ENTRUST @

F5 NGINX Server

nShield® HSM Integration Guide - PKCS #11

2025-04-25

© 2025 Entrust Corporation. All rights reserved.

Table of Contents

L Introduction 1
11. Product configurations 1
1.2. Requirements 2
1.3. More information 3
2. Procedures 4
2.1. Install the NGINX Server using F5 NGINX Plus. 4
2.2. Configure the NGINX server 4
2.3, Install the HSM . .. 5
2.4. Install the Security World software and create a Security World 5
2.5.Set up the PKCS #11 engine. 5
2.6. Configure the NGINX Server to use the PKCS11 engine. 8
2.7. Test the PKCS #11 integration with the NGINX Server and the HSM N
3. Additional resources and related products L. 24
31.nShield Connect 24
3.2.nShield as a Service 24
3.3. nShield Container Option Pack 24
3.4, Entrust products. 24

3.5. nShield product documentation 24

Chapter 1. Introduction

You can integrate the Entrust nShield HSMs with NGINX to generate 2048-bit RSA
key pairs for SSL and protect the private keys within a FIPS 140 certified Hardware

Security Module (HSM). This integration uses the PKCS #11 interface to integrate

the HSM and NGINX Server.
The benefits of using an nShield HSM with the NGINX Server include:

e Secure storage of the private key.
e FIPS 140 Level 3 validated hardware.

* Improved server performance by offloading the cryptographic processing.

* Full life cycle management of the keys.
* Failover support.

* Load balancing between HSMs.

1.1. Product configurations

Entrust tested nShield HSM integration with the NGINX server in the following
configurations:

Product Version

Operating System Red Hat Enterprise Linux 9.5
Red Hat Enterprise Linux 8.9

F5 NGINX Plus nginx version: nginx/1.27.4 (nginx-plus-r34)
Security World 13.6.8

OpenSSL OpenSSL 3.2.2 4 Jun 2024

OpenSSL PKCS #1 openssl-pkcs11-0.4.11-9

1.1.1. Supported nShield features
Entrust tested nShield HSM integration with the following features:
Feature Support

Softcards Yes

F5 NGINX Server

1/24

F5 NGINX Server 2/24

Feature Support
Module-only key Yes
OCS cards Yes
nSaaS Yes

1.1.2. Supported nShield hardware and software versions

Entrust tested with the following nShield hardware and software versions:

HSM Security World Software Firmware Image
Connect XC 13.6.8 12.72.3 (FIPS 140-2 certified) 13.6.7
nShield 5¢ 13.6.8 13.4.5 (FIPS 140-3 certified) 13.6.7

1.2. Requirements

Ensure that you have supported versions of the Entrust, NGINX, and third-party
products.

Consult the security team in your organization for a suitable setting of the
following:

* The SE Linux policy to allow the web server read access to the files in
/opt/nfast.

* The firewall.
To perform the integration tasks, you must have:

* root access on the operating system.

* Access to nfast.
Before starting the integration process, familiarize yourself with:

e The documentation for the HSM.

* The documentation and setup process for the NGINX Server.

Before using the nShield software, you need to know:

F5 NGINX Server 2/24

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4335
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4765

* The number and quorum of Administrator cards in the Administrator Card Set
(ACS) and the policy for managing these cards.

* Whether the application keys are protected by the module, an Operator Card
Set (OCS) or a Softcard with or without a pass phrase.

e The number and quorum of Operator cards in the OCS and the policy for
managing these cards.

* Whether the Security World should be compliant with FIPS 140 Level 3.

o Entrust recommends that you allow only unprivileged
connections unless you are performing administrative tasks.

For more information, refer to the User Guide and Installation Guide for the HSM.

1.3. More information

For more information about OS support, contact your NGINX Server sales
representative or Entrust nShield Support, https:/nshieldsupport.entrust.com.

Access to the Entrust nShield Support Portal is available to
o customers under maintenance. To request an account, contact
nshield.support@entrust.com.

F5 NGINX Server 3/24

https://nshieldsupport.entrust.com
mailto:nshield.support@entrust.com

F5 NGINX Server 4/24

Chapter 2. Procedures

2.1. Install the NGINX Server using F5 NGINX Plus

See Installing NGINX Plus for detailed instructions on how to install NGINX Plus.

2.2. Configure the NGINX server

1. Open the firewall. An active firewall might prevent NGINX from loading.

% sudo firewall-cmd --zone=public --permanent --add-service=http
% sudo firewall-cmd --zone=public --permanent --add-service=https
% sudo firewall-cmd --reload

2. Switch off SE Linux. If SE Linux is active, this might prevent NGINX from
loading.

% sudo setenforce 0

3. Enable the NGINX service to start at boot:

% sudo systemctl enable nginx.service

4, Install the OpenSSL packages. These packages are needed to configure
OpenSSL and to use PKCST11 libraries.

% sudo yum install -y opensc openssl-pkes11 gnutls-utils nano openssl-libs

5. Restart the NGINX service:

% sudo systemctl restart nginx

6. Check if NGINX is running by opening the browser at http://<your-ip-address>.

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

F5 NGINX Server 4/24

https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-plus/#install_rhel

2.3. Install the HSM

Install the HSM by following the instructions in the /nstallation Guide for the HSM.

Entrust recommends that you install the HSM before configuring the Security
World software with your NGINX Server.

2.4. Install the Security World software and create a
Security World

1. On the computer running the NGINX Server, install the latest version of the
Security World software as described in the /nstallation Guide for the HSM.

Entrust recommends that you uninstall any existing nShield software before
installing the new nShield software.

2. Create the Security World as described in the User Guide, creating the ACS
and OCS that you require.

2.5. Set up the PKCS #11 engine

To avoid problems associated with the Entrust-supplied OpenSSL, which is used
internally by generatekey to make certificates, ensure that /opt/nfast/bin is not at
the front of your $PATH.

You can confirm that the right binary is being run with the following command:

% which openssl

/usr/bin/openssl
If this command returns output inside /opt/nfast, check your $PATH variable.

2.5.1. Configure OpenSSL

1. Find out where your OpenSSL configuration file is located:

% openssl version -d

OPENSSLDIR: "/etc/pki/tls"

On this integration we will use the default OpenSSL configuration file and we

F5 NGINX Server 5/24

F5 NGINX Server 6/24

will also create a OpenSSL configuration file to be used when PKCS #11
operations are needed. Here is the minimum configuration for the OpenSSL
PKCS #11 configuration file. Adjust it to your organization’s values.

HOME = .
openssl_conf = openssl_def

[openssl_def]
engines = engine_section

[engine_section]
pkes11 = pkes11_section

[pkes11_section]

engine_id = pkes11

dynamic_path = /usr/1ib64/engines-3/pkes11.so
MODULE_PATH = /opt/nfast/toolkits/pkcs11/1libcknfast.so
init = 0@

[req]

distinguished_name = req_distinguished_name
req_extensions = v3_req

prompt = no

[req_distinguished_name]
C=US

ST = FL

L = Sunrise

0 = Entrust

0U = nShield

CN = localhost

[v3_req]
subjectAltName = @alt_names
extendedKeyUsage = clientAuth, serverAuth

[alt_names]
DNS.1 = www.entrust.com
DNS.2 = entrust.com

IP.T = XXX.XXX.XXX.XXX
IP.2 = XXX.XXX.XXX.XXX

The dynamic_path may be different for different distributions.

2. Make sure the server’s hostname matches the CN in the certificate.

3. Create the OpenSSL PKCS #11 configuration file and call it openssl.pkcs11.cnf
with the settings above. Save it where your OpenSSL configuration settings
are located.

4. Create or edit the file /etc/pki/tls/openssl.pkes11.cnf and enter the settings
above:

% sudo vi /etc/pki/tls/openssl.pkes1l.cnf

0 ‘ You only want to use this file when pkecs11 operations are

F5 NGINX Server 6/24

‘ required.

2.5.2. Set up /opt/nfast/cknfastrc

1. Add the following variables to the /opt/nfast/cknfastrc file. These are
referenced in this guide to address certain situations and their use will depend
on your current environment.

CKNFAST_DEBUG=10
CKNFAST_DEBUGFILE=/path/to/debug/file
CKNFAST_FAKE_ACCELERATOR_LOGIN=1
CKNFAST_LOADSHARING=1

2. Turn debug off in a production environment.

2.5.3. Test the configuration

1. Update OpenSSL so that it uses the new configuration file that you created.
Export the OPENSSL_CONF environment variable:

% export OPENSSL_CONF=/etc/pki/tls/openssl.pkes11.cnf

2. Test the configuration. The output should be similar to this:

% openssl engine -tt -c -v

(rdrand) Intel RDRAND engine
[RAND]
[available]
(dynamic) Dynamic engine loading support
[unavailable]
SO_PATH, NO_VCHECK, ID, LIST_ADD, DIR_LOAD, DIR_ADD, LOAD
(pkes11) pkes11 engine
[RSA, rsaEncryption, id-ecPublicKey]
[available]
SO_PATH, MODULE_PATH, PIN, VERBOSE, QUIET, INIT_ARGS, FORCE_LOGIN

During testing you will see that we set and unset the OPENSSL_CONF environment
variable. An issue was found with OPENSSL version 3 on RedHat 9 where the
certificate file being generated during testing was empty. That issue was not
observed on RedHat 8 which uses OpenSSL version 1. To get around the problem,
we unset the OPENSSL_CONF environment variable so the default OpenSSL
configuration file is used instead, when pkcs11 operations are not required.

2.5.4. Debug notes

F5 NGINX Server 7/24

F5 NGINX Server 8/24

1. Security World permissions:

The following message indicates that there is no Security World.

Unable to load module /opt/nfast/toolkits/pkes11/1libcknfast.so

Make sure you create a Security World first.
2. Debug variables:

You can set the following debug variables in /opt/nfast/cknfastrc or as
environment variables.

CKNFAST_DEBUG=10
CKNFAST_DEBUGFILE=/path

3. Missing PKCS11 engine in the output:

If you don’t see the PKCST11 engine in the output, check the dynamic_path line in
the openssl.pkes11.cnf configuration file. It may be different on other platforms
and other operating system versions.

a. Red Hat 8

dynamic_path = /usr/1ibb64/engines-1.1/pkes11.s0

b. Red Hat 9

dynamic_path = /usr/1ibb4/engines-3/pkes11.so

2.6. Configure the NGINX Server to use the PKCSI1
engine

You need to update the NGINX startup file to use the new Open SSL configuration
file. Update the NGINX service startup file to pass the necessary environment
variables. These environment variables allow PKCS11 engine to work.

1. Edit /usr/1ib/systemd/system/nginx.service and add the environment variables
under the Service section:

[Service]
Environment=LANG=C
Environment="0PENSSL_CONF=/etc/pki/t1ls/openssl.pkes11.cnf"

F5 NGINX Server 8/24

Environment="NFAST_NFKM_TOKENSFILE=<path-to-preload-file>"

Where <path-to-preload-file> is the location of the preload file.

You must ensure that the location of the preload file has the
appropriate read-access group permissions so that only the
intended application and the permitted administrators, who
o will load the softcard, can access it. The location must not be
world-readable, otherwise any user could access the
softcard. It is not recommended to use kmdata/local for this,
because you would need to restrict all of kmdata to protect it.

Notice the OPENSSL_CONF variable. It points to the OpenSSL pkcss1l config file.

2. With Softcard and OCS protection, the usual arrangement of spawning worker
processes requires preloading the Softcard or the OCS card. You must specify
a preload file and define its location in the environment to give the other
processes access to the key. No pin value is used in the configuration file, but
you can include a fake one to avoid typing one in on start-up. For the master
process you must ensure the variable is set in the system or session from
which the master process is launched. For worker processes, you must specify
the variable in the NGINX config file.

3. Restart the daemon units:

% sudo systemctl daemon-reload

4. Edit /etc/nginx/nginx.conf so that it uses the PKCS11 engine.

a. For Softcard or OCS protection, add the following line after the pid line to
expose tokensfile to the worker processes:

env NFAST_NFKM_TOKENSFILE=<path-to-preload-file>;

b. Add the PKCST11 engine after the Events section:

ssl_engine pkes11;

c. Ifitis not in the http section, before the end of the section, add the
following line:

include /etc/nginx/conf.d/*.conf;

F5 NGINX Server 9/24

F5 NGINX Server 10/24

d. Example nginx.conf file:
user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log notice;

pid /var/run/nginx.pid;
env NFAST_NFKM_TOKENSFILE=<path-to-preload-file>;

events {
worker_connections 1024;
}
ssl_engine pkes11;
http {
include /etc/nginx/mime. types;
default_type application/octet-stream;
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'"$status $body_bytes_sent "$http_referer" '
""$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;

sendfile on;
#itcp_nopush on;

keepalive_timeout 65;
#gzip on;

include /etc/nginx/conf.d/*.conf;

5. Create a https.conf file in /etc/nginx/conf.d folder. Include the following
content with all lines commented out:

#server {

listen 443 ssl;

#

ssl_certificate /etc/nginx/ssl/test.crt;
ssl_certificate_key /etc/nginx/ssl/test.key;
#

ssl_client_certificate /etc/pki/tls/misc/ca.crt;
ssl_verify_client on;

#

#

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

#

location / {

root /usr/share/nginx/html;

index index.html index.htm;

1}

ESS
-

The ss1l_client_certificate and ssl_verify_client lines should only be used if the
server will be configured for mTLS. Comment out these lines if you are not using
mTLS.

F5 NGINX Server 10/24

1. Restart the NGINX service:

% sudo systemctl restart nginx

2.7. Test the PKCS #11 integration with the NGINX
Server and the HSM

Your organization can use the following scenarios, according to the security
guidelines that you follow:

* Module-only protection.
» Softcard protection.

* OCS protection.

o If mTLS is used in the configuration, create a CA certificate and a
client certificate.

A self-signed certificate is used for tests in this guide. In a
o production environment exposed to the internet, create the

certificate request and sign it by the Trusted Certificate
Authority.

1. Generate the CA certificate key:

% openssl genpkey -algorithm RSA -out ./ca.key

2. Generate the CA certificate:

% openssl req -new -x509 -key ./ca.key -out ./ca.crt -subj
"/C=US/ST=Florida/L=Sunrise/0=Entrust/0U=nShield/CN=RO0T-CA"

3. Copy the ca.crt file to the location specified in the https.conf file on the
ssl client_certificate line.

% sudo cp ca.crt /etc/pki/tls/misc/ca.crt

4. Generate a client certificate key:

% openssl genpkey -algorithm RSA -out ./client.key

F5 NGINX Server 11/24

F5 NGINX Server 12/24

5. Generate the client certificate CSR:

% openssl req -new -key ./client.key -out ./client.csr -subj
"/C=US/ST=Florida/L=Sunrise/0=Entrust/0U=nShield/CN=CLIENT-CERT"

6. Generate the client certificate:

% openssl x509 -req -in ./client.csr -CA ./ca.crt -CAkey ./ca.key -CAcreateserial -out ./client.crt

7. Testing the connection:

Here is how you test the connection with the NGINX server after all is
configured. Do not do this now. You have to do this once everything is setup
for each type of protection in this guide.

With mTLS:

% openssl s_client -connect localhost:443 -CAfile ./ca.crt -key ./client.key -cert ./client.crt

You also can use the curl command to test the connection with mTLS:

% curl --cert ./client.crt --key ./client.key --cacert ./ca.crt https://localhost:443

Without mTLS:

% openssl s_client -crlf -connect localhost:443 -CAfile pkcs11localhost.crt

8. Connection output

The output should be something like this when connecting with OpenSSL.

CONNECTED(00000003)

Can't use SSL_get_servername

depth=0 C = US, ST = FL, L = Sunrise, 0 = Entrust, OU = nShield, CN = www.entrust.com

verify return:1

Certificate chain

@ s:C =US, ST = FL, L = Sunrise, 0 = Entrust, OU = nShield, CN = www.entrust.com
i:C = US, ST = FL, L = Sunrise, 0 = Entrust, OU = nShield, CN = www.entrust.com

Server certificate

MIIDWzCCAKMCFAZbDVSv1bRy9ZVbWy123456789CMABGCSqGSIb3DQEBCWUAMGOX
AVh1aVUKvE2xFnt8rq7890123456I1qMLDz7WwOINt6yTrX1b91cUsFdcOcvAnipk=

————— END CERTIFICATE-----

subject=C = US, ST = FL, L = Sunrise, 0 = Entrust, OU = nShield, CN = www.entrust.com

issuer=C = US, ST = FL, L = Sunrise, 0 = Entrust, OU = nShield, CN = www.entrust.com

F5 NGINX Server 12/24

No client certificate CA names sent

Peer signing digest: SHA256

Peer signature type: RSA-PSS

Server Temp Key: X25519, 253 bits

SSL handshake has read 1504 bytes and written 394 bytes
Verification: OK

New, TLSv1.2, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Server public key is 2048 bit

Secure Renegotiation IS supported

Compression: NONE

Expansion: NONE

No ALPN negotiated

SSL-Session:

Protocol : TLSv1.2

Cipher : ECDHE-RSA-AES256-GCM-SHA384

Session-ID: CA7B4725395C94DFCF51AC312E39713F313920AA9E3DA278B321F71AFA6OF792

Session-ID-ctx:

Master-Key:
TABCCCB5A64F(C49C84D7DF3EBFOFAF94EBB8QA7F2DC4EA7606C8713A5CC907FB82F3A086D0D3BB45AEOF4490A38ED2398
PSK identity: None
PSK identity hint: None
SRP username: None
TLS session ticket lifetime hint: 300 (seconds)

TLS session ticket:
0000 - 90 a4 24 fc db 8 f3 63-b4 55 47 d1 1c ea e8 34 ..$....c.UG....4

0030 - 49 d0 28 27 48 52 7b f2-ee 38 93 53 1f fc 66 d5 I.('HR{..8.Z..f.
Start Time: 1663706976
Timeout : 7200 (sec)

Verify return code: @ (ok)
Extended master secret: yes

9. Check the following messages and fields in the output:
- CONNECTED(O0O000003)
o depth
- Certificate chain information
- Server certificate information
> Session-ID
o Master-Key
o TLS session ticket:

> Verify return code: O (ok)

2.7.1. Module protection

1. Remove the preload file if it exists:

% sudo rm -f <path-to-preload-file>

F5 NGINX Server 13/24

F5 NGINX Server 14/24

2. To allow module protection, set the cknfast library to allow access to the
module (CKNFAST_FAKE_ACCELERATOR_LOGIN).

Edit the /opt/nfast/cknfastrc file and add the following information before
proceeding to set up module protection:

CKNFAST_FAKE_ACCELERATOR_LOGIN=1

3. Create a key:

% generatekey -b -g -m1 pkes11 plainname=modulersa type=rsa protect=module size=2048

key generation parameters:

operation Operation to perform generate
application Application pkes11
verify Verify security of key yes

type Key type rsa

size Key size 2048
pubexp Public exponent for RSA key (hex)

plainname Key name modulersa
nvram Blob in NVRAM (needs ACS) no

Key successfully generated.
Path to key: /opt/nfast/kmdata/local/key_pkcs11_uacf@7dbd534d0b1973377585e07fe54c91d95b5f6

4, Set the environment variable so that OpenSSL commands use the PKCST1
engine:

% export OPENSSL_CONF=/etc/pki/tls/openssl.pkes11.cnf

5. Get the certificate using this key:

With mTLS:

% openssl req -new -engine pkes11 -keyform engine -key "pkcs11:token=accelerator;object=modulersa" -out
modulersa.csr

% unset OPENSS_CONF

% openssl x509 -req -in modulersa.csr -CA ./ca.crt -CAkey ./ca.key -CAcreateserial -out modulersa.pem

Without mTLS:

% openssl req -engine pkes11 -x509 -out modulersa.pem -days 365 -key
"pkes11:token=accelerator;object=modulersa" -keyform engine -subj "/CN=modulersa"
% unset OPENSS_CONF

If you get the following error, you probably have CKNFAST _LOADSHARING=1 set in
/opt/nfast/cknfastrc. Comment it out and try again.

engine "pkes11" set.

F5 NGINX Server 14/24

Specified object not found

Specified object not found

PKCS11_get_private_key returned NULL

cannot load Private Key from engine

140640559179584:error:80067065: pkes11 engine:ctx_load_privkey:object not found:eng_back.c:975:
140640559179584:error:26096080:engine routines:ENGINE_load_private_key:failed loading private
key:crypto/engine/eng_pkey.c:78:

unable to load Private Key

6. Configure the NGINX Server for SSL:
a. Copy the .penmfile:

% sudo cp modulersa.pem /etc/pki/tls/certs/.

b. Edit /etc/httpd/conf.d/https.conf and change the following lines to use
the new .key and .pen files.

Enable the SSL settings by uncommenting the server section if it is still
commented out.

ssl_certificate /etc/pki/tls/certs/modulersa.pem;
ssl_certificate_key "engine:pkcs11:pkes11:object=modulersa;token=accelerator"”;

c. If you are using mTLS in the configuration, add the ss1_client_certificate
and ssl_verify_client lines to /etc/httpd/conf.d/https.conf. If you are not
using mTLS, remove or comment out these lines.

d. Restart the NGINX service:

% sudo systemctl restart nginx

7. Test the connections:

With mTLS:

% openssl s_client -connect localhost:443 -CAfile ./ca.crt -key ./client.key -cert ./client.crt

You also can use the curl command to test the connection with mTLS:

% curl --cert ./client.crt --key ./client.key --cacert ./ca.crt https://localhost:443

Without mTLS:

% openssl s_client -crlf -connect localhost:443 -CAfile modulersa.pem

F5 NGINX Server 15/24

F5 NGINX Server 16/24

8. Check the following messages and fields in the output:
- CONNECTED(O0O000003)
o depth
- Certificate chain information
- Server certificate information
- Session-ID
o Master-Key
o TLS session ticket:

o Verify return code: O (ok)

2.7.2. Set up Softcard protection

1. Remove the preload file if it exists:

% sudo rm -f <path-to-preload-file>

2. To expose Softcards, set the cknfast library to load sharing mode
(CKNFAST_LOADSHARING).

Edit the /opt/nfast/cknfastrc file and add the following information before
proceeding to set up Softcard protection:

CKNFAST_LOADSHARING=1

3. Create a Softcard:

% ppmk -n softcardhsm_1
Enter new pass phrase:

Enter new pass phrase again:
New softcard created: HKLTU 541c437751f2b29615733bd326e5¢116435¢cb814

123456 is the passphrase for the Softcard in the example.

4., Create a key:

% generatekey -b -g -m1 pkcs11 plainname=softcardhsm1_170047 type=rsa protect=softcard recovery=no
size=2048 softcard=softcardhsm_1

key generation parameters:

operation Operation to perform generate
application Application pkes11
protect Protected by softcard
softcard Soft card to protect key softcardhsm_1

F5 NGINX Server 16/24

recovery Key recovery no

verify Verify security of key yes

type Key type rsa

size Key size 2048

pubexp Public exponent for RSA key (hex)

plainname Key name softcardhsm1_170047
nvram Blob in NVRAM (needs ACS) no

Please enter the pass phrase for softcard ‘softcardhsm_1':

Please wait........

Key successfully generated.

Path to key: /opt/nfast/kmdata/local/key_pkes11_uc415a6f3e010e@a4ada7f8869eb2ac70210a54f2b-
25143883fd360f7aa24bc7a7507fab0ebb38160

5. Set the environment variable so that OpenSSL commands use the PKCST11
engine:

% export OPENSSL_CONF=/etc/pki/tls/openssl.pkes11.cnf

6. Get the certificate using this key:

With mTLS:

% openssl req -new -engine pkcs11 -keyform engine -key "pkcs11:model=;token=softcardhsm_1;pin-
value=123456;0bject=softcardhsm1_170047" -out softcardhsm1_170047.csr

% unset OPENSSL_CONF

% openssl x509 -req -in softcardhsm1_170047.csr -CA ./ca.crt -CAkey ./ca.key -CAcreateserial -out
softcardhsm1_170047.pem

Without mTLS:

% openssl req -engine pkes11 -x509 -out softcardhsm1_170047.pem -days 365 -key

pkcs11:model=; token=softcardhsm_1;pin-value=123456;0bject=softcardhsm1_170047 -keyform ENGINE -subj
/CN=softcardhsm1_170047

% unset OPENSSL_CONF

If you get an ENGINE_load_private_key error:

engine "pkcs11" set.

Specified object not found

PKCS11_get_private_key returned NULL

cannot load Private Key from engine

139939575797568:error:80067065:pkes11 engine:ctx_load_privkey:object not found:eng_back.c:975:
139939575797568:error:26096080:engine routines:ENGINE_load_private_key:failed loading private
key:crypto/engine/eng_pkey.c:78:

Make sure you expose the Softcards as described in this section and run the
command again.

7. Configure the NGINX Server for SSL.
a. Copy the .penmfile:

F5 NGINX Server 17/24

F5 NGINX Server 18/24

% sudo cp softcardhsm1_170047.pem /etc/pki/tls/certs/.

b. Edit /etc/httpd/conf.d/https.conf and change the following lines to use
the new .key and pen files.

Enable the SSL settings by uncommenting the server section if it is it still
commented out:

ssl_certificate /etc/pki/tls/certs/softcardhsm1_170047.penm;
ssl_certificate_key "engine:pkcs11:pkecs11:object=softcardhsm1_170047;token=softcardhsm_1;pin-
value=123456";

C. If you are using mTLS in the configuration, add the ss1_client_certificate
and ssl_verify_client lines to /etc/httpd/conf.d/https.conf. If you are not
using mTLS, remove or comment out these lines.

d. Restart the NGINX service:

% preload --preload-file <path-to-preload-file> softcardhsm_1 sudo systemctl restart nginx

If you don’t restart NGINX by executing preload first, you get an error like
this and the certificate doesn’t load:

CONNECTED(00000003)
Can't use SSL_get_servername

No client certificate CA names sent

8. With Softcard and OCS protection, the usual arrangement of spawning worker
processes requires preloading the Softcard or the OCS card. Specify a preload
file and define its location in the environment to give the other processes
access to the key (see the note in Configure the NGINX Server to use the
PKCS11 engine). No pin value is used in the configuration file, but you can
include a fake one to avoid typing one in on start-up. For the master process
you must ensure the variable is set in the system or session from which the
master process is launched. For worker processes, specify the variable in the
NGINX config file.

% grep NFAST_NFKM_TOKENSFILE /usr/1lib/systemd/system/nginx.service

Environment="NFAST_NFKM_TOKENSFILE=<path-to-preload-file>"

% grep NFAST_NFKM_TOKENSFILE /etc/nginx/nginx.conf

F5 NGINX Server 18/24

env NFAST_NFKM_TOKENSFILE=<path-to-preload-file>;

% grep ssl_certificat_key /etc/nginx/conf.d/https.conf

ssl_certificate_key "engine:pkes11:pkes11:object=softcardhsm1_170047;token=softcardhsm_1;pin-value=123456";

9. Test the connections:

With mTLS:

% openssl s_client -connect localhost:443 -CAfile ./ca.crt -key ./client.key -cert ./client.crt

You also can use the curl command to test the connection with mTLS:

% curl --cert ./client.crt --key ./client.key --cacert ./ca.crt https://localhost:443

Without mTLS:

% openssl s_client -crlf -connect localhost:443 -CAfile softcardhsm1_170047.pem

10. Check the following messages and fields in the output:
- CONNECTED(OO000003)
> depth
- Certificate chain information
- Server certificate information
> Session-ID
o Master-Key
o TLS session ticket:

> Verify return code: O (ok)

2.7.3. Set up OCS protection

1. Remove the preload file if it exists:

% sudo rm -f <path-to-preload-file>

2. Create an OCS:

% /opt/nfast/bin/createocs -m1 -s2 --persist -Q 1/1 -N ocscard

FIPS 140-2 level 3 auth obtained.

F5 NGINX Server 19/24

F5 NGINX Server 20/24

Creating Cardset:

Module 1: @ cards of 1 written

Module 1 slot @: Admin Card #2

Module 1 slot 3: inappropriate Operator Card (TokenAuthFailed)
Module 1 slot 2: unknown card

Module 1 slot 2:- passphrase specified - overwriting card

Card writing complete.

cardset created; hkltu = 454e988e226b33f394087c0ee6112e0975¢1557f

123456 is the passphrase for the OCS in the example.

3. Create a key:
% /opt/nfast/bin/generatekey --cardset=ocscard pkcs11 protect=token type=rsa size=2048 pubexp=65537
plainname=ocskey nvram=no recovery=yes

slot: Slot to read cards from? (0-3) [0] > 2
key generation parameters:

operation Operation to perform generate
application Application pkes11
protect Protected by token
slot Slot to read cards from 2
recovery Key recovery yes
verify Verify security of key yes
type Key type rsa
size Key size 2048
pubexp Public exponent for RSA key (hex) 65537
plainname Key name ocskey
nvram Blob in NVRAM (needs ACS) no

Loading ‘ocscard':

Module 1: @ cards of 1 read

Module 1 slot 2: ‘ocscard' #1

Module 1 slot @: Admin Card #2

Module 1 slot 3: inappropriate Operator Card (TokenAuthFailed)
Module 1 slot 2:- passphrase supplied - reading card

Card reading complete.

Key successfully generated.

Path to key: /opt/nfast/kmdata/local/key_pkes11_uc454e988e226b33fa94087c0ee6112e0975¢1557f-
bf7b5f0412619a354f86158c77d796f27bd3ee12

4, Set the environment variable so that OpenSSL commands use the PKCST1
engine:

% export OPENSSL_CONF=/etc/pki/tls/openssl.pkes11.cnf

5. Get the certificate using this key:

With mTLS:

% openssl req -new -engine pkes11 -keyform engine -key

"pkecs11:token=ocscard;object=ocskey; type=private?pin-value=123456" -out ocskey.csr

% unset OPENSSL_CONF

% openssl x509 -req -in ocskey.csr -CA ./ca.crt -CAkey ./ca.key -CAcreateserial -out ocskey.pem

F5 NGINX Server 20/24

Without mTLS:

% openssl req -engine pkes11 -x509 -out ocskey.pem -days 365 -key
"pkes11:token=ocscard;object=ocskey;type=private?pin-value=123456" -keyform engine -subj "/CN=ocskey"
% unset OPENSSL_CONF

6. Configure the NGINX Server for SSL.
a. Copy the .pen file:

% sudo cp ocskey.pem /etc/pki/tls/certs/.

b. Edit /etc/httpd/conf.d/https.conf and change the following lines to use
the new .key and .pen files.

Enable the SSL settings by uncommenting the server section if it is still
commented out:

ssl_certificate /etc/pki/tls/certs/ocskey.pem;
ssl_certificate_key "engine:pkcs11:pkes11:object=ocskey;token=ocscard;pin-value=123456";

C. If you are using mTLS in the configuration, add the ss1_client_certificate
and ssl_verify_client lines to /etc/httpd/conf.d/https.conf. If you are not
using mTLS, remove or comment out these lines.

d. Restart the NGINX service:

% preload --preload-file <path-to-preload-file> -c ocscard sudo systemctl restart nginx

2022-09-21 10:12:53: [160923]: INFO: Preload running with: --preload-file <path-to-preload-file> -c
ocscard sudo systemctl restart nginx

2022-09-21 10:12:58: [160923]: INFO: Created a (new) connection to Hardserver

2022-09-21 10:12:58: [160923]: INFO: Modules newly usable: [1].

2022-09-21 10:12:58: [160923]: INFO: Found a change in the system: an update pass is needed.
2022-09-21 10:12:58: [160923]: INFO: Loading cardset: ocscard in modules: [1]

Loading ‘ocscard':

Module 1 slot 2: ‘ocscard' #1

Module 1 slot @: Admin Card #2

Module 1 slot 3: inappropriate Operator Card (TokenAuthFailed)
Module 1 slot 2:- passphrase supplied - reading card

Card reading complete.

2022-09-21 10:13:01: [160923]: INFO: Stored Admin key: kfips (5ab6...) in module #1

2022-09-21 10:13:01: [160923]: INFO: Loading cardset: Cardset: ocscard (454e...) in module: 1
2022-09-21 10:13:01: [160923]: INFO: Stored Cardset: ocscard (454e...) in module #1

2022-09-21 10:13:01: [160923]: INFO: Maintaining the cardset ocscard protected
key(s)=["pkes11:uc454e988e226b33fa94087c0ee6112e0975¢1557f-
bf7b5f0412619a354f8658¢77d796f27bd3ee12'].

2022-09-21 10:13:01: [160923]: INFO: The private/symmetric key
pkcs11/uc454e988e226b33fa94087clee6112e0975¢1557F-bf7b5f0412619a354186158¢c77d796f27bd3ee12 is loaded
in module(s): [1].

2022-09-21 10:13:01: [160923]: INFO: Loading complete. Executing subprocess sudo systemctl restart
nginx

F5 NGINX Server 21/24

F5 NGINX Server 22/24

7. With Softcard and OCS protection, the usual arrangement of spawning worker
processes requires preloading the Softcard or the OCS card. Specify a preload
file and define its location in the environment to give the other processes
access to the key (see the note in Configure the NGINX Server to use the
PKCS11 engine). No pin value is used in the configuration file, but you can
include a fake one to avoid typing one in on start-up. For the master process
you must ensure the variable is set in the system or session from which the
master process is launched. For worker processes, specify the variable in the
NGINX config file.

% grep NFAST_NFKM_TOKENSFILE /usr/lib/systemd/system/nginx.service

Environment="NFAST_NFKM_TOKENSFILE=<path-to-preload-file>"

% grep NFAST_NFKM_TOKENSFILE /etc/nginx/nginx.conf

env NFAST_NFKM_TOKENSFILE=<path-to-preload-file>;

% grep ssl_certificat_key /etc/nginx/conf.d/https.conf

ssl_certificate_key "engine:pkes11:pkes11:object=ocskey;token=ocscard;pin-value=123456";

8. Test the connections:

With mTLS:

% openssl s_client -connect localhost:443 -CAfile ./ca.crt -key ./client.key -cert ./client.crt

You also can use the curl command to test the connection with mTLS:

% curl --cert ./client.crt --key ./client.key --cacert ./ca.crt https://localhost:443

Without mTLS:

%

s openssl s_client -crlf -connect localhost:443 -CAfile ocskey.pem

9. Check the following messages and fields in the output:
- CONNECTED(O0O000003)
o depth
o Certificate chain information

o Server certificate information

F5 NGINX Server 22/24

o Session-ID
o Master-Key
o TLS session ticket:

o Verify return code: O (ok)

F5 NGINX Server 23/24

F5 NGINX Server 24/24

Chapter 3. Additional resources and
related products

3.1. nShield Connect

3.2. nShield as a Service

3.3. nShield Container Option Pack
3.4. Entrust products

3.5. nShield product documentation

F5 NGINX Server 24/24

https://www.entrust.com/products/hsm/nshield-connect
https://www.entrust.com/products/hsm/nshield-as-a-service
https://www.entrust.com/products/hsm/software-option-packs#ncop
https://www.entrust.com/products
https://nshielddocs.entrust.com/

	F5 NGINX Server: nShield® HSM Integration Guide - PKCS #11
	Table of Contents
	Chapter 1. Introduction
	1.1. Product configurations
	1.2. Requirements
	1.3. More information

	Chapter 2. Procedures
	2.1. Install the NGINX Server using F5 NGINX Plus
	2.2. Configure the NGINX server
	2.3. Install the HSM
	2.4. Install the Security World software and create a Security World
	2.5. Set up the PKCS #11 engine
	2.6. Configure the NGINX Server to use the PKCS11 engine
	2.7. Test the PKCS #11 integration with the NGINX Server and the HSM

	Chapter 3. Additional resources and related products
	3.1. nShield Connect
	3.2. nShield as a Service
	3.3. nShield Container Option Pack
	3.4. Entrust products
	3.5. nShield product documentation

