
HashiCorp Vault Enterprise
nShield® HSM Integration Guide
2026-01-06

Table of Contents

1. Introduction . 1

1.1. Product configurations . 1

1.2. Supported nShield features . 1

1.3. Supported nShield hardware and software versions . 1

1.4. Supported nShield key types . 2

1.5. Requirements . 2

2. Install and configure the Entrust nShield HSM . 4

2.1. Install the nShield Security World Software . 4

2.2. Install the Entrust nShield HSM . 5

2.3. Enroll the Entrust nShield HSM . 5

2.4. Create a security world . 6

2.5. Select the protection method . 6

2.6. Create the OCS. 7

2.7. Create the Softcard . 9

3. Create the Vault encryption and HMAC keys . 10

3.1. Verify the PKCS #11 library is available . 10

3.2. Create the keys using OCS protection . 11

3.3. Create the keys using Softcard protection . 12

3.4. Create the keys using Module protection . 13

3.5. Verify the keys created . 14

3.6. Find the slot value for each protection method. 14

4. Install Vault. 16

4.1. System preparation . 16

4.2. Create Vault user and group. 16

4.3. Install Vault . 16

4.4. Install Vault license . 18

4.5. Create a configuration file. 18

4.6. Create and configure Vault directories. 19

4.7. Enable Vault. 20

5. Test the integration . 21

5.1. Start Vault . 21

5.2. Log in from the command line . 22

5.3. Create Managed Key In Vault. 22

6. HashiCorp Experimental - Create Vault encryption key using nShield ML-DSA 24

6.1. nShield 5c . 24

6.2. Connect XC . 24

7. Troubleshooting . 27

8. Vault commands . 28

8.1. Vault commands. 28

8.2. vault.service commands . 28

9. Additional resources and related products. 29

9.1. nShield Connect . 29

9.2. nShield as a Service. 29

9.3. Entrust products. 29

9.4. nShield product documentation. 29

Chapter 1. Introduction
HashiCorp Vault Enterprise (referred to as Vault in this guide) supports the

creation/storage of keys within Hardware Security Modules (HSMs). Entrust nShield HSMs

(referred to as HSM in this guide) provide FIPS or Common Criteria certified solutions to

securely generate, encrypt, and decrypt the keys which provide the root of trust for the

Vault protection mechanism.

This guide describes how to integrate Vault with an HSM to:

• Offload select PKI operations to the HSM.

• Generate new PKI key pairs and certificates.

• Verify and sign certificate workflows.

1.1. Product configurations

Entrust has successfully tested nShield HSM integration with Vault in the following

configurations:

Product Version

HashiCorp Vault Enterprise v1.21.1 Enterprise HSM

Base OS Red Hat Enterprise 9.5

1.2. Supported nShield features

Entrust has successfully tested nShield HSM integration with the following features:

Feature Support

Softcards Yes

Module Only Key Yes

OCS cards Yes

nSaaS Supported but not tested

1.3. Supported nShield hardware and software versions

HashiCorp Vault Enterprise 1/29

Entrust has successfully tested with the following nShield HSM hardware and software

versions:

1.3.1. nShield 5c

Security World

Software

Firmware Netimage OCS Softcard Module

13.6.14 (LTS 5) 13.4.5 (FIPS 140-3

certified)

13.6.14 ✓ ✓ ✓

1.3.2. Connect XC

Security World

Software

Firmware Netimage OCS Softcard Module

13.6.14 (LTS 5) 12.72.4 (FIPS 140-2

certified)

13.6.14 ✓ ✓ ✓

1.4. Supported nShield key types

Entrust has successfully tested with the following Vault managed keys:

• RSA

• ECDSA

1.5. Requirements

• Access to the Entrust TrustedCare Portal. This portal is available to customers under

maintenance. To request an account, contact nshield.support@entrust.com.

• Access to HashiCorp Vault Enterprise Module license from your IBM sales

representative.

• A dedicated Linux server.

• Network environment with usable port 9004 for the HSM and 8200 for Vault.

Familiarize yourself with the nShield Documentation.

• The importance of a correct quorum for the Administrator Card Set (ACS).

HashiCorp Vault Enterprise 2/29

HashiCorp Vault Enterprise 2/29

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4765
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4765
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4335
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4335
https://trustedcare.entrust.com/login
mailto:nshield.support@entrust.com
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/intro.html

• Whether Operator Card Set (OCS) protection or Softcard protection is required.

• If OCS protection is to be used, a 1-of-N quorum must be used.

• Whether your Security World must comply with FIPS 140 Level 3 or Common Criteria

standards. If using FIPS 140 Level 3, it is advisable to create an OCS for FIPS

authorization. The OCS can also provide key protection for the Vault master key. For

more information see FIPS 140 Level 3 compliance.

• Whether to instantiate the Security World as recoverable or not.

HashiCorp Vault Enterprise 3/29

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/security-worlds.html#_fips_140_level_3_compliance

Chapter 2. Install and configure the Entrust
nShield HSM

• Install the nShield Security World Software

• Install the Entrust nShield HSM

• Enroll the Entrust nShield HSM

• Create a security world

• Select the protection method

• Create the OCS

• Create the Softcard

2.1. Install the nShield Security World Software

1. Install the Security World software. For detailed instructions see the nShield Security

World Software v13.6.14 Installation Guide.

2. Add the Security World utilities path to the system path. This path is typically

/opt/nfast/bin:

sudo vi /etc/profile.d/nfast.sh

Add the following info to nfast.sh and save:

Entrust Security World path variable
export PATH=$PATH:/opt/nfast/bin

3. Open firewall port 9004 for the Entrust nShield HSM connections:

sudo firewall-cmd --permanent --add-port=9004/tcp
sudo firewall-cmd --reload

4. If using remote administration, open firewall port 9005 for the Entrust nShield Trusted

Verification Device (TVD):

5. Open a command window and run the following to confirm the security world is

operational:

enquiry
Server:
 enquiry reply flags none
 enquiry reply level Six
 serial number
 mode operational

HashiCorp Vault Enterprise 4/29

HashiCorp Vault Enterprise 4/29

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/software-install/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/software-install/intro.html

 version 13.6.14
 ...

2.2. Install the Entrust nShield HSM

Install the nShield Connect HSM locally, remotely, or remotely via the serial console.

Condensed instructions are available in Entrust TrustedCare Portal.

• How To: Locally Set up a new or replacement nShield Connect.

• How To: Set up new or replacement nShield 5s.

• How To: Remotely Setup a new or replacement nShield Connect.

• How To: Remotely Setup a new or replacement nShield Connect XC Serial Console

Model.

For detailed instructions see the nShield v13.6.14 Hardware Install and Setup Guides.

2.3. Enroll the Entrust nShield HSM

1. Inform the HSM of the client’s location. In this integration the client is this machine. For

instructions, see Configuring the nShield HSM to use the client. If it’s a high-availability

setup, repeat the client configuration for each HSM.

2. Enroll this machine as a client of the HSM. For instructions, see Configuring client

computers to use the nShield HSM. If it’s a high-availability setup, repeat the enrolment

for each HSM.

3. Open a command window and run the following utility to confirm the HSM is

operational:

enquiry
Server:
 enquiry reply flags none
 enquiry reply level Six
 serial number 8FE1-B519-C5AA 6308-03E0-D947
 mode operational
 version 13.6.14
 ...
Module #1:
 enquiry reply flags UnprivOnly
 enquiry reply level Six
 serial number 8FE1-B519-C5AA
 mode operational
 version 13.4.5
 ...
 module type nShield 5c
 ...
Module #2:
 enquiry reply flags UnprivOnly
 enquiry reply level Six
 serial number 6308-03E0-D947

HashiCorp Vault Enterprise 5/29

https://trustedcare.entrust.com/login
https://trustedcare.entrust.com/s/article/1How-To-Locally-Set-up-a-new-or-replacement-nShield-Connect
https://trustedcare.entrust.com/s/article/1How-To-Set-up-new-or-replacement-nShield-5s
https://trustedcare.entrust.com/s/article/1How-To-Remotely-Setup-a-new-or-replacement-nShield-Connect
https://trustedcare.entrust.com/s/article/1How-To-Remotely-Setup-a-new-or-replacement-nShield-Connect-XC-Serial-Console-Model
https://trustedcare.entrust.com/s/article/1How-To-Remotely-Setup-a-new-or-replacement-nShield-Connect-XC-Serial-Console-Model
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hardware-install/intro.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureConnectClient
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureClientConnect
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/na/config-na.html#ConfigureClientConnect

 mode operational
 version 12.72.4
 ...
 module type nShield Connect XC
 ...

2.4. Create a security world

1. Create your Security World if one does not already exist or copy an existing one.

Follow your organization’s security policy for this. For more information see Create a

new Security World.



If using a strict world (option --mode=fips-140-2-level-3), the

Operator Card Set (see Select the protection method) must be

presented when starting Vault regardless of the protection method

selected. The Operator Card Set can be removed after Vault starts

and the protection method is either Softcards or Module.


ACS cards cannot be duplicated after the Security World is

created. You may want to create extras in case of a card failure or a

lost card.

2. Confirm the Security World is Usable:

nfkminfo
World
 generation 2
 state 0x37270008 Initialised Usable ...
 ...
Module #1
 generation 2
 state 0x2 Usable
 ...
Module #2
 generation 2
 state 0x2 Usable
 ...

2.5. Select the protection method

OCS, Softcard, or Module protection can be used to authorize access to the keys protected

by the HSM. Typically, an organization’s security policies dictate the use of one or the

others.

• Operator Cards Set (OCS) are smartcards that are presented to the physical smartcard

reader of an HSM. For more information on OCS use, properties, and k-of-N values, see

HashiCorp Vault Enterprise 6/29

HashiCorp Vault Enterprise 6/29

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/create-secworld.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/create-secworld.html

Operator Card Sets (OCS).

• Softcards are logical tokens (passphrases) that protect the key and authorize its use.

For more information on Softcards use see Softcards.

• Module protection has no passphrase.

Follow your organization’s security policy to select an authorization access method.

1. Create file /opt/nfast/cknfastrc containing the nShield PKCS #11 library environment

variables per the selection above.

For example:

Enable Softcard protection
CKNFAST_LOADSHARING=1

Enable Module protection
CKNFAST_FAKE_ACCELERATOR_LOGIN=1

Needed for managed key
CKNFAST_OVERRIDE_SECURITY_ASSURANCES=wrapping_crypt

OCS Preload file location and card set state
NFAST_NFKM_TOKENSFILE=/opt/nfast/preloadtoken
CKNFAST_NONREMOVABLE=1

PKCS #11 log level and file location
CKNFAST_DEBUG=10
CKNFAST_DEBUGFILE=/opt/nfast/log/pkcs11.log

2. Change ownership of /opt/nfast/cknfastrc to nfast.

ls -al /opt/nfast/cknfastrc
-rw-rw-rw-. 1 root root 324 Apr 3 16:12 /opt/nfast/cknfastrc

chown nfast:nfast /opt/nfast/cknfastrc

ls -al /opt/nfast/cknfastrc
-rw-rw-rw-. 1 nfast nfast 324 Apr 3 16:12 /opt/nfast/cknfastrc

2.6. Create the OCS

1. Edit file /opt/nfast/kmdata/config/cardlist adding the serial number of the card(s) to

be presented, or the wildcard "*".

2. Open a command window as an administrator.

3. Run the createocs command as described below, entering a passphrase at the prompt.

Follow your organization’s security policy for the values K/N. Use the same passphrase

for all the OCS cards in the set (one for each person with access privilege, plus the

spares). In this example note that slot 2, remote via a TVD, is used to present the card.

HashiCorp Vault Enterprise 7/29

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/ocs.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/secworld-admin/softcards.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/api-pkcs11/env-variables.html
https://nshielddocs.entrust.com/security-world-docs/v13.6.14/api-pkcs11/env-variables.html

 Vault requires k = 1 whereas N can be up to, but not exceeding, 64.


After an OCS card set has been created, the cards cannot be

duplicated. You may want to create extras in case of a card failure

or a lost card.



The preload utility loads OCS onto the HSM. This feature makes the

OCS available for use after been physically removed from the HSM

for safe storage or other reasons. Add the -p (persistent) option to

the command below to have authentication after the OCS card has

been removed from the HSM front panel slot, or from the TVD.

createocs -m1 -s2 -N testOCS -Q 1/1

FIPS 140-2 level 3 auth obtained.

Creating Cardset:
 Module 1: 0 cards of 1 written
 Module 1 slot 0: Admin Card #1
 Module 1 slot 2: empty
 Module 1 slot 3: empty
 Module 1 slot 2: blank cardSteps:

 Module 1 slot 2:- passphrase specified - writing card
Card writing complete.

cardset created; hkltu = a165a26f929841fe9ff2acdf4bb6141c1f1a2eed

The authentication provided by the OCS as shown in the command line above is non-

persistent and only available while the OCS card is inserted in the HSM front panel slot,

or the TVD.

4. Verify the OCS created:

nfkminfo -c
Cardset list - 2 cardsets: (P)ersistent/(N)ot, (R)emoteable/(L)ocal-only
 Operator logical token hash k/n timeout name
 edb3d45a28e5a6b22b033684ce589d9e198272c2 1/5 none-NL testOCS

The rocs utility also shows the OCS created:

rocs
`rocs' key recovery tool
Useful commands: `help', `help intro', `quit'.
rocs> list cardset
No. Name Keys (recov) Sharing
 1 testOCS 0 (0) 1 of 5
rocs> quit

HashiCorp Vault Enterprise 8/29

HashiCorp Vault Enterprise 8/29

https://nshielddocs.entrust.com/security-world-docs/v13.6.14/hsm-user-guide/hsm-mgmt/preload-utility.html

2.7. Create the Softcard

1. Enable Softcard protection as described in Select the protection method.

2. Open a command window as an administrator.

3. Run the following command, and enter a passphrase at the prompt:

ppmk -n testSC
Enter new pass phrase:
Enter new pass phrase again:
New softcard created: HKLTU 644529aad18eeed9de372779e829f48757e617cd

4. Verify the Softcard created:

nfkminfo -s
SoftCard summary - 1 softcards:
 Operator logical token hash name
 644529aad18eeed9de372779e829f48757e617cd testSC

The rocs utility also shows the OCS and Softcard created:

rocs
`rocs' key recovery tool
Useful commands: `help', `help intro', `quit'.
rocs> list cardsets
No. Name Keys (recov) Sharing
 1 testOCS 0 (0) 1 of 5
 2 testSC 0 (0) (softcard)
rocs> quit

HashiCorp Vault Enterprise 9/29

Chapter 3. Create the Vault encryption and
HMAC keys

• Verify the PKCS #11 library is available

• Create the keys using OCS protection

• Create the keys using Softcard protection

• Create the keys using Module protection

• Verify the keys created

• Find the slot value for each protection method

The Vault encryption and HMAC keys can be protected with an OCS, Softcard, or Module.

Key generation with all three protection methods is shown below. Choose the one that

applies to you.

3.1. Verify the PKCS #11 library is available

1. Present the OCS if using OCS protection.

2. Execute the ckcheckinst command to test the library. Enter the slot number

corresponding to the protection method used. Enter the OCS or Softcard passphrase

when prompted.

ckcheckinst

PKCS#11 library interface version 2.40
 flags 0
 manufacturerID "nCipher Corp. Ltd "
 libraryDescription "nCipher PKCS#11 13.6.14-390-0ff9"
 implementation version 13.06
 Loadsharing and Failover enabled

Slot Status Label
==== ====== =====
 0 Fixed token "loadshared accelerator "
 1 Fixed token "testOCS "
 2 Soft token "testSC "

No removable tokens present.
Please insert an operator card into at least one available slot and enter 'R' retry.
If you have not created an operator card or there are no physical slots,
 enter a fixed token slot number,
 or 'E' to exit this program and create a card set before continuing.

Enter a fixed token slot number, 'R'etry or 'E'xit: 2
Using slot number 2.

Please enter the passphrase for this token (No echo set).
Passphrase:

Test Pass/Failed

HashiCorp Vault Enterprise 10/29

HashiCorp Vault Enterprise 10/29

---- -----------

1 Generate RSA key pair Pass
2 Generate DSA key pair Pass
3 Encryption/Decryption Pass
4 Signing/Verification Pass

Deleting test keys ok

PKCS#11 library test successful.

3.2. Create the keys using OCS protection

To create OCS protected keys, the OCS must be presented via the card reader in the HSM

front panel. An alternative is to present the OCS remotely via the TVD.

In a FIPS 140-3 world the TVD slot needs to be mapped to slot 0.

For example:

cat /opt/nfast/kmdata/hsm-8FE1-B519-C5AA/config/config
syntax-version=1
...
[slot_mapping]
...
#
ESN of the module on which slot 0 will be remapped with another.
esn=ESN
#
Slot to exchange with slot 0. Setting this value to 0 means do
nothing.(default=0)
slot=INT
esn=8FE1-B519-C5AA
slot=2
...

1. Create the Vault encryption key vault_encript_key_ocs:

generatekey --generate --batch -m 1 pkcs11 type=AES size=256 protect=token cardset=testOCS
plainname=vault_encript_key_ocs
key generation parameters:
 operation Operation to perform generate
 application Application pkcs11
 module Module to use 2
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type AES
 size Key size 256
 plainname Key name vault_encript_key_ocs
 nvram Blob in NVRAM (needs ACS) no

Loading `testOCS':
 Module 1: 0 cards of 1 read
 Module 1 slot 2: `testOCS' #2
 Module 1 slot 0: empty
 Module 1 slot 3: empty

HashiCorp Vault Enterprise 11/29

 Module 1 slot 4: empty
 Module 1 slot 5: empty
 Module 1 slot 2:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_pkcs11_ucedb3d45a28e5a6b22b033684ce589d9e198272c2-
bacbe490ce0e4fe82b4612195476bf070fb6660c

2. Create the Vault HMAC key vault_hmac_key_ocs:

generatekey --generate --batch -m 1 pkcs11 type=HMACSHA256 size=256 protect=token cardset=testOCS
plainname=vault_hmac_key_ocs
key generation parameters:
 operation Operation to perform generate
 application Application pkcs11
 module Module to use 2
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type HMACSHA256
 size Key size 256
 plainname Key name vault_hmac_key_ocs
 nvram Blob in NVRAM (needs ACS) no

Loading `testOCS':
 Module 1: 0 cards of 1 read
 Module 1 slot 2: `testOCS' #2
 Module 1 slot 0: empty
 Module 1 slot 3: empty
 Module 1 slot 4: empty
 Module 1 slot 5: empty
 Module 1 slot 2:- passphrase supplied - reading card
Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_pkcs11_ucedb3d45a28e5a6b22b033684ce589d9e198272c2-
0d87f2c32b88359ad60e0e51c9039ad5eab20488

3.3. Create the keys using Softcard protection

1. Create the Vault encryption key vault_encript_key_sc:

generatekey --generate --batch -m 1 pkcs11 type=AES size=256 protect=softcard cardset=testSC
plainname=vault_encript_key_sc
key generation parameters:
 operation Operation to perform generate
 application Application pkcs11
 module Module to use 1
 protect Protected by softcard
 softcard Soft card to protect key testSC
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type AES
 size Key size 256
 plainname Key name vault_encript_key_sc
 nvram Blob in NVRAM (needs ACS) no
Please enter the pass phrase for softcard `testSC':

HashiCorp Vault Enterprise 12/29

HashiCorp Vault Enterprise 12/29

Please wait........

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_pkcs11_uc925f67e72ea3c354cae4e6797bde3753d24e7744-
4f96d0a4884c80c13516d5b2464698413dd49d91

2. Create the Vault HMAC key vault_hmac_key_sc:

generatekey --generate --batch -m 1 pkcs11 type=HMACSHA256 size=256 protect=softcard softcard=testSC
plainname=vault_hmac_key_sc
key generation parameters:
 operation Operation to perform generate
 application Application pkcs11
 module Module to use 1
 protect Protected by softcard
 softcard Soft card to protect key testSC
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type HMACSHA256
 size Key size 256
 plainname Key name vault_hmac_key_sc
 nvram Blob in NVRAM (needs ACS) no
Please enter the pass phrase for softcard `testSC':

Please wait........

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_pkcs11_uc925f67e72ea3c354cae4e6797bde3753d24e7744-
82f86ff15af96aea4ff7ab5662648403aa826101

3.4. Create the keys using Module protection

1. Create the Vault encryption key vault_encript_key_m:

generatekey --generate --batch -m 1 pkcs11 type=AES size=256 protect=module plainname=vault_encript_key_m
key generation parameters:
 operation Operation to perform generate
 application Application pkcs11
 module Module to use 1
 protect Protected by module
 verify Verify security of key yes
 type Key type AES
 size Key size 256
 plainname Key name vault_encript_key_m
 nvram Blob in NVRAM (needs ACS) no

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_pkcs11_ua668a069f094a62eb7ff72e31f466cd7f643a0346

2. Create the Vault HMAC key vault_hmac_key_m:

generatekey --generate --batch -m 1 pkcs11 type=HMACSHA256 size=256 protect=module
plainname=vault_hmac_key_m
key generation parameters:
 operation Operation to perform generate
 application Application pkcs11
 module Module to use 1

HashiCorp Vault Enterprise 13/29

 protect Protected by module
 verify Verify security of key yes
 type Key type HMACSHA256
 size Key size 256
 plainname Key name vault_hmac_key_m
 nvram Blob in NVRAM (needs ACS) no

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_pkcs11_ua41efc7f818447bf26d6e6d75c2974e9ddb6d0759

3.5. Verify the keys created

1. Verify the keys created using the rocs utility:

rocs
`rocs' key recovery tool
Useful commands: `help', `help intro', `quit'.
rocs> list key
 No. Name App Protected by
 1 vault_encript_key_sc pkcs11 testSC (testSC)
 2 vault_hmac_key_sc pkcs11 testSC (testSC)
 3 vault_encript_key_m pkcs11 module
 4 vault_hmac_key_m pkcs11 module
 5 vault_encript_key_ocs pkcs11 testOCS
 6 vault_hmac_key_ocs pkcs11 testOCS
rocs> quit

2. Verify the keys created using the nfkminfo utility:

nfkminfo -l

Keys with module protection:
 key_pkcs11_ua41efc7f818447bf26d6e6d75c2974e9ddb6d0759 `vault_hmac_key_m'
 key_pkcs11_ua668a069f094a62eb7ff72e31f466cd7f643a0346 `vault_encript_key_m'

Keys protected by softcards:
 key_pkcs11_uc925f67e72ea3c354cae4e6797bde3753d24e7744-4f96d0a4884c80c13516d5b2464698413dd49d91
`vault_encript_key_sc'
 key_pkcs11_uc925f67e72ea3c354cae4e6797bde3753d24e7744-82f86ff15af96aea4ff7ab5662648403aa826101
`vault_hmac_key_sc'

Keys protected by cardsets:
 key_pkcs11_ucedb3d45a28e5a6b22b033684ce589d9e198272c2-0d87f2c32b88359ad60e0e51c9039ad5eab20488
`vault_hmac_key_ocs'
 key_pkcs11_ucedb3d45a28e5a6b22b033684ce589d9e198272c2-bacbe490ce0e4fe82b4612195476bf070fb6660c
`vault_encript_key_ocs'

3.6. Find the slot value for each protection method

Each protection method is loaded to a virtual slot of the HSM. The decimal value of this slot

will be needed further down to configure Vault.

1. Run the cklist utility. Notice the lines below.

HashiCorp Vault Enterprise 14/29

HashiCorp Vault Enterprise 14/29

cklist
Listing contents of slot 0
 (token label "loadshared accelerator ")
...
Listing contents of slot 1
 (token label "testOCS ")
...
Listing contents of slot 2
 (token label "testSC ")
...

loadshared accelerator

Module protection.

testOCS

The name given to the OCS created in section Create the OCS.

testSC

The name given to the Softcard token created in section Create the Softcard.

2. Search file /opt/nfast/log/pkcs11.log for pSlotList. Notice the hex value for each

slot. For example:

cat /opt/nfast/log/pkcs11.log | grep pSlotList
...
2025-12-22 13:37:50 [2848]: pkcs11: 00000000 < pSlotList[0] 0x2D622495
2025-12-22 13:37:50 [2848]: pkcs11: 00000000 < pSlotList[1] 0x2D622496
2025-12-22 13:37:50 [2848]: pkcs11: 00000000 < pSlotList[2] 0x2D622497
...

3. Convert the pSlotList values to decimal:

Protection Method Slot Number Value (Hex) Value (Decimal)

Module 0 0x2D622495 761406613

OCS 1 0x2D622496 761406614

Softcards 2 0x2D622497 761406615

Save the decimal values.


Adding or deleting Softcard tokens, or adding or deleting OCS, or

adding or deleting Modules keys will change the values above.

Redo the step to find the new values if necessary.

HashiCorp Vault Enterprise 15/29

Chapter 4. Install Vault
• System preparation

• Create Vault user and group

• Install Vault

• Install Vault license

• Create a configuration file

• Create and configure Vault directories

• Enable Vault

4.1. System preparation

1. Open the following firewall ports for incoming Vault connections:

sudo firewall-cmd --permanent --add-port=8200/tcp
sudo firewall-cmd --permanent --add-port=8201/tcp
sudo firewall-cmd --reload

2. Install open-vm-tools:

sudo yum install open-vm-tools unzip opensc

4.2. Create Vault user and group

1. Create the Vault group:

sudo groupadd --system vault

2. Create the Vault user:

sudo useradd --system --shell /sbin/nologin --gid vault vault

3. Add the Vault user to the nShield nfast group:

sudo usermod --append --groups nfast vault

4.3. Install Vault

HashiCorp Vault Enterprise 16/29

HashiCorp Vault Enterprise 16/29

1. Download the Vault package from HashiCorp at https://releases.hashicorp.com/vault/,

ensuring that it is the binary file for Enterprise with HSM support:

cd Downloads

wget https://releases.hashicorp.com/vault/1.21.1+ent.hsm/vault_1.21.1+ent.hsm_linux_amd64.zip
--2025-12-11 17:11:56--
https://releases.hashicorp.com/vault/1.21.1+ent.hsm/vault_1.21.1+ent.hsm_linux_amd64.zip
Resolving releases.hashicorp.com (releases.hashicorp.com)... 99.84.203.127, 99.84.203.63, 99.84.203.125,
...
Connecting to releases.hashicorp.com (releases.hashicorp.com)|99.84.203.127|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 169657079 (162M) [application/zip]
Saving to: ‘vault_1.21.1+ent.hsm_linux_amd64.zip’

vault_1.21.1+ent.hsm_linux_amd6 100%[===>] 161.80M
27.7MB/s in 6.2s

2025-12-11 17:12:12 (26.1 MB/s) - ‘vault_1.21.1+ent.hsm_linux_amd64.zip’ saved [169657079/169657079]

2. Unzip the binary file and extract it to the working directory on the host machine, for

example /usr/local/bin. There should only be a single binary file named vault.

unzip vault_1.21.1+ent.hsm_linux_amd64.zip -d /usr/local/bin
Archive: vault_1.21.1+ent.hsm_linux_amd64.zip
replace /usr/local/bin/vault? [y]es, [n]o, [A]ll, [N]one, [r]ename: A
 inflating: /usr/local/bin/vault
 ...

3. Set Vault permissions:

sudo chmod 755 /usr/local/bin/vault
sudo setcap cap_ipc_lock=+ep /usr/local/bin/vault
ls -la /usr/local/bin/vault
-rwxr-xr-x. 1 root root 531848032 Nov 18 18:05 /usr/local/bin/vault

4. Add the Vault binary file to the path:

sudo vi /etc/profile.d/vault.sh

Add the following information to vault.sh and restart the system. The VAULT_ADDR

variable allows Vault to be accessed from a web browser via the web user interface

(web UI).

HashiCorp Vault Enterprise path variable
export PATH="$PATH:/usr/local/bin"
export VAULT_ADDR=http://127.0.0.1:8200

5. Create the Vault data directories:

HashiCorp Vault Enterprise 17/29

https://releases.hashicorp.com/vault/
https://releases.hashicorp.com/vault/
https://releases.hashicorp.com/vault/

sudo mkdir --parents /opt/vault/data
sudo mkdir --parents /opt/vault/data/hsm
sudo mkdir --parents /opt/vault/logs
sudo chmod --recursive 750 /opt/vault
sudo chown --recursive vault:vault /opt/vault

6. Reboot the server:

reboot

7. Confirm the binary file is available:

vault version
Vault v1.21.1+ent.hsm (beaba1062fcb683171ab2690841fbb29d8733512), built 2025-11-18T13:05:11Z (cgo)

4.4. Install Vault license

1. Create a directory for the Vault license and configuration files:

sudo mkdir /etc/vault

2. Three options are given in the Install a HashiCorp Enterprise License page of the online

documentation for enabling an enterprise license, as well as a procedure to request a

trail license. For this guide, create a file containing the enterprise license key:

cat /etc/vault/license.hclic
02MV4UU43B...

4.5. Create a configuration file

Create a /etc/vault/config.hcl configuration file to enable Vault to be run as a service.

See also Vault commands.

An example configuration file with OCS protection is shown below. The pin is the

passphrase entered when the OCS was created in section Create the OCS.

PKCS#11 Seal, Entrust nShield Integration
seal "pkcs11" {
lib = "/opt/nfast/toolkits/pkcs11/libcknfast.so"
slot = "761406614"
pin = "xxxxxxx"
key_label = "vault_encript_key_ocs"
hmac_key_label = "vault_hmac_key_ocs"
Vault is commanding HSM to generate keys if these don't already exists
generate_key = true

HashiCorp Vault Enterprise 18/29

HashiCorp Vault Enterprise 18/29

https://learn.hashicorp.com/tutorials/nomad/hashicorp-enterprise-license?in=vault/enterprise

}

Vault listener with TLS disabled
listener "tcp" {
address = "0.0.0.0:8200"
tls_disable = true
}

Storage
storage "raft" {
 path = "/opt/vault/data/hsm"
 node_id = "vault"
}

ui = true

License file
license_path = "/etc/vault/license.hclic"

disable_mlock = false
api_addr = "http://127.0.0.1:8200"
cluster_addr = "https://127.0.0.1:8201"

Managed Key Library
kms_library "pkcs11" {
name = "hsm1" # This can be re-named to anything you like
library = "/opt/nfast/toolkits/pkcs11/libcknfast.so" #PKCS11 Library Location
}

In this example:

• The slot and pin parameters will change according to the protection selected. See

section Find the slot value for each protection method.

• The entropy seal mode is set to augmentation. This leverages the HSM for augmenting

system entropy via the PKCS #11 protocol.

• The seal wrap is enabled. By enabling seal wrap, Vault wraps your secrets with an extra

layer of encryption leveraging the HSM encryption and decryption.

• Notice the path to the license file.

4.6. Create and configure Vault directories

1. Create file /etc/sysconfig/vault:

sudo touch /etc/sysconfig/vault

2. Create a service file:

vi /etc/systemd/system/vault.service

3. Add the following information to the service file:

HashiCorp Vault Enterprise 19/29


If deploying on a server with more than two CPUs, you may

increase the value of Environment=GOMAXPROCS accordingly.

[Unit]
Description="HashiCorp Vault"
Requires=network-online.target
After=network-online.target nc_hardserver.service
ConditionFileNotEmpty=/etc/vault/config.hcl
[Service]
User=vault
Group=vault
EnvironmentFile=/etc/sysconfig/vault
ExecStart=/usr/local/bin/vault server -config=/etc/vault/config.hcl
StandardOutput=/opt/vault/logs/output.log
StandardError=/opt/vault/logs/error.log
ExecReload=/bin/kill --signal -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=5
TimeoutStopSec=30
StartLimitInterval=60
StartLimitBurst=3
AmbientCapabilities=CAP_IPC_LOCK
LimitNOFILE=65536
LimitMEMLOCK=infinity
[Install]
WantedBy=multi-user.target

4. If you are setting paths different from the default, edit the following lines in

/etc/systemd/system/vault.service. Also change the location of the configuration file

config.hcl accordingly:

ConditionFileNotEmpty=/etc/vault/config.hcl
EnvironmentFile=-/etc/sysconfig/vault
ExecStart=/opt/vault/bin/vault server -config=/etc/vault/config.hcl
StandardOutput=/opt/vault/logs/output.log
StandardError=/opt/vault/logs/error.log

4.7. Enable Vault

Enable Vault:

systemctl enable vault.service

HashiCorp Vault Enterprise 20/29

HashiCorp Vault Enterprise 20/29

Chapter 5. Test the integration
• Start Vault

• Log in from the command line

• Create Managed Key In Vault

5.1. Start Vault

The HSM will be accessed when starting Vault. Therefore, the OCS or Softcard is needed.

1. Start the Vault in a separate window.

If the protection method defined in /etc/vault/config.hcl is OCS protection, the

OCS card created in Create the OCS must be inserted in the HSM slot. Otherwise the

Vault will fail to start.

vault server -config=/etc/vault/config.hcl
WARNING: Request Limiter configuration is no longer supported; overriding server configuration to disable

==> Vault server configuration:

Administrative Namespace:
 Api Address: http://127.0.0.1:8200
 Cgo: enabled
 Cluster Address: https://127.0.0.1:8201
 Environment Variables: BASH_FUNC_which%%, DBUS_SESSION_BUS_ADDRESS, DISPLAY, HISTCONTROL, HISTSIZE,
HOME, HOSTNAME, LANG, LESSOPEN, LOGNAME, LS_COLORS, MAIL, MOTD_SHOWN, OLDPWD, PATH, PWD,
SELINUX_LEVEL_REQUESTED, SELINUX_ROLE_REQUESTED, SELINUX_USE_CURRENT_RANGE, SHELL, SHLVL, SSH_AUTH_SOCK,
SSH_CLIENT, SSH_CONNECTION, SSH_TTY, TERM, USER, VAULT_ADDR, XDG_DATA_DIRS, XDG_RUNTIME_DIR,
XDG_SESSION_CLASS, XDG_SESSION_ID, XDG_SESSION_TYPE, _, which_declare
 Go Version: go1.25.4
 Listener 1: tcp (addr: "0.0.0.0:8200", cluster address: "0.0.0.0:8201",
disable_request_limiter: "false", max_json_array_element_count: "10000", max_json_depth: "300",
max_json_object_entry_count: "10000", max_json_string_value_length: "1048576", max_request_duration:
"1m30s", max_request_size: "33554432", tls: "disabled")
 Log Level:
 Mlock: supported: true, enabled: true
 Recovery Mode: false
 Storage: raft (HA available)
 Version: Vault v1.21.1+ent.hsm, built 2025-11-18T13:05:11Z
 Version Sha: beaba1062fcb683171ab2690841fbb29d8733512

==> Vault server started! Log data will stream in below:
...

2. Initialize the Vault back in the original window:

The vault operator init command returns the Recovery Key(s) and Initial Root

Token. Save these.

vault operator init
Recovery Key 1: xvqg4JB3fdA2SSV72hzR9l+b+EII46Uso76Z3J8eKeUu

HashiCorp Vault Enterprise 21/29

Recovery Key 2: EgtKr3YkgZUHDLvoQajPPMcADL/3pkZc9Rd1xHHCqn+q
Recovery Key 3: h7h/vm7FGJTzYXo9YBmpeLngInnzV9CDAGAXhJAg/DQ1
Recovery Key 4: BZO5I83NqMUyPGP3uLKFExu9F6NtcyDAm1DNAgft61HR
Recovery Key 5: 2A1fH5re9/2dVy4kfVB1j7L0gwOW19QobP1FFXFLoYuG

Initial Root Token: hvs.l71Qhj2ubKiv7TkfUfbaMdD1

Success! Vault is initialized

Recovery key initialized with 5 key shares and a key threshold of 3. Please
securely distribute the key shares printed above.

5.2. Log in from the command line

Log in to Vault using the Initial Root Token saved above:

vault login hvs.l71Qhj2ubKiv7TkfUfbaMdD1
Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.

Key Value
--- -----
token hvs.l71Qhj2ubKiv7TkfUfbaMdD1
token_accessor gcaTa4okm4JkZUNAKDUrGhLR
token_duration ∞
token_renewable false
token_policies ["root"]
identity_policies []
policies ["root"]

5.3. Create Managed Key In Vault

1. Create an RSA-managed key hsm-key-ocs-rsa in Vault VaultKeyOCSRSA, protected

by the OCS testOCS in the HSM:

vault write /sys/managed-keys/pkcs11/hsm-key-ocs-rsa library=hsm1 slot=761406614 pin=xxxxxxx
key_label="VaultKeyOCSRSA" allow_generate_key=true allow_store_key=true mechanism=0x0001 key_bits=2048
Success! Data written to: sys/managed-keys/pkcs11/hsm-key-ocs-rsa

2. Write to the HSM the new managed key hsm-key-ocs-rsa:

vault write -f /sys/managed-keys/pkcs11/hsm-key-ocs-rsa/test/sign
Success! Data written to: sys/managed-keys/pkcs11/hsm-key-ocs-rsa/test/sign

3. Create a ECDSA managed key hsm-key-ocs-ecdsa in Vault labeled VaultKeyOCSRSA,

and protected by the OCS testOCS in the HSM:

vault write /sys/managed-keys/pkcs11/hsm-key-ocs-ecdsa library=hsm1 slot=761406614 pin=xxxxxxx
key_label="VaultKeyOCSECDSA" allow_generate_key=true allow_store_key=true mechanism=0x1041 curve=P256

HashiCorp Vault Enterprise 22/29

HashiCorp Vault Enterprise 22/29

Success! Data written to: sys/managed-keys/pkcs11/hsm-key-ocs-ecdsa

4. Write to the HSM the new managed key hsm-key-ocs-ecdsa:

vault write -f /sys/managed-keys/pkcs11/hsm-key-ocs-ecdsa/test/sign
Success! Data written to: sys/managed-keys/pkcs11/hsm-key-ocs-ecdsa/test/sign

5. List all keys created in the HSM. Notice the new keys VaultKeyOCSRSA and

VaultKeyOCSECDSA:

nfkminfo -l

Keys with module protection:
 key_pkcs11_ua41efc7f818447bf26d6e6d75c2974e9ddb6d0759 `vault_hmac_key_m'
 key_pkcs11_ua668a069f094a62eb7ff72e31f466cd7f643a0346 `vault_encript_key_m'

Keys protected by softcards:
 key_pkcs11_uc925f67e72ea3c354cae4e6797bde3753d24e7744-4f96d0a4884c80c13516d5b2464698413dd49d91
`vault_encript_key_sc'
 key_pkcs11_uc925f67e72ea3c354cae4e6797bde3753d24e7744-82f86ff15af96aea4ff7ab5662648403aa826101
`vault_hmac_key_sc'

Keys protected by cardsets:
 key_pkcs11_ucedb3d45a28e5a6b22b033684ce589d9e198272c2-0d87f2c32b88359ad60e0e51c9039ad5eab20488
`vault_hmac_key_ocs'
 key_pkcs11_ucedb3d45a28e5a6b22b033684ce589d9e198272c2-afe59414692608f9b601be5c7be5f9b09932ca5b
`VaultKeyOCSECDSA'
 key_pkcs11_ucedb3d45a28e5a6b22b033684ce589d9e198272c2-bacbe490ce0e4fe82b4612195476bf070fb6660c
`vault_encript_key_ocs'
 key_pkcs11_ucedb3d45a28e5a6b22b033684ce589d9e198272c2-d54c16d15fe350f57aecdc4cc94b951f78c2710c
`VaultKeyOCSRSA'

6. Enable the PKI secrets engine at the path pki and reference a managed key hsm-key

stored in the HSM:

vault secrets enable -path=pki -allowed-managed-keys=hsm-key pki
Success! Enabled the pki secrets engine at: pki/

7. Perform PKI operations as needed. See the PKI Secrets Engine page in the online

documentation.

HashiCorp Vault Enterprise 23/29

https://www.vaultproject.io/docs/secrets/pki

Chapter 6. HashiCorp Experimental - Create
Vault encryption key using nShield ML-DSA
The Vault encryption key can be created with the ML-DSA post quantum algorithm. Entrust

has successfully tested with the following nShield HSM hardware and software versions:

6.1. nShield 5c

Security World

Software

Firmware Netimage OCS Softcard Module

13.9.3 (STS 4) 13.8.4 13.9.3 ✓ ✓ ✓

6.2. Connect XC

Security World

Software

Firmware Netimage OCS Softcard Module

13.9.3 (STS 4) 13.8.3 13.9.3 ✓ ✓ ✓

Use the following commands to generate the vault encryption key in Create the Vault

encryption and HMAC keys.

1. Create the Vault encryption key vault_encript_key_pq_ocs with OCS protection.

generatekey --generate --batch -m 1 pkcs11 type=MLDSA scheme=MLDSA87 protect=token cardset=testOCS
plainname=vault_encript_key_pq_ocs
key generation parameters:
 operation Operation to perform generate
 application Application pkcs11
 module Module to use 1
 protect Protected by token
 slot Slot to read cards from 0
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type MLDSA
 scheme Parameter set MLDSA87
 plainname Key name vault_encript_key_pq_ocs
 nvram Blob in NVRAM (needs ACS) no

Loading `testOCS':
 Module 1: 0 cards of 1 read
 Module 1 slot 2: `testOCS' #4
 Module 1 slot 0: empty
 Module 1 slot 3: empty
 Module 1 slot 4: empty
 Module 1 slot 5: empty
 Module 1 slot 2:- passphrase supplied - reading card

HashiCorp Vault Enterprise 24/29

HashiCorp Vault Enterprise 24/29

Card reading complete.

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_pkcs11_uc321b143185fc939504893270ed821ba4ed38319a-
96d5a9ebbf542216a7d8bff65c17f44957fdf119

2. Create the Vault encryption key vault_encript_key_pq_sc with softcard protection.

generatekey --generate --batch -m 1 pkcs11 type=MLDSA scheme=MLDSA87 protect=softcard cardset=testSC
plainname=vault_encript_key_pq_sc
key generation parameters:
 operation Operation to perform generate
 application Application pkcs11
 module Module to use 1
 protect Protected by softcard
 softcard Soft card to protect key testSC
 recovery Key recovery yes
 verify Verify security of key yes
 type Key type MLDSA
 scheme Parameter set MLDSA87
 plainname Key name vault_encript_key_pq_sc
 nvram Blob in NVRAM (needs ACS) no
Please enter the pass phrase for softcard `testSC':

Please wait........
Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_pkcs11_uc644529aad18eeed9de372779e829f48757e617cd-
f814c86358b447af60a42df03b371cfbacfa5cd6

3. Create the Vault encryption key vault_encript_key_pq_m with module protection.

generatekey --generate --batch -m 1 pkcs11 type=MLDSA scheme=MLDSA87 protect=module
plainname=vault_encript_key_pq_m
key generation parameters:
 operation Operation to perform generate
 application Application pkcs11
 module Module to use 1
 protect Protected by module
 verify Verify security of key yes
 type Key type MLDSA
 scheme Parameter set MLDSA87
 plainname Key name vault_encript_key_pq_m
 nvram Blob in NVRAM (needs ACS) no
Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_pkcs11_ua667c50e54831986514dea18f7c2b745b56ec001a

4. Verify the keys created using the rocs utility:

rocs
`rocs' key recovery tool
Useful commands: `help', `help intro', `quit'.
rocs> list keys
 No. Name App Protected by
 1 vault_encript_key_pq_ocs pkcs11 testOCS
 2 vault_encript_key_pq_sc pkcs11 testSC (testSC)
 3 vault_encript_key_pq_m pkcs11 module
 4 vault_hmac_key_ocs pkcs11 testOCS
 5 vault_hmac_key_sc pkcs11 testSC (testSC)
 6 vault_hmac_key_m pkcs11 module

HashiCorp Vault Enterprise 25/29

rocs> quit

HashiCorp Vault Enterprise 26/29

HashiCorp Vault Enterprise 26/29

Chapter 7. Troubleshooting

Error Message Resolution

Vault fails to start. There may not be a log

file created if the vault fails to start upon

executing # systemctl start

vault.service.

Execute the following instead to get some

debugging information. # vault server

-config=/etc/vault/config.hcl.

Error: failed to decrypt encrypted stored

keys: error initializing session for

decryption: error logging in to HSM:

pkcs11: 0xE0: CKR_TOKEN_NOT_PRESENT

Ensure that the Operator card is inserted in

the physical slot of the nShield HSM.

HashiCorp Vault Enterprise 27/29

Chapter 8. Vault commands

8.1. Vault commands

Task Command

Log into Vault # vault login s.InitialRootToken

Check Vault status # vault status

Unseal Vault # vault operator unseal -address=http://127.0.0.1:8200

Seal Vault # vault operator seal

8.2. vault.service commands

Task Command

Enable Vault Service # systemctl enable vault.service

Disable Vault service # systemctl disable vault.service

Start Vault service # systemclt start vault.service

Stop Vault service # systemclt stop vault.service

Restart Vault service # systemctl restart vault.service

HashiCorp Vault Enterprise 28/29

HashiCorp Vault Enterprise 28/29

Chapter 9. Additional resources and related
products

9.1. nShield Connect

9.2. nShield as a Service

9.3. Entrust products

9.4. nShield product documentation

HashiCorp Vault Enterprise 29/29

https://www.entrust.com/products/hsm/nshield-connect
https://www.entrust.com/products/hsm/nshield-as-a-service
https://www.entrust.com/products
https://nshielddocs.entrust.com/

	HashiCorp Vault Enterprise: nShield® HSM Integration Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Product configurations
	1.2. Supported nShield features
	1.3. Supported nShield hardware and software versions
	1.4. Supported nShield key types
	1.5. Requirements

	Chapter 2. Install and configure the Entrust nShield HSM
	2.1. Install the nShield Security World Software
	2.2. Install the Entrust nShield HSM
	2.3. Enroll the Entrust nShield HSM
	2.4. Create a security world
	2.5. Select the protection method
	2.6. Create the OCS
	2.7. Create the Softcard

	Chapter 3. Create the Vault encryption and HMAC keys
	3.1. Verify the PKCS #11 library is available
	3.2. Create the keys using OCS protection
	3.3. Create the keys using Softcard protection
	3.4. Create the keys using Module protection
	3.5. Verify the keys created
	3.6. Find the slot value for each protection method

	Chapter 4. Install Vault
	4.1. System preparation
	4.2. Create Vault user and group
	4.3. Install Vault
	4.4. Install Vault license
	4.5. Create a configuration file
	4.6. Create and configure Vault directories
	4.7. Enable Vault

	Chapter 5. Test the integration
	5.1. Start Vault
	5.2. Log in from the command line
	5.3. Create Managed Key In Vault

	Chapter 6. HashiCorp Experimental - Create Vault encryption key using nShield ML-DSA
	6.1. nShield 5c
	6.2. Connect XC

	Chapter 7. Troubleshooting
	Chapter 8. Vault commands
	8.1. Vault commands
	8.2. vault.service commands

	Chapter 9. Additional resources and related products
	9.1. nShield Connect
	9.2. nShield as a Service
	9.3. Entrust products
	9.4. nShield product documentation

