
Application Notes

Dynamically Defined
Data Structures
01 July 2024

Table of Contents
1. Introduction . 1

1.1. Abstract . 1

1.2. Document conventions . 1

2. Info set. 2

2.1. Types . 2

2.1.1. int: Integers . 2

2.1.2. string: Text strings . 3

2.1.3. symbol: Symbolic names. 3

2.1.4. byte-block: Octet strings . 4

2.1.5. list: Ordered sequences of values . 4

2.1.6. set: Unordered collections of distinct atomic values 4

2.1.7. map: Associative arrays . 5

2.2. Other restrictions. 5

2.2.1. Circularity . 5

3. Wire format . 7

3.1. Wire format specification . 7

3.1.1. Raw integer format . 7

3.1.2. Encoding structure . 7

3.1.3. Specification . 9

3.2. Canonical format . 10

3.2.1. Ordering . 10

3.2.2. Encoding choices . 11

4. References. 12

1. Introduction

1.1. Abstract

This document defines an info set and wire-format (byte-stream) representation

for members of the info set. It states requirements on implementations of this info

set, and describes the semantics of various common operations, particularly

comparison operations, on elements of the info set.

The name 'Dynamically Defined Data Structures', and the synonymous

abbreviations 'DDDS' and 'D3S', refer to the info set defined by this document.

Elements of the info set are called values.

1.2. Document conventions

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD',

'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to

be interpreted as described in [Bra97].

Paragraphs in italics contain informative rather than normative text. The lead

paragraph to tables and figures state whether their contents are normative or

informative.

Chapter 1. Introduction

Dynamically Defined Data Structures 1/12

2. Info set
The space of values defined by D3S is partitioned — into atomic and aggregate

values; each of these subspaces is further partitioned into types. The atomic types

are int, string, symbol and byte-block; the aggregate types are list, set and map.

Every D3S value is an element of precisely one of these types.

The wire format defined in Wire format imposes restrictions on the space of values

beyond their abstract mathematical constraints. In particular, due to limitations in

the wire-format representation, the spaces of integers, strings, symbols, byte-

blocks and sets are finite: very large integers and strings have no representation.

However, implementations may place lower limits on the space of values they can

represent. The following sections specify lower bounds — i.e., 'minimum

maxima' — on these limits.

These bounds represent the absolute minimum acceptable bounds;

implementations are strongly encouraged to avoid imposing arbitrary limitations.

This is a specification of the D3S info set and encoding, and not of any particular

protocol. Cooperating implementations may, and probably will, impose additional

restrictions on the values that they are willing to accept; they may also relax

restrictions stated here.

2.1. Types

The following sections specify the properties and values belonging to the seven

types described above.

2.1.1. int: Integers

The type integer consists of an implementation-defined subset of the ring of

integers.

Integers shall be compared solely on the basis of their numerical values. D3S does

not distinguish between fixnums and bignums: they are all simply integers.

These names come from the Lisp community. A fixnum ('fixed-size number') is an

integer which fits into a machine word, while a bignum may require an unbounded

amount of storage. Even so, the concepts apply to many implementations and

languages; for example, Python 2 has two integer types: int is a simple fixnum type,

while long is a bignum type — Python steadily eroded the distinctions between these

Chapter 2. Info set

Dynamically Defined Data Structures 2/12

types, and Python 3 no longer acknowledges any difference, having a single int

type for both.

An integer value a shall compare equal (respectively, not equal, less than, etc.) to

an integer value b if and only if the mathematical value of a is equal (respectively,

not equal, less than, etc.) to that of b, regardless of the way in which a and b

happen to be represented within the implementation.

A D3S implementation shall be able to represent every integer with absolute value

less than 232768, if available memory permits.

2.1.2. string: Text strings

A string is a (finite, possibly empty) sequence of Unicode [Con07] characters; an

implementation may impose limitations on the space of strings. Examples of such

limitations are maximum length, or permitted characters.

A D3S implementation shall not attempt to canonicalize strings, for example, to

prefer or avoid combining characters or a particular letter case.

Strings containing Unicode surrogate pairs are erroneous. An implementation

should fail to construct such strings; a string containing a surrogate pair shall not

compare equal to a string not containing a surrogate pair. Beyond this, the

semantics of such erroneous strings are undefined.

It is permitted for a string to contain a character with code-point zero — a 'null

character'. Such a character shall not be considered a string terminator.

An implementation shall be able to represent all strings containing fewer than

65536 characters drawn from U+0009, U+000A, U+000D and U+0020 up to U+007E.

The above characters are the ASCII tab, linefeed, carriage return, space and the

printable ASCII characters.

2.1.3. symbol: Symbolic names

A symbol is an object with a textual name. The name is a string (see string: Text

strings); an implementation may impose stricter limitations on the names of

symbols than it imposes on strings. Note that the types symbol and string are still

disjoint: a symbol is not a string, though its name is a string.

Two symbols shall compare equal (respectively, not equal, less than, etc.) if and

only if their names compare equal (respectively, not equal, less than, etc.).

Chapter 2. Info set

Dynamically Defined Data Structures 3/12

An implementation shall be able to represent all symbols whose names consist of

fewer than 256 characters drawn from U+0030 up to U+0039, U+0041 up to U+005A,

U+005F, and U+0061 up to U+007A.

The above required characters are the ASCII digits, letters and underscore.

Symbols and strings are of different type. This makes it possible to optimize

symbol comparison and symbol lookup.

2.1.4. byte-block: Octet strings

A byte-block is a (finite, possibly empty) sequence of octets, i.e., nonnegative

integers with absolute value less than 255.

An implementation shall be able to represent all byte blocks whose length is less

than 65536 octets, subject to available memory.

Byte blocks are distinguished from strings. Under certain circumstances it may be

necessary to recode text strings, such as for presentation to a user, or for

communication with an external system. It is incorrect to recode byte-blocks.

2.1.5. list: Ordered sequences of values

A list is an ordered (finite, possibly empty) sequence of values, called the

elements of the list. The elements of a list need not be distinct.

Two lists shall compare equal if and only if they have the same number of

elements, and their respective elements are equal. The relative ordering of lists is

not specified.

The number of elements in a list is called the length of the list. Each individual

element of a list is assigned an integer index based on its position in the list: if the

length of a list is n, then the indices shall be the integers 0,1,…,n-1 in turn.

An implementation shall be able to represent all lists whose length is less than

256, subject to available memory.

2.1.6. set: Unordered collections of distinct atomic values

A set is an unordered (possibly empty) collection of distinct atomic values, called

the elements of the set. A set shall not contain an aggregate value; an

implementation shall fail to construct a set which is invalid in this regard.

Chapter 2. Info set

Dynamically Defined Data Structures 4/12

Two sets shall compare equal if and only if every element of one is also an element

of the other. The relative ordering of sets is not specified.

An implementation shall be able to represent all sets containing fewer than 256

elements.

Sets are distinguished from lists precisely because sets are not ordered. This

feature makes them useful for containing flags, i.e., values whose presence or

absence is significant. The wire format defines a canonical representation for sets.

2.1.7. map: Associative arrays

A map (also known as an associative array, dictionary, or partial function) is an

unordered collection of distinct ordered pairs of values. The individual pairs are

called associations; the two elements of an association are the key and the value

respectively. The key of an association shall be an atomic value; an implementation

shall fail to construct a map containing an association whose key is an aggregate

value. There is no restriction on the type of an association’s value. A map shall not

contain two associations whose keys compare equal.

Two maps shall compare equal if and only if, for every association in one, there is

an association in the other for which the keys and values compare equal. The

relative order of maps is not specified.

An implementation shall be able to represent all maps containing fewer than 256

associations.

2.2. Other restrictions

2.2.1. Circularity

The subvalues of a value are defined as follows.

1. An atomic value has no subvalues.

2. The subvalues of a list or set are the elements of the list or set, together with

the subvalues of those elements.

3. The subvalues of a map are the keys and values of the map’s associations,

together with the subvalues of those keys and values.

A value is circular if it is equal to one of its subvalues. A value is infinite if it has

infinitely many distinct subvalues.

Chapter 2. Info set

Dynamically Defined Data Structures 5/12

An implementation shall not construct an infinite or circular value.

Chapter 2. Info set

Dynamically Defined Data Structures 6/12

3. Wire format
This section specifies an encoding for D3S values as octet sequences.

Each D3S value may have many distinct encodings. There is a unique canonical

encoding of each D3S value.

The flexibility permitted by the existence of multiple encodings permits efficient

implementations. The canonical encoding is useful in specific circumstances, such

as where the encodings are to be hashed, but determining the canonical encoding

of a value may be significantly more computationally expensive than merely

constructing an arbitrary encoding.

3.1. Wire format specification

This section describes the wire format encoding in terms of how to decode it If an

encoding decodes to a particular value then that it is an encoding of that value.

Encoding are self-delimiting, i.e., it’s possible to determine where an encoding

ends. This fact makes it possible to concatenate encodings without causing

ambiguity.

3.1.1. Raw integer format

Non-negative integers are used throughout the encoding, to represent integer

values, symbols, and to signify lengths. Such integers are always represented

radix-256, most significant octet first.

3.1.2. Encoding structure

An encoding of a value consists of three logical parts:

• a format code, which describes how to interpret the remaining octets of the

encoding as a value;

• an indicator, which is a non-negative integer; and

• a payload, whose length and nature is determined by the format and indicator.

In order to save space, the format and indicator can be packed into a single octet.

In the following descriptions, d denotes the indicator value. The following formats

are used.

Chapter 3. Wire format

Dynamically Defined Data Structures 7/12

Non-negative integer

The result shall simply be the integer d. The payload shall be empty.

Non-positive integer

The result shall be the integer -d.

It is possible that d=0.

The payload shall be empty.

String

The format and indicator shall be followed by a further d-octet payload

containing a Unicode string encoded using UTF-8 [Con07, 3.9]. If the payload

octets are ill-formed UTF-8, the encoding is invalid. The result shall be a string

whose contents are the Unicode string encoded in the payload.

Symbol, by name

The format and indicator shall be followed by a further d-octet payload

containing a Unicode string encoding using UTF-8. If the payload octets are

not valid UTF-8, the encoding is invalid. The result shall be the symbol whose

name is the Unicode string encoded in the payload.

Byte-block

The format and indicator shall be followed by a further d-octet payload. The

result shall be a byte-block whose contents are precisely the payload.

List

The format and indicator shall be followed by a payload consisting of the

concatenation of d further value encodings. The result shall be a list whose

elements are the values encoded in the payload, in order.

Set

The format and indicator shall be followed by a payload consisting of the

concatenation of d further value encodings. The result shall be a set whose

elements are the values encoded in the payload.

Map

The format and indicator shall be followed by a payload consisting of the

concatenation of 2d further value encodings. The result shall be a map whose

associations are constructed by taking the values encoded in the payload in

pairs, first key, then value.

Chapter 3. Wire format

Dynamically Defined Data Structures 8/12

3.1.3. Specification

An encoding cannot be empty. The first octet of the encoding describes how to

interpret the remaining octets. Table 3.2.1 describes how to determine the format

and indicator from this first octet. No other octet begins a valid encoding.

Implementations shall not extend the wire format. An encoder shall not construct

invalid encodings; a decoder shall reject invalid encodings.

Table 3.2.1: Encodings by the first octet (normative)

First octet Interpretation

000d dddd2 Format is 'non-negative integer'; indicator is binary d dddd.

0010 dddd2 Format is 'string'; indicator is binary dddd.

0011 dddd2 Format is 'symbol, by name'; indicator is binary dddd.

1000 dddd2 Format is 'byte-block'; indicator is binary dddd.

1001 dddd2 Format is 'list'; indicator is binary dddd.

1010 dddd2 Format is 'set'; indicator is binary dddd.

1011 dddd2 Format is 'map'; indicator is binary dddd.

1100 tttt2 Format is given by tttt, as shown in Table 3.2.2; indicator is stored in the following

octet.

1101 tttt2 Format is given by tttt, as shown in Table 3.2.2; indicator is stored in the following 2

octets.

1111 00002 A padding octet. Ignore this octet and interpret the next as being the start of an

encoding.

1111 00102 Format is given by the next octet, as shown in Table 3.2.2; indicator is stored in the

following 4 octets.

1111 00112 Format is given by the next octet, as shown in Table 3.2.2; indicator is stored in the

following 8 octets.

1111 01002 Format is 'non-negative integer'. The following octets shall encode a byte-block

value; the indicator is the integer encoded in the payload of the byte-block.

1111 01012 Format is 'non-positive integer'. The following octets shall encode a byte-block value;

the indicator is the integer encoded in the contents of the byte-block.

Table 3.2.2: Format codes (normative)

If the code is not one of those listed below, the encoding is invalid.

Chapter 3. Wire format

Dynamically Defined Data Structures 9/12

Code Format

00002 Non-negative integer

00012 Non-positive integer

00102 String

01002 Symbol, by name

01012 Byte-block

10002 List

10012 Set

10102 Map

3.2. Canonical format

The following rules describe how to construct the canonical encoding of a value.

3.2.1. Ordering

Sets and maps do not impose an ordering on their contents.

Types already describes how values of particular atomic types order relative to

each other; these orderings are combined to form a total ordering of all atomic

values by defining an ordering on types:

integer < symbol < string < byte-block.

If x and y are two atomic values, then x shall compare less than y if and only if

either x and y have the same type, and x<y according to the rules stated in Types;

or the types of x and y differ and the type of x is less than the type of y as shown

above.

In order to ensure uniqueness of the canonical encoding for sets and maps:

• the elements of a set shall be encoded in ascending order according to the

above ordering;

and

• the associations of a map shall be encoded in ascending order of their keys

according to the above ordering.

Chapter 3. Wire format

Dynamically Defined Data Structures 10/12

This is sufficient since (a) set elements and association keys are atomic, and (b)

two distinct associations within a map cannot have equal keys.

3.2.2. Encoding choices

The following rules specify how to select among the various encoding choices .

Earlier rules take precedence over later rules.

1. The first octet of the encoding shall not be 240=1111 00002 That is, padding

octets shall not appear in a canonical encoding.

2. The first octet of the encoding shall be the numerically least first octet of any

valid encoding of the value.

3. The encoding chosen shall be the shortest valid encoding of the value.

Some examples may help.

• The canonical encoding of the integer 0 is 00 by rule 2.

• The canonical encoding of the integer 65536 is f2 00 00 01 00 00, even though

f4 83 01 00 00 is shorter, because f2 < f4 and rule 2 takes precedence over

rule 3.

Chapter 3. Wire format

Dynamically Defined Data Structures 11/12

4. References
[Bra97] S. Bradner; 'Key words for use in RFCs to Indicate Requirement

Levels'; RFC 2119 (Best Current Practice); March 1997; URL

http://www.ietf.org/rfc/rfc2119.txt.

[Con07] Unicode Consortium; 'The Unicode Standard 5.0'; 2007; URL

http://www.unicode.org/versions/Unicode5.0.0/.

[LMS05] P. Leach, M. Mealling, and R. Salz; 'A Universally Unique IDentifier

(UUID) URN Namespace'; RFC 4122 (Proposed Standard); July

2005; URL http://www.ietf.org/rfc/rfc4122.txt.

Chapter 4. References

Dynamically Defined Data Structures 12/12

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.unicode.org/versions/Unicode5.0.0/
http://www.unicode.org/versions/Unicode5.0.0/
http://www.unicode.org/versions/Unicode5.0.0/
http://www.unicode.org/versions/Unicode5.0.0/
http://www.unicode.org/versions/Unicode5.0.0/
http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4122.txt

	Application Notes: Dynamically Defined Data Structures
	Table of Contents
	1. Introduction
	1.1. Abstract
	1.2. Document conventions

	2. Info set
	2.1. Types
	2.1.1. int: Integers
	2.1.2. string: Text strings
	2.1.3. symbol: Symbolic names
	2.1.4. byte-block: Octet strings
	2.1.5. list: Ordered sequences of values
	2.1.6. set: Unordered collections of distinct atomic values
	2.1.7. map: Associative arrays

	2.2. Other restrictions
	2.2.1. Circularity

	3. Wire format
	3.1. Wire format specification
	3.1.1. Raw integer format
	3.1.2. Encoding structure
	3.1.3. Specification

	3.2. Canonical format
	3.2.1. Ordering
	3.2.2. Encoding choices

	4. References

