robust

algorithm_sphincs_haraka_128f
_simple

algorithm_sphincs_haraka_128s
_robust

algorithm_sphincs_haraka_128s
_simple

algorithm_sphincs_haraka_192f
_robust

algorithm_sphincs_haraka_192f
_robust

algorithm_sphincs_haraka_192s
_robust

algorithm_sphincs_haraka_192s
_simple

algorithm_sphincs_haraka_256f
_robust

algorithm_sphincs_haraka_256f
_simple

algorithm_sphincs_haraka_256s
_robust

algorithm_sphincs_haraka_256s
_simple

algorithm_sphincs_sha256_128f
_robust

algorithm_sphincs_sha256_128f
_simple

algorithm_sphincs_sha256_128s
_robust

algorithm_sphincs_sha256_128s
_simple

Value

10

1

12

13

14

15

16

17

18

19

20

21

PQSDK v1.1.0 User Guide

14/29

Chapter 6. Application Programming Interface

Modifier and Type

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

Name

algorithm_sphincs_sha256_192f

_robust

algorithm_sphincs_sha256_192f

_simple

algorithm_sphincs_sha256_192s

_robust

algorithm_sphincs_sha256_192s

_simple

algorithm_sphincs_sha256_256f

_robust

algorithm_sphincs_sha256_256f

_simple

algorithm_sphincs_sha256_256
s_robust

algorithm_sphincs_sha256_ 256
s_simple

algorithm_sphincs_shake256_12
8f robust

algorithm_sphincs_shake256_12
8f_simple

algorithm_sphincs_shake256_12
8s_robust

algorithm_sphincs_shake256_12
8s_simple

algorithm_sphincs_shake256_19
2f_robust

algorithm_sphincs_shake256_19
2f_simple

algorithm_sphincs_shake256_19
2s_robust

algorithm_sphincs_shake256_19
2s_simple

algorithm_sphincs_shake256_2
56f_robust

Value

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

PQSDK v1.1.0 User Guide

Chapter 6. Application Programming Interface

Modifier and Type

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

public static final int

6.2.2. Methods

6.2.2.1. init(String)

protected void init (String published)

Name

algorithm_sphincs_shake256_2
56f _simple

algorithm_sphincs_shake256_2
56s_robust

algorithm_sphincs_shake256_2
56s_simple

algorithm_dilithium_5

algorithm_dilithium_2_aes

algorithm_dilithium_3_aes

algorithm_dilithium_5_aes

algorithm_kyber_512

algorithm_kyber_768

algorithm_kyber_1024

algorithm_kyber_512_90s

algorithm_kyber_768_90s

algorithm_kyber_1024_90s

Initialises the HostCommands object.

Throws

RuntimeException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.

e The Security World is not usable.

6.2.2.2. algorithm_toString(long)

Value

39

40

41

42

43

44

45

46

47

48

49

50

51

PQSDK v1.1.0 User Guide

16/29

Chapter 6. Application Programming Interface

public static String algorithm_toString(long value)

Gets the name of an algorithm, given a constant value.

Parameters

value - an algorithm id constant.

Returns

A String value describing the algorithm, or UNKNOWN.

6.2.2.3. getVersion()

public getVersionResponse getVersion()

Gets the version of the SEE machine interface.

Returns

A getVersionResponse object encapsulating the SEE machine version.

Throws

NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.

e The Security World is not usable.

6.2.2.4. listQ

public listResponse list()

List all PQC keys

Returns

A listResponse object encapsulating a list of key hashes.

Throws

NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.
* The Security World is not usable.

* The nShield HSM ran out of memory.

PQSDK v1.1.0 User Guide 17/29

Chapter 6. Application Programming Interface

6.2.2.5. getPublic(String)

public getPublicResponse getPublic(String alias)

Get the public half of a PQC key-pair

Parameters

alias - the name of the key

Returns

A getPublicResponse object encapsulating the key

Throws

NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.
* The Security World is not usable.
* The nShield HSM ran out of memory.

* The key did not exist.

6.2.2.6. generate(String, int, boolean)

public generateResponse generate(String alias, int algorithm, boolean overwrite)

Generate a key pair

Parameters
alias - the alias under which to store the key pair.
algorithm - the PQC algorithm (one of the algorithms in
HostCommands.algorithm_*).
overwrite - if true, and alias exists, overwrites the existing key pair.

Returns
A generateResponse object encapsulating the alias and hash of the generated
key pair.

Throws

NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.

* The Security World is not usable.

PQSDK v1.1.0 User Guide 18/29

Chapter 6. Application Programming Interface

e The nShield HSM ran out of memory.

6.2.2.7. generate(String, int)

public generateResponse generate(String alias, int algorithm)

Generate a key pair

Parameters

alias - the alias under which to store the key pair.
algorithm - the PQC algorithm (one of the algorithms in
HostCommands.algorithm_*).

Returns
A generateResponse object encapsulating the alias and hash of the generated
key pair.

Throws

NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.
e The Security World is not usable.

* The nShield HSM ran out of memory.

6.2.2.8. importKeypair(String, int, byte[], byte[], boolean)

public importKeypairResponse importKeypair(String alias, int algorithm, byte[] publicKey, byte[] privateKey,
boolean overwrite)

Import a key pair

Parameters

alias - the alias under which to store the key pair.

algorithm - the PQC algorithm (one of the algorithms in
HostCommands.algorithm_*).

publicKey - the public key represented as a byte array.

privateKey - the private key represented as a byte array.

overwrite - if true, and alias exists, overwrites the existing key pair.

PQSDK v1.1.0 User Guide 19/29

Chapter 6. Application Programming Interface

Returns
A importKeypairResponse object encapsulating the alias and hash of the
imported key pair.

Throws

NFException - if one of the following conditions is met:

» The PQSDK SEE machine is not installed, published, or running.
e The Security World is not usable.
* The nShield HSM ran out of memory.

6.2.2.9. importKeypair(String, int, byte[], byte[])

public importKeypairResponse importKeypair(String alias, int algorithm, byte[] publicKey, byte[] privateKey)

Import a key pair

Parameters

alias - the alias under which to store the key pair.
algorithm - the PQC algorithm (one of the algorithms in
HostCommands.algorithm_*).
publicKey - the public key represented as a byte array.
privateKey - the private key represented as a byte array.
Returns
A 1importKeypairResponse object encapsulating the alias and hash of the
imported key pair.

Throws

NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.
e The Security World is not usable.

* The nShield HSM ran out of memory.

6.2.2.10. sign(String, byte[], byte[1)

public signResponse sign(String alias, byte[] keyhash, byte[] message)

Sign a message

PQSDK v1.1.0 User Guide 20/29

Chapter 6. Application Programming Interface

Parameters

alias - (optional) the name of the key with which to sign.
keyhash - the hash of the key with which to sign.
message - the message to sign.

Returns

A signResponse object encapsulating the message signature.

Throws

IOException - if the key could not be read.
NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.

* The Security World is not usable.

6.2.2.11. sign(String, byte[])

public signResponse sign(String alias, byte[] message)

Sign a message

Parameters
alias - the name of the key with which to sign.
message - the message to sign.

Returns

A signResponse object encapsulating the message signature.

Throws

IOException - if the key could not be read.
NFException - if one of the following conditions is met:

» The PQSDK SEE machine is not installed, published, or running.

* The Security World is not usable.

6.2.2.12. sign(byte[], byte[])

public signResponse sign(byte[] keyhash, byte[] message)

Sign a message

PQSDK v1.1.0 User Guide

21/29

Chapter 6. Application Programming Interface

Parameters
keyhash - the hash of the key with which to sign.
message - the message to sign.

Returns

A signResponse object encapsulating the message signature.

Throws
I0OException - if the key could not be read.

NFException - if one of the following conditions is met:

» The PQSDK SEE machine is not installed, published, or running.
e The Security World is not usable.

6.2.2.13. verify(String, byte[], byte[], byte[])

public verifyResponse verify(String alias, byte[] keyhash, byte[] message, byte[] signature)

Verify the signature of message

Parameters

alias - (optional) the name of the key to verify with.
keyhash - the hash of the key to verify with.
message - the message to verify.
signature - the message signature.
Returns
A verifyResponse object encapsulating a boolean value indicating the operation
status.
Throws
IOException - if the key could not be read.

NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.

* The Security World is not usable.

6.2.2.14. verify(String, byte[], byte[])

public verifyResponse verify(String keyhash, byte[] message, byte[] signature)

PQSDK v1.1.0 User Guide 22/29

Chapter 6. Application Programming Interface

Verify the signature of message

Parameters
alias - the name of the key to verify with.
message - the message to verify.
signature - the message signature.
Returns
A verifyResponse object encapsulating a boolean value indicating the operation
status.
Throws
IOException - if the key could not be read.

NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.

* The Security World is not usable.

6.2.2.15. verify(byte[], byte[], byte[])

public verifyResponse verify(byte[] keyhash, byte[] message, byte[] signature)

Verify the signature of message

Parameters
keyhash - the hash of the key to verify with.
message - the message to verify.
signature - the message signature.
Returns
A verifyResponse object encapsulating a boolean value indicating the operation
status.
Throws
IOException - if the key could not be read.

NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.

* The Security World is not usable.

6.2.2.16. verifylmmediate(byte[], int, byte[], byte[1)

PQSDK v1.1.0 User Guide 23/29

Chapter 6. Application Programming Interface

public verifyResponse verifyImmediate(byte[] publicKey, int algorithm, byte[] message, byte[] signature)

Verify the signature of message using immediate values

Parameters
publicKey - the public key to verify with.
algorithm - the signature algorithm.
message - the message to verify.
signature - the message signature.
Returns
A verifyResponse object encapsulating a boolean value indicating the operation
status.
Throws

NFException - if one of the following conditions is met:

» The PQSDK SEE machine is not installed, published, or running.

* The Security World is not usable.

6.2.2.17. encapsulate(String, byte[])

public encapsulateResponse encapsulate(String alias, byte[] keyhash)

Encapsulate a shared secret using the public half of a key pair

Parameters
alias - the name of the public key to encapsulate with.
keyhash - the hash of the public key to encapsulate with. Only used if the alias
is null.

Returns
An encapsulateResponse object encapsulating a shared secret in plaintext and a
ciphertext (encapsulation) of this shared secret.

Throws
RuntimeException - if the alias passed in does not belong to an existing key.

NFException - if one of the following conditions is met:

 The PQSDK SEE machine is not installed, published, or running.

PQSDK v1.1.0 User Guide 24/29

Chapter 6. Application Programming Interface

* The Security World is not usable.

6.2.2.18. encapsulate(String)

public encapsulateResponse encapsulate(String alias)

Encapsulate a shared secret using the public half of a key pair

Parameters

alias - the name of the public key to encapsulate with.

Returns

An encapsulateResponse object encapsulating a shared secret in plaintext and a
ciphertext (encapsulation) of this shared secret.

Throws

RuntimeException - if the alias passed in does not belong to an existing key.
NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.
e The Security World is not usable.

6.2.2.19. encapsulate(byte[])

public encapsulateResponse encapsulate(byte[] keyhash)

Encapsulate a shared secret using the public half of a key pair

Parameters

keyhash - the hash of the public key to encapsulate with.

Returns
An encapsulateResponse object encapsulating a shared secret in plaintext and a
ciphertext (encapsulation) of this shared secret.

Throws
RuntimeException - if the alias passed in does not belong to an existing key.

NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.

PQSDK v1.1.0 User Guide 25/29

Chapter 6. Application Programming Interface

* The Security World is not usable.

6.2.2.20. encapsulatelmmediate(byte[], int)

public encapsulateImmediateResponse encapsulateImmediate(byte[] publicKey, int algorithm)

Encapsulate a shared secret using a public key

Parameters
publicKey - the public key to encapsulate with.
algorithm - the encapsulation algorithm.
Returns
An encapsulateResponse object encapsulating a shared secret in plaintext and a
ciphertext (encapsulation) of this shared secret.
Throws

NFException - if one of the following conditions is met:

* The PQSDK SEE machine is not installed, published, or running.
e The Security World is not usable.

6.2.2.21. decapsulate(String, byte[], byte[])

public decapsulateResponse decapsulate(String alias, byte[] keyhash, byte[] ciphertext)

Decapsulate a shared secret using the private half of a key pair

Parameters

alias - the name of the private key to decapsulate with.

keyhash - the hash of the private key to decapsulate with. Only used if the alias
is null.

ciphertext - the encapsulated secret to decapsulate.

Returns

A decapsulateResponse object encapsulating the shared secret.

Throws

RuntimeException - if the alias passed in does not belong to an existing key.
NFException - if one of the following conditions is met:

PQSDK v1.1.0 User Guide 26/29

Chapter 6. Application Programming Interface

* The PQSDK SEE machine is not installed, published, or running.

* The Security World is not usable.

6.2.2.22. decapsulate(String, byte[])

public decapsulateResponse decapsulate(String alias, byte[] ciphertext)

Decapsulate a shared secret using the private half of a key pair

Parameters
alias - the name of the private key to decapsulate with.
ciphertext - the encapsulated secret to decapsulate.
Returns

A decapsulateResponse object encapsulating the shared secret.

Throws

RuntimeException - if the alias passed in does not belong to an existing key.
NFException - if one of the following conditions is met:

» The PQSDK SEE machine is not installed, published, or running.
* The Security World is not usable.

6.2.2.23. decapsulate(byte[], byte[])

public decapsulateResponse decapsulate(byte[] keyhash, byte[] ciphertext)

Decapsulate a shared secret using the private half of a key pair

Parameters
keyhash - the hash of the private key to decapsulate with.
ciphertext - the encapsulated secret to decapsulate.
Returns

A decapsulateResponse object encapsulating the shared secret.

Throws

RuntimeException - if the alias passed in does not belong to an existing key.
NFException - if one of the following conditions is met:

PQSDK v1.1.0 User Guide 27/29

Chapter 6. Application Programming Interface

* The PQSDK SEE machine is not installed, published, or running.

* The Security World is not usable.

PQSDK v1.1.0 User Guide 28/29

Chapter 7. Examples

/. Examples

There are various example programs included in the examples directory. These
examples use the pgsdk.jar file to interface with the SEE machine and
demonstrate how to use the PQSDK API.

7.1. Installation with no pre-built examples

In an installation with no pre-built examples, the example programs need to be
compiled before they can be run. For example, to execute the SignVerify example
for a Solo XC run the following commands:

cd /opt/nfast/pqsdk/examples/xc

javac -d . -cp /opt/nfast/java/classes/nCipherkM.jar:/opt/nfast/pgqsdk/bin/java/pgsdk.jar SignVerify.java
jar -cf examples.jar com/entrust/pqsdk/examples/SignVerify.class

java -cp examples:/opt/nfast/pqsdk/bin/java/pqsdk.jar com.entrust.pqsdk.examples.SignVerify

You can use the source code as the basis for your own programs, or modify it to
your needs.

7.2. Installations with pre-built examples

In an installation with pre-built examples, the example programs are compiled into
pasdk-examples.jar. For example, to execute the ImportKeypair example under n5
run the following commands:

cd /opt/nfast/pqsdk/examples/n5
java -cp /opt/nfast/pgsdk/bin/java/pqsdk-examples.jar com.entrust.pqsdk.examples.ImportKeypair
fe80::216:3eff:febc:1bb%nshieldd 8888

PQSDK v1.1.0 User Guide 29/29

	nShield Post-Quantum Software Development Kit: PQSDK v1.1.0 User Guide
	Table of Contents
	1. Introduction
	2. Software Prerequisites
	2.1. Security World software
	2.2. CodeSafe
	2.3. HSM Firmware
	2.4. Third party software
	2.5. Remove existing nShield Post-Quantum Software Development Kit

	3. Installation
	3.1. nShield XC installation
	3.2. nShield 5 installation
	3.2.1. nShield 5 HSM installation
	3.2.2. nShield 5 client installation
	3.2.3. nShield 5 client SSH configuration

	4. Uninstallation
	5. Supported Post-Quantum Algorithms
	5.1. Digital Signature Algorithms
	5.2. Key Encapsulation Mechanisms

	6. Application Programming Interface
	6.1. Integration
	6.2. HostCommands
	6.2.1. Constants
	6.2.2. Methods

	7. Examples
	7.1. Installation with no pre-built examples
	7.2. Installations with pre-built examples

