©

ENTRUST

nShield Key Attestation

nShield Key Attestation
Verifier v1.0.2 Application
Note

30 January 2024

© 2025 Entrust Corporation. All rights reserved.

Table of Contents

TIntroduction ... 1
2. Installing the nShield Key Attestation Verifier. 2
2.1. Install the nShield Key Attestation Verifier................. 2
2L WINAOWS: . - 2

202, LINUX: 3

2.2. Uninstall the nShield Key Attestation Verifier. 3
221 WINAOWS . .o 3

2.2.2. LiNUX: . oo 4

3. Generating an attestationbundle. 5
30.Bundledetails.o 5

4. Verifying an attestationbundle. 7
4.1, Private key operations. 7
4.2. Public key parameters. 7
42 1. RSApuUblickeys 8

4.22. DSA and KCDSA publickeys. 8
423.ECCpublic Keys 8

424 Ed25519 public keys 9
5.Getting amissingwarrant. 10

6. Worked examples 1

Chapter 1. Introduction

1. Introduction

Key attestation refers to a way of cryptographically proving to a third party that a key is
generated in the nShield HSM and cannot be exported in clear text.

The nShield Key Attestation Verifier allows a user to generate a JSON bundle containing all
necessary certificates and information about a key and HSM to verify its protection and use
constraints enforced by the HSM. nShield attestation relies on a KLF2 warrant, a certificate
chain which links the HSM to its ESN. Verification of the bundle can be done without
access to an HSM.

The nfkmattest tool can be installed as part of the nShield Security World software or as a
standalone package.

nShield Key Attestation Verifier v1.0.2 1/12
Application Note

Chapter 2. Installing the nShield Key Attestation Verifier

2. Installing the nShield Key Attestation
Verifier

Always download the nShield Key Attestation Verifier from a trusted source. Verify the
integrity after it has been downloaded. You can verify the integrity by using the hash
provided at the software download, or obtained from a trusted source.

Before you install the nShield Key Attestation Verifier:

+ See the latest Release Notes at https://nshieldsupport.entrust.com/hc/en-us/
sections/360001115837-Release-Notes for hardware and software compatibility, and
known and fixed issues.

- Determine whether the nShield Key Attestation Verifier will be installed as a standalone
tool, or installed alongside an existing Security World software installation.

- If you have any instances of the nShield Key Attestation Verifier currently installed,
remove them as described in Uninstall the nShield Key Attestation Verifier.

nShield Security World software v13.5 onward includes the nfkmattest
tool as part of the main installation. Use the steps on this page for
standalone installation or if installing on top of Security World v13.4.

2.1. Install the nShield Key Attestation Verifier

If performing a standalone installation, the following paths should not
already exist:

- On Windows: C:\Program Files\nCipher\nfast
« On Linux: /opt/nfast

2.1.1. Windows:
To install the nShield Key Attestation Verifier on Windows:

1. Download and mount keyattest-Common-<version>.iso.
2. In an administrator command prompt, change to where the ISO is mounted.

3. Run nShieldKeyAttestSetup.bat, specifying: -s (or --standalone) for a standalone
installation, or -n (or --nshield-upgrade) to install alongside an existing Security World
software installation. For example, to install as a standalone installation:

nShieldKeyAttestSetup.bat -s

nShield Key Attestation Verifier v1.0.2 2/12
Application Note

https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes
https://nshieldsupport.entrust.com/hc/en-us/sections/360001115837-Release-Notes

Chapter 2. Installing the nShield Key Attestation Verifier

On completion, nfkmattest will exist in C:\Program Files\nCipher\nfast\bin.

2.1.2. Linux:
To install the nShield Key Attestation Verifier on Linux:

1. Download and mount keyattest-Common-<version>.iso.
2. In a command prompt, change to where the ISO is mounted.

3. Run nShieldKeyAttestSetup.sh, specifying: -s (or --standalone) for a standalone
installation, or -n (or --nshield-upgrade) to install alongside an existing Security World
software installation. For example, to install alongside an existing Security World
software installation:

sudo ./nShieldKeyAttestSetup.sh -n

On completion, nfkmattest will exist in /opt/nfast/bin.

2.2. Uninstall the nShield Key Attestation Verifier

Remove the nShield Key Attestation Verifier with the nShieldKeyAttestSetup script in the
version that you are uninstalling. You cannot uninstall this tool using the script from a
different release.

Performing a standalone uninstall will remove the following:

o « On Windows: C:\Program Files\nCipher\nfast
+ On Linux: /opt/nfast

Files which need to be retained should be backed up before uninstalling.

2.2.1. Windows
To uninstall the nShield Key Attestation Verifier on Windows:

1. In an administrator command prompt, change to the installation script location:
° Standalone: C:\Program Files\nCipher\nfast\python3\nfkmattest.uninstall

° Alongside an existing Security World:
%SNFAST_HOME%\python3\nfkmattest.uninstall

2. Run nShieldKeyAttestSetup.bat with the --uninstall option - specifying: -s (or
--standalone) if installed as a standalone installation, or -n (or --nshield-upgrade) if

nShield Key Attestation Verifier v1.0.2 3/12
Application Note

Chapter 2. Installing the nShield Key Attestation Verifier

installed alongside an existing Security World software installation. For example, to

uninstall a standalone installation:

nShieldKeyAttestSetup.bat -s --uninstall

2.2.2. Linux:
To uninstall the nShield Key Attestation Verifier on Linux:

1. In a command prompt, change to opt/nfast/python3/nfkmattest.uninstall.

2. Run nShieldKeyAttestSetup.sh with the --uninstall option - specifying: -s (or
--standalone) if installed as a standalone installation, or -n (or --nshield-upgrade) if
installed alongside an existing Security World software installation. For example, to
uninstall if installed alongside an existing Security World software installation:

sudo ./nShieldKeyAttestSetup.sh -n --uninstall

nShield Key Attestation Verifier v1.0.2
Application Note

4/12

Chapter 3. Generating an attestation bundle

3. Generating an attestation bundle

An attestation bundle can be generated for a key as follows.

$ nfkmattest bundle [OPTIONS] APPNAME IDENT

The set of certificates and relevant data fields is returned in a JSON-formatted file
key_APPNAME_IDENT.att. An alternative output file path can be specified with the option
--output PATH. If the HSM warrant is stored in a non-default directory, its path can be
specified with the option --warrants DIR. If no HSM warrant is found, see Getting missing
warrant.

When generating keys, the APPNAME is the section of the key file name as it appears in the
opt/nfast/kmdata/local (Linux) or C:\ProgramData\nCipher\Key Management Data\local
(Windows) filesystem, and the IDENT is the last section of the key file name as it appears on
the local filesystem. If you generate a pkcs11, custom, or embed key, the IDENT is different to
that of a plainname key generated with generatekey. Key file output examples include:

key_custom_0140c376b9dd2655ae75¢99d940e3477408aef14
key_embed_5febc9e346b4ddd2ea35e1de9049861fe97888b5c
key_pkcs11_ua5febc9e346b4dd2ea35e1de9049861fe97888b5¢

o Bundle generation is supported for asymmetric (public/private) key
pairs only. Symmetric keys are not supported for bundle generation.

3.1. Bundle details

The possible bundle fields are outlined below.

Field Presence Description

pubkeydata Always Public key material in nCore format
(including any domain parameters)

kecmsg Always The key generation certificate body

kcsig Always The signature on the key generation
certificate under KML

modstatemsg Always A module state certificate

modstatesig Always The signature on the module state
certificate under KLF2.

warrant Always The D3S encoding of the
generating HSM's warrant.

nShield Key Attestation Verifier v1.0.2 5/12
Application Note

Chapter 3. Generating an attestation bundle

Field

root

knsopub

hkre

hkra

hkfips

hkmc

hkm

CertKkMaKMCbKNSO
CertKMaKMCaKFIPSbKNSO
CertKREaKRAbKNSO

ciphersuite

Presence

Always

Persistent keys

Recoverable keys

Recoverable keys

Persistent keys in FIPS worlds
Persistent keys

Persistent keys

Persistent keys in non-FIPS worlds
Persistent keys in FIPS worlds
Recoverable keys

Persistent keys

Description

The name of the warranting root
used in this certificate. This will
always be KWARN-1 for nShield
HSMs.

KNSO public key

Hash of KRE

Hash of KRA

Hash of KFIPS

Hash of KMC

Hash of KM

Signature on world binding cert
Signature on world binding cert
Signature on world binding cert

Ciphersuite name for security world
from the NFKM_CipherSuite
enumeration (e.g.
DLf3072s256mAEScSP800131Ar1)

nShield Key Attestation Verifier v1.0.2
Application Note

6/12

Chapter 4. Verifying an attestation bundle

4. Verifying an attestation bundle

An attestation bundle can be verified as follows.

§ nfkmattest verify PATH

This will output information about the key in JSON format. The fields are:

Key Syntax
path string
protection string
recovery boolean
permissions list

esn string
hknso string

k object

4.1. Private key operations

Meaning
The path of the bundle file

Type of protection, either module,
softcard or cardset

Whether key recovery is enabled for
the key, if available

Key usage permissions

Electronic Serial Number (ESN) of
the HSM used to generate the key

The hash of the nShield Security
Officer key (KNSO) for the Security
World used to generate the key

Public key parameters (a more
detailed breakdown can be seen in
the section below)

The permissions field is a list of the permitted private key operations. The following are the

possible options.

Permission
decrypt

unwrap

sign

4.2. Public key parameters

Description
Key can decrypt messages, yielding plaintext

Key can decrypt messages, yielding a key inside the
HSM (this includes loading of key blobs)

Key can sign messages

nShield Key Attestation Verifier v1.0.2
Application Note

7/12

Chapter 4. Verifying an attestation bundle

The k field is the public key is an nCore M_KeyData structure in JSON format. The key object

has two fields.

Key Syntax
k.type string
k.data object

Meaning

The public key type, described in
sections below

Public key material

In almost all cases, integers are represented as the RFC4648 section 4 base64 encoding of

the big-endian form of the integer value. The representation is normally minimal, meaning

that a value of O is represented by the empty string.

The fields in k.data will depend on the key type.

4.2.1. RSA public keys

The key type is RSAPublic. The data object has two fields.

Key Syntax
k.data.n base64(integer)
k.data.e base64(integer)

4.2.2. DSA and KCDSA public keys

Meaning
Public modulus

Public exponent

The key types are DSAPublic and KCDSAPublic. The data object has the following fields.

Key Syntax
k.data.dlg object
k.data.dlg.p base64(integer)
k.data.dlg.q base64(integer)
k.data.dlg.g base64(integer)
k.data.y base64(integer)

4.2.3. ECC public keys

Meaning

Container for domain parameters
Field modulus

Subgroup order

Subgroup generator

Public key

The key types are ECDSAPublic (signature only), ECDHPublic (key agreement only) and

ECPublic. The data object has the following fields.

nShield Key Attestation Verifier v1.0.2
Application Note

8/12

https://datatracker.ietf.org/doc/html/rfc4648#section-4

Chapter 4. Verifying an attestation bundle

Key

k.data.curve

k.data.curve.name

k.data.Q
k.data.Q.flags
k.data.Q.x

k.data.Q.y

4.2.3.1. Supported values for k.data.curve.name

Syntax
object

string

object
list
base64(integer)

base64(integer)

The supported named curves are as follows.

NISTP192
NISTP384
NISTB233
NISTB571
NISTK283
BrainpoolP160r1
BrainpoolP192t1
BrainpoolP256r1
BrainpoolP320t1
BrainpoolP512r1

ANSIB191v1

NISTP224
NISTP521
NISTB283
NISTK163
NISTK409
BrainpoolP160t1
BrainpoolP224r1
BrainpoolP256t1
BrainpoolP384r1
BrainpoolP512t1

SECP160r1

Meaning
Container for domain parameters

Domain parameters of curve (see
below for supported values)

Public point
Always empty
X coordinate of public point

Y coordinate of public point

NISTP256
NISTB163
NISTB409
NISTK233
NISTK571
BrainpoolP192r1
BrainpoolP224t1
BrainpoolP320r1
BrainpoolP384t1
ANSIB163v1

SECP256k1

If this field is Custom or CustomLCF, the full domain parameters of the curve are given in

further fields. These are described in the nCore APl documentation.

4.2.4. Ed25519 public keys

The key type is Ed25519Public. The data object has the following field.

Key

k.data.k

Syntax

base64(bytes)

Meaning

RFC8032-format public key

nShield Key Attestation Verifier v1.0.2

Application Note

9/12

https://datatracker.ietf.org/doc/html/rfc8032

Chapter 5. Getting a missing warrant

5. Getting a missing warrant

To use the nfkmattest tool to generate an attestation bundle, the HSM used must have a
KLF2 warrant installed in the appropriate location, or an alternative search directory
specified with the --warrants DIR option.

If a warrant can't be found locally but has been installed on a different server, it can be
copied over a secure connection. By default, these warrants are stored in
NFAST_KMLOCAL/warrants/ for Solo + or Solo XC, or NFAST_KMDATA/hsm-<ESN>/warrants/ for
Connect + or Connect XC modules. nShield 5s and nShield 5c¢ are supplied with the
required warrants pre-installed and stored within the module. These will be fetched by the
Security World software when necessary.

If no warrants are installed, complete the steps in the relevant nShield User Guide to
request one from Entrust.

nShield Key Attestation Verifier v1.0.2 10/12
Application Note

Chapter 6. Worked examples

6. Worked examples

Below is an example generating a key, creating a bundle and verifying the bundle for a
recoverable RSA key.

$ generatekey -b simple protect=token type=RSA ident=rsaexample
key generation parameters:

operation Operation to perform generate
application Application simple
protect Protected by token
slot Slot to read cards from 0
recovery Key recovery yes
verify Verify security of key yes

type Key type RSA

size Key size 2048
pubexp Public exponent for RSA key (hex)

ident Key identifier rsaexample
plainname Key name

nvram Blob in NVRAM (needs ACS) no

Loading ‘sampleocs':

Module 1: @ cards of 1 read

Module 1 slot @: ‘sampleocs' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_simple_rsaexample
$ nfkmattest bundle simple rsaexample
$ nfkmattest verify key_simple_rsaexample.att
{
"path": "key_simple_rsaexample.att",
"protection": "cardset",
"recovery": true,
"type": "RSAPublic",
"permissions": [
"sign",
"decrypt",
"unwrap"
I
"esn": "A89B-485C-A955",
"hknso": "06669505 feaa2de2 5e94940b d2ac1341 abe2b475",

" {
"type": "RSAPublic",
"data": {

"e": "AQAB",

n_on,

n
"5141Ps/SdZ7viCuXidF/IkI/13PLsu3GfKp8YgmQ5P5qK/mWRcMPeQ@Z08SQKIBsoKf+/Shhxn@81TxP3n8U407D94BxRfcpht@2nk3mmQyvDm@aN
dzV9cBBec7]k0ipegAqjQm+KfF8dbWtCbmvki7Eg2jcscCaT5qo9In@XhwXLYhmVG8CdqGrPYQR3CVstzjv+uTe+vofmii29S6D4uYG/z9kWDyym3X
UKmvjwGAEt2kyZ7BVxeP+tahIkLnvglFJuYKIEF3186+2UKem8hJa1tTxkXsWuGA@ShsXikV67uImXMGOAD1x9HmmFAUQSFL/GSIETEATZM]X2WE i
dx3w=="
}

}

}

Below is an example of the same process for a non-recoverable PKCS#11 ECDSA key. The
key can be generated using the nShield PKCS#11 API but generatekey is used here for
brevity.

$ generatekey -b pkcs11 protect=token type=ECDSA plainname=ecdsaexample

nShield Key Attestation Verifier v1.0.2 1/12
Application Note

Chapter 6. Worked examples

key generation parameters:

operation Operation to perform generate
application Application pkes11
protect Protected by token

slot Slot to read cards from 0

recovery Key recovery no

verify Verify security of key yes

type Key type ECDSA
plainname Key name ecdsaexample
nvram Blob in NVRAM (needs ACS) no

curve Elliptic curve NISTP256

Loading ‘sampleocs':

Module 1: @ cards of 1 read

Module 1 slot @: ‘sampleocs' #1

Module 1 slot 0:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_pkcs11_uc3f8abff09207a68ead2ad176ba7aeed25370eab1-
04b5c0582d4371e4ac7e370723398e469441427¢

$ nfkmattest bundle pkcs11 uc3f8abff09207a68ead2ad176ba7aeed25370eab1-04b5c0582d4371edac7e370723398e469441427¢ -o

key_pkcs11_ecdsaexample.att
§ nfkmattest verify key_pkcs11_ecdsaexample.att
{
"path": "key_pkcs11_ecdsaexample.att",
"protection": "cardset",
"recovery": false,
"type": "ECDSAPublic",
"permissions": [
"sign"
Iy
"esn": "A89B-485C-A955",
"hknso": "06669505 feaa2de2 5e94940b d2ac1341 abe2b475",
"k"s {
"type": "ECDSAPublic",
"data": {
"curve": {
"name": "NISTP256"
B
"Q": A
"flags": [1,
"x": "EhCTAIWyYL38wdhHM8x60fKIp6rQ3wWpbhjISwwi+k=",
"y": "r1YAfIjH50q0y23a7u8@y1UZwiv7LT84rRH+7p/2EVg="
}
}

nShield Key Attestation Verifier v1.0.2
Application Note

12/12

	nShield Key Attestation: nShield Key Attestation Verifier v1.0.2 Application Note
	Table of Contents
	1. Introduction
	2. Installing the nShield Key Attestation Verifier
	2.1. Install the nShield Key Attestation Verifier
	2.1.1. Windows:
	2.1.2. Linux:

	2.2. Uninstall the nShield Key Attestation Verifier
	2.2.1. Windows
	2.2.2. Linux:

	3. Generating an attestation bundle
	3.1. Bundle details

	4. Verifying an attestation bundle
	4.1. Private key operations
	4.2. Public key parameters
	4.2.1. RSA public keys
	4.2.2. DSA and KCDSA public keys
	4.2.3. ECC public keys
	4.2.4. Ed25519 public keys

	5. Getting a missing warrant
	6. Worked examples

