
Oracle Transparent Data
Encryption
nShield® HSM Integration Guide
2024-02-12

Table of Contents
1. Introduction . 1

1.1. Using this guide . 1

1.2. Product configuration . 2

1.3. Conventions used in this document . 4

1.4. Overview . 7

2. Procedures . 9

2.1. Preparatory requirements. 9

2.2. Basic set up . 11

2.3. Configuring Oracle database software to use the Entrust HSM. 13

2.4. Opening and closing a keystore or HSM . 14

2.5. Active credentials . 16

2.6. Migrating from software wallet to HSM (non-multitenant) 16

2.7. Migrating from software keystore to HSM (multitenant) 17

2.8. Create master keys directly in an HSM for non-multitenant database 19

2.9. Create master keys directly in an HSM for multitenant database 20

2.10. Rekeying or key rotation . 22

3. Troubleshooting . 25

3.1. An SQL command is run, and there is no output, or an unexpected

output or error occurs . 25

3.2. After a change to a configuration file, no resultant change in the

database behavior is observed . 25

3.3. ORA-28367: wallet does not exist . 25

3.4. ORA-28367: cannot find PKCS11 library . 25

3.5. ORA-28353: failed to open wallet . 26

3.6. ORA-28407: Hardware Security Module failed with PKCS#11 error

CKR_FUNCTION_FAILED (%d) . 26

3.7. Encryption keys do not migrate correctly from a software keystore to

an HSM (or vice-versa) . 26

3.8. When you are using persistent OCS cards, the persistent authorization

is lost . 27

3.9. ORA-00600: internal error code . 27

3.10. ORA-28374: Typed master key not found in wallet 27

3.11. ORA-12162: TNS: net service name is incorrectly specified 27

4. Appendix . 29

4.1. Security Worlds, key protection, and failure recovery 29

4.2. About the HSM credential . 31

4.3. Change token with associated passphrase but keep same protection

method . 35

4.4. Latency issues . 38

4.5. How Oracle works with the Entrust HSM. 42

5. Additional resources and related products . 46

5.1. Entrust digital security solutions . 46

5.2. nShield product documentation . 46

Chapter 1. Introduction
This guide describes how to integrate and use Entrust Security World software

and Entrust Security nShield Hardware Security Modules (HSMs) with an Oracle

database. The Oracle feature Transparent Data Encryption (TDE) provides data-at-

rest encryption for sensitive information held by the Oracle database, while at the

same time allowing authorized clients to use the database.

Oracle database software, and Entrust Security World software with nShield HSMs,

can be independently installed on the same host server. They can then be

configured to interoperate through a single library interface. It is possible to

support multiple database instances on the same host server, while each database

instance is restricted to access only its own encryption keys. Oracle cluster

technology is also supported.

Integrated Oracle and Entrust technology has been tested to support Oracle TDE

for tablespace encryption, or column encryption, or concurrently for both. Entrust

nShield HSMs are certified to FIPS 140 (level 3) to deliver a high grade of security

assurance. Functionality includes protection of sensitive enCONNECT

TESTER@DB cryption keys and support for offload of encryption and key

management operations.

This guides shows support for non-multitenant and multitenant

databases. For Oracle version 21C, only multitenant Oracle

database types are supported. Oracle does not support the

creation of non-multitenant database types on version 21C. For

more information on the multitenant support only by Oracle, see

the Oracle multitenant documentation.

If using Oracle 18c or later, the sqlnet.ora file is officially

deprecated and you should use the WALLET_ROOT and

TDE_CONFIGURATION parameters.

1.1. Using this guide

This Integration Guide covers UNIX/Linux based systems. It provides:

• An overview of how the Oracle database software and Entrust Security World

software with HSM work together to enhance security.

• Configuration and installation instructions.

Oracle Transparent Data Encryption 1/46

https://www.oracle.com/in/database/multitenant/

• Depending on your current Oracle setup, how to:

◦ Migrate encryption from an existing Oracle wallet or keystore to HSM

protection.

◦ Begin using HSM protection immediately if no Oracle software wallet or

keystore already exists.

• Examples and advice on how the product may be used.

• Troubleshooting advice.

It is assumed the reader has a good knowledge of Oracle database technology.

Assuming you already have your Oracle database installed, after installing and

configuring the Entrust Security World software with the HSM, there is no other

software required. However, some minor configuration changes will be needed.

This guide cannot anticipate all configuration requirements a customer may have.

Examples shown in this guide are not exhaustive, and may not necessarily show

the simplest or most efficient methods of achieving the required results. The

examples should be used to guide integration of the Entrust HSM with an Oracle

database, and should be adapted to your own circumstances.

Entrust accepts no responsibility for loss of data, or services, incurred by use of

examples, or any errors in this guide. For your own reassurance, it is recommended

you thoroughly check your own solutions in safe test conditions before

committing them to a production environment. If you require additional help in

setting up your system, contact Entrust Support.

Entrust accepts no responsibility for information in this guide that is made

obsolete by changes or upgrades to the Oracle product.

This guide assumes that you have read the Security World and HSM

documentation, and are familiar with the documentation and setup processes for

Oracle database TDE.

1.2. Product configuration

Entrust has successfully tested nShield HSM integration with the in the following

configurations:

Oracle Transparent Data Encryption 2/46

Oracle Transparent Data Encryption 2/46

OS Version Kernel Oracle Version

Red Hat

Enterprise Linux

8.7 (Ootpa)

Linux 4.18.0-240.el8.x86_64 Oracle Database 21c

Enterprise Edition -

21.3.0.0.0

Red Hat

Enterprise Linux

8.7 (Ootpa)

Linux 4.18.0-

425.10.1.el8_7.x86_64

Oracle Database 19c

Enterprise Edition -

19.17.0.0.0

1.2.1. Supported nShield hardware and software versions

Entrust has successfully tested with the following nShield hardware and software

versions:

1.2.1.1. Oracle 21C - 21.3.0.0.0

HSM Security
World
Software

Firmware Image OCS Softcard Module FIPS
Level 3

Connect

XC

12.80.4 12.50.11 (FIPS

Certified)

12.80.4 ✓ ✓ ✓

Connect

XC

12.80.4 12.72.1 (FIPS

Certified)

12.80.5 ✓ ✓ ✓ ✓

nShield 5 13.2.2 13.2.2 (FIPS

Pending)

13.2.2 ✓ ✓ ✓

1.2.1.2. Oracle 19C - 19.17.0.0.0

HSM Security
World
Software

Firmware Image OCS Softcard Module FIPS
Level 3

Connect

XC

12.80.4 12.50.11 (FIPS

Certified)

12.80.4 ✓ ✓ ✓

Oracle Transparent Data Encryption 3/46

HSM Security
World
Software

Firmware Image OCS Softcard Module FIPS
Level 3

Connect

XC

12.80.4 12.72.1 (FIPS

Certified)

12.80.5 ✓ ✓ ✓ ✓

nShield 5 13.2.2 13.2.2 (FIPS

Pending)

13.2.2 ✓ ✓ ✓

1.3. Conventions used in this document

1.3.1. Multitenant and non-multitenant

Descriptions in this Integration Guide may cover non-multitenant databases and

multitenant databases. Keep in mind that creation of non-multitenant databases

are not supported anymore from Oracle 21C. This guide will use the terms

appropriate to the database type under discussion, as outlined:

• Non-multitenant databases are on Oracle version 11g or earlier. Multitenant

databases start from Oracle version 12c.

• Non-multitenant database software can only create and use non-multitenant

databases. If non-multitenant databases are the subject matter, use the non-

multitenant and SQL terminology as shown below.

• Database software supporting multitenant databases may also optionally

support non-multitenant databases (pre-21c). In this case, if a non-multitenant

mode is the subject matter, then use the non-multitenant terminology and

SQL shown below. If a multitenant mode is the subject matter, then use the

multitenant terminology and SQL.

• Non-Multitenant (non-container)

1. Terminology for Oracle software based encryption key repository.

ALTER SYSTEM SET ENCRYPTION …

• Multitenant (container)

1. Terminology for Oracle software based encryption key repository

Software keystore

2. SQL preamble for encryption related commands

Oracle Transparent Data Encryption 4/46

Oracle Transparent Data Encryption 4/46

ADMINISTER KEY MANAGEMENT, etc

Where such terminology applies equally to a software wallet or software keystore,

the default terminology software keystore is used to cover both descriptive

instances.

1.3.2. Database connections

You must be a user with correct permissions to access a database, and also have

the correct privileges to perform the required operations when connected to that

database. Your system administrator should be able to create users and grant

suitable permissions and privileges according to your organization’s security

policies. Example 2

• <database-user> is the user identity making the connection.

• <database-identifier> is the database to make the connection to.

For the purpose of examples in this guide, the following database users and

database identifiers should be sufficient.

• <database-user>. This guide will use one following users for connecting to

databases:

◦ sysdba, Oracle’s standard sysdba user.

◦ system, Oracle’s standard system user.

◦ Non-Mutitenant:

▪ TESTER, as a local user.

◦ Multitenant:

▪ C##TESTER, as a common user for container (CDB) and the PDBs it

contains.

▪ CDB<n>PDB<k>TESTER, as a local user for a PDB<k> within container CDB<n>.

Where <n> and <k> are distinguishing digits.

• <database-identifier>. This guide will use one following database identifies

during a connection:

◦ Non-Multitenant databases:

▪ DB, in practice usually the ORACLE_SID of the database. For example:

CONNECT sysdba@DB
CONNECT TESTER@DB

Oracle Transparent Data Encryption 5/46

◦ Multitenant databases:

▪ CDB<n> indicates a container database where <n> is a distinguishing

digit.

▪ PDB<k> indicates a pluggable database where <k> is a distinguishing

digit.

Multitenant database identifiers will be:

▪ CDB<n>, to connect to the $CDB<n>$ROOT for a particular container CDB<n>.

▪ CDB<n>PDB<k>, to connect to PDB<k> within CDB<n>.

For example:

CONNECT sysdba@CDB1
CONNECT C##TESTER@CDB1
CONNECT C##TESTER@CDB1PDB2
CONNECT CDB1PDB1TESTER@CDB1PDB1

When you are using a multitenant database, the connection implies that you must

alter a session if you are not already connected to the required container. For

example:

• Example 1:

CONNECT C##TESTER@CDB<n>

This implies that, if you are not already connected to CDB<n>, then alter the

session:

ALTER SESSION SET CONTAINER = CDB<n>$ROOT;

• Example 2:

CONNECT CDB<n>PDB<k>TESTER@CDB<n>PDB<k>

This implies that, if you are not already connected to CDB<n>PDB<k>, then alter

the session:

ALTER SESSION SET CONTAINER = CDB<n>PDB<k>;

Examples of sqlplus connection syntax for different users:

• sqlplus / as sysdba

• sqlplus / as sysdba@CDB1ROOT

• sqlplus CDB1PDB1TESTER/Tester@//localhost:1521/CDB1PDB1.interop.com

Oracle Transparent Data Encryption 6/46

Oracle Transparent Data Encryption 6/46

1.3.3. Key migration and legacy keys

Encryption master keys may be migrated from an existing Oracle keystore to an

Entrust HSM, or vice versa. In this case, and as used in this document, the term

'key migration' means that the responsibility for holding the master keys is being

migrated. The encryption keys themselves are not copied (or imported) between a

software keystore and HSM Security World. Fresh master key(s) are created within

the software keystore or HSM that is to become the new key protector as a result

of the migration. Subsidiary keys that are being protected are re-encrypted using

the fresh master key(s). Thereafter, any new master keys are created in the current

key protector you have migrated to.

During rekey, the previous master keys, or legacy keys, remain in the software

keystore or HSM where they were created. After you have performed a key

migration, you can retain access to the legacy keys in the software keystore or

HSM you have migrated away from by making its passphrase the same as the

current key protector’s. This allows both to be open at the same time allowing

access to encryption keys they both contain. If you do not do this, you will only be

able to access keys in the current key protector. If you are using both a software

keystore and HSM at the same time, whichever is the current key protector is

called the primary.

1.4. Overview

Transparent Data Encryption (TDE) is used to encrypt an entire database in a way

that does not require changes to existing queries and applications. A database

encrypted with TDE is automatically decrypted when the database loads it into

memory from disk storage, which means that a client can query the database

within the server environment without having to perform any decryption

operations. The database is encrypted again when saved to disk storage. When

using TDE, data is not protected by encryption whilst in memory. The encryption

keys that are used to encrypt the database are typically held as part of the

database, but these keys are themselves encrypted using a master encryption key

in order to protect them. Using an Entrust HSM allows the master encryption keys

to be kept physically separate from the database it is protecting, and also provides

a hardware protected boundary from which encryption keys can never leave in

plaintext. Additionally, the encryption keys are held in a Security World folder

which is also encrypted and is useless to anyone who does not possess the

authorized means to access them. The Security World folder permits easy back up

or transfer to other legitimate clients that may use the authorized mechanisms to

Oracle Transparent Data Encryption 7/46

access the encryption keys.

Entrust recommends that you allow only unprivileged

connections unless you are performing administrative tasks.

Other benefits of using the nShield HSM include:

• Ability to store keys from all across an enterprise in one place for easy

management.

• Key Retention (rotate keys while keeping the old ones).

• FIPS and Common Criteria compliance.

Oracle Transparent Data Encryption 8/46

Oracle Transparent Data Encryption 8/46

Chapter 2. Procedures

2.1. Preparatory requirements

Before installing the software, Entrust recommends that you familiarize yourself

with:

• The Oracle database TDE documentation and setup process.

• The Entrust documentation.

Entrust also recommends you have an agreed organizational Certificate Practices

Statement and a Security Policy/Procedure in place covering administration of the

HSM. In particular, these documents should include the following aspects of HSM

administration:

• Whether the Security World must comply with FIPS 140 Level 3 or Common

Criteria restrictions.

◦ If you want to use a FIPS 140 Level 3 Security World, then you must create

an OCS card set for FIPS authorization. This is true even if you want to use

module or Softcard protection.

◦ If you are running multiple database instances on the same host, the same

FIPS authorizing OCS cards can be used for all database instances.

◦ If you want to use OCS protection, the same OCS card set used for key

protection can also be used for FIPS authorization.

• The number and quorum of Administrator Cards in the Administrator Card Set

(ACS), and a policy for managing these cards.

• Which of the following Entrust encryption key protection methods you want

to use:

◦ Module protection

◦ Softcard protection

◦ Operator Card Set (OCS) protection.

If OCS cards are to be used, you need to decide the number of Operator

Cards in the OCS card set. K/N functionality is not currently supported.

This means that you must create 1/N OCS card sets. The number of OCS

cards in a card set must at least match the number of HSMs that will be in

your configuration, and with more to spare in case of a card loss or failure.

• Entrust recommends that you create a policy for managing SQL scripts that

allow use of credentials for the Oracle database. These SQL scripts should

Oracle Transparent Data Encryption 9/46

only be available to authorized users.

• Entrust recommends that you create a policy for managing the passphrases

for your:

◦ ACS

◦ Module protection

◦ Softcard protection

◦ OCS protection

For information on passphrases, see About the HSM credential.

• Entrust recommends that you create a policy for managing the physical

security of your smartcards as used for ACS and OCS, and their deployment

to authorized users.

As part of your preparation, Entrust recommends that you read Security Worlds

key protection and failure recovery.

This guide assumes that Oracle database software, and (at least) one Oracle

database, is already installed on your system. With Oracle database software

already installed, ensure that any required patches have been added.

To integrate an Oracle database with an Entrust HSM, the following steps are

required:

1. Environment configuration.

2. Install the Entrust HSM and Security World software.

3. Configure Oracle database software to use the Entrust HSM.

Details of your installation and configuration will depend on:

• Whether you are using a non-multitenant or multitenant database.

• Whether you want to migrate encryption keys from an existing Oracle

software keystore to an Entrust HSM, or start directly with an Entrust HSM.

The default host server user is oracle unless stated otherwise.

For more information on how to configure your Entrust environment, see the User

Guide for your HSM.

For more information on how to configure your Oracle environment, see the

Oracle documentation.

For more detail or suggestions on how you may set up your system, see the

following Appendixes:

Oracle Transparent Data Encryption 10/46

Oracle Transparent Data Encryption 10/46

• Security Worlds key protection and failure recovery.

• About the HSM credential.

• Latency issues.

2.2. Basic set up

1. Install the Entrust Security World software on each client in accordance with

its accompanying documentation. If you are using Entrust Connects with a

separate RFS, the Entrust Security World software must also be installed on

the RFS.

2. Create or edit the cknfastrc file located in the NFAST_HOME directory for each

client, and depending on how you want to protect the master encryption

key(s), set the following PKCS#11 environment variables:

◦ Including OCS or Soft card key protection, and HSM load sharing:

CKNFAST_LOADSHARING=1

◦ Including module key protection:

CKNFAST_FAKE_ACCELERATOR_LOGIN=1

For more information, study the PKCS#11 library environment variables in the

User Guide for your HSM.

3. If you are using Entrust Connect(s), configure these to operate with your

selected RFS and client(s) as described in your HSM documentation. Typically

the client(s) will be the host server that your Oracle database is running on.

4. Configure the Oracle PKCS#11 library folder to use the Entrust PKCS#11 API.

After creating the Oracle database, you will have to:

a. Create the following directory path for the Entrust API library as the

oracle user:

Make ownership and permissions on the directory as: owner=oracle;

group=oinstall; permissions=775.

mkdir -p $ORACLE_BASE/extapi/64/hsm/nCipher/12.80.4
chown oracle $ORACLE_BASE/extapi/64/hsm/nCipher/12.80.4
chgrp oinstall $ORACLE_BASE/extapi/64/hsm/nCipher/12.80.4
chmod 775 $ORACLE_BASE/extapi/64/hsm/nCipher/12.80.4

Oracle Transparent Data Encryption 11/46

b. copy/link the PKCS#11 library into the directory as the oracle user.

cp /opt/nfast/toolkits/pkcs11/libcknfast.so $ORACLE_BASE/extapi/64/hsm/nCipher/12.80.4

The Entrust PKCS#11 API library is the only means by

which the Oracle database system can communicate

with the Entrust system. If this interface is not set up

correctly, you will not be able to get these two systems

to operate together.

5. Add the oracle user to the nfast group.

sudo usermod -a -G nfast oracle

2.2.1. Security World creation

1. Create or load the Security World using a client, or nShield Connect (if being

used). If you are using RA for the ACS cards, you must do so through a

registered client. Ensure the Security World data is copied to the

NFAST_KMDATA/local folder for all clients and the RFS, and is loaded onto each

nShield Connect used in the configuration.

2. Check the Security World on your various components as follows:

◦ Client: Use the Entrust nfkminfo utility to check the Security World and

configuration on each client. In each case, the Security World must be

shown as Initialized and Usable.

◦ RFS: Use the Entrust 'nfkminfo' utility to check the Security World and

configuration. The Security World must be shown as Initialized.

◦ nShield Connect:

▪ Front panel: MENU > Security World mgmt. > Display World Info.

The Security World must be shown as Initialized and Usable.

▪ If you are using Security World software v12, on the client run the

Entrust nethsmadmin utility:

>>nethsmadmin -c -m<n>

Where <n> is the module number. The Security World must be shown

as Initialized and Usable. For further details, see the User Guide for

your HSM.

Oracle Transparent Data Encryption 12/46

Oracle Transparent Data Encryption 12/46

2.2.2. Prepare protection method

1. If your Security World does not already contain the required protection

method, then proceed as follows:

◦ If you want to use module protection, no action is required at this point.

Action is required later in the integration.

◦ If you want to use Softcard protection, create the required number of

Softcard(s), each with its own passphrase.

◦ If you want to use a 1/N OCS card set protection, create the required

number of card set(s) now, using exact same passphrase for each card

within the same card set. See About the HSM credential.

2. If you are using module or Softcard protection in a FIPS 140 Level 3

environment, then you also need an OCS card set (1/N) to provide FIPS

authorization. If a suitable OCS card set is not already available in the Security

World, then create an OCS card set for this purpose.

2.3. Configuring Oracle database software to use the
Entrust HSM

Before proceeding, it is assumed that:

• You have followed the set up and configuration instructions in this guide. That

is:

◦ The Oracle database software is installed with at least one database

instance.

◦ The Entrust Security World software and HSM are installed and

configured.

◦ Your protection method has been prepared.

• The target container database (CDB) is open, and all PDBs are open.

You can use the following instructions to configure your Oracle database software

to function using the Entrust HSM and Security World software, in one of the

following scenarios:

• Migration from keystore to HSM: One or more database instances are already

using TDE encryption, each instance with its own software keystore, and you

want to continue using TDE encryption after migrating the TDE master keys

from at least one keystore to the Entrust HSM.

• Create keys directly in HSM: One or more database instances are not using

TDE encryption, and you want to start using TDE encryption for at least one

Oracle Transparent Data Encryption 13/46

database, using the Entrust HSM.

Before attempting key migration, see Key migration and legacy keys. Oracle 11.1g

or earlier versions might not support migration of some key types from a software

wallet to an HSM. See the documentation for your Oracle version before

attempting key migration.

The SQL commands that will be used later in this document might:

• Require more than one user with suitable database privileges to make the

specific database connections, and run the SQL commands in the sequences

as shown. Respect the connections shown in order to satisfactorily run SQL on

your target. See Database connections. Your system administrator should have

sufficient knowledge to create users and associated privileges according to

your organization’s security policies.

• Need to be run as a certain user. If you are instructed in this guide to make a

connection as a particular user, continue with that connection until instructed

otherwise.

• Use <credential> to denote your chosen protection method. When a

protection method has been invoked, you must continue with the same

protection method unless you decide to alter it as described in About the

HSM credential.

Oracle documentation uses the <credential-name>|<credential-

passphrase> order. However, tests showed that the ordering

<credential-passphrase>|<credential-name> works. In SQL, the

credential used to open a keystore must match the credential

used to create an encryption key.

Whenever you have completed migrating or creating encryption

keys in an HSM, it is recommended to back up your Security

World data, see the User Guide for your HSM.

Make sure you use instructions appropriate to whether you are using:

• A non-multitenant database and software wallet.

• A multitenant database and software keystore.

2.4. Opening and closing a keystore or HSM

Oracle has a control system that gates access to a software keystore or HSM:

Oracle Transparent Data Encryption 14/46

Oracle Transparent Data Encryption 14/46

• If a keystore or HSM is open, then you can access its contents.

• If a keystore or HSM is closed, then you cannot access its contents.

You can open or close a software keystore or HSM with the following SQL

statements.

2.4.1. Non-multitenant

This section assumes database is open.

• To open/close wallet:

CONNECT TESTER@DB or CONNECT sysdba@DB

--To open wallet
ALTER SYSTEM SET [ENCRYPTION] WALLET OPEN IDENTIFIED BY "<credential>";

--To close wallet, pre-11.2.0.1.0
ALTER SYSTEM SET [ENCRYPTION] WALLET CLOSE;

--To close wallet, 11.2.0.1.0 onward
ALTER SYSTEM SET [ENCRYPTION] WALLET CLOSE IDENTIFIED BY "<credential>";

Where the [ENCRYPTION] clause is optional.

2.4.2. Multitenant

This section assumes the respective CDB and PDB databases are open:

• To open/close keystore for the container (CDB) only.

CONNECT C##TESTER@CDB<n>

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "<credential>";
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "<credential>";

• To open/close keystore for the container (CDB) and all PDBs it holds.

CONNECT C##TESTER@CDB<n>

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "<credential>" CONTAINER=ALL;
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "<credential>" CONTAINER=ALL;

If you want to close all keystores, use the following SQL:

Oracle Transparent Data Encryption 15/46

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE CONTAINER=ALL;

• To open/close keystore for a single PDB, you must use same credential as

used by the containing CDB.

CONNECT PDB<k>TESTER@CDB<n>PDB<k>

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "<credential>";
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "<credential>";

2.4.2.1. Issues closing keystores

During migration from Software Wallet to HSM Keystore, you may experience

issues closing the keystore. To resolve this, disable the auto-login keystore to close

all keystores. See How To Disable Auto-Login Keystore for full details.

sudo -u oracle mv <path-to-keystorefolder>/<keystore-folder>/tde/cwallet.sso <path-to-keystorefolder>/<keystore-
folder>/tde/cwallet.sso.backup

2.5. Active credentials

The first time you open a keystore or HSM using a credential for a particular

database instance, it activates the credential you are referencing. You should then

be able to create master encryption keys, or use (any) existing master encryption

keys, that are protected by that credential. You cannot have more than one active

credential at the same time for the same instance. You must close the keystore or

HSM to deactivate the credential.

You can simultaneously use different credentials for different database instances

on the same host server. For a container database only its CDB is a real instance.

All PDBs within the same CDB must use the same active credential.

See About the HSM credential if you want to change a credential.

2.6. Migrating from software wallet to HSM (non-
multitenant)

The following procedure applies when the target database is non-multitenant, and

you are already using a software wallet with TDE encryption. If your target

database is multitenant, see Migrating from software keystore to HSM

Oracle Transparent Data Encryption 16/46

Oracle Transparent Data Encryption 16/46

https://logic.edchen.org/how-to-disable-auto-login-keystore/

(multitenant).

Entrust strongly recommends you back up your software wallet as an independent

operation before attempting migration to the HSM. Keep the backup folder in a

safe place separated from the associated database files. Only users with

authorization should be able to access the backup folder.

Repeat the following procedure for each database software wallet from which you

want to migrate. Each independent database instance can use its own Entrust key

protection method or credential if required.

Once an Entrust key protection method has been activated for a particular

database instance, then you must continue to use that same credential for any

further keys you want to protect for that instance.

See About the HSM credential if you want to change a credential.

Use the WALLET_ROOT and TDE_CONFIGURATION parameters. It is assumed the

WALLET_ROOT parameter has already been set for Oracle keystore use.

1. Prepare for key migration by running the following SQL script:

CONNECT sysdba@DB

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=HSM|FILE" SCOPE=BOTH SID='*';

2. Migrate from the keystore to HSM:

CONNECT sysdba@DB

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY <credential> MIGRATE USING <keystore-passphrase>
WITH BACKUP;

Use the Entrust rocs utility to check that your encryption keys

have been stored under the expected protection method before

proceeding.

2.7. Migrating from software keystore to HSM
(multitenant)

The following procedure applies when the target database is multitenant, and you

are already using a software wallet with TDE encryption. If your target database is

non-multitenant, see Migrating from software wallet to HSM (non-multitenant).

Oracle Transparent Data Encryption 17/46

Repeat the following procedure for each software keystore from which you want

to migrate. Each container database (CDB) can use its own Entrust key protection

method (credential) if required. However, once a Entrust key protection method

has been activated for a particular database instance (CDB), then you must

continue to use that same credential for any further keys you want to protect for

that instance.

See About the HSM credential if you want to change a credential.

Use the WALLET_ROOT and TDE_CONFIGURATION parameters.

1. Back up your software keystore before attempting key migration to the HSM:

CONNECT sysdba@CDB<n>

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE USING '<PreMigrationBackupString>' IDENTIFIED BY
"<keystorepassphrase>";

2. Prepare for key migration by running the following SQL script:

CONNECT sysdba@CDB1ROOT

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=HSM|FILE" SCOPE=BOTH SID='*';

3. Create an auto-login keystore where <credential> is the HSM credential you

want to use:

CONNECT sysdba@CDB1ROOT

ALTER PLUGGABLE DATABASE ALL OPEN;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY <keystore-passphrase> CONTAINER = ALL;
ADMINISTER KEY MANAGEMENT ADD SECRET "<credential>" FOR CLIENT 'HSM_PASSWORD' IDENTIFIED BY <keystore-
passphrase> WITH BACKUP;
ADMINISTER KEY MANAGEMENT CREATE AUTO_LOGIN KEYSTORE FROM KEYSTORE <path-to-keystorefolder>/<keystore-
folder>/tde' IDENTIFIED BY KeystorePassword1;

4. Migrate from the keystore to HSM:

CONNECT sysdba@CDB1ROOT

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "<credential>" MIGRATE USING <keystore-
passphrase> WITH BACKUP;

Use the Entrust rocs utility to check that your encryption keys

have been stored under the expected protection method before

proceeding.

Oracle Transparent Data Encryption 18/46

Oracle Transparent Data Encryption 18/46

2.8. Create master keys directly in an HSM for non-
multitenant database

The following procedure applies when the target database is non-multitenant, and

there is no pre-existing software wallet. If your target database is multitenant, see

Create master keys directly in an HSM for multitenant database.

Repeat the following procedure for each database in which you want to create

keys. Each database can use its own Entrust key protection method (credential) if

required. However, once an Entrust key protection method has been activated for

a particular database instance, then you must continue to use that same credential

for any further keys you want to protect for that instance.

See About the HSM credential if you want to change a credential.

2.8.1. Use the WALLET_ROOT and TDE_CONFIGURATION
parameters

1. Set up the WALLET_ROOT and TDE_CONFIGURATION parameters as follows. You must

set up the WALLET_ROOT parameter even if you do not use a keystore.

CONNECT sysdba@DB

ALTER SYSTEM SET WALLET_ROOT = '<path-to-keystore>' scope=SPFILE;

2. Bounce the database after setting up the WALLET_ROOT parameter.

CONNECT sysdba@DB

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=HSM" SCOPE=BOTH SID='*';

3. Bounce the database after setting up the TDE_CONFIGURATION parameter.

2.8.2. Create the encryption keys

1. Select the protection method (credential) that you require below, and run the

SQL.

CONNECT TESTER@DB or CONNECT sysdba@DB

ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "<credential>";

Oracle Transparent Data Encryption 19/46

Use the Entrust rocs utility to check that your encryption keys

have been stored under the expected protection method before

proceeding.

After you created the master encryption keys in the HSM as above, proceed to

encrypt your database by using tablespace encryption, column encryption, or

both, as usual.

2.9. Create master keys directly in an HSM for
multitenant database

The following procedure applies when the target database is multitenant, and

there is no preexisting software keystore. If your target database is non-

multitenant, see Create master keys directly in an HSM for non-multitenant

database.

Repeat the following procedure for each database in which you want to create

keys. Each database instance can use its own Entrust key protection method

(credential) if required. However, once an Entrust key protection method has been

activated for a particular database instance (CDB), then you must continue to use

that same credential for any further keys you want to protect for that instance.

See About the HSM credential if you want to change a credential.

You must create the container (CDB) master key first. After the CDB master key

has been created you have a choice of creating master keys for all the PDBs it

contains in one operation, or else for each PDB individually.

 The PDB(s) must use the same protection credential as the CDB.

2.9.1. Use the WALLET_ROOT and TDE_CONFIGURATION
parameters

1. Set up the WALLET_ROOT and TDE_CONFIGURATION parameters as follows. You must

set up the WALLET_ROOT parameter even if you do not use a keystore.

CONNECT sysdba@CDB1ROOT

ALTER SYSTEM SET WALLET_ROOT = '<path-to-keystore>' scope=SPFILE;

2. Bounce the database after setting up the WALLET_ROOT parameter.

Oracle Transparent Data Encryption 20/46

Oracle Transparent Data Encryption 20/46

3. Run the following command:

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=HSM" SCOPE=BOTH SID='*';

4. Bounce the database after setting up the TDE_CONFIGURATION parameter.

2.9.2. Create the CDB and then all PDB master keys in one
operation

1. Select the protection method you require below, and run the SQL:

CONNECT C##TESTER@CDB<n>

ALTER PLUGGABLE DATABASE ALL OPEN;

--This will activate the credential
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "<credential>" CONTAINER=ALL;

2. Activate master keys for the CDB and all the PDBs in one operation:

ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY "<credential>" WITH BACKUP CONTAINER=ALL;

Use the Entrust rocs utility to check that your encryption keys

have been stored under the expected protection method before

proceeding.

Encrypt your database using tablespace encryption, column encryption, or both.

2.9.3. Create the CDB master key and a single PDB master key

1. Create the CDB master key:

CONNECT C##TESTER@CDB<n>

a. Select the protection method you require below, and run the SQL:

--This will activate the credential if it isn't already
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "<credential>";
ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY "<credential>" WITH BACKUP;

b. Once you have created the CDB master key, you can repeat the following

commands for creating a single PDB master key, for any PDB you select.

2. Create a single PDB master key:

Oracle Transparent Data Encryption 21/46

CONNECT PDB<k>TESTER@CDB<n>PDB<k>

You must use the same protection method (credential) as the containing CDB.

Run the SQL.

--If the PDB is already open, you don't need to do this.
ALTER PLUGGABLE DATABASE <CDB<n>PDB<k>> OPEN READ WRITE;

--If the keystore is already open, you don't need to do this.
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "<credential>";

--Make the master key for the PDB you should be currently connected to.
ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY "<credential>" WITH BACKUP;

Use the Entrust rocs utility to check that your encryption keys

have been stored under the expected protection method before

proceeding.

Encrypt your database using tablespace encryption, column encryption, or both.

2.10. Rekeying or key rotation

After you have established your HSM as the primary protector for your master

encryption keys, for security reasons you may want to periodically replace the

keys, or rekey. For your particular system, you can do this by following the

instructions below.

The following subsections show how to perform a rekey in Oracle multitenant

environments. After rekey, the new encryption keys should be immediately

available and usable by the client that initiated the rekey.

2.10.1. Rekey when sharing keys between clients

If the encryption keys are being shared or distributed between clients, then either

a common shared Security World folder, or local client copies of the Security

World folder, will be used. In this case, you must factor in:

• Encryption key distribution and synchronization with the associated

encrypted data in the Oracle database.

• Recognition of new encryption keys by the Entrust hardserver instance on

each client.

For the new keys to be recognized by a client hardserver instance (that did not

initiate the rekey), you must first make sure that the new keys are available in the

Oracle Transparent Data Encryption 22/46

Oracle Transparent Data Encryption 22/46

Security World folder it is using. If the new keys are available, then you can make

the client hardserver instance recognize and use the new keys using either of the

following options:

1. In the client cknfastrc file, set an environment variable:

CKNFAST_ASSUME_SINGLE_PROCESS=0

2. Reconnect all users/applications on the client that are using the database

encryption facilities.

The above actions will cause the available keys to be scanned by the client’s

hardserver instance, and any new keys will then be recognized and made usable.

See Latency issues to understand the full consequences of these options.

It is the job of your system administration to ensure that distribution and

recognition of shared (new) encryption keys is performed smoothly. In the

(unlikely) event that synchronization problems cannot be resolved with the system

in continual operation, it may be necessary to temporarily halt encrypted database

operations on all clients other than the one that initiated the rekey. After rekey has

been performed, with correct keys available and recognized by all clients, then the

system can be restored to normal operations.

Test your rekey arrangements in a safe environment before

committing to a production environment. Transactions restricted

to unencrypted data will not be affected by rekey operations.

Before rekeying, you should inspect the contents of your

Security World local folder, and note the date/time that you

perform a rekey. After rekeying, you should verify that new key

files have been created in your Security World local folder by

inspection, and check the date/time stamp of new key files in

the folder match the date/time you performed the rekey.

2.10.2. Rekey for a non-multitenant database

The following instructions begin by assuming the HSM (wallet) is already open.

CONNECT TESTER@DB, or CONNECT sysdba@DB

--Assumes HSM is already open
ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "<credential>";

Oracle Transparent Data Encryption 23/46

2.10.3. Rekey for a multitenant database with CDB and all the
PDBs in one operation

CONNECT TESTER@CDB<n>

The following instructions begin by assuming the required CDB has started, and

required PDBs and HSM (keystore) to be already open.

ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY "<credential>" WITH BACKUP CONTAINER=ALL;

2.10.4. Rekey for a multitenant database with CDB only

The following instructions begin by assuming the required CDB has started and

HSM (keystore) to be already open.

CONNECT TESTER@CDB<n>

ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY "<credential>" WITH BACKUP;

2.10.5. Rekey for a multitenant database with a single PDB only

The following instructions begin by assuming the required CDB has started, the

required PDB and HSM (keystore) to be already open.

CONNECT PDB<k>TESTER@CDB<n>PDB<k>

--Make the master key for the PDB you should be currently connected to
ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY "<credential>" WITH BACKUP;

Oracle Transparent Data Encryption 24/46

Oracle Transparent Data Encryption 24/46

Chapter 3. Troubleshooting
Oracle error messages may sometimes show error symptoms rather than the root

cause. If you see an error you have not encountered before, search for further

information online before attempting to resolve the error. If you remain unable to

resolve the error, contact Oracle support.

If you edit an Oracle configuration file, use a simple text editor running on the

host. Do not cut and paste the file contents from another file using a formatting

editor, as it may insert hidden characters that are difficult to detect and which can

stop the file from working. Entrust also suggests you avoid copying files onto a

UNIX host via a Windows intermediary (this includes library files).

3.1. An SQL command is run, and there is no output,
or an unexpected output or error occurs

1. Try reconnecting to the database.

2. If that does not work, try bouncing the database.

3.2. After a change to a configuration file, no
resultant change in the database behavior is
observed

1. Try reconnecting to the database.

2. If that does not work, try bouncing the database.

3.3. ORA-28367: wallet does not exist

1. Check that you have correctly installed and configured the Entrust PKCS#11

library.

2. Try reconnecting to the database.

3. Try bouncing the database.

4. Try restarting the Entrust hardserver.

3.4. ORA-28367: cannot find PKCS11 library

Oracle Transparent Data Encryption 25/46

1. Ensure that you have correct permissions to use the /opt/oracle/extapi/…
directory.

2. Check that you are using a library for the correct local architecture (32/64).

3. Check that you are using the appropriate Java version (32/64).

4. Refer to advice given above about editing Oracle files, or copying them.

5. Try reconnecting to the database.

6. Recopy the libcknfast.so library file to /opt/oracle/extapi/.

7. In the ORACLE_BASE/extapi directory, create a link named libcknfast.so to the

actual NFAST_HOME/toolkits/pkcs11/libcknfast.so file.

3.5. ORA-28353: failed to open wallet

1. Check that you have set up your cknfastrc file with the correct contents.

2. Ensure that the HSM wallet pass phrase is correct.

3. Ensure that if OCS/Softcard key protection is used, the name and passphrase

are correct and are separated by a | or a :.

4. If you have migrated from an Oracle wallet to an HSM wallet, you must update

the passphrase.

3.6. ORA-28407: Hardware Security Module failed
with PKCS#11 error CKR_FUNCTION_FAILED (%d)

1. This may be caused by Oracle defect 23528412. Contact Oracle support in

order to obtain a patch for this defect.

2. Ensure that if a FIPS 140 Level 3 Security World is in use, an OCS card is

inserted in the HSM slot.

3. Check that you are using the correct passphrase/credential to access the HSM.

4. If you are using an nShield Connect, use its front panel to check the Security

World is loaded on to the HSM itself and is both Initialized and Usable.

5. Try restarting the Entrust hardserver.

3.7. Encryption keys do not migrate correctly from a
software keystore to an HSM (or vice-versa)

1. This may be caused by Oracle defect 17409174. Contact Oracle support in

order to obtain a patch for this defect.

Oracle Transparent Data Encryption 26/46

Oracle Transparent Data Encryption 26/46

3.8. When you are using persistent OCS cards, the
persistent authorization is lost

1. This may be caused by Oracle defect 23528412. Contact Oracle support in

order to obtain a patch for this defect.

2. Ensure that, as the required OS user, you can access both the Entrust and

Oracle functionality. If necessary, adjust user group membership to permit this,

but check your security policy first.

3.9. ORA-00600: internal error code

3.9.1. arguments: [kzthsmgmk: C_GenerateKey], [6], [],[], [], [],
[], []

1. Ensure that you have added the oracle user to the nfast group. In some cases,

you may have to re-login with the oracle user for this to take effect.

2. Ensure that if a FIPS 140 Level 3 Security World is in use, an OCS card is

inserted in the HSM slot.

3.9.2. arguments: [ksqgel:null_parent], [], [],[], [], [], [], []

1. Sometimes occurs using encrypted tablespaces.

2. This may be caused by Oracle defect 21080143. Contact Oracle support in

order to obtain a patch for this defect.

3.10. ORA-28374: Typed master key not found in
wallet

1. Oracle software thinks there is a mismatch between encrypted object(s) and

available master key(s). There is more than one possible cause for this and it is

usually quite difficult to resolve. Contact Oracle support, or search for a

solution online.

2. If all else fails, try and restore your system from backups.

3.11. ORA-12162: TNS: net service name is incorrectly
specified

Oracle Transparent Data Encryption 27/46

1. Check that you have correctly set the value for ORACLE_SID in your local

environment.

Oracle Transparent Data Encryption 28/46

Oracle Transparent Data Encryption 28/46

Chapter 4. Appendix

4.1. Security Worlds, key protection, and failure
recovery

This section highlights some considerations when choosing Security World and

key protection options for use with the Entrust Security World. It focuses on

recovery of Security World authorization where a system has temporarily failed

(for instance after a power outage) and is then returned to operation. This does

not apply to other failure recovery functions. These considerations are applicable

to Security Worlds, key protection and failure recovery for both standalone

systems and database clusters. For a fuller explanation of Security Worlds and key

protection, refer to the User Guide for your HSM.

In the event of a temporary failure of the Entrust Security World, there may be a

consequent loss of:

• Credential authorization.

• Authorization if you are using a FIPS 140 Level 3 Security World.

A credential authorization can be granted using either a Softcard or an OCS card,

with passphrase. In the case of an OCS, a card must be always available in a valid

HSM card reader in order to grant reauthorization after a failure, and permit

automatic recovery.

Where FIPS authorization is required, this can be granted either by using an OCS

card specifically for this purpose, or through an OCS card that is also used for

credential authorization. A card from the OCS must be always available in a valid

HSM card reader in order to grant reauthorization after a failure, and permit

automatic recovery.

If you are using OCS cards through a RA secure channel, then if the secure

channel is lost it must be reestablished before recovery using the OCS cards can

begin. There is no automatic mechanism to reestablish the secure channel, which

would have to be re-established manually, or through a user-defined script. For

this reason, Entrust recommends that RA is not used for systems requiring

automatic recovery.

Oracle auto-login facilities need to be set up to implement automatic recovery in

the event of a temporary failure.

 Never use ACS cards for FIPS authorization, because they do not

Oracle Transparent Data Encryption 29/46

support automatic recovery. Softcards or OCS must be members

of the same Security World.

The following table describes the authorization recovery behavior of the nCipher

Security World after a temporary outage.

Security
World type

Protection/
Credential

Stand-alone system Database cluster

FIPS level 2 Module Recovers automatically Recovers automatically

Softcard Recovers automatically Recovers automatically

OCS Use OCS for credential

authorization: (1) Use 1/N

quorum. Same passphrase

for all cards (2) Leave an

OCS card in HSM slot.

Recovers automatically.

Use OCS for credential

authorization: (1) Use 1/N

quorum. Same passphrase

for all cards (2) Leave an

OCS card in slot of every

HSM in cluster. Recovers

automatically.

FIPS level 3 Module Use OCS for FIPS

authorization (only):

Leave an OCS card in HSM

slot. Recovers

automatically

Use OCS for FIPS

authorization (only):

Leave an OCS card in slot

of every HSM in cluster.

Recovers automatically

Softcard Use OCS for FIPS

authorization (only):

Leave an OCS card in HSM

slot. Recovers

automatically

Use OCS for FIPS

authorization (only):

Leave an OCS card in slot

of every HSM in cluster.

Recovers automatically

OCS Use OCS for both

credential and FIPS

authorization: (1) Use 1/N

quorum. Same passphrase

for all cards. (2) Leave an

OCS card in HSM slot.

Recovers automatically.

Use OCS for both

credential and FIPS

authorization: (1) Use 1/N

quorum. Same passphrase

for all cards. (2) Leave an

OCS card in slot of every

HSM in cluster. Recovers

automatically.

Oracle Transparent Data Encryption 30/46

Oracle Transparent Data Encryption 30/46

If you are using an OCS to facilitate automatic recovery of the Entrust Security

World:

• If you are using the OCS for credential authorization, all must be members of

the same card set for the same credential, and the same passphrase must be

assigned to every card in the set.

• If you are using the OCS for FIPS authorization purposes only, the quorum

automatically defaults to 1/N, and (any) passphrase is ignored.

Authorization acquired through a persistent operator card does not automatically

reinstate itself after loss due to a temporary failure.

4.2. About the HSM credential

The protection methods available with the Entrust HSM are, in order of enhanced

authentication:

• Module: Encryption keys are protected by a nCipher Security World protecting

key in the HSM.

• Softcard: Encryption keys are protected by a named Softcard (software

based) token key, a passphrase, and nCipher Security World protecting key in

the HSM. You can have many different Softcards, but each is singular and

works on its own.

• OCS: Encryption keys are protected by the presence of a named physical

token (OCS smartcard), an OCS token key, a passphrase, and nCipher Security

World protecting key in the HSM. OCS cards are usually part of a set of several

OCS cards, or card set, and any member of the same card set protects the

same encryption keys. You can have many different OCS card sets where each

card set may protect different encryption keys.

The Softcard and OCS protection methods must be set up within the Entrust HSM

before they can be used by an Oracle database. See your HSM User Guide for

details. The module protection method can be used directly without any set up

(other than the normal Entrust configuration). Setting up the Softcard or OCS

includes creating and naming the token(s), with a passphrase (see the User Guide

for your HSM).

Within SQL scripts as used by Oracle, identify the protection method using a

<credential>. Choose the protection method you want to use for <credential> from

the table below.

Oracle Transparent Data Encryption 31/46

Protection Type Credential or <credential>

Module protection <module-passphrase>. In this case the passphrase is an

access mechanism for Oracle, and is not used by the

nShield HSM

Softcard protection <softcard-passphrase>|<softcard-name>

OCS protection <OCScard-passphrase>|<OCScard-name>

Oracle documentation gives the ordering <credential-

name>|<credential-passphrase>. However, tests showed that the

ordering <credential-passphrase>|<credential-name>` works.

Oracle SQL uses the separator symbol | or : to divide the <credential-passphrase>

and <credentialname>. Hence the total Oracle SQL string for a credential comprises:

• Module protection: <passphrase>

• Softcard or OCS card protection: <credential-passphrase> + <separator> +

<credential-name>.

In the nCipher Security World, Entrust recommends the following restrictions on

token names, or credentialname:

• Maximum length of 254 characters.

• ASCII 7-bit characters only, restricted to:

A-Z, a-z, 0-9, $ - _ (no white space).

In the nCipher Security World, Entrust places the following restrictions on

passphrases, or credential- passphrases:

• Maximum length of 254 characters.

• ASCII 7-bit characters only:

A-Z, a-z, 0-9, ! @ # $ % ^ & * - _ + = [] { } | \ : ' , . ? / ` ~ " < > () ; (no white

space).

However, the Oracle SQL interface imposes further restrictions on top of the

nCipher restrictions for what can comprise the string <credential-passphrase> +

<separator> + <credential-name>, as follows:

• The total string length, including separator, can be no more than 30

characters. This leaves 29 characters for the <credential-passphrase> +

Oracle Transparent Data Encryption 32/46

Oracle Transparent Data Encryption 32/46

<credential-name>.

• The symbols |, :, " and ' cannot be used within the <credential-passphrase> or

<credential-name>.

From the Oracle side, if:

• N is the length of the credential name.

• P is the length of the credential passphrase, then 2 ⇐ (N+P) ⇐ 29, where 1 ⇐
N ⇐ 28, and 1 ⇐ P ⇐ 28, assuming a minimum of one character for passphrase

and name.

Permitted symbols are:

• <credential-passphrase>:

A-Z, a-z, 0-9, ! @ # $ % ^ & * - _ + = [] { } \ , . ? / ~ < > () ; (no white space)

• <credential-name>:

A-Z, a-z, 0-9, $ - _ (no white space).

Use a passphrase of sufficient length to meet your current security requirements.

Oracle (wallet manager) states “Passwords must have a

minimum length of eight characters and contain alphabetic

characters combined with numbers or special characters".

When you are using a Softcard or OCS credential, an SQL script

that uses the credential must get the <credential-passphrase> and

<credential-name> exactly correct. If there is a mistake, then the

entire credential string may be misinterpreted as a <module-

passphrase>. Your encryption keys are then placed under module

protection rather than the Softcard or OCS card protection you

intended. For this reason, after creating encryption keys or

rekeying, then immediately use the nCipher rocs utility to check

the keys you have just created are under the expected credential

or protection method.

In the examples shown in this guide, credentials may be given descriptive names

to make it clear what they are used for, such as <keystore-credential>. In practice,

replace the descriptive names with the actual credential passphrases and names

you are using. If you want to change the passphrase for Softcards or OCS cards,

you must change the passphrase for the token in the nCipher Security World first,

followed by updating the change to the database. For module protection you

Oracle Transparent Data Encryption 33/46

need only change the passphrase as seen by the database.

If you are using a FIPS 140 Level 3 Security World:

• To change the passphrase of a Softcard, or create a new Softcard, you require

either authorization using ACS cards, or an OCS authorizing card.

• To change the passphrase of an OCS card, or create a new OCS card, you

require authorization using ACS cards.

You can change the protection method or credential in one of the following ways:

• Continue using the same protection method and token, but change the

associated passphrase. There is no token for module protection, but you can

change the passphrase. In this case, after the passphrase is altered, TDE

continues working using the new passphrase, because the protected TDE

encryption keys remain the same.

• Continue using the same protection method, but change the token and

passphrase. In this case, you have two options:

1. If you are not transferring encryption keys from the previous token to the

new token, you can no longer continue using TDE as protected by the

previous token’s keys. You will only be able to use TDE encryption keys

shielded under the newly activated credential.

2. If you are transferring encryption keys from the previous token to the new

token, you can continue using TDE as protected by the previous token’s

keys. However, you can only transfer keys from different Softcards, or

different OCS cards. You cannot transfer keys between Softcards and OCS

cards.

• Change the protection method and associated credential with passphrase. In

this case, you cannot transfer encryption keys between the different

protection methods. You can only use TDE encryption keys shielded under the

new protection method and credential.

4.2.1. Change passphrase only

1. To change a passphrase only, complete the following instructions:

◦ Non-multitenant:

CONNECT TESTER@DB

-- If Database is not open already
ALTER DATABASE OPEN;

Oracle Transparent Data Encryption 34/46

Oracle Transparent Data Encryption 34/46

-- Pre-11.2.0.1.0
ALTER SYSTEM SET ENCRYPTION WALLET CLOSE;

-- 11.2.0.1.0 onward
ALTER SYSTEM SET ENCRYPTION WALLET CLOSE IDENTIFIED BY “<credential>”;

◦ Multitenant:

CONNECT C##TESTER@CDB<n>

-- If Database is not open already
ALTER PLUGGABLE DATABASE ALL OPEN;

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "<old-credential>" CONTAINER=ALL;

2. At this point:

◦ If you are using module protection, skip to the next SQL statements.

◦ If you are using Softcard protection, refer to the User Guide for your HSM

for instructions on how to change the Softcard passphrase using the ppmk

utility.

◦ If you are using OCS protection, refer to the the User Guide for your HSM

for instructions on how to change the OCS passphrase using the cardpp

utility. If you are using OCS cards, all OCS cards within the same (1/N)

card set must be altered to share the exact same passphrase.

3. Bounce the database:

◦ Non-multitenant:

CONNECT TESTER@DB

-- If Database is not open already
ALTER DATABASE OPEN;

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "<new-credential>";

◦ Multitenant only:

CONNECT C##TESTER@CDB<n>

-- If Database is not open already
ALTER PLUGGABLE DATABASE ALL OPEN;

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "<newcredential>" CONTAINER=ALL;

4.3. Change token with associated passphrase but
keep same protection method

Oracle Transparent Data Encryption 35/46

This does not apply to module protection.

1. To change a token with passphrase for the same protection method, complete

the following instructions:

◦ Non-multitenant:

CONNECT TESTER@DB

-- If Database is not open already
ALTER DATABASE OPEN;

-- Pre-11.2.0.1.0
ALTER SYSTEM SET ENCRYPTION WALLET CLOSE;

-- 11.2.0.1.0 onward
ALTER SYSTEM SET ENCRYPTION WALLET CLOSE IDENTIFIED BY “<credential>”;

◦ Multitenant:

CONNECT C##TESTER@CDB<n>

-- If Database is not open already
ALTER PLUGGABLE DATABASE ALL OPEN;

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "<old-token-credential>" CONTAINER=ALL;

2. At this point:

◦ If you do not want to transfer TDE encryption keys from the previous

token to the new token, skip to the next SQL statements. If you are using

an OCS card set (1/N), all OCS cards within the new card set must share

the exact same passphrase.

If you do want to transfer TDE encryption keys from the previous token to

the new token, refer to your HSM User Guide for instructions on how to

transfer the keys using the rocs utility.

It is recommended to back up your Security World data

before transferring keys between tokens. See the User

Guide for your HSM.

To transfer keys using the rocs utility, you will need your Security World

ACS cards to authorize transfer of keys between tokens. You can only

transfer encryption keys between Softcards, or else between OCS cards,

but not between Softcards and OCS cards. If transferring keys to another

OCS card set (1/N), all OCS cards within the target card set must share

the exact same passphrase.

Oracle Transparent Data Encryption 36/46

Oracle Transparent Data Encryption 36/46

3. Bounce the database:

◦ Non-multitenant:

CONNECT TESTER@DB

-- If Database is not open already
ALTER DATABASE OPEN;

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "<new-tokencredential>";

◦ Multitenant:

CONNECT C##TESTER@CDB<n>

-- If Database is not open already
ALTER PLUGGABLE DATABASE ALL OPEN;

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "<new-tokencredential>" CONTAINER=ALL;

4.3.1. Change protection method

1. To change the protection method, complete the following instructions:

◦ Non-multitenant:

CONNECT TESTER@DB

-- If Database is not open already
ALTER DATABASE OPEN;

-- Pre-11.2.0.1.0
ALTER SYSTEM SET ENCRYPTION WALLET CLOSE;

-- 11.2.0.1.0 onward
ALTER SYSTEM SET ENCRYPTION WALLET CLOSE IDENTIFIED BY “<credential>”;

◦ Multitenant:

CONNECT C##TESTER@CDB<n>

-- If Database is not open already
ALTER PLUGGABLE DATABASE ALL OPEN;
ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "<old-protection-credential>"
CONTAINER=ALL;

If you are using OCS cards, all OCS cards within the same (1/N) card set

must share the exact same passphrase.

2. Bounce the database:

Oracle Transparent Data Encryption 37/46

◦ Non-multitenant:

CONNECT TESTER@DB

-- If Database is not open already
ALTER DATABASE OPEN;

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "<new-protection-credential>";

◦ Multitenant only:

CONNECT C##TESTER@CDB<n>

-- If Database is not open already
ALTER PLUGGABLE DATABASE ALL OPEN;

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "<new-protectioncredential>" CONTAINER=ALL;

4.4. Latency issues

It is beyond the scope of this guide to deal with specific solutions to latency

issues, and these will only be discussed in general terms.

When you are using an Oracle database, the nCipher Security World provides and

protects the master encryption keys (wrapping keys) that are used to wrap Oracle

symmetric keys that are in turn used for tablespace or table column encryption.

The Oracle symmetric keys are stored as part of the database itself, although

protected by the wrapping key.

In the context of this guide, encrypted data will be taken to include the symmetric

key(s) that are stored as part of an Oracle database, as well as the encrypted data

itself. Master encryption keys will be taken to be the (wrapping) keys stored by the

nCipher Security World. Latency issues may occur when there is a mismatch

between the encrypted data and the (correct) master encryption keys, due to a

time lag in an update of either. This should only be a problem where there are

multiple clients using the same database and encryption keys. In this case, when

data or master encryption keys are updated on one client, the changes must be

distributed before use by the other clients. Otherwise synchronization problems

may occur. Note that the client that initiates the changes should suffer no

synchronization problems.

Typically, these issues are more complex to resolve for a large and geographically

distributed database system, rather than a small or localized system. It is the job of

the system administration to ensure that encrypted data is synchronized with the

Oracle Transparent Data Encryption 38/46

Oracle Transparent Data Encryption 38/46

appropriate master encryption keys at any particular time. Furthermore, is not

within the control of the nCipher software if encrypted data does not match (the

correct) master encryption keys in the Security World because of a time lag in

updating the database.

Where there may be a time lag in updating master encryption keys in the Security

World to match encrypted data, this may be due to the following:

• Time lag in distributing new or updated master encryption keys to a Security

World, or between different copies of the same Security World, after a key

rotation or rekey.

• After new or updated master keys have been successfully distributed to the

Security World, then a lag in making a nCipher hardserver instance recognize

the new master keys.

4.4.1. Storage and distribution of updated master keys

4.4.1.1. Common storage of master encryption keys

Entrust recommends configurations where the Security World data is held in

common storage between clients that require use of the same master encryption

keys (if possible).

If common storage of the master encryption keys is being used, then there may be

a short time delay before newly created keys are successfully copied to the

common store. After this, there may be a further short time delay before a client is

able to access the keys from the common store. The time period a client may not

be able to access the updated keys is likely to be very short, but may increase if

the client is geographically distant from the common store and communication

delays accumulate. Note that if you are using a common store, the master keys are

implicitly updated for the use of all clients, and there is no need to trigger any

other update mechanism.

Common key storage implies:

• Key update is implicit and simple (as there is only one store).

• Keeps time delays short, thereby minimizing any problems synchronizing keys

with data.

• It is essential the common store is backed up frequently, as otherwise it is the

only copy of the encryption keys.

Oracle Transparent Data Encryption 39/46

4.4.1.2. Local storage of master encryption keys

If each client is using its own local copy of the Security World, then after an

update of the master keys is initiated on any client, the updated keys must be

distributed in a timely manner to the local Security Worlds of every other client. To

achieve this, there must be some explicit update mechanism in order to recognize

when an update is required in the first place, and then trigger the key distribution

process.

Clearly, if this was done manually, it is likely to be a slow process. If it is done

automatically, recognizing when a rekey occurs should not be difficult on the

client that initiates it, and triggering the update should not therefore be a

problem. Even so, for a configuration that uses dispersed local copies of the

Security World, mechanisms to distribute the updated keys are likely to be slower

and more difficult to implement than for the common key storage case. This

makes the timely synchronization of the master keys with the data more

problematic.

Entrust provide the utilities rfs-setup/rfs-sync (gang-client) that can provide

limited facilities to distribute keys between different clients, although you must

use an RFS for intermediate key storage. However, these utilities were originally

designed for manual operation. Clearly, these utilities can be incorporated into

automated scripts customized for your particular configuration. But elaborating

this into an automated system to distribute your keys without synchronization

problems is a task for your system development team. Further information about

nCipher rfs-setup/rfs-sync utilities can be found in the User Guide for your HSM.

An alternative for key distribution is the UNIX rsync utility.

However, it is beyond the scope of this guide to discuss how this

may be used.

If you require further assistance for distributed key update arrangements, contact

Entrust Support.

Local key storage and distribution implies:

• An explicit update mechanism that may be complex to automate.

• Greater difficulty in keeping distribution time delays short, increasing any

problems in synchronizing keys with data.

• There are multiple copies of the Security World, making the loss of any one

copy less significant than may be the case with common storage.

Oracle Transparent Data Encryption 40/46

Oracle Transparent Data Encryption 40/46

4.4.1.3. Making a hardserver instance recognize new master keys

In a configuration with multiple clients sharing the same encryption keys, if a rekey

is performed, the new keys should be immediately available and usable on the

client that performed the rekey. However, for the other clients, after the new keys

have been made available in their Security World folder, for the new keys to

become usable to the local hardserver instance, you have a choice of the following

options (this applies for both shared and local key storage):

1. In the nCipher cknfastrc file for each client, insert the following:

CKNFAST_ASSUME_SINGLE_PROCESS=0

This will ensure the Security World folder is scanned for the latest keys

whenever a key is required, and avoids key caching. However, with this option

the Security World will be scanned every time a key is required, even if no new

keys have been added to the Security World. If there are many keys this may

take a significant time. Additionally, as it will be repeated every time a key is

needed, it may slow down overall operations. However, use of this option

should not require downtime for the key update.

2. For each client that did not initiate a rekey, all applications/users that were

using encryption keys on the database should be reconnected. A new

connection will force a scan of the Security World that will pick up new keys.

But in this case, it is a single scan for that connection, and will NOT be

repeated every time a key is required. If you have many keys, encrypted

database operations will be temporarily hindered only on the occasion you

need to make a reconnection to update your master keys. Use of this option

may imply temporary downtime while reconnections are made after a key

update. But if you routinely make new connections on your system per

transaction, this should be hardly noticeable.

4.4.1.4. Other considerations

Even if a client is not able to access the required master keys for a short period,

this is not necessarily a serious problem. The Oracle database should be able to

recover gracefully if unable to obtain the correct master key(s). It should be

possible to program the database to rollback failed transactions and make several

attempts to repeat the transaction, until some expiry point is reached.

If the delay in the update of the master keys is short, then repeated attempts at

the transaction should eventually succeed when the master key update is

Oracle Transparent Data Encryption 41/46

complete. If it is not possible to do this within the Oracle database itself, then it

should be possible to do something similar in the application code that is using

the database.

If you are using the common shared storage, it is expected that any lag in

updating the master keys will be short enough that either:

• The Oracle database will not be affected.

• The Oracle database will cope gracefully, and subsequently recover

automatically as described above, as and when the update completes.

If delays in updating the master keys exceed the limits of what the Oracle

database or application can cope with gracefully, then it may be necessary to halt

encryption transactions temporarily while a master key rotation is performed.

Entrust strongly recommends you test your solutions in a safe environment before

transferring to a production environment.

4.5. How Oracle works with the Entrust HSM

Before using the Entrust HSM, either a new Security World must be created using

the HSM, or a previously created Security World must be loaded onto the HSM.

For more information, see the User Guide for your HSM.

The Security World is stored in a folder on your host server(s) and holds the

database encryption keys, and associated credential files, that are to be protected.

All data in the Security World folder is automatically encrypted and is useless to

anyone without the authorized access and decryption mechanisms. When

encryption keys are to be used, they are loaded into the physically protected

environment of the HSM where they may be securely decrypted for use.

Encryption keys protected by an HSM are never available in plaintext outside the

boundary of the HSM. Legitimate use of the encryption keys is authorized and

protected as described below.

If you are creating a new Security World, you must create an Administrator Card

Set (ACS). An ACS is a set of physical smartcard(s) that must be used to create a

Security World. When the Security World has been created, the ACS is used to

secure the higher administrative functions of the Security World. Without a

quorum of ACS cards, you cannot create or load a Security World onto an HSM, or

alter it. Each ACS card can be issued with a unique passphrase and is specific to

the Security World. When the Security World is created, you must stipulate a

minimum number of cards, known as a quorum, required to load the Security

Oracle Transparent Data Encryption 42/46

Oracle Transparent Data Encryption 42/46

World onto an HSM at any later time. However, the number of cards in the set

should exceed the quorum, so that spares are available in case of failures or loss of

card. An encrypted copy of the created Security World is stored in a folder on the

host server(s).

If you are loading an existing Security World onto an HSM, you need access to a

folder holding the Security World, and a quorum of the same ACS cards, and

associated passphrase(s), that were used to create the Security World.

After the Security World has been created or loaded onto the HSM, a suitable HSM

protection method may be prepared, or resumed if it was already present in an

existing Security World. The protection method enables authorized access to the

encryption keys assigned to it. The following protection methods are available, in

order of increasing authentication requirements:

• Module protection: Oracle master encryption keys are protected by a Security

World protecting key.

• Softcard protection: Oracle master encryption keys are protected by a

(singular) named software token key, a passphrase, and Security World

protecting key.

• Operator Card Set (OCS) protection: Oracle master encryption keys are

protected by the presence of a set of named physical token(s) or

smartcard(s), an OCS token key, and Security World protecting key. An OCS

smartcard set is similar to the ACS card set in that it must stipulate a quorum

of cards to authorize permission to use its protection. The number of cards in

the set should exceed the number of HSMs that may be sharing the same

Security World so that spares are available in case of failure. The card set

should have a unique name that covers all cards in the set. In typical use with

Oracle, all OCS cards in the same set should have the same passphrase, and

the quorum is one.

For instructions to set up these protection methods, see the User Guide for your

HSM.

If you have loaded an existing Security World onto the HSM and will be using an

OCS card set that it already contains, you must use the same physical OCS cards

and associated passphrase(s) that were originally created in that Security World.

Similarly, for Softcard or module protection, you will need the original

passphrase(s).

In this Integration Guide, the word credential is used for a passphrase, or the

combination of a passphrase and a named token (OCS or Softcard). Before an

Oracle Transparent Data Encryption 43/46

Oracle database can make use of the facilities offered by the nShield HSM, it must

have access to the nCipher library file libcknfast.so which is installed as described

in this guide. This is vital, as without access to the nCipher library file, the Oracle

database and nShield HSM or nCipher software cannot communicate. Once

successful communication is established between the Oracle database and nShield

HSM, the Oracle database can gain access to the HSM by use of a credential

incorporated into an SQL script. When it is set up with a credential, the Oracle

database can proceed to create and assign encryption keys to that credential if no

encryption keys yet exist, and encrypt or decrypt data using the encryption keys

protected by that credential.

A protection method or credential is uniquely associated with the Security World

where it was created and cannot be used with any other Security World. It should

also be uniquely associated with the encrypted database(s) it is protecting. An

encrypted database cannot be decrypted without access to the same master keys

that protect it (likely to be an asymmetric pair). If you use OCS protection, the

Oracle database must use the correct OCS card name and associated passphrase

in its SQL scripts to access the encryption keys assigned to the OCS. Likewise, if

you use a Softcard, the Oracle database must use the correct Softcard name and

associated passphrase in its SQL scripts to access the encryption keys assigned to

the Softcard.

If you use module protection, a passphrase is required for the Oracle database

access mechanisms only. The Oracle module protection passphrase does not have

a reference or counterpart in the nShield HSM. This means that a user who is able

to access keys directly in the HSM is able to access module protected keys for any

database without requiring the Oracle passphrase. This does not apply for

Softcard or OCS protection.

Use of the HSM credentials and associated SQL scripts that open up access to the

encrypted data should be strictly limited to authorized persons. However, the

system can be set up so that approved clients can retrieve the encrypted data that

is automatically decrypted when it leaves the database. Approved database users

do not need the HSM credentials and associated SQL scripts to do this. They can

continue to use the database as normal. Encryption should be invisible to them in

most circumstances.

If you first use an Oracle software keystore to protect the master encryption keys,

but later want to switch to an HSM, the encryption facilities can be migrated to the

HSM. Also, encryption facilities can be migrated from an HSM back to an Oracle

software keystore. During migration, fresh master key(s) are created in the HSM or

software keystore, and the subsidiary keys that are being protected are re-

Oracle Transparent Data Encryption 44/46

Oracle Transparent Data Encryption 44/46

encrypted with the new master key(s). Legacy keys remain in the software

keystore or HSM where they were created, and should be (securely) retained in

case they were used for past backups or other legacy data. For more information

on key migration, see the Oracle documentation.

For loading or failover, you can use more than one HSM in the same system. The

HSMs must share the Security World, and operate together to provide the same

functions as a single HSM.

There is some performance degradation when Transparent Data

Encryption (TDE) is used. The impact depends on the types of

transactions you typically perform. Using the Security World

software and the HSM usually have a negligible impact on TDE

performance. You should test your Oracle and HSM configuration

in a realistic test environment before committing to a production

environment.

All nShield HSMs are FIPS certified to 140 Level 3, meaning that they are tamper

evident and tamper resistant. nShield Connects are also tamper responsive, if an

attempt to open the nShield Connect body is detected, all stored HSM encryption

key data is deleted.

The encryption facilities described in this document are designed only to protect

data at rest. TDE encrypts data while stored on disk, but once the data is retrieved

to working memory, it is in plaintext and can be read by anyone able to access it.

Decrypted data in transit between a database server and client should be

independently encrypted to ensure security during data transfer. Security World

data is inherently encrypted. There should be minimal security risk in transmitting

this data over open networks. Similarly, encrypted database contents should be

minimally at risk if transmitted over open networks.

Oracle Transparent Data Encryption 45/46

Chapter 5. Additional resources and
related products

5.1. Entrust digital security solutions

5.2. nShield product documentation

Oracle Transparent Data Encryption 46/46

Oracle Transparent Data Encryption 46/46

https://www.entrust.com/digital-security
https://nshielddocs.entrust.com/

	Oracle Transparent Data Encryption: nShield® HSM Integration Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Using this guide
	1.2. Product configuration
	1.3. Conventions used in this document
	1.4. Overview

	Chapter 2. Procedures
	2.1. Preparatory requirements
	2.2. Basic set up
	2.3. Configuring Oracle database software to use the Entrust HSM
	2.4. Opening and closing a keystore or HSM
	2.5. Active credentials
	2.6. Migrating from software wallet to HSM (non-multitenant)
	2.7. Migrating from software keystore to HSM (multitenant)
	2.8. Create master keys directly in an HSM for non-multitenant database
	2.9. Create master keys directly in an HSM for multitenant database
	2.10. Rekeying or key rotation

	Chapter 3. Troubleshooting
	3.1. An SQL command is run, and there is no output, or an unexpected output or error occurs
	3.2. After a change to a configuration file, no resultant change in the database behavior is observed
	3.3. ORA-28367: wallet does not exist
	3.4. ORA-28367: cannot find PKCS11 library
	3.5. ORA-28353: failed to open wallet
	3.6. ORA-28407: Hardware Security Module failed with PKCS#11 error CKR_FUNCTION_FAILED (%d)
	3.7. Encryption keys do not migrate correctly from a software keystore to an HSM (or vice-versa)
	3.8. When you are using persistent OCS cards, the persistent authorization is lost
	3.9. ORA-00600: internal error code
	3.10. ORA-28374: Typed master key not found in wallet
	3.11. ORA-12162: TNS: net service name is incorrectly specified

	Chapter 4. Appendix
	4.1. Security Worlds, key protection, and failure recovery
	4.2. About the HSM credential
	4.3. Change token with associated passphrase but keep same protection method
	4.4. Latency issues
	4.5. How Oracle works with the Entrust HSM

	Chapter 5. Additional resources and related products
	5.1. Entrust digital security solutions
	5.2. nShield product documentation

