@

ENTRUST

IBM Blockchain

nShield® HSM Integration Guide

2024-02-12

© 2024 Entrust Corporation. All rights reserved.

Table of Contents

L Introduction 1
11. Product configurations 1
1.2. Requirements 2
2. Procedures 3
2.1. OpenShift container platform 3
2.2. Deploy IBM Blockchain. 4
2.3. Create the NFS storage class for the cluster. 4
2.4. Generate the HSM config files and copying files to the persistent
VOIUME . 6
2.5. Generate keys using different key protection methods. 7
2.6. Build the custom HSM image 8
2.7. Getting the rh8nshieldibm image into the OpenShift container image
FEOISTrY o 9
2.8. Create the rh8nshieldibm image pull secret n
2.9. Create the persistent volume, persistent volume claim, and configmap
for the HSM . . n
2.10. Deploy the IBM Blockchain certificate authority node 13
211. Troubleshooting the CA node deployment 17
2.12. Check if deployment is successful. 18
3. Sample YAML files 20
3. hsm-pv.yaml oo 20
3.2. hsm-pveyaml. ... 20
3.3. hsm-cmyaml .. 20
3.4, nfs-rbac.yaml. 21
3.5. storage-class.yaml. 22
3.6. nfs-deploymentiyaml 22
4. Additional resources and related products. L. 24
A0 VIdeO o 24
4.2.nShield Connect 24
4.3.nShield as a Service 24
4.4, nShield Container Option Pack 24
4.5. Entrust digital security solutions. 24

4.6. nShield product documentation 24

Chapter 1. Introduction

IBM Blockchain Platform integrates with the Entrust nShield® Hardware Security

Module (HSM) to generate and store the private keys used by its Certificate

Authority (CA), Peer, and Orderer nodes. This guide demonstrates using an HSM

On Demand service’s PKCS #11 API to securely store Blockchain CA, Peer, and

Orderer private keys. When an HSM generates the signing keys for Blockchain

Identities, the cryptographic operations are offloaded to the HSM. This provides

protects and manages the keys with its FIPS 140 Level 3 certified hardware.

This guide describes how to perform and validate the

integration. It does not necessarily describe the best practices

for the implementation.

1.1. Product configurations

Entrust has successfully tested nShield HSM integration in the following

configurations:

Product

IBM Blockchain Platform

OpenShift Container Platform (Client)
OpenShift Container Platform (Server)
Kubernetes Version

Base OS (Image Building machine)

OS for NFS server

nShield HSM

HSM Protection Methods Used.
nShield Security World

nShield Container Option Pack (nCOP)

Version
2.5.2-132, 2.5.3-11
4.8.43

4.8.43
v1.21.11+6b3cbdd

Red Hat Enterprise Linux release 8.5
(Ootpa)

CentOS Linux release 7.9.2009 (Core)

Connect XC (12.50.11) - Image 12.80.4

Connect + (12.50.8) - Image 12.80.4
Module, Softcard. OCS not tested.
12.80.4

111

IBM Blockchain

1/24

IBM Blockchain 2/24

Product Version

VMware ESXi 7.0.1 on a Dell PowerEdge R740
Docker Docker version 20.10.17, build 100c701
Podman 3.2.3

1.2. Requirements

Ensure that you have supported versions and entitlements of the Entrust nShield,
IBM Blockchain Platform, and third-party products. See Product configurations.

To perform the integration tasks, you must have:

* root access on the operating system.

* Access to nfast.

Before starting the integration process, familiarize yourself with:

e The documentation for the HSM.

 The documentation and setup process for Docker or Podman.

Before using the nShield software, you need to know:

* Whether the application keys are protected by the module, or a Softcard with
or without a pass phrase.

* Whether the Security World should be compliant with FIPS 140 Level 3.

0 Entrust recommends that you allow only unprivileged
connections unless you are performing administrative tasks.

For more information on configuring and managing nShield HSMs, Security

Worlds, and Remote File Systems, see the User Guide and Installation Guide for
your HSM(s).

IBM Blockchain 2/24

Chapter 2. Procedures

Before deploying the nShield nCOP image onto OpenShift to be integrated with
IBM Blockchain Platform, complete the following integration procedures:

Install and configure the nShield Connect XC, see the /nstallation Guide for
your HSM.

Configure the HSM(s) to have the IP address of your container host machine
as a client, as well as the IP addresses of the nodes that make up your
OpenShift cluster.

Create a new Security World or load an existing one on the HSM. The Security
World and module files will need to be copied to a specific directory on the
NFS server that will be accessed by the IBM Blockchain Platform nodes. This
will use either OpenShift or a Kubernetes persistent volume. Instructions for

this are included later in this guide.

* Docker or Podman installed to build the image.

* Install NnCOP on the image-building machine. See the nShield Container Option

Pack User Guide.

For more information on configuring and managing nShield HSMs, Security
Worlds, and Remote File Systems, see the User Guide for your HSM(s).

This guide uses a Red Hat OpenShift cluster for deployment of

the IBM Blockchain Platform, so many commands in this guide

o are oc commands. These oc commands can be directly replaced
with kubectl commands if you are deploying onto a Kubernetes
cluster.

2.1. OpenShift container platform

For this integration a Red Hat OpenShift cluster running OpenShift 4.8.43 is used.

For example:
% oc version
Client Version: 4.8.43

Server Version: 4.8.43
Kubernetes Version: v1.21.11+6b3cbdd

The cluster is composed of three master nodes and three worker nodes:

% oc get nodes

IBM Blockchain 3/24

IBM Blockchain 4/24

NAME STATUS ~ ROLES ~ AGE VERSION

ocp4843-w9lph-master-0 Ready master 79m v1.21.11+6b3cbdd
ocp4843-w9lph-master-1 Ready master 79m v1.21.11+6b3cbdd
ocp4843-w9lph-master-2 Ready master 79m v1.21.11+6b3cbdd

ocp4843-w9lph-worker-925wf Ready worker ~ 58m v1.21.11+6b3cbdd
ocp4843-w9lph-worker-dzpmk Ready worker 58m v1.21.11+6b3cbdd
ocp4843-w9lph-worker-gl8gr Ready worker — 58m v1.21.11+6b3cbdd

For more information on how to install and setup Red Hat OpenShift, see Installing
and configuring OpenShift Container Platform clusters in the Red Hat online
documentation.

2.2. Deploy IBM Blockchain

Perform the IBM Blockchain 2.5.3 deployment guide process in the IBM online
documentation to deploy and install IBM Blockchain on your Red Hat OpenShift
Cluster.

Some sample YAML files are provided in this guide to help with
0 the integration. You may need to make changes to these to
support your specific integration.

2.3. Create the NFS storage class for the cluster

If you have already created a storage class for your cluster, you can skip this
section. All that will be needed in later sections of this guide is the storage class
name (<storage-class-name>) and the NFS share directory (<nfs-directory>).

To serve as persistent storage for the IBM Blockchain Platform deployment onto
OpenShift, a separate CentOS 7 virtual machine was created with 2 vCPUs, 8 GB
Memory, and 400 GB storage (to meet storage requirements for the IBM
Blockchain console and nodes). This VM hosts an NFS server that is connected to
the cluster.

* For steps on deploying your own NFS server, see https://dev.to/
prajwalmithun/setup-nfs-server-client-in-linux-and-unix-27id.

* For steps on connecting it to OpenShift, see
https://levelup.gitconnected.com/how-to-use-nfs-in-kubernetes-cluster-
storage-class-ed1179a83817.

» Also see How do | create a storage class for NFS dynamic storage
provisioning in an OpenShift environment? the IBM online documentation.

IBM Blockchain 4/24

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/installing/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/installing/index
https://www.ibm.com/docs/en/blockchain-platform/2.5.3?topic=options-deploy-blockchain-253-manually
https://dev.to/prajwalmithun/setup-nfs-server-client-in-linux-and-unix-27id
https://dev.to/prajwalmithun/setup-nfs-server-client-in-linux-and-unix-27id
https://dev.to/prajwalmithun/setup-nfs-server-client-in-linux-and-unix-27id
https://dev.to/prajwalmithun/setup-nfs-server-client-in-linux-and-unix-27id
https://dev.to/prajwalmithun/setup-nfs-server-client-in-linux-and-unix-27id
https://levelup.gitconnected.com/how-to-use-nfs-in-kubernetes-cluster-storage-class-ed1179a83817
https://levelup.gitconnected.com/how-to-use-nfs-in-kubernetes-cluster-storage-class-ed1179a83817
https://levelup.gitconnected.com/how-to-use-nfs-in-kubernetes-cluster-storage-class-ed1179a83817
https://levelup.gitconnected.com/how-to-use-nfs-in-kubernetes-cluster-storage-class-ed1179a83817
https://www.ibm.com/support/pages/how-do-i-create-storage-class-nfs-dynamic-storage-provisioning-openshift-environment
https://www.ibm.com/support/pages/how-do-i-create-storage-class-nfs-dynamic-storage-provisioning-openshift-environment

The following YAML files may be useful to setup NFS with OpenShift:

* nfs-rbac.yaml

* nfs-deployment.yaml

The important fields on this file are:

- name: NFS_SERVER
value: XX.XXX.XXX.XXX
- name: NFS_PATH
value: /your/nfs/path

Make sure they match the NFS_SERVER and NFS_PATH you are using.
* storage-class.yaml

The important fields on this file are:

pathPattern: "ibmblockchain"

This field will be used by IBM Blockchain. During the deployment process a
folder named ibmblockchain will be created in the NFS_PATH where IBM
Blockchain will store its files.

See Sample YAML files for YAML files you can adapt to your system.

If you need to connect your NFS server to OpenShift and make it the default
storage class for your cluster, run the following commands:

% oc apply -f nfs-rbac.yaml -n ibm-blockchain-proj
serviceaccount/nfs-client-provisioner created
clusterrole.rbac.authorization.k8s.io/nfs-client-provisioner-runner unchanged
clusterrolebinding.rbac.authorization.k8s.io/run-nfs-client-provisioner unchanged
role.rbac.authorization.k8s.io/1leader-locking-nfs-client-provisioner created
rolebinding.rbac.authorization.k8s.io/leader-locking-nfs-client-provisioner created

% oc adm policy add-scc-to-user hostmount-anyuid system:serviceaccount:ibm-blockchain-proj:nfs-client-provisioner
clusterrole.rbac.authorization.k8s.io/system:openshift:scc:hostmount-anyuid added: "nfs-client-provisioner"

% oc apply -f nfs-deployment.yaml -n ibm-blockchain-proj
deployment.apps/nfs-client-provisioner created

% oc apply -f storage-class.yaml -n ibm-blockchain-proj
storageclass.storage.k8s.i0/nfs-storage created

This setup needs to be performed after you create your ibm-blockchain-proj and
before the deployment of the bp-operator during the deployment of IBM
Blockchain.

o ‘ Throughout the rest of this guide, for clarity, the storage class

IBM Blockchain 5/24

IBM Blockchain 6/24

nfs-storage, is referred to as <storage-class-name>.

% oc get serviceaccount
NAME SECRETS AGE
nfs-client-provisioner 2 3m

% oc get storageclasses -n ibm-blockchain-proj

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE

nfs-storage k8s-sigs.io/nfs-subdir-external-provisioner Delete Immediate false
0s

% oc get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
nfs-client-provisioner 1/1 1 1 2m28s

2.4. Generate the HSM config files and copying files
to the persistent volume

This section describes how to generate the HSM config file after installing nCOP,
and copy the required files to the persistent volume that will be accessed by the
IBM Blockchain Platform nodes.

1. Change to the directory where nCOP is installed.

2. Run the following command to create the config file in /opt/nfast/kmdata/local.

% ./make-nshield-hwsp-config --output /opt/nfast/kmdata/local/config <HSM-IP>

3. Verify your config file looks like the following.

syntax-version=1

[nethsm_imports]
local_module=1
remote_esn=<HSM-ESN>
remote_ip=<HSM-IP>
remote_port=9004
keyhash=...
privileged=0

4. Copy config to <nfs-directory>.

5. Additionally, copy the world and module files to <nfs-directory>. Both files are
found at /opt/nfast/kmdata/local where your Security World is installed, and
the module file is named module_<HSM-ESN>.

6. Finally, create the cknfastrc file in <nfs-directory>. The next section will
describe how to populate this file to change the mode of key protection.

IBM Blockchain 6/24

% touch <nfs-directory>/cknfastrc

7. Ensure all the files in the <nfs-directory> have proper users/groups and

permissions.

% ls -1 <nfs-directory>

-rw-r--r--. 1 nfast
-rw-r--r--. 1 nfast
-rwxr-xr-x. 1 nfast
-rwxr-xr-x. 1 nfast

nfast
nfast
nfast
nfast

33 Jun 14 14:04 cknfastrc

179 Jun 14 14:00 config
3488 Jun 14 14:02 module_BD10-03EQ-D947
39968 Jun 14 14:02 world

The pkes11.1og is described in Generate keys using different key protection

methods.

2.5. Generate keys using different key protection

methods

This section describes how to populate the <nfs-directory>/cknfastrc file based on

what method of key protection you choose.

1. If you want to generate keys with module protection, add the following line to
the 'cknfastrc’ file:

CKNFAST_FAKE_ACCELERATOR_LOGIN=1

2. To protect keys with softcard protection, add the following lines to cknfastrec:

CKNFAST_LOADSHARING=1
CKNFAST_FAKE_ACCELERATOR_LOGIN=1

To generate a softcard, run the following command on a valid Security World

installation:

% /opt/nfast/bin/ppmk --new <softcard-name>

This generates a softcard file in /opt/nfast/kmdata/local which must be copied

to <nfs-directory> to be accessed by both containers that are eventually

created.

3. If you want to add PKCS11 debugging, add the following two lines to the

cknfastre file:

IBM Blockchain

7/24

IBM Blockchain 8/24

CKNFAST_DEBUG=10
CKNFAST_DEBUGFILE=/opt/nfast/kmdata/local/pkcs11.1log

Then create the pkes11.1og file. /opt/nfast/kmdata/local will be mounted to
<nfs-directory>. This is why the touch command path and the debug file path
differ.

% touch <nfs-directory>/pkesi1.log

2.6. Build the custom HSM image

Successful completion of this section requires the following files on your image-
building machine:

* make-nshield-ibmibp.

* Security World ISO. This guide uses version SecWorld_Lin64-12.80.4.1so.

o The customer receives the make-nshield-ibmibp script with their
purchase of nCOP.

1. Ensure the make-nshield-ibmibp script has executable permissions:

% chmod +x make-nshield-ibmibp

2. Mount the appropriate security world ISO file to /mnt:

% mount -t 1509660 -o loop SecWorld_Lin64-12.80.4.iso /mnt
mount: /dev/loop@ is write-protected, mounting read-only

3. Run the script:

% ./make-nshield-ibmibp --from registry.access.redhat.com/ubi8/ubi:latest --tag rh8nshieldibm /mnt
Detecting nShield software version

Version is 12.80.4

Unpacking hwsp...

Building image...

Sending build context to Docker daemon 702.4MB

Successfully built 9764c359f3cc
Successfully tagged rh8nshieldibm:latest

4, Verify the image was built successfully:

% docker images

IBM Blockchain 8/24

REPOSITORY
rh8nshieldibm

5. Umount the ISO:

% umount /mnt

2.7. Getting the rh8nshieldibm image into the

TAG
latest

IMAGE ID
9764¢359f3cc

CREATED
2 minutes ago

OpenShift container image registry

This section details the steps needed to get the rh8nshieldibm image into the
OpenShift image registry. Docker or Podman can be used. OpenShift supports

SIZE
929MB

pulling a container image for deployment from an external docker registry. In this

guide, the external registry is <external-docker-registry-1P-address>.

To deploy the rh8nshieldibm image for use with OpenShift:

1. Retag the image:

% docker tag rh8nshieldibm <external-docker-registry-IP-address>/<image-name>

2. Log in to the external registry and enter the password when prompted:

% docker login -u <registry-username> <external-docker-registry-IP-address>

3. Push the docker image to the external registry:

% docker push <external-docker-registry-IP-address>/<image-name>

4. List the nodes to view the compute/worker nodes:

% oc get nodes

NAME
ocp4843-w9lph-master-0
ocp4843-w9lph-master-1
ocp4843-w9lph-master-2
ocp4843-w9lph-worker-925wf
ocp4843-w9lph-worker-dzpmk
ocp4843-w9lph-worker-gl8gr

STATUS
Ready
Ready
Ready
Ready
Ready
Ready

ROLES

master
master
master
worker
worker
worker

AGE

4d20h
4d20h
4d20h
4d20h
4d20h
4d206h

VERSION

vl.
vl.
vl.
vl.
vl.
vl.

21
21
21
21
21
21

.11+6b3cbdd
.11+6b3cbdd
.11+6b3cbdd
.11+6b3cbdd
.11+6b3cbdd
.11+6b3cbdd

5. Create a shell for one of the compute nodes listed:

% oc debug nodes/ocp4843-w9lph-master-0

Starting pod/ocp4843-w9lph-master-0-debug ...

To use host binaries, run ‘chroot /host®

IBM Blockchain

9/24

IBM Blockchain 10/24

10.

1.

12.

13.

4.

Pod IP: 10.194.148.228
If you don't see a command prompt, try pressing enter.
sh-4.44

. Create access to tools such as oc and Podman on the node:

% chroot /host

Log into the container platform from the node:

% oc login -u kubeadmin -p <cluster-password> <console-url>

Ensure you are using the same project on your cluster that the pods running
the IBM Blockchain operator and console:

% oc project <ibp-project-name>
Now using project <ibp-project-name> on server <console-url>

Log in to the container image registry:

% podman login -u kubeadmin -p $(oc whoami -t) image-registry.openshift-image-registry.svc:5000

Log in to the remote registry and enter the password when prompted:

% podman login -u <registry-username> <external-docker-registry-IP-address>

Pull the image from the remote registry:

% podman image pull <external-docker-registry-IP-address>/<image-name>

List the downloaded image:

% podman images
<external-docker-registry-IP-address>/<image-name> 1latest 6af59fac9600 21 hours ago 734 MB

Retag the image:

% podman tag <external-docker-registry-IP-address>/<image-name> image-registry.openshift-image-
registry.svc:5000/openshift/rh8nshieldibm

Push the image to the container platform registry:

% podman push image-registry.openshift-image-registry.svc:5000/openshift/rh8nshieldibm

IBM Blockchain 10/24

Getting image source signatures
Copying blob done

Writing manifest to image destination
Storing signatures

15. Remove the debug pod:

% exit
exit
% exit
exit

Removing debug pod ...

2.8. Create the rh8nshieldibm image pull secret

This section details the steps needed to create an image pull secret for the
rh8nshieldibm image. This pull secret is needed so that the IBM Blockchain Platform
nodes can pull the image from the OpenShift container image registry. The pull
secret uses a token as part of the credentials to pull images.

1. Ensure you have a valid token:

% oc whoami -t
a-Jj-mALh...

2. Create the secret:

% oc create secret docker-registry hsm-docker-secret --docker-server=image-registry.openshift-image
-registry.svc:5000 --docker-username=kubeadmin --docker-password=$(oc whoami -t) --docker-email=<email> -n
<ibp-project-name>

In this example:

- Replace <email> with any email address.

- Replace <ibp-project-name> with the namespace where your IBM
Blockchain Platform operator and console are deployed.

- Note how the Docker password is simply the token.

2.9. Create the persistent volume, persistent volume
claim, and configmap for the HSM

This section describes how to deploy the persistent volume and persistent volume

IBM Blockchain 11/24

IBM Blockchain 12/24

claims on your cluster so that the IBM Blockchain Platform nodes can access their
data on the NFS server. It also covers how to deploy the HSM ConfigMap, which is
pulled by the platform to store the HSM configuration.

o See Sample YAML files for YAML files you can adapt to your
system.

1. Edit the hsm-pv.yaml file.

Note the prefix being used in the name of the PV as this will will be used later
in the integration. In this file, use the same nfs path and storage class as when
IBM Blockchain was deployed.
metadata:
name: ibmblockchain-pv
nfs:
path: /your/nfs/path

Server: XX.XXX.XXX.XXX
storageClassName: nfs-storage

2. Edit the hsm-pvc.yaml file.

Note the prefix being used in the name of the PVC as this will will be used
later in the integration. It should match the same prefix on the PV.

metadata:
name: ibmblockchain-pvc

3. Edit the hsm-cm.yaml file.

Note that the ConfigMap uses the image built earlier. This is required in the
internal OpenShift registry.

image: >-
image-registry.openshift-image-registry.svc:5000/openshift/rh8nshieldibm

If using softcard protection, change the hsm-cm.yaml file and add the following
environment variable to the envs section:

envs:
- name: CKNFAST_LOADSHARING
value: 1

4. Create the PV, PVC, and ConfigMap on the cluster:

IBM Blockchain 12/24

% oc apply -f hsm-pv.yaml
persistentvolume/testlca-pv created

% oc apply -f hsm-pvc.yaml
persistentvolumeclaim/testl1ca-pvc created

% oc apply -f hsm-cm.yaml
configmap/ibp-hsm-config created

5. Verify everything was deployed successfully:

% oc get cm
NAME DATA AGE
ibp-hsm-config 1 40s

% oc get pv

NAME CAPACITY ACCESS RECLAIM P. STATUS CLAIM

STORAGECLASS ~ REASON AGE

ibmblockchain-pv 100Gi RwX Retain Bound ibm-blockchain-proj/ibmblockchain-pve nfs-storage
20s

% oc get pve
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
ibmblockchain-pve Bound ibmblockchain-pv 100Gi RWX nfs-storage 65s

The prefixes of the PV and PVC are important. In the above

0 example, the prefix is ibmblockchain. This must exactly match the
name of the certificate authority node you will later create from
the IBM Blockchain Platform console.

2.10. Deploy the IBM Blockchain certificate authority
node

This section describes how to deploy a certificate authority (CA) node from the
IBM Blockchain console and configure it with an Entrust HSM.

To deploy the CA node from the IBM Blockchain console:

1. Browse to your IBM Blockchain console and log in using your credentials.

2. After logging in, from the Nodes page, scroll down and select Add Certificate
Authority +.

IBM Blockchain 13/24

IBM Blockchain 14/24

IBM Blockchain Platform

Certificate Authorities ©®

Add Certificate Authority +

No Certificate Authorities available

Get started by creating or importing a CA.

Step1of 3

Add Certificate Authority

o create or import a Certificate Authority

Import an existing Certificate Authority

Cancel

4, Enter a CA display name. This must match the prefix of the name of the
Persistent Volume and Persistent Volume Claim, which can be found in either
hsm-pv.yaml or hsm-pvc.yaml. In this example:

> The name of the PVC is ibmblockchain-pvc.
> The CA display name is ibmblockchain.

5. Enter a CA administrator enroll ID. Ideally, this should match the email used to
sign into the console.

6. Enter a CA administrator enroll secret. Remember your enroll ID and secret as
these will be needed later to associate an admin identity with the root CA.

7. Under Advanced deployment options, select the checkboxes for Hardware
Security Module (HSM) and Resource allocation.

IBM Blockchain 14/24

Step 2of 5

Add Certificate Authority

8. Select Next.

9. The next configuration page should pertain to the HSM. If the HSM ConfigMap
(hsm-cm.yaml) was deployed and the custom HSM image was created and
imported into the OpenShift container image registry correctly, you should
see a toggle for Use HSM client image. Make sure this toggle is present and
toggled on.

10. For HSM label, enter accelerator.
1. For HSM PIN, anything can be entered (remember this number). For example,

a valid PIN is 1234.

X

Hardware Security Module (HSM)

IBM Blockchain 15/24

IBM Blockchain 16/24

12. Select Next when finished.

13. The next configuration page should pertain to resource allocation.

The default resource allocation is 0.1 CPU, 200 MB memory, and 20 GB
storage. Change these numbers if needed, but make sure enough disk storage
exists on the NFS server if you decide to increase the storage capacity.

Resource allocation

Certificate Authority container @
cPu CPUs)*

0.1

CPU (VPC) usage total Memory usage total Storage usage total
01 200 M 20 Gi

14. Select Next when finished.

15. Review the CA configuration.

IBM Blockchain 16/24

Summary

Estimated resource use
0.1 CPU {(VFC)

Add Certificate Authority

16. When finished, select Add Certificate Authority.

You should see a success message that the CA was added and the CA should
show on the console dashboard under Certificate Authorities. For example:

@ Certificate Authority X
added

Congratulations! You have
successfully created
'ibmblockchain’. It will
take a few minutes for the
status to become green
while it is deploying to
your cluster in the
background. Feel free to
carry on with your other
activities in the console
while that happens.

6/22/2022, 4:16:03 PM

There may be issues with the HSM and troubleshooting may be required at this
stage, see Troubleshooting the CA node deployment. If there are no issues,
continue from Check if deployment is successful.

2.11. Troubleshooting the CA node deployment

IBM Blockchain 17/24

IBM Blockchain 18/24

Here are some examples of things you can do to troubleshoot the CA node
deployment:

1. Look at the logs for the certgen container:

% oc logs <ca-pod-name> certgen

2. Look at the logs for the hsm-daemon container:

% oc logs <ca-pod-name> hsm-daemon

2.12. Check if deployment is successful
To check if a deployment is successful:

1. Wait for the CA to become operational. This may take a few minutes. When
the CA is operational, a green box will show inside the CA square on the
console dashboard. For example:

Certificate Authorities ®

Add Certificate Authority +

ibmblockchain

™ Red Hat Openshift

2. Verify that the CA files are present on the NFS server at <nfs-directory>:

[

% cd <nfs-directory>; 1s

fabric-ca-server

% cd fabric-ca-server; 1s
ca db tlsca

3. Verify that the key_pkcs11 files are present on the NFS server at <nfs-
directory>:

-rw-r--r--. 1 root root 8008 Jun 21 15:37 key_pkcs11_uadef5b903573703fc63055eb1579d217f6adbfodf
-rw-r--r--. 1 root root 8008 Jun 21 15:37 key_pkcs11_uab41a8aa3leel1b3f9c61353d322a95d3128fe9720

4, If the CA is successfully deployed, you should see the following pod listing:

IBM Blockchain 18/24

% oc get pods

NAME

ibmblockchain-789d7689ff-r7ctp
ibp-operator-6cc567667c-ngrilw
ibpconsole-58b57bb947-jc26w
nfs-client-provisioner-564f7cb984-bc9zh

READY
2/2
11
4/4
11

STATUS

Running
Running
Running
Running

RESTARTS
0

0
0
0

AGE
20h
20h
20h
20h

5. The CA key that was generated via PKCS #11 by the HSM is now stored and

protected within the HSM.

IBM Blockchain

19/24

IBM Blockchain 20/24

Chapter 3. Sample YAML files

3.1. hsm-pv.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
name: ibmblockchain-pv
spec:
accesshModes:
- ReadWriteMany
capacity:
storage: 100Gi
nfs:
path: <nfs-directory>
server: <nfs-server-IP>
persistentVolumeReclaimPolicy: Retain
storageClassName: <storage-class-name>
volumeMode: Filesystem

3.2. hsm-pvc.yaml

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: ibmblockchain-pvc
namespace: ibm-blockchain-proj
spec:
accesshModes:
- ReadWriteMany
resources:
requests:
storage: 100Gi
storageClassName: <storage-class-name>
volumeMode: Filesystem
volumeName: ibmblockchain-pv

3.3. hsm-cm.yaml

kind: ConfigMap
apiVersion: v1

metadata:
name: ibp-hsm-config
data:
ibp-hsm-config.yaml: |
library:
filepath: /opt/nfast/toolkits/pkes11/1libcknfast.so
image: >-
image-registry.openshift-image-registry.svc:5000/openshift/rh8nshieldibm
auth:
imagePullSecret: hsm-docker-secret
daemon:
image: >-

image-registry.openshift-image-registry.svc:5000/openshift/rh8nshieldibm

IBM Blockchain 20/24

auth:
imagePullSecret: hsm-docker-secret
envs:
- name: LD_LIBRARY_PATH
value: /stdll
- name: CKNFAST_FAKE_ACCELERATOR_LOGIN
value: 1
- name: CKNFAST_DEBUG
value: 10
- name: CKNFAST_DEBUGFILE

value: /opt/nfast/kmdata/local/pkes11.log

- name: NFAST_SERVER
value: /shared/sockets/nserver
- name: NFAST_PRIVSERVER
value: /shared/sockets/privnserver
mountpaths:
- mountpath: /opt/nfast/kmdata/local
name: tokeninfo
usePVC: true
type: hsm
version: v1

3.4. nfs-rbac.yaml

kind: ServiceAccount
apiVersion: v1
metadata:
name: nfs-client-provisioner
namespace: ibm-blockchain-proj
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: nfs-client-provisioner-runner
rules:
- apiGroups: [""]
resources: ["nodes"]
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources: ["persistentvolumes"]

verbs: ["get", "list", "watch", "create", "delete"]

- apiGroups: [""]
resources: ["persistentvolumeclaims"]

verbs: ["get", "list", "watch", "update"]

- apiGroups: ["storage.k8s.i0"]
resources: ["storageclasses"]
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources: ["events"]
verbs: ["create", "update", "patch"]
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: run-nfs-client-provisioner
subjects:
- kind: ServiceAccount
name: nfs-client-provisioner
namespace: ibm-blockchain-proj
roleRef:
kind: ClusterRole
name: nfs-client-provisioner-runner
apiGroup: rbac.authorization.k8s.io

IBM Blockchain

21/24

IBM Blockchain

22/24

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: leader-locking-nfs-client-provisioner
namespace: ibm-blockchain-proj
rules:
- api6Groups: [""]
resources: ["endpoints"]

verbs: ["get", "list", "watch", "create", "update", "patch"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: leader-locking-nfs-client-provisioner
namespace: ibm-blockchain-proj
subjects:
- kind: ServiceAccount
name: nfs-client-provisioner
namespace: ibm-blockchain-proj
roleRef:
kind: Role
name: leader-locking-nfs-client-provisioner
apiGroup: rbac.authorization.k8s.io

3.5. storage-class.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

name: <storage-class-name>

provisioner: k8s-sigs.io/nfs-subdir-external-provisioner

parameters:
pathPattern: "ibmblockchain"
archiveOnDelete: "false"

3.6. nfs-deployment.yaml

apiVersion: apps/v1l
kind: Deployment
metadata:
name: nfs-client-provisioner
namespace: ibm-blockchain-proj
labels:
app: nfs-client-provisioner
spec:
replicas: 1
strategy:
type: Recreate
selector:
matchlLabels:
app: nfs-client-provisioner
template:
metadata:
labels:
app: nfs-client-provisioner
spec:
serviceAccountName: nfs-client-provisioner

IBM Blockchain

22/24

containers:
- name: nfs-client-provisioner
image: k8s.gcr.io/sig-storage/nfs-subdir-external-provisioner:v4.0.2
volumeMounts:
- name: nfs-client-root
mountPath: /persistentvolumes
env:

name: PROVISIONER_NAME
value: k8s-sigs.io/nfs-subdir-external-provisioner
- name: NFS_SERVER
value: <nfs-server-IP>
name: NFS_PATH
value: <nfs-directory>
volumes:
- name: nfs-client-root
nfs:
server: <nfs-server-IP>
path: <nfs-directory>

IBM Blockchain 23/24

IBM Blockchain 24/24

Chapter 4. Additional resources and
related products

4. Video

4.2. nShield Connect

4.3. nShield as a Service

4.4. nShield Container Option Pack
4.5. Entrust digital security solutions

4.6. nShield product documentation

IBM Blockchain 24/24

https://www.youtube.com/watch?v=-tWIADsFxu0&list=PLu4ev5P7cZ0LzDbjzjRtaCrQcR3pFIPk3
https://www.entrust.com/digital-security/hsm/products/nshield-hsms/nshield-connect
https://www.entrust.com/digital-security/hsm/products/nshield-hsms/nshield-as-a-service
https://www.entrust.com/digital-security/hsm/products/nshield-software/software-option-packs/nshield-container
https://www.entrust.com/digital-security
https://nshielddocs.entrust.com/

	IBM Blockchain: nShield® HSM Integration Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Product configurations
	1.2. Requirements

	Chapter 2. Procedures
	2.1. OpenShift container platform
	2.2. Deploy IBM Blockchain
	2.3. Create the NFS storage class for the cluster
	2.4. Generate the HSM config files and copying files to the persistent volume
	2.5. Generate keys using different key protection methods
	2.6. Build the custom HSM image
	2.7. Getting the rh8nshieldibm image into the OpenShift container image registry
	2.8. Create the rh8nshieldibm image pull secret
	2.9. Create the persistent volume, persistent volume claim, and configmap for the HSM
	2.10. Deploy the IBM Blockchain certificate authority node
	2.11. Troubleshooting the CA node deployment
	2.12. Check if deployment is successful

	Chapter 3. Sample YAML files
	3.1. hsm-pv.yaml
	3.2. hsm-pvc.yaml
	3.3. hsm-cm.yaml
	3.4. nfs-rbac.yaml
	3.5. storage-class.yaml
	3.6. nfs-deployment.yaml

	Chapter 4. Additional resources and related products
	4.1. Video
	4.2. nShield Connect
	4.3. nShield as a Service
	4.4. nShield Container Option Pack
	4.5. Entrust digital security solutions
	4.6. nShield product documentation

