
nShield API Documentation

nCore v13.3 Developer
Tutorial
8 April 2024

Table of Contents
1. Introduction . 1

1.1. Read this guide if … . 1

1.2. Model numbers . 1

1.3. Further information . 2

1.4. Security advisories. 3

1.5. Contacting Entrust nShield Support . 3

2. nCore architecture . 4

2.1. Programming environment architecture . 4

2.2. Generating a key . 4

2.3. Loading a key . 5

2.4. Transacting a command. 6

3. C tutorial . 8

3.1. Overview . 8

3.2. Before connecting to the hardserver . 11

3.3. Connecting to the hardserver . 13

3.4. Generating a symmetric key . 15

3.5. Generating an asymmetric key . 22

3.6. Using a key. 30

3.7. Encrypting a file . 33

3.8. Cleaning up resources . 35

4. Java tutorial . 36

4.1. Overview . 36

4.2. Before connecting to the hardserver . 39

4.3. Connecting to the hardserver . 40

4.4. Generating a key . 40

4.5. Using a key. 44

4.6. Signing a file . 45

4.7. Cleaning up resources . 47

5. Python 3 tutorial . 48

5.1. Prerequisites . 48

5.2. Set up the environment for nfpython . 48

5.3. Create and configure the virtualenv . 49

5.4. nfpython connections and commands. 50

5.5. Worked nfpython example for hash, sign, and verify. 52

6. Java examples . 57

6.1. Extract and compile the Java examples . 57

6.2. Java key management example utilities . 57

6.3. Java JCE/CSP example utilities . 59

6.4. Java generic stub examples . 62

7. Key structures . 66

7.1. Mechanisms . 66

7.2. Key Types . 68

7.3. Hash functions . 108

7.4. HMAC signatures. 113

7.5. ACLs . 114

7.6. Use limits. 117

7.7. Actions. 121

7.8. Action types . 122

7.9. Certificates . 140

8. NFKM Functions . 146

8.1. Debugging NFKM functions . 146

8.2. Functions. 146

9. nCore API commands . 177

9.1. Basic commands . 177

9.2. Key-management commands . 181

9.3. Commands used by the generic stub only . 235

1. Introduction
This guide describes how to write applications using the nCore API, the native

application programming interface for nShield modules. It also describes various

programming libraries and utility functions that Entrust supplies.

Read this guide in conjunction with the nCore API documentation located in:

• Windows: %NFAST_HOME%\document\ncore\html\index.html (C) and

%NFAST_HOME%\java\docs\index.html (Java)

• Linux: /opt/nfast/document/ncore/html/index.html (C) and

/opt/nfast/java/docs/index.html (Java).

1.1. Read this guide if …

Read this guide if you are an application developer who is writing cryptographic

applications using the nCore API. If you are writing an application using a standard

API, such as Java JCE/JCA, MS CAPI, CAPI NG or PKCS #11, you should read the

Cryptographic API Integration Guide.

The nCore Developer Tutorial:

• explains the nCore programming architecture

• presents a tutorial on using the nCore API in C

• presents a tutorial on using the nCore API in Java.

1.2. Model numbers

Model numbering conventions are used to distinguish different nShield hardware

security devices. In the table below, n represents any single digit integer.

Model number Used for

NH2047 nShield Connect 6000

NH2040 nShield Connect 1500

NH2033 nShield Connect 500

NH2068 nShield Connect 6000+

NH2061 nShield Connect 1500+

Chapter 1. Introduction

nCore v13.3 Developer Tutorial 1/237

Model number Used for

NH2054 nShield Connect 500+

NH2075-B nShield Connect XC Base

NH2075-M nShield Connect XC Medium

NH2075-H nShield Connect XC High

NH2079-B nShield 5c Base

NH2079-M nShield 5c Medium

NH2079-H nShield 5c High

NH2082 nShield Connect XC SCAP

NH2089-B nShield Connect XC Base - Serial Console

NH2089-M nShield Connect XC Mid - Serial Console

NH2089-H nShield Connect XC High - Serial Console

NH3003-B nShield Connect CLX Base - Serial Console

NH3003-M nShield Connect CLX Mid - Serial Console

NH3003-H nShield Connect CLX High - Serial Console

nC2021E-000, NCE2023E-000 nToken PCIe

nC3nnnE-nnn, nC4nnnE-nnn nShield Solo PCIe

nC30n5E-nnn, nC40n5E-nnn nShield Solo XC PCIe

nC30nnU-10, nC40nnU-10 nShield Edge

NC5536E-B nShield 5s Base

NC5536E-M nShield 5s Medium

NC5536E-H nShield 5s High

1.3. Further information

This guide forms one part of the information and support provided by Entrust.

The nCore API Documentation is supplied as HTML files installed in the following

locations:

Chapter 1. Introduction

nCore v13.3 Developer Tutorial 2/237

• Windows:

◦ API reference for host: %NFAST_HOME%\document\ncore\html\index.html

◦ API reference for SEE: %NFAST_HOME%\document\csddoc\html\index.html

• Linux:

◦ API reference for host: /opt/nfast/document/ncore/html/index.html

◦ API reference for SEE: /opt/nfast/document/csddoc/html/index.html

The Java Generic Stub classes, nCipherKM JCA/JCE provider classes, and Java

Key Management classes are supplied with HTML documentation in standard

Javadoc format, which is installed in the appropriate nfast\java or nfast/java

directory when you install these classes.

1.4. Security advisories

If Entrust becomes aware of a security issue affecting nShield HSMs, Entrust will

publish a security advisory to customers. The security advisory will describe the

issue and provide recommended actions. In some circumstances the advisory may

recommend you upgrade the nShield firmware and or image file. In this situation

you will need to re-present a quorum of administrator smart cards to the HSM to

reload a Security World. As such, deployment and maintenance of your HSMs

should consider the procedures and actions required to upgrade devices in the

field.

The Remote Administration feature supports remote firmware

upgrade of nShield HSMs, and remote ACS card presentation.

We recommend that you monitor the Announcements & Security Notices section

on Entrust nShield, https://nshieldsupport.entrust.com, where any announcement

of nShield Security Advisories will be made.

1.5. Contacting Entrust nShield Support

To obtain support for your product, contact Entrust nShield Support,

https://nshieldsupport.entrust.com.

Chapter 1. Introduction

nCore v13.3 Developer Tutorial 3/237

https://nshieldsupport.entrust.com
https://nshieldsupport.entrust.com

2. nCore architecture
This section describes the interaction between your application and an nShield

module that occurs when performing the following cryptographic tasks:

• generating a key

• loading a key

• transacting a command on a module

2.1. Programming environment architecture

The following diagram illustrates typical architecture in which one would use the

nCore API:

In the typical programming environment architecture diagram:

• Client: The computer on which your cryptographic application runs.

• hardserver: An intermediary between applications and module. The

hardserver is responsible for routing commands to modules, and returning the

reply from the module to the calling application.

• Module: The hardware that performs cryptographic tasks.

2.2. Generating a key

Keys generated using the nCore API are generally stored in encrypted form on the

hard disk of the computer running the cryptographic application. The key blob

that contains the encrypted key information is generated by a module when an

Chapter 2. nCore architecture

nCore v13.3 Developer Tutorial 4/237

application uses the module to generate a key.

The following diagram illustrates the interaction between your cryptographic

application and the Security World that occurs during the key-generation process:

A key blob can only be decrypted by a module that has a record of the key that

was used to encrypt the information in the key blob. A key blob contains key

information and an Access Control List (ACL) which defines who can use the key

and what operations the key can be used for.

2.3. Loading a key

Because key information is encrypted in a key blob, the key itself cannot be used

to perform a cryptographic operation until it is decrypted. To use a key, you first

need to load the encrypted key blob into a module. The key blob is decrypted

using a key stored on the module, and a handle or object reference to the key is

returned to your application.

In most cases it is necessary to provide authentication in the form of a smart card

and/or a passphrase before using a key. The user interaction that prompts for

authentication to be provided is handled by the nCore API.

Chapter 2. nCore architecture

nCore v13.3 Developer Tutorial 5/237

The following diagram illustrates the key loading process:

2.4. Transacting a command

After an application has loaded a key, it can instruct a module to use the key to

perform cryptographic operations such as encryption, decryption, signing and

verification. The following diagram illustrates the process of transacting a

command.

Chapter 2. nCore architecture

nCore v13.3 Developer Tutorial 6/237

C tutorial explains how to write a C application that:

• creates a connection to the hardserver

• generates a key

• loads a key onto a module

• transacts a command with the module to use the key to encrypt a file.

Java tutorial explains how to write a similar Java application which signs a file.

Chapter 2. nCore architecture

nCore v13.3 Developer Tutorial 7/237

3. C tutorial

3.1. Overview

This overview section provides a description of how to achieve two fundamental

nCore API programming tasks: connecting to the hardserver and transacting a

command. These two tasks are common to almost all cryptographic applications.

The rest of this chapter works through a simple example of a basic cryptographic

application.

All applications that require nCore functionality first need to create a connection

to a hardserver running on an nShield module. The following diagram illustrates

the steps required to create a connection to a hardserver running on Entrust

hardware:

When connected to the hardserver, an application can send an M_Command to a

module. The module processes the command and then returns the results along

with any relevant error and status codes. The following diagram illustrates the

process of transacting a cryptographic operation with the module:

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 8/237

The M_Reply structure contains the results of the operation and an M_Status

message that indicates the outcome of the operation. If a problem was

encountered, the M_Status value gives an indication of what went wrong. The

M_Reply contains the results of the command, for example, a key handle or the

bytes of an encrypted file.

3.1.1. nCore API functionality used in this tutorial

This tutorial uses the following libraries from the nCore API. You may find it useful

to familiarize yourself with these libraries by reading the API documentation,

which is located at <nfast_dir>/document/ncore/html/index.html.

• nfkm.h

This library provides Security World functionality, for example, card-loading

libraries, key-generation, and key-loading.

• nfinttypes.h

This library is a utility library that provides standard integer types.

• nffile.h

This library is a utility library that provides file manipulation functionality.

• simplebignum.h

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 9/237

This library is a utility implementation of bignum functionality.

• ncthread-upcalls.h

This library is a thread-handling library.

• rqcard-applic.h

This library is a card-loading library.

• rqcard-fips.h

This library is a card-loading library for use in a FIPS 140 Level 3 (Federal

Information Processing Standards) environment.

3.1.2. Variables used in this tutorial

The following table lists and describes the variables used in this tutorial.

Throughout this tutorial you may wish to refer to this table. You may also find it

useful to consult the API documentation of the listed types.

Variable Name Variable Type Description

rc M_Status Status code returned by operations

worldinfo NFKM_WorldInfo Information about a Security World

app NFast_AppHandle The application handle

app_init_args NFastAppInitArgs Used to initialize the application

conn NFastApp_Connection The connection to a hardserver

moduleinfo NFKM_ModuleInfo Contains information about the module being

used

keyident NFKM_KeyIdent The name of the key

keyinfo NFKM_Key Information about the key

keyid M_KeyID The key loaded into the module

ltid M_KeyID The card set loaded into the module

keytype M_KeyType The cryptographic key type, for example,

KeyType_DSA

mech M_Mech The encryption mechanism used, for example,

Mech_DSA

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 10/237

Variable Name Variable Type Description

sigbytes M_ByteBlock The marshaled signature

iv M_IV The initialization vector

command M_Command The command sent to module

reply M_Reply The reply returned by the module

idch M_KeyID The ID of the channel used for streaming

rqcard RQCard The card-loader handle

rqcard_fips RQCard_FIPS The card-loader handle used in a FIPS 140 Level

3 environment

3.2. Before connecting to the hardserver

The nCore API provides mechanisms that allow you to control how threading,

memory allocation, and numbers larger than the available C data types are

handled, through an upcall mechanism. Specifying these upcalls is optional. Also

optional is the call context structure, which can contain any contextual information

that your application might require to keep track of. If you define your own upcalls

and call context they must be supplied as arguments when initializing a handle to

the hardserver.

3.2.1. Declaring a call context

Many nCore functions take a call context argument, cctx or ctx, which is passed on

to upcalls. The call context structure can be used for any purpose required by an

application. For example, the call context could identify an application thread.

The following code shows an example declaration of a call context structure:

struct NFast_Call_Context {
 int notused;
};

3.2.2. Declaring memory allocation upcalls

By default the nCore API manages memory by using the standard C library

functions malloc, realloc, and free. To customize memory management, define a

collection of memory allocation upcalls and pass this collection when initializing

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 11/237

the application handle. For example, a heavily threaded application may allocate

memory per thread, and have separate application handles per thread, to avoid

contention. In this code example the memory allocation upcalls re-direct back to

the default memory application functions. The call context cctx and the

transaction context tctx can contain any context information required by your

application.

const NFast_MallocUpcalls mallocupcalls = {
 local_malloc,
 local_realloc,
 local_free
};
static void *local_malloc(size_t nbytes,
 struct NFast_Call_Context *cctx,
 struct NFast_Transaction_Context *tctx) {
 return malloc(nbytes);
}
static void *local_realloc(void *ptr,
 size_t nbytes,
 struct NFast_Call_Context *cctx,
 struct NFast_Transaction_Context *tctx) {
 return realloc(ptr, nbytes);
}
static void local_free(void *ptr,
 struct NFast_Call_Context *cctx,
 struct NFast_Transaction_Context *tctx) {
 free(ptr);
}

3.2.3. Declaring threading upcalls

ncthread_upcalls provides a mechanism to specify how threads are implemented

on the target platform. If an application needs to use a non-native thread model

then the application can either:

• fill in an nf_thread_upcalls structure with suitable upcalls and optionally write a

translation function xlate_cctx_to_ncthread()

• or fill in an NFast_ThreadUpcalls structure, and use NFAPP_IF_THREAD in the code

example below instead of NFAPP_IF_NEWTHREAD.

const NFast_NewThreadUpcalls newthreadupcalls = {
 &ncthread_upcalls,
 xlate_cctx_to_ncthread
};
static void xlate_cctx_to_ncthread(NFast_AppHandle app,
 struct NFast_Call_Context *cc,
 struct nf_lock_cctx **lcc_r) {
 *lcc_r = 0;
}

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 12/237

3.2.4. Initializing the nFast application handle

The hardserver application handle is the main access point to nCore functionality.

The following code specifies the application initialization arguments and initializes

the application handle. The flags sent to the application initialization function in

the following code example are:

• NFAPP_IF_MALLOC indicates that an application is setting its own memory

allocation upcalls

• NFAPP_IF_BIGNUM is necessary for any bignum operations to work. The following

code example uses simplebignum upcalls

• One of NFAPP_IF_NEWTHREAD or NFAST_IF_THREAD is required in threaded

applications. This code example does not perform any multi-threaded

operations but the setting are included anyway for the purposes of the

example.

memset(&app_init_args, 0, sizeof app_init_args);
app_init_args.flags = NFAPP_IF_MALLOC|NFAPP_IF_BIGNUM|NFAPP_IF_NEWTHREAD;
app_init_args.mallocupcalls = &mallocupcalls;
app_init_args.bignumupcalls = &sbn_upcalls;
app_init_args.newthreadupcalls = &newthreadupcalls;

rc = NFastApp_InitEx(&app, &app_init_args, cctx);

3.3. Connecting to the hardserver

Now that application handle is initialized, create a connection to the hardserver, as

shown in the following code example. The NFastApp_Connect() automatically

determines whether to use pipes, local sockets, or TCP sockets, as appropriate.

rc = NFastApp_Connect(app, &conn, 0, cctx);
if(rc) {
 NFast_Perror("error calling NFastApp_Connect", rc);
 goto cleanup;
}

3.3.1. Getting Security World information

The following code reads in the Security World information that is associated with

the application handle. An application handle will only ever be associated with a

single Security World, which consists of one or more modules.

rc = NFKM_getinfo(app, &worldinfo, cctx);
if(rc) {
 NFast_Perror("error calling NFKM_getinfo", rc);

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 13/237

 goto cleanup;
}

3.3.2. Setting up the authorization mechanism

The nCore API supports three types of key protection:

• module protection

• passphrase protection

• card set protection.

The following three code examples demonstrate how to set up an application to

use card set protection.

3.3.2.1. Initializing the card-loading libraries

The following code initializes the card-loading libraries, which are used later in the

example. Card-loading libraries are bound to a single connection and to a single

Security World.

rc = RQCard_init(&rqcard, app, conn, worldinfo, cctx);
if(rc) {
 NFast_Perror("error calling RQCard_init", rc);
 goto cleanup;
}
rqcard_initialized = 1;

3.3.2.2. Obtaining additional FIPS authorization

FIPS 140 Level 3 mode requires authorization for key-generation, which can be

obtained from either an Operator Card or an Administrator Card. The following

code initializes the FIPS 140 Level 3 code library, which seeks FIPS 140 Level 3

authorization when this is required:

rc = RQCard_fips_init(&rqcard, &rqcard_fips);
if(rc) {
 NFast_Perror("error calling RQCard_fips_init", rc);
 goto cleanup;
}
rqcard_fips_initialized = 1;

3.3.2.3. Selecting a user interface

The following code selects the default user interface for the platform on which the

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 14/237

example is running. The user interface will be displayed to the user when

authorization is required to perform an operation.

rc = RQCard_ui_default(&rqcard);
if(rc) {
 NFast_Perror("error calling RQCard_ui_default", rc);
 goto cleanup;
}

3.4. Generating a symmetric key

This section describes the key-generation process in detail. The process of

generating a symmetric key differs slightly from the process of generating an

asymmetric key, so each is described in a separate section. There is some

repetition in the two sections.

This section does not explain how to use softcards to protect

keys. Softcards can be listed with NFKM_listsoftcards() and

loaded with NFKM_loadsoftcard(). For more information about

using softcards, see the information about nfkm.h in the nCore

API documentation.

The following diagram illustrates the key-generation process:

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 15/237

The code in this section makes use of the following variables:

Variable Name Variable Type Description

acl_params NFKM_MakeACL_Params Used to construct ACLs

blob_params NFKM_MakeBlobs_Params Used when making blobs

keyinfo NFKM_Key Information about a key

moduleinfo NFKM_ModuleInfo The module to use

mc M_ModuleCert A certificate from a module

fips140authhandle NFKM_FIPS140AuthHandle FIPS authorization

ltid M_KeyID A loaded card set

cardset NFKM_CardSet Information about a card set

moduleid M_ModuleID The ID of a module

cardhash NFKM_CardSetIdent A hash of a card set

rc M_Status A command return code

command M_Command A command structure

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 16/237

Variable Name Variable Type Description

reply M_Reply A command reply

3.4.1. Obtaining authorization and selecting a module

Keys are generated on a specific module and protected by some form of

authorization. When a key is generated the type of authorization that is required

to use the key is defined, as well as the purposes for which the key is allowed to

be used, for example, only for encryption and decryption, or only for signing and

verification.

3.4.1.1. Using card set protection

The following code prompts the user to provide a card to protect the key that will

be generated. The card set hash populates cardhash when the card-loader

completes.

rc = RQCard_logic_ocs_anyone(rqcard, &cardhash,
 "Insert a card set to protect the new key");
if(rc) {
 NFast_Perror("error calling RQCard_logic_ocs_anyone", rc);
 goto cleanup;
}

3.4.1.2. Selecting a Security World module

Now that authorization has been obtained, prompt the user to select a module in

the Security World on which to generate the key. Alternatively you could use the

RQCard_whichmodule_specific() function to dictate which module will be used, or the

NFKM_getusablemodule() function to use the first available module.

The module ID and a key ID for the desired card set on that module are assigned

to the moduleid and ltid variables when the card-loader completes.

rc = RQCard_whichmodule_anyone(rqcard, &moduleid, <id);
if(rc) {
 NFast_Perror("error calling RQCard_whichmodule_anyone", rc);
 goto cleanup;
}

rc = rqcard->uf->eventloop(rqcard);
if(rc) {
 NFast_Perror("error running card loader", rc);
 goto cleanup;
}

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 17/237

The moduleid, id, and ltid variables are now populated. Next, populate the

moduleinfo variable for the chosen module, and create a card set handle.

for(n = 0; n < worldinfo->n_modules; ++n)
 if(worldinfo->modules[n]->module == moduleid)
 break;
assert(n < worldinfo->n_modules);
moduleinfo = worldinfo->modules[n];

rc = NFKM_findcardset(app, &cardhash, &cardset, cctx);
if(rc) {
 NFast_Perror("error calling NFKM_findcardset", rc);
 goto cleanup;
}

Up to now in this example the application has performed actions

common to generating either a symmetric key or an asymmetric

key. The process from here on differs depending on which key

type is generated.

3.4.2. Preparing the key-generation command and ACL

Start by setting up some command parameters based on the information we have

already gathered.

command.cmd = Cmd_GenerateKeyPair;
command.args.generatekey.params.type = keytype;
command.args.generatekey.flags = Cmd_GenerateKey_Args_flags_Certify;
command.args.generatekey.module = moduleinfo->module;

Keys are stored with an ACL, which defines which entities can perform operations

with the key. The next step is to populate the acl_params variable with the

information needed to create the ACL that will be stored in the key blob along

with the key we generate. In this example the application sets the acl_params.f

flags parameter to enable key recovery and specify the type of key protection to

use. There are three options:

• card set protection

• module protection

• passphrase protection.

This following code demonstrates how to indicate that a key should be protected

by a card set. In this case, the card set is the one selected earlier by the user in

Selecting a Security World module.

acl_params.f = NFKM_NKF_RecoveryEnabled|protection;

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 18/237

acl_params.cs = cardset;

The make ACL blob flags (acl_params.f) parameter must be same as the make

blob flags parameter (blob_params.f), so is set accordingly.

blob_params.f = acl_params.f;

The next step is to define in the ACL for which operations the key is allowed to be

used. In this example, the application specifies that the key can be used to sign,

verify, encrypt, or decrypt.

acl_params.op_base = (NFKM_DEFOPPERMS_SIGN
 |NFKM_DEFOPPERMS_VERIFY
 |NFKM_DEFOPPERMS_ENCRYPT
 |NFKM_DEFOPPERMS_DECRYPT);

The application is now ready to generate the ACL:

rc = NFKM_newkey_makeaclx(app, conn, worldinfo, &acl_params,
 &command.args.generatekey.acl, cctx);

The following code sets up further generate key command parameters. The

parameters that are required differ according to key type. For example, if an

application is generating a Rijndael key, you need to specify the length of the key

required, in bytes:

command.args.generatekey.params.params.random.lenbytes = 128/8;

Generating a key in a FIPS140 Level 3 environment requires that an application

obtains authorization (in this case, card set authorization) before attempting to

generate a key. It is possible that the card loader has already obtained the

necessary authorization from a prior card-loading operation. In this case, the

following call will retrieve this authorization:

rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fips140authhandle,
 0);

If this call returns Status_RQCardMustContinue, an application must explicitly attempt

to obtain the correct authorization as follows:

rc = RQCard_fips_logic(rqcard);
if(rc) {
 NFast_Perror("error calling RQCard_fips_logic", rc);
 goto cleanup;

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 19/237

}
rc = RQCard_whichmodule_specific(rqcard, moduleinfo->module, 0);
if(rc) {
 NFast_Perror("error calling RQCard_whichmodule_anyone", rc);
 goto cleanup;
}
rc = rqcard->uf->eventloop(rqcard);
if(rc) {

 NFast_Perror("error running card loader", rc);
 goto cleanup;
}
rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fips140authhandle,
 0);

Now that the application has obtained the necessary FIPS 140 Level 3

authorization (or cancelled the operation if the correct authorization could not be

obtained), it can use the authorization to authorize the creation of the key.

rc = NFKM_newkey_makeauth(app, worldinfo, &command.flags, &command.certs,
 fips140authhandle, cctx);
if(rc) {
 NFast_Perror("error calling NFKM_newkey_makeauth", rc);
 goto cleanup;
}

With or without FIPS authorization, the application has now obtained all the

information necessary to transact a key-generation operation, so is now ready to

send the key-generation command to the selected module. The reply is checked

using the reply checking utility function mentioned at the beginning of the

chapter.

rc = NFastApp_Transact(conn, cctx, &command, &reply, 0);
rc = check_reply(rc, &reply, "error generating new key");
if(rc)
 goto cleanup;

The application has now generated a new key, but as yet the key exists only in the

module’s memory. Next, construct an NFKM_Key key information structure (keyinfo)

and then save it to disk.

keyinfo->v = 8;
keyinfo->appname = keyident.appname;
keyinfo->ident = keyident.ident;
time(&keyinfo->gentime);

The next step is to populate the parameters of the blob_params structure, which

contains the information that is to be written to the key blob. The following code

also checks that a key-generation certificate was included in the reply. The

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 20/237

NFKM_MakeBlobsParams flags blob_params.f must be the same as the flags passed to

NFKM_newkey_makeaclx() when the application created the private ACL.

mc = 0;
blob_params.kpriv = reply.reply.generatekey.key;
if(reply.reply.generatekey.flags & Cmd_GenerateKey_Reply_flags_cert_present)
 mc = reply.reply.generatekey.cert;
if(cardset) {

 blob_params.lt = ltid;
 blob_params.cs = cardset;
}
blob_params.fips = fips140authhandle;

The parameters required for the NFKM_newkey_makeblobsx() are now populated, and

the application is ready to create the key blob. As this is a symmetric key type the

application need only save a private key blob.

rc = NFKM_newkey_makeblobsx(app, conn, worldinfo, &blob_params, keyinfo, cctx);
if(rc) {
 NFast_Perror("error calling NFKM_newkey_makeblobsx", rc);
 goto cleanup;
}
if(mc) {
 rc = NFKM_newkey_writecert(app, conn, moduleinfo, blob_params.kpriv, mc,
 keyinfo, cctx);
 if(rc) {
 NFast_Perror("error calling NFKM_newkey_writecert", rc);
 goto cleanup;
 }
}

The keyinfo structure is now ready to be saved to disk.

rc = NFKM_recordkey(app, keyinfo, cctx);
if(rc) {
 NFast_Perror("error calling NFKM_recordkey", rc);
 goto cleanup;
}
rc = Status_OK;

3.4.3. Freeing memory

The final part of the key-generation process is the important step of unloading the

key information in the module.

NFastApp_FreeACL(app, cctx, 0, &command.args.generatekey.acl);
NFKM_cmd_destroy(app, conn, 0, reply.reply.generatekey.key,
 "generatekey.key", cctx);
if(ltid) NFKM_cmd_destroy(app, conn, 0, ltid, "ltid", cctx);

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 21/237

If you are running your application in FIPS 140 Level 3 mode,

NFKM_newkey_makeauth() creates a certificate list, which also needs to be freed:

if(command.flags & Command_flags_certs_present)
 NFastApp_Free_CertificateList(app, cctx, 0, command.certs);

NFastApp_Free_Reply(app, cctx, 0, &reply);
keyinfo->appname = 0;
keyinfo->ident = 0;
NFKM_freekey(app, keyinfo, cctx);
NFKM_freecardset(app, cardset, cctx);

This concludes the explanation of symmetric key-generation. The next section

describes the process of generating asymmetric keys.

3.5. Generating an asymmetric key

This section describes the asymmetric key-generation process in detail. The

process of generating a symmetric key differs slightly from the process of

generating an asymmetric key, so each is described in a separate section. There is

some repetition in the two sections.

This section does not explain how to use softcards to protect

keys. Softcards can be listed with NFKM_listsoftcards() and

loaded with NFKM_loadsoftcard(). See the nCore API

documentation of nfkm.h for more information about using

softcards.

The following diagram illustrates the key-generation process:

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 22/237

The following diagram illustrates how the programming environment architecture

stores generated asymmetric keys. See nCore architecture for more information

about the programming environment architecture.

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 23/237

The code in this section makes use of the following variables:

Variable Name Variable Type Description

acl_params NFKM_MakeACL_Params Used to construct ACLs

blob_params NFKM_MakeBlobs_Params Used when making blobs

keyinfo NFKM_Key Information about a key

moduleinfo NFKM_ModuleInfo The module to use

mc M_ModuleCert A certificate from a module

fips140authhandle NFKM_FIPS140AuthHandle FIPS authorization

ltid M_KeyID A loaded card set

cardset NFKM_CardSet Information about a card set

moduleid M_ModuleID The ID of a module

cardhash NFKM_CardSetIdent A hash of a card set

rc M_Status A command return code

command M_Command A command structure

reply M_Reply A command reply

3.5.1. Obtaining authorization and selecting a module

Keys are generated on a specific module and protected by some form of

authorization. When a key is generated the type of authorization that is required

to use the key is defined, as well as the purposes for which the key is allowed to

be used, for example, only for encryption and decryption, or only for signing and

verification.

3.5.1.1. Using card set protection

Proper authorization is required to generate a key. This example handles card set

authorization. The following code prompts the user to provide a card to protect

the key that is to be generated. The card set hash populates cardhash when the

card-loader completes.

rc = RQCard_logic_ocs_anyone(rqcard, &cardhash,
 "Insert a cardset to protect the new key");
if(rc) {

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 24/237

 NFast_Perror("error calling RQCard_logic_ocs_anyone", rc);
 goto cleanup;
}

3.5.1.2. Selecting a Security World module

Now that authorization has been obtained, prompt the user to select a module in

the Security World on which to generate the key. Alternatively you could use the

RQCard_whichmodule_specific() function to dictate which module to use or the

NFKM_getusablemodule() function to use the first available module.

The module ID and a key ID for the desired card set on that module are assigned

to the moduleid and ltid variables when the card-loader completes.

rc = RQCard_whichmodule_anyone(rqcard, &moduleid, <id);
if(rc) {
 NFast_Perror("error calling RQCard_whichmodule_anyone", rc);
 goto cleanup;
}

rc = rqcard->uf->eventloop(rqcard);
if(rc) {
 NFast_Perror("error running card loader", rc);
 goto cleanup;
}

The moduleid, id and ltid are now populated. The next step is to populate the

moduleinfo variable for the chosen module, and create a card set handle.

for(n = 0; n < worldinfo->n_modules; ++n)
 if(worldinfo->modules[n]->module == moduleid)
 break;
assert(n < worldinfo->n_modules);
moduleinfo = worldinfo->modules[n];

rc = NFKM_findcardset(app, &cardhash, &cardset, cctx);
if(rc) {
 NFast_Perror("error calling NFKM_findcardset", rc);
 goto cleanup;
}

Up to now in this example the application has performed actions

common to generating either a symmetric key or an asymmetric

key. The process from here on differs depending on which key

type is generated.

3.5.2. Preparing the key-generation command and ACL

Start by setting up some command parameters based on the information we have

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 25/237

already gathered.

command.cmd = Cmd_GenerateKeyPair;
command.args.generatekeypair.params.type = keytype;
command.args.generatekeypair.flags = Cmd_GenerateKeyPair_Args_flags_Certify;
command.args.generatekeypair.module = moduleinfo->module;

Keys are stored with an ACL which defines which entities can perform operations

with the key. The next step is to populate the acl_params variable with the

information needed to create the ACL that is stored in the key blob along with the

key we generate. The application sets the acl_params.f flags parameter to enable

key recovery, and specify the type of key protection to use. There are three

options:

• card set protection

• module protection

• passphrase protection.

This following code demonstrates how to indicate that a key should be protected

by a card set. In this case the card set is the one selected earlier by the user in

Selecting a Security World module.

acl_params.f = NFKM_NKF_RecoveryEnabled|protection;
acl_params.cs = cardset;

The make ACL blob flags (acl_params.f) must be same as the make blob flags

(blob_params.f), so it is set accordingly.

blob_params.f = acl_params.f;

The next step is to define in the ACL which operations the key is allowed to be

used for. Firstly the application defines the allowed uses for the private key ACL.

The is_signing_only_keytype() function is not an nCore function:

if(is_signing_only_keytype(keytype))
 acl_params.op_base = NFKM_DEFOPPERMS_SIGN;
else if(is_encryption_only_keytype(keytype))
 acl_params.op_base = NFKM_DEFOPPERMS_DECRYPT;
else
 acl_params.op_base = (NFKM_DEFOPPERMS_SIGN
 |NFKM_DEFOPPERMS_DECRYPT);

The application is now ready to generate the private key ACL:

rc = NFKM_newkey_makeaclx(app, conn, worldinfo, &acl_params,

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 26/237

 &command.args.generatekeypair.aclpriv, cctx);

For asymmetric keys the application also defines a public key ACL.

acl_params.f = NFKM_NKF_PublicKey;
if(is_signing_only_keytype(keytype))
 acl_params.op_base = NFKM_DEFOPPERMS_VERIFY;
else if(is_encryption_only_keytype(keytype))
 acl_params.op_base = NFKM_DEFOPPERMS_ENCRYPT;
else
 acl_params.op_base = (NFKM_DEFOPPERMS_VERIFY
 |NFKM_DEFOPPERMS_ENCRYPT);

The public key ACL is created in the same manner as the private key ACL:

rc = NFKM_newkey_makeaclx(app, conn, worldinfo, &acl_params,
 &command.args.generatekeypair.aclpub, cctx);

The following code sets up further key generation command parameters. The

parameters that are required differ according to key type. For example, an

application might use the following code when generating a 1024 bit DSA key

using strict key verification. For details of the parameters required for the types of

key you want to generate, see the relevant nCore API documentation.

command.args.generatekeypair.params.params.dsaprivate.flags =
 KeyType_DSAPrivate_GenParams_flags_Strict;
command.args.generatekeypair.params.params.dsaprivate.lenbits = 1024;

Generating a key in a FIPS 140 Level 3 environment requires that an application

obtains authorization (in this case, card set authorization) before attempting to

generate a key. It is possible that the card loader has already obtained the

necessary authorization from a prior card-loading operation. In this case, the

following call retrieves this authorization:

rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fips140authhandle,
 0);

If this call returns Status_RQCardMustContinue, an application must explicitly attempt

to obtain the correct authorization as follows:

rc = RQCard_fips_logic(rqcard);
if(rc) {
 NFast_Perror("error calling RQCard_fips_logic", rc);
 goto cleanup;
}
rc = RQCard_whichmodule_specific(rqcard, moduleinfo->module, 0);
if(rc) {
 NFast_Perror("error calling RQCard_whichmodule_anyone", rc);

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 27/237

 goto cleanup;
}
rc = rqcard->uf->eventloop(rqcard);
if(rc) {
 NFast_Perror("error running card loader", rc);
 goto cleanup;
}
rc = RQCard_fips_get(rqcard_fips, moduleinfo->module, &fips140authhandle,
 0);

Now that the application has obtained the necessary FIPS 140 Level 3

authorization (or cancelled the operation if the correct authorization could not be

obtained), it can use the authorization to authorize the creation of the key.

rc = NFKM_newkey_makeauth(app, worldinfo, &command.flags, &command.certs,
 fips140authhandle, cctx);
if(rc) {
 NFast_Perror("error calling NFKM_newkey_makeauth", rc);
 goto cleanup;
}

With or without FIPS authorization, the application has now obtained all the

information necessary to transact a key-generation operation, so is now ready to

send the key-generation command to the selected module. The reply is checked

using the reply checking utility function mentioned at the beginning of the

chapter.

rc = NFastApp_Transact(conn, cctx, &command, &reply, 0);
rc = check_reply(rc, &reply, "error generating new key");
if(rc)
 goto cleanup;

The application has now generated a new key, but as yet the key exists only in the

module’s memory. Next, construct an NFKM_Key key information structure (keyinfo)

and then save it to disk.

keyinfo->v = 8;
keyinfo->appname = keyident.appname;
keyinfo->ident = keyident.ident;
time(&keyinfo->gentime);

The next step is to populate the parameters of the blob_params structure, which

contains the information that will be written to the key blob. The following code

also checks that a key-generation certificate was included in the reply. The

NFKM_MakeBlobsParams flags blob_params.f must be the same as the flags passed to

NFKM_newkey_makeaclx() when the application created the private ACL.

mc = 0;
blob_params.kpriv = reply.reply.generatekeypair.keypriv;

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 28/237

blob_params.kpub = reply.reply.generatekeypair.keypub;
if(reply.reply.generatekeypair.flags & Cmd_GenerateKeyPair_Reply_flags_certpriv_present)
 mc = reply.reply.generatekeypair.certpriv;
if(cardset) {
 blob_params.lt = ltid;
 blob_params.cs = cardset;
}
blob_params.fips = fips140authhandle;

The parameters required for the NFKM_newkey_makeblobsx() are now populated and

the application can now create the key blob.

rc = NFKM_newkey_makeblobsx(app, conn, worldinfo, &blob_params, keyinfo, cctx);
if(rc) {
 NFast_Perror("error calling NFKM_newkey_makeblobsx", rc);
 goto cleanup;
}
if(mc) {
 rc = NFKM_newkey_writecert(app, conn, moduleinfo, blob_params.kpriv, mc,
 keyinfo, cctx);
 if(rc) {
 NFast_Perror("error calling NFKM_newkey_writecert", rc);
 goto cleanup;
 }
}

The keyinfo structure is now ready to be saved to disk.

rc = NFKM_recordkey(app, keyinfo, cctx);
if(rc) {
 NFast_Perror("error calling NFKM_recordkey", rc);
 goto cleanup;
}
rc = Status_OK;

3.5.3. Freeing memory

The final part of the key-generation process is the important step of freeing the

memory used by the application, so that no key information remains in memory,

which would make the key vulnerable to attackers.

NFastApp_FreeACL(app, cctx, 0, &command.args.generatekeypair.aclpriv);
NFastApp_FreeACL(app, cctx, 0, &command.args.generatekeypair.aclpub);
NFKM_cmd_destroy(app, conn, 0, reply.reply.generatekeypair.keypriv,
 "generatekeypair.keypriv", cctx);
NFKM_cmd_destroy(app, conn, 0, reply.reply.generatekeypair.keypub,
 "generatekeypair.keypub", cctx);
if(ltid) NFKM_cmd_destroy(app, conn, 0, ltid, "ltid", cctx);

If you are running your application in FIPS 140 Level 3 mode,

NFKM_newkey_makeauth() will have created a certificate list, which also needs to be

freed:

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 29/237

if(command.flags & Command_flags_certs_present)
 NFastApp_Free_CertificateList(app, cctx, 0, command.certs);

NFastApp_Free_Reply(app, cctx, 0, &reply);
keyinfo->appname = 0;
keyinfo->ident = 0;
NFKM_freekey(app, keyinfo, cctx);
NFKM_freecardset(app, cardset, cctx);

This concludes the explanation of asymmetric key-generation.

3.6. Using a key

Once a key has been generated on a module the encrypted key information, or key

blob, is stored on the hard disk of the application that requested it. For your

application to use a key, you first need to pass the information contained in the

key blob to the hardserver, which will use a module to decrypt the key and return

a key handle to your application.

The following diagram illustrates the process of loading a key:

3.6.1. Finding a key

To load a key, first locate the key blob. A key is identified by the name of the

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 30/237

application that created it and the key identifier. The following code tries to find

an existing key blob of the requested type. If a key of this type cannot be found,

the code generates a new key.

The following code uses a function called generate_key() to generate a key if a key

cannot be found.

rc = NFKM_findkey(app, keyident, &keyinfo, cctx);
if(rc) {
 NFast_Perror("error calling NFKM_findkey", rc);
 goto cleanup;
}
if(!keyinfo) {
 rc = generate_key(app, conn, worldinfo, &rqcard, &rqcard_fips, opt_protect,
 keyident, keytype, cctx);
 if(rc)
 goto cleanup;
 rc = NFKM_findkey(app, keyident, &keyinfo, cctx);
 if(rc) {
 NFast_Perror("error calling NFKM_findkey", rc);
 goto cleanup;
 }
 if(keyinfo == 0) {
 fprintf(stderr,
 "NFKM_findkey could not find key even after generating it.\n");
 rc = -1;
 goto cleanup;
 }
}

3.6.2. Loading a key

Before a key can be loaded into a module, an application must obtain the

appropriate authorization. In this example the authorization required comes from

a card in a card set, so the application must first initialize the card-loading

libraries:

if(keyinfo->flags & Key_flags_ProtectionCardSet) {
 M_ModuleID moduleid;
 int n;
 rc = RQCard_logic_ocs_specific(&rqcard, &keyinfo->cardset,
 "Load cardset");
 if(rc) {
 NFast_Perror("error calling RQCard_logic_ocs_specific", rc);
 goto cleanup;
 }
}

A Security World often contains multiple modules, many of which may have the

key that is needed to decrypt the key blob an application wants to load. For this

example the user is prompted to choose a module that contains the necessary key,

and then prompted to provide the card that authorizes the use of the key:

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 31/237

rc = RQCard_whichmodule_anyone(&rqcard, &moduleid, <id);
if(rc) {
 NFast_Perror("error calling RQCard_whichmodule_anyone", rc);
 goto cleanup;
}
rc = rqcard.uf->eventloop(&rqcard);
if(rc) {
 NFast_Perror("error running card loader", rc);
 goto cleanup;
}

It is also possible for an application to ask the Security World to nominate a usable

module by using the NFKM_getusablemodule() function:

rc = NFKM_getusablemodule(worldinfo, 0, &moduleinfo);
if(rc) {
 NFast_Perror("error calling NFKM_getusablemodule", rc);
 goto cleanup;
}

Now that the user has selected a module, an application can populate the

moduleinfo variable, which is later used as a parameter to the NFKM_cmd_loadblob()

function.

for(n = 0; n < worldinfo->n_modules; ++n)
 if(worldinfo->modules[n]->module == moduleid)
 break;
 assert(n < worldinfo->n_modules);
 moduleinfo = worldinfo->modules[n];

The application has now gathered all the information it needs to load the key onto

a module using the NFKM_cmd_loadblob() function. The next step is to prepare a

pointer to the key that will be loaded into the module. The following code loads

the public key blob. An application can load the private key blob in similar fashion

using &keyinfo->privblob.

const M_ByteBlock *blobptr;
blobptr = &keyinfo->pubblob;

The following code attempts to load the key blob. NFKM_cmd_loadblob() fills in the

command structure and handles the reply. Assuming that the command executes

successfully, you will now have a handle on the key loaded onto the selected

module.

It is possible to construct an M_Command structure by using

Cmd_LoadBlob() directly instead.

rc = NFKM_cmd_loadblob(app,

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 32/237

 conn,
 moduleinfo->module,
 blobptr,
 ltid,
 &keyid,
 "loading key blob",
 cctx);
if(rc) {
 NFast_Perror("error calling NFKM_cmd_loadblob", rc);
 goto cleanup;
}

3.7. Encrypting a file

This section demonstrates how to encrypt the contents of a text file by using a

secure channel. For the sake of simplicity, this example has no error handling.

First, generate an appropriate initialization vector:

iv.mech = Mech_RijndaelmCBCi128pPKCS5;
for (i=0; i<sizeof iv->generic128.iv.bytes; i++)
 iv.iv->generic128.iv.bytes[i]=(unsigned char)((i*19) ^ iv.mech);

Next, open a channel to use to encrypt the file. The mechanism that the channel

uses to encrypt the file is specified when the channel is opened:

M_Command channel_open_command;
M_Reply channel_open_reply;
M_Status channel_open_rc;
channel_open_command.cmd = Cmd_ChannelOpen;
channel_open_command.args.channelopen.type = ChannelType_Any;
channel_open_command.args.channelopen.mode = ChannelMode_Encrypt;
channel_open_command.args.channelopen.mech = mech;

Some M_Command arguments are optional. In this example, the application specifies

both the key to be used to encrypt the file and the initialization vector and

indicates which optional arguments have been specified by setting the

appropriate flags:

channel_open_command.args.channelopen.flags |= Cmd_ChannelOpen_Args_flags_key_present;
channel_open_command.args.channelopen.key = &keyid;
channel_open_command.args.channelopen.flags |= Cmd_ChannelOpen_Args_flags_given_iv_present;
channel_open_command.args.channelopen.given_iv = iv;

To open the channel, transact the M_Command in the usual way and then set the

channel ID pointer idch:

channel_open_rc = NFastApp_Transact(conn, cctx, &channel_open_command, &channel_open_reply, 0);
idch = channel_open_reply.reply.channelopen.idch;

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 33/237

The next step is to load the input file (the file to be encrypted) into a file stream

(inputstream) and prepare the output file stream (outputstream) to which the

encrypted file is going to be written.

inputstream = fopen("file_in.txt", "rb");
outputstream = fopen("file_out.txt", "wb");

Now that the application has opened the channel and prepared the input and

output streams, start to prepare an M_Command to process the inputstream through

the channel.

M_Command channel_process_stream_command;
M_Reply channel_process_stream_reply;
M_Status channel_process_stream_rc;
int eof = 0;
unsigned char buffer[6144];
size_t bytes_read;

Next, read the bytes of the inputstream into a char buffer, updating the channel on

each read.

do {
 bytes_read = fread(buffer, 1, sizeof buffer, inputstream);
 if(ferror(inputstream)) {
 fprintf(stderr, "error reading from %s: %s\n",
 input_path, strerror(errno));
 rc = -1;
 goto cleanup;
 }

 if(feof(inputstream))
 eof = 1;

 command.cmd = Cmd_ChannelUpdate;
 if(eof)
 command.args.channelupdate.flags |= Cmd_ChannelUpdate_Args_flags_final;
 command.args.channelupdate.idch = idch;
 command.args.channelupdate.input.ptr = buffer;
 command.args.channelupdate.input.len = (M_Word)bytes_read;

 rc = NFastApp_Transact(conn, cctx, &command, &reply, 0);
 rc = check_reply(rc, 0, "Cmd_ChannelUpdate");
 if(rc)
 goto cleanup;

 if(reply.reply.channelupdate.output.len) {
 if(outputstream) {
 fwrite(reply.reply.channelupdate.output.ptr,
 1, reply.reply.channelupdate.output.len,
 outputstream);
 /* Check for a write error */
 if(ferror(outputstream)) {
 fprintf(stderr, "error writing to %s: %s\n",
 output_path, strerror(errno));
 rc = -1;
 NFastApp_Free_Reply(app, cctx, 0, &reply);
 goto cleanup;

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 34/237

 }
 }
 if(outputdstr) {
 if(nf_dstr_putm(outputdstr, reply.reply.channelupdate.output.ptr,
 reply.reply.channelupdate.output.len)) {
 fprintf(stderr, "error writing to dstr: %s\n", strerror(errno));
 rc = -1;
 goto cleanup;
 }
 }
 }

 NFastApp_Free_Reply(app, cctx, 0, &reply);
 memset(&reply, 0, sizeof reply);
} while(!eof);

If the file was successfully encrypted, save the file to disk:

if(channel_process_stream_reply.reply.channelupdate.output.len) {
 if(outputstream) {
 fwrite(channel_process_stream_reply.reply.channelupdate.output.ptr,
 1, channel_process_stream_reply.reply.channelupdate.output.len,
 outputstream);
 writefile(ciphertext_path,
 reply->reply.encrypt.cipher.data.generic128.cipher.ptr,
 reply->reply.encrypt.cipher.data.generic128.cipher.len);
 }
}

The final step is to free memory and close the outputstream.

NFastApp_Free_Reply(app, cctx, 0, &reply);
memset(&reply, 0, sizeof reply);
fclose(outputstream);

3.8. Cleaning up resources

Memory leaks and objects left in memory constitute a security risk. The following

code removes all sensitive information from memory and cleanly shuts down the

connection to the hardserver.

free(sigbytes.ptr);
if(keyid) NFKM_cmd_destroy(app, conn, 0, keyid, "keyid", cctx);
if(idch) NFKM_cmd_destroy(app, conn, 0, idch, "idch", cctx);
NFastApp_Free_Reply(app, cctx, 0, &reply);
if(rqcard_fips_initialized) RQCard_fips_free(&rqcard, &rqcard_fips);
if(rqcard_initialized) RQCard_destroy(&rqcard);
NFKM_freekey(app, keyinfo, cctx);
NFKM_freeinfo(app, &worldinfo, cctx);
if(conn) NFastApp_Disconnect(conn, cctx);
NFastApp_Finish(app, cctx);
if(inputstream) fclose(inputstream);
if(outputstream) fclose(outputstream);

Chapter 3. C tutorial

nCore v13.3 Developer Tutorial 35/237

4. Java tutorial

4.1. Overview

This overview section provides a description of how to achieve two fundamental

nCore API programming tasks: connecting to the hardserver and transacting a

command. These two tasks are common to almost all cryptographic applications.

The rest of this chapter works through a simple example of a basic cryptographic

application.

All applications that require nCore functionality will first need to create a

connection to a hardserver running on a nShield module. The following diagram

illustrates the steps required to create a connection to a hardserver running on

Entrust hardware:

Once connected to the hardserver, an application can send an M_Command to a

module. The module processes the command and then returns the results along

with any relevant error and status codes. The following diagram illustrates the

process of transacting a cryptographic operation with a module:

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 36/237

The M_Reply structure contains the results of the operation and an M_Status

message that indicates the outcome of the operation. If a problem is encountered,

the M_Status value gives an indication of what went wrong. The M_Reply contains

the results of the command, for example, a key handle or the bytes of an

encrypted file.

4.1.1. Creating a softcard

This tutorial demonstrates how to protect a key using a softcard. Use the

command line utility ppmk to create a softcard in a manner similar to the following:

In a terminal window, type:

ppmk --new --non-recoverable WorkedExampleSoftcard

ppmk prompts you to provide a passphrase. Type a passphrase and press Enter.

ppmk prompts you to confirm the passphrase you have entered. Type the

passphrase again to confirm it, and press Enter.

4.1.2. nCore classes used in this tutorial

This tutorial describes some of the functionality in the following nCore classes.

You may find it useful to familiarize yourself with these classes by reading the API

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 37/237

documentation, which can be found at <nfast_dir>/java/docs/index.html.

• com.ncipher.km.nfkm.*

Security World classes.

• com.ncipher.km.marshall.*

Marshals Security World objects.

• com.ncipher.jutils.*

Various utility classes provided by Entrust.

• com.ncipher.nfast.*

More utility classes.

• com.ncipher.nfast.marshall.*

Classes which represent nCore commands and related data structures, and

which can be used to marshal and unmarshal them from the nShield byte

stream format for transmission.

• com.ncipher.nfast.connect.utils.*

Connection and Channel utility classes. The code in this chapter also uses two

connection utility classes, Channel and EasyConnection. The source code for

these examples can be found at <nfast_dir>/java/examples/connutils.

4.1.3. Variables used in this tutorial

The following table lists and describes the variables used in this tutorial. You may

also find it useful to view the API documentation of these classes.

Variable name Variable type Variable description

kid M_KeyID Public key ID

c EasyConnection Connection to the hardserver

wcb WorldCallbacks Callback object which defines how user

interaction is handled

world SecurityWorld Security World object

appname String Application name

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 38/237

Variable name Variable type Variable description

ident String Key identity

type String Key type

size int Key size in bytes

chanmech int Cryptographic mechanism used by the secure

channel

chanop int Secure channel ID

iv M_IV Initialization vector

ch Channel Secure channel object

softcard SoftCard Softcard object

4.2. Before connecting to the hardserver

The WorldCallbacks class defines how the hardserver interacts with the user when

obtaining authorization to create or use a key. The WorldCallbacks class extends the

DefaultCallBack class to customize how the user will be prompted to enter a

softcard passphrase. An instance of this class is used as a parameter when

instantiating a SecurityWorld object. If you do not pass an instance of a similar

class the behavior defined in the DefaultCallBack class is used.

class WorldCallbacks extends DefaultCallBack {
 public SoftCard configured_softcard = null;
 public String reqPPCallBack(String ReqPPAction) throws NFException {
 try {
 return Passphrase.readPassphrase("Enter softcard passphrase: ");
 } catch(IOException e) {
 throw new NFException(e.toString());
 }
 }

 // Callback to choose a softcard
 public SoftCard getSoftCardCallback() throws NFException {
 return configured_softcard;
 };
};

Before connecting to the hardserver, instantiate a WorldCallBacks object and a

SecurityWorld object as follows:

WorldCallbacks wcb = new WorldCallbacks();
SecurityWorld world = new SecurityWorld(null, wcb,
 null,

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 39/237

 true);

4.3. Connecting to the hardserver

The following code creates the connection to the hardserver using the

EasyConnection utility class constructor to wrap an NFConnection object:

c = new EasyConnection(world.getConnection());

4.4. Generating a key

The first step is to specify the parameters of a key that can be used to sign a file.

In this case we choose to generate a DSA key. We specify the key-generation

parameters as follows:

appname = "simple";
ident = "worked-example-sign";
type = "DSA";
size = 1024;
chanmech = M_Mech.SHA1Hash;
sigmech = M_Mech.DSA;
iv = new M_IV();
chanop = M_ChannelMode.Sign;

Before attempting to generate a key, use the getKey() method of the SecurityWorld

class to check if a key with the given appname and ident already exists. The getKey()

method returns null if it cannot find the specified key.

Key k = world.getKey(appname, ident);

If getKey() returns null this example attempts to generate a key. If no softcard has

been named to protect this key, the key is protected using module protection.

if(k == null) {
 if(softcard_name != "") {
 k = generate_key(wcb, world, type, size,
 NFKM_Key_flags.f_ProtectionPassPhrase,
 softcard_name,
 appname, ident);
 } else {
 k = generate_key(wcb, world, type, size,
 NFKM_Key_flags.f_ProtectionModule,
 null,
 appname, ident);
 }
}

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 40/237

generate_key() is a utility function written specifically for this example.

generate_key() uses an AppKeyGenerator object which is obtained by calling the

getAppKeyGenerator() method of the SecurityWorld object.

The AppKeyGenerator class requires a AppKeyGenProperty[] array which contains the

parameters that specify the key you want to generate. If a key cannot be

generated using the specified parameters, AppKeyGenerator throws an

nfkmInvalidPropValuesException. You can call the check() method to test whether

the AppKeyGenProperty[] contains valid values. The properties themselves differ

according to your Security World configuration.

The generate_key method uses two utility functions written specifically for this

tutorial, setStringProperty() and setMenuProperty(), which are used to set the

AppKeyGenProperty[] array. The following diagram illustrates the process of

generating a key:

 This tutorial does not cover details of ACL generation.

The parameters of the generate_key() function are:

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 41/237

Parameter name Parameter Type Parameter description

wcb WorldCallbacks Callback class that defines user interaction

behavior.

world SecurityWorld Contains information about the Security World

you are using.

type String The type of key, for example, AES, RSA, DSA.

len int The length of the key you want to generate, in

bits.

protection int The type of key protection to be used. This can

be any of the flags defined in NFKM_Key_flags

prot_name String The name of the softcard / module / card that is

used to protect the key you want to generate.

appname String The name of the application that is requesting

that a key is generated. The key name is formed

by a combination of the appname and the ident.

ident String An arbitrary string that becomes part of the key

name. The key name is formed by a combination

of the appname and the ident.

The first step is to obtain an AppKeyGenerator object from the SecurityWorld object:

AppKeyGenerator akg = world.getAppKeyGenerator(appname);

Next, as a safety measure we check that all the required key properties are

supported by this AppKeyGenerator object. In this example, the most likely reason

that required key properties are not supported is that no softcard which can be

used to protect the key to be generated exists in the Security World:

String[] properties = new String[] {
 "ident",
 "type",
 "size",
 "protect"
};
for (int i = 0; i < properties.length; i++) {
 if (akg.getProperty(properties[i]) == null) {
 System.out.println("Property " + properties[i] + " does not exist." +
 "Does your security world contain a usable softcard?");
 System.exit(0);
 }
}

If all properties exist, populate the AppKeyGenProperty[] using the

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 42/237

setStringProperty() and setMenuProperty() functions. The protect property is set,

dependent on how the key is to be protected. This example expects the key to be

softcard protected. Failing that the example defaults to module protection. Card

set protection is not supported in this example.

setStringProperty(akg, "ident", ident);
setMenuProperty(akg, "type", type);
setStringProperty(akg, "size", Integer.toString(len));
switch(protection) {
case NFKM_Key_flags.f_ProtectionModule:
 setMenuProperty(akg, "protect", "module");
 break;
case NFKM_Key_flags.f_ProtectionPassPhrase:
 setMenuProperty(akg, "protect", "softcard");
 SoftCard cards[] = world.getSoftCards();
 wcb.configured_softcard = null;
 for(int n = 0; n < cards.length; ++n) {
 if(cards[n].getName().equals(prot_name)) {
 wcb.configured_softcard = cards[n];
 }
 if(wcb.configured_softcard == null) {
 throw new NoSuchSoftCard(prot_name);
 break;
 }
 }
}

Before calling the generate() function of the AppKeyGenerator class to generate the

key, it is good practice to check that the values assigned to the properties are

valid. If the properties are valid, call the generate() function, which returns a

reference to the newly created key:

InvalidPropValue badprops[] = akg.check();
if(badprops.length > 0) {
 throw new BadKeyGenProperties(badprops);
}
return akg.generate(getUsableModule(world), null);

Finally, call the cancel() method to destroy key information that is resident in

memory.

akg.cancel();

4.4.1. Methods used in generate_key()

The getUsableModule() method was written for the purposes of this example and

simply cycles through all the modules in the Security World until it finds one that

is suitable:

public static Module getUsableModule(SecurityWorld world)

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 43/237

 throws NFException {
 Module modules[] = world.getModules();
 for(int m = 0; m < modules.length; ++m)
 if(modules[m].isUsable())
 return modules[m];
 throw new NoUsableModules();
}

To select a specific module, use the getModule() function of the SecurityWorld class.

The getModule() function is overloaded to accept either a module number or a

module Electronic Serial Number (ESN) as a parameter.

The setStringProperty() method was written for the purposes of this example and

sets a string property.

public static void setStringProperty(AppKeyGenerator akg,
 String propname,
 String propvalue)
 throws NFException {
 PropValueString pvs = (PropValueString)akg.getProperty(propname).getValue();
 pvs.value = propvalue;
}

The setMenuProperty() method was written for the purposes of this example and

sets a menu property.

public static void setMenuProperty(AppKeyGenerator akg,
 String propname,
 String propvalue)
 throws NFException {
 PropValueMenu pvm = (PropValueMenu)akg.getProperty(propname).getValue();
 MenuOption options[] = pvm.getOptions();
 for(int i = 0; i < options.length; ++i)
 if(options[i].getName().equals(propvalue)) {
 pvm.value = i;
 return;
 }
 }
 throw new InvalidMenuItem(propvalue);
}

4.5. Using a key

Before using a key the key must be loaded onto a module. In this example we

expect the key being loaded to be softcard protected, or failing that, module

protected.

Module module = getUsableModule(world);
SoftCard softcard = k.getSoftCard();
if(softcard != null) {
 softcard.load(module, wcb);
 kid = k.load(softcard, module);

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 44/237

} else {
 kid = k.load(module);
}

4.6. Signing a file

Now that the key is loaded onto the module, open a secure channel to use to sign

a text file.

Channel ch = c.openChannel(chanop, kid, chanmech, iv, true, true);

The openChannel() method of the EasyConnection class returns a subclassed Channel

object. For this example, the openChannel() function transacts an M_Cmd.ChannelOpen

command and uses the M_Cmd_Reply_ChannelOpen object returned in the reply to

instantiate and then return a Channel.Sign object.

M_Cmd_Args_ChannelOpen args = new M_Cmd_Args_ChannelOpen(
 new M_ModuleID(0), M_ChannelType.Simple, 0, how, mech);
if (!keyless) {
 args.set_key(key);
}

if (!generateIV) {
 args.set_given_iv(given_iv);
}
M_Reply rep = transactChecked(new M_Command(M_Cmd.ChannelOpen, 0,args));
M_Cmd_Reply_ChannelOpen corep = (M_Cmd_Reply_ChannelOpen) rep.reply;
if (0 != (corep.flags & corep.flags_new_iv)) {
 given_iv.mech = corep.new_iv.mech;
 given_iv.iv = corep.new_iv.iv;
}
return new Channel.Sign(mech, key, corep.new_iv, corep.idch, this);

Channel.Sign extends the abstract Channel class. The update() function reads the

specified byte[] into the channel. The updateFinal() method reads the specified

byte array into the channel, but should only be called when reading the final byte[]

array that you want to process through the channel.

public static class Sign extends Channel {
 public Sign(long mech, M_KeyID keyID, M_IV iv, M_KeyID channelID, EasyConnection parent) {
 super(M_ChannelMode.Sign, mech, keyID, iv,channelID, parent);
 }
 public void update(byte[] input) throws MarshallTypeError,
 CommandTooBig,
 ClientException,
 ConnectionClosed,
 StatusNotOK {
 super.update(input, false, false);
 }
 public byte[] updateFinal(byte[] input) throws MarshallTypeError,
 CommandTooBig,
 ClientException,

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 45/237

 ConnectionClosed,
 StatusNotOK {
 return super.update(input, true, false);
 }
}

Now that the signing channel is open, open the input file to be signed, and a

FileOutputStream for the signature.

FileInputStream input = null;
FileOutputStream output = null;
input = new FileInputStream(plaintext_path);

Finally, use the channel to read in the input file bytes:

byte inputbytes[] = new byte[4096];
int len = input.read(inputbytes);
while(len != -1) {
 byte outputbytes[] = ch.update(arrayTruncate(inputbytes, len),
 false,
 false);
 if(output != null)
 output.write(outputbytes);
 len = input.read(inputbytes);
 }
}
byte outputbytes[] = ch.update(new byte[0],
 true,
 false);

The arrayTruncate() function was written specifically for this example, and ensures

that the byte[] used to update the channel is consistently chunked.

static byte[] arrayTruncate(byte[] in, int len) {
 byte out[] = new byte[len];
 for(int i = 0; i < len; ++i)
 out[i] = in[i];
 return out;
}

Next, create the hash and plaintext objects.

hash = new M_Hash(outputbytes);
plaintext = new M_PlainText(M_PlainTextType.Hash,
 new M_PlainTextType_Data_Hash(hash));

Transact an M_Cmd.Sign operation to sign the hashed plaintext:

cmd = new M_Command(M_Cmd.Sign,
 0,
 new M_Cmd_Args_Sign(0,
 kid,
 sigmech,

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 46/237

 plaintext));
try {
 reply = c.transactChecked(cmd);
} catch (StatusNotOK sno) {
 System.exit(0);
}

If the M_Cmd.Sign operation succeeded, marshal the signature to a stream of bytes,

and saves the bytes as a signature file:

signature = ((M_Cmd_Reply_Sign)reply.reply).sig;
MarshallContext mc = new MarshallContext();
signature.marshall(mc);
output = new FileOutputStream(signature_path);
output.write(mc.getBytes());
if(output != null) output.close();

4.7. Cleaning up resources

Finally, unload the keys in the module memory.

if(kid != null) c.destroy(kid);
if(pubkid != null) c.destroy(pubkid);

Chapter 4. Java tutorial

nCore v13.3 Developer Tutorial 47/237

5. Python 3 tutorial

5.1. Prerequisites

Operating systems

• Linux on x86_64

• Windows on x86_64

nShield software

• Security World 12.80 or later

User permissions

• A user permitted to connect to the local hardserver and read the Security

World key management data (kmdata) files.

Supported Python version

• Python 3.8.5

5.2. Set up the environment for nfpython

To use nShield Python 3 support with another version of Python

3, contact Entrust Support. Other Python versions are not

covered by this guide.

The recommended way of developing and deploying an nShield Python 3

application is using the Python virtualenv.

Entrust recommends the following directory layout:

 application

 venv

 mypackage

 __init__.py

 code.py

 tests

 test_mypackage.py

 script.py

 setup.py

Chapter 5. Python 3 tutorial

nCore v13.3 Developer Tutorial 48/237

https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment

5.3. Create and configure the virtualenv

You do not need administrator access to create a virtualenv. When launching

production applications, you must use the virtualenv that was created for them.

1. Start a command-line shell.

2. Change to the directory where you want to store your application files.

3. Run:

Linux

/opt/nfast/python3/bin/python3 -m venv --copies venv

Windows

c:\Program Files\nCipher\nfast\python3\python --copies -m venv venv

4. Configure the virtualenv:

Linux

. venv/bin/activate
pip install /opt/nfast/python3/additional-packages/nfpython*.whl

Windows (PowerShell)

venv\Scripts\activate.ps1
pip install c:\Program Files\nCipher\nfast\python3\additional-packages\nfpython*.whl

5. Install all required Python packages into the virtualenv.

To install your application:

◦ If your application uses setup.py entrypoint scripts, execute them directly.

◦ If you do not use entrypoints, create your own scripts:

These examples assume that your program is called

application.py and your virtualenv is in the venv

directory.

Linux - application.sh

#!/bin/sh
HERE=$(dirname $(readlink -f $0))
. ${HERE}/venv/bin/activate
python3 ${HERE}/application.py

Chapter 5. Python 3 tutorial

nCore v13.3 Developer Tutorial 49/237

https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html

Windows - application.ps1

$PSScriptRoot\venv\Scripts\activate.ps1
python $PSScriptRoot\application.py

5.4. nfpython connections and commands

Send nCore commands to the hardserver or attached HSMs:

1. Import the nShield python module.

import nfpython

2. Set up a connection

conn = nfpython.connection()

3. Construct an nCore command:

c = nfpython.Command()
c.cmd = "NewEnquiry"
c.args.module = 1
c.args.version = 1

The easiest way to define a new command to send is to create a Command()

object, set the attributes starting with the cmd name, then set the args

attributes as required.

4. Send the command and wait for the reply:

reply = conn.transact(c)
print(reply.reply.data.one)

This command prints a reply similar to the following output.

EnquiryDataOne.releasemajor= 12
 .releaseminor= 80
 .releasepatch= 0
 .checkintimehigh= 0
 .checkintimelow= 1620120388
 .flags= Hardware|HasTokens|SupportsCommandState
 .speedindex= 5200
 .recommendedminq= 9
 .recommendedmaxq= 152
 .hardwareserial= A6BB-8687-A76A
 .softwaredetails= 12.80.0-40-a769244e11

Chapter 5. Python 3 tutorial

nCore v13.3 Developer Tutorial 50/237

If the command results in a reply with a status value other than OK, the transact()

connection method raises an NFStatusError exception.

To suppress the exception and obtain the original reply regardless of status, use

the ignorestatus=True keyword argument:

import nfpython
conn = nfpython.connection()
c = nfpython.Command()
c.cmd = "NewEnquiry"
c.args.module = 1000
reply = conn.transact(c, ignorestatus=True)
print(reply)

This prints:

Reply.cmd= ErrorReturn
 .status= InvalidModule
 .flags= 0x0

5.4.1. PTPython support for nfpython

The nShield Python 3 package includes the pre-installed ptpython. REPL in

ptpython supports tab completion of most Python objects, functions, and methods,

including those of type nfpython and nfkm.

Linux

/opt/nfast/python3/bin/ptpython

Windows

c:\Program Files\nCipher\nfast\Scripts\ptpython

ptpython is useful for exploring the attributes and types used in different nCore

commands and replies, for example:

>>> import nfpython

>>> c = nfpython.Command()

>>> c.cmd = "NewEnquiry"

>>> c.args
{'flags': '0x0', 'version': 0, 'module': 0}

>>>
 [F4] Emacs 237/237 [F3] History [F6] Paste [F2] Menu - CPython 3.8.5

Chapter 5. Python 3 tutorial

nCore v13.3 Developer Tutorial 51/237

https://github.com/prompt-toolkit/ptpython

5.5. Worked nfpython example for hash, sign, and
verify

nShield Security World software includes several Python 3 example files.

The default location for these files is:

• Linux: /opt/nfast/python3/examples

• Windows: C:\Program Files\nCipher\nfast\python3\examples

The files hashing.py, keys.py and signing.py make up a sample application that

signs data using a previously generated RSA key. The application performs the

following steps: load keys, digest data, and perform a sign and verify operation

using an attached HSM.

1. Generate a module-protected RSA key:

Linux

/opt/nfast/bin/generatekey -b simple protect=module type=RSA size=2048 ident=signer

Windows

c:\Program Files\nCipher\nfast\bin\generatekey -b simple protect=module type=RSA size=2048 ident=signer

2. Find and load the keys

Finding saved keys requires the nfpython and nfkm modules.

To load an existing key, you need to know the appname and ident of the saved

key, and you need the nfpython connection.

import nfpython
import nfkm

appname = "simple"
ident = "signer"
module = 1

conn = nfpython.connection(needworldinfo=True)
appident = nfkm.KeyIdent(appname=appname, ident=ident)
keydata = nfkm.findkey(conn, appident)

load the private key from keydata.privblob
or public key from keydata.pubblob
cmd = nfpython.Command(cmd="LoadBlob")
cmd.args.blob = keydata.privblob
cmd.args.module = module

load the blob and get a Key ID
rep = conn.transact(cmd)

Chapter 5. Python 3 tutorial

nCore v13.3 Developer Tutorial 52/237

keyid = rep.reply.idka

3. Process the data.

For large amounts of data, nShield software provides channels to perform

crypto operations in an incremental stream.

This example uses the ChannelOpen and ChannelUpdate commands to compute a

SHA256 hash with the HSM.

Entrust typically recommends a ChannelUpdate size of around 8000 bytes.

However, you might find that larger or smaller sizes give better results

depending on network conditions or HSM speed ratings.

message = b"hello world" * 10240
chunksize = 8000

conn = nfpython.connection(needworldinfo=True)
c = nfpython.Command()
c.cmd = "ChannelOpen"
c.args.type = "simple"
c.args.mode = "sign"
c.args.mech = "SHA256Hash"

rep = conn.transact(c)
channel = rep.reply.idch

c = nfpython.Command()
c.cmd = "ChannelUpdate"
split the message up into small chunks and transmit each in sequence
for chunk in (message[i:i+chunksize] for i in range(0, len(message), chunksize)):
 c.args.idch = channel
 c.args.input = nfpython.ByteBlock(chunk, fromraw=True)
 conn.transact(c)

obtain the hash value by setting the final flag
c.args.input = nfpython.ByteBlock()
c.args.flags |= "final"
rep = conn.transact(c)
digest = rep.reply.output

4. Sign the digest using the loaded private key:

compute the hash (either using nfpython or hashlib)
digest = digest_message(conn, message)

perform a signature
plain = nfpython.Hash32(digest)
c = nfpython.Command()
c.cmd = "Sign"
c.args.mech = "RSAhSHA256pPKCS1"
c.args.key = privkey
c.args.plain.type = "Hash32"
c.args.plain.data.data = plain

rep = conn.transact(c)
signature = rep.reply.sig

Chapter 5. Python 3 tutorial

nCore v13.3 Developer Tutorial 53/237

5. Verify the signature.

Verification requires a public key, the signature plaintext, and the signature

data.

If the signature is invalid, transact(cmd) raises an

NFStatusError exception with its status attribute set to

"VerifyFailed".

digest = nfpython.Hash32(hashbytes)

c = nfpython.Command()
c.cmd = "Verify"
c.args.key = pubkey
c.args.plain.type = "Hash32"
c.args.plain.data.data = digest
c.args.sig = signature

conn.transact(c)

The full example would use the following code:

keys.py

import nfpython
import nfkm

def load_key(conn, appname: str, ident: str, module=0, private=True) -> nfpython.KeyID:
 """
 Load a key given an appname and ident
 :param conn:
 :param appname: Key appname, eg "simple"
 :param ident: Key ident
 :param module: module to load the key on (default 0 = any)
 :param private: load the private blob if true
 :return: the loaded key
 """
 appident = nfkm.KeyIdent(appname=appname, ident=ident)
 keydata = nfkm.findkey(conn, appident)

 cmd = nfpython.Command(cmd="LoadBlob")
 if private:
 cmd.args.blob = keydata.privblob
 else:
 cmd.args.blob = keydata.pubblob
 cmd.args.module = module

 rep = conn.transact(cmd)
 keyid = rep.reply.idka
 return keyid

hashing.py

import nfpython

def digest_message(conn, message: bytes, module=0, mech="Sha256Hash", chunksize=8000) -> bytes:

Chapter 5. Python 3 tutorial

nCore v13.3 Developer Tutorial 54/237

 """
 Hash a binary string using the HSM and ChannelUpdate commands
 :param conn:
 :param message: binary message to hash.
 :param module: HSM to sign with (default 0 = any)
 :param mech: hash mechanism name
 :param chunksize: digest block size
 :return:
 """
 c = nfpython.Command()
 c.cmd = "ChannelOpen"
 c.args.type = "simple"
 c.args.mode = "sign"
 c.args.mech = mech
 c.args.module = module

 rep = conn.transact(c)
 channel = rep.reply.idch

 c = nfpython.Command()
 c.cmd = "ChannelUpdate"
 # split the message up into small chunks and transmit each in sequence
 for chunk in (message[i:i+chunksize] for i in range(0, len(message), chunksize)):
 c.args.idch = channel
 c.args.input = nfpython.ByteBlock(chunk, fromraw=True)
 conn.transact(c)

 # obtain the hash value by setting the final flag
 c.args.input = nfpython.ByteBlock()
 c.args.flags |= "final"
 rep = conn.transact(c)
 digest = rep.reply.output
 return digest

signing.py

#!/usr/bin/env python3

import nfpython
from keys import load_key
from hashing import digest_message

def sign_message(conn, privkey: nfpython.KeyID, message: bytes) -> (nfpython.Hash32, nfpython.CipherText):
 """
 Hash and sign a binary string using the HSM and a loaded RSA private key
 :param conn:
 :param privkey: KeyID of loaded key
 :param message: bytes to sign
 :return: the digest hash and signature
 """
 digest = digest_message(conn, message)
 plain = nfpython.Hash32(digest)
 c = nfpython.Command()
 c.cmd = "Sign"
 c.args.mech = "RSAhSHA256pPKCS1"
 c.args.key = privkey
 c.args.plain.type = "Hash32"
 c.args.plain.data.data = plain

 rep = conn.transact(c)
 signature = rep.reply.sig
 return plain, signature

Chapter 5. Python 3 tutorial

nCore v13.3 Developer Tutorial 55/237

def verify_signature(conn, pubkey: nfpython.KeyID, digest, signature) -> bool:
 """
 Verify a signature using the HSM and a loaded public key
 :param conn:
 :param pubkey:
 :param digest:
 :param signature:
 :return:
 """
 digest[0] = 1
 cmd = nfpython.Command()
 cmd.cmd = "Verify"
 cmd.args.key = pubkey
 cmd.args.plain.type = "Hash32"
 cmd.args.plain.data.data = digest
 cmd.args.sig = signature

 conn.transact(cmd)

def run():
 conn = nfpython.connection(needworldinfo=True)
 privkey = load_key(conn, appname="simple", ident="signer")
 pubkey = load_key(conn, appname="simple", ident="signer", private=False)

 message_bytes = b"hello world" * 1024
 print(f"Hash and Sign {len(message_bytes)} bytes..")
 digest, signature = sign_message(conn, privkey, message_bytes)
 print("Verifying..")
 verify_signature(conn, pubkey, digest, signature)
 print("Done.")

if __name__ == "__main__":
 run()

Chapter 5. Python 3 tutorial

nCore v13.3 Developer Tutorial 56/237

6. Java examples
The example programs and source code described in this section are supplied on

your Developer installation media. Several of the utilities are not designed to be

executed directly but are used by other programs. For more information on these

examples, see the in-line comments in the example source code and the Javadocs

installed in your nfast directory.

6.1. Extract and compile the Java examples

The Java example files are in subdirectories of the %NFAST_HOME%\java\examples

(Windows) or /opt/nfast/java/examples (Linux) directory.

1. Extract the example files:

jar xf <path-to-examples-jar-file>

The JCE-related examples extract into the com/ncipher/provider/examples

subtree.

2. Compile the examples:

a. If using Java 8 or earlier (using "--class-path or -cp")

javac -cp <fully-qualified-path-to-JCE-provider-jar-file> *.java

For example:

javac -cp /opt/nfast/java/classes/nCipherKM.jar *.java
javac -cp /opt/nfast/java/classes/nCipherKM.jar com/ncipher/provider/examples/*.java

b. If using Java 9 or later (using "--module-path or -p")

javac -p <fully-qualified-path-to-JCE-provider-jar-file> --add-modules ALL-MODULE-PATH *.java

For example:

javac -p /opt/nfast/java/classes --add-modules ALL-MODULE-PATH *.java
javac -p /opt/nfast/java/classes --add-modules ALL-MODULE-PATH com/ncipher/provider/examples/*.java

6.2. Java key management example utilities

Chapter 6. Java examples

nCore v13.3 Developer Tutorial 57/237

6.2.1. AppKeyGen.java

This example utility demonstrates application key generation and import.

6.2.2. GenerateExport.java

This example utility generates an RSA Key and optionally exports the public key

out of a module as plain text.

It demonstrates the creation of an OCS.

6.2.3. KMJavaFloodTest.java

This example utility demonstrates the use of the mergeKeyIDs method in the Key

class.

This method merges all the loaded private keyids into a single keyid that can be

used in nCore API calls when load-sharing is required.

6.2.4. NFKMInfo.java

Displays information about the Security World.

This example Java utility is analogous to its C version except that NFKMInfo.java

does not return information on world/module generation.

6.2.5. NVRamRTCUtil.java

This is an example program to demonstrate interacting with the NVRAM and RTC.

The program allows you to list all files in NVRAM, delete a file in NVRAM, delete all

the files in NVRAM, display the current time in the RTC and to set the RTC to the

system clock.

6.2.6. SimpleCrypt.java

This is a simple example that graphically encrypts and decrypts data with a Triple-

DES (DES3) key from the Security World. Cipher Block Chaining mode (CBC) and

initialization vectors are selected randomly. This information is prefixed to the

cipher text.

Chapter 6. Java examples

nCore v13.3 Developer Tutorial 58/237

SimpleCrypt.java only works with module protected Triple-DES (DES3) keys.

6.2.7. SlotPoller.java

This example utility polls all the available slots.

You can determine whether the state of the slot has changed by calling getIC() on

the slot. This method is more efficient than using update(). The module serial

number, slot number, and insertion count are displayed when a card is inserted or

removed.

6.3. Java JCE/CSP example utilities

6.3.1. AsymmetricEncryptionExample.java

This example generates an RSA key pair and an X509 public key specification. It

performs encryption and decryption of random plain text.

6.3.2. DK_ECDHKAExample.java

This example utility demonstrates:

• Creation of two ECDH key pairs.

• Key agreement using ECDHWITHSHA1KDF between two parties.

• Encryption/Decryption using the shared secret key.

6.3.3. ECDHExample.java

This example utility demonstrates:

• Creation of an ECDH key.

• ECDH key agreement.

• Encryption / decryption of a message using AES.

6.3.4. ECIESExample.java

This example utility demonstrates:

Chapter 6. Java examples

nCore v13.3 Developer Tutorial 59/237

• Creation of an ECDH key pair by the receiver.

• Key wrapping by the sender using the agreed ECIES parameters and the

public half of receiver’s ECDH key pair.

• Key unwrapping by the receiver using the agreed ECIES parameters.

• Encryption/Decryption using the shared secret key.

6.3.5. EdDSAExample.java

This example utility demonstrates how to generate and store key for use in

Ed25519 and Ed25519ph operations.

The example generates an Ed25519 key pair, creates a KeyStore and stores both

halves of the key pair.

 This example may require sudo permissions on Linux machines.

6.3.6. JCEChanTest.java

This example measures the data rate achieved by different symmetric encryption

and decryption operations. You can use optional program arguments to change

the cipher, key, data, and provider parameters.

6.3.7. JCEFloodTest.java

This example utility does performance testing for RSA, DSA, ECDSA and Ed25519

private key operations.

It demonstrates:

• RSA/DSA/ECDSA/Ed25519 Key Pair generation.

• RSA/DSA/ECDSA/EdDSA signing.

• RSA encryption/decryption.

• Use of the kmjava classes to load a key to use with the nCipherKM JCE

provider.

• Load-balancing using kmjava and KeyStore-loaded keys.

6.3.8. JCESigTest.java

This example measures the data rate achieved by many threads simultaneously

Chapter 6. Java examples

nCore v13.3 Developer Tutorial 60/237

performing signing and verifying operations. You can use optional program

arguments to change the thread, key, data, provider, and sampling parameters.

6.3.9. KeyLoadTimer.java

This example measures the time taken to get many keys from an nCipher.sworld

key store. It also demonstrates how to create, load and store key stores, as well as

how to set and get key entries.

 This example may require sudo permissions on Linux machines.

6.3.10. KeyStorageExample.java

This example creates a new KeyStore containing an AES key. It performs load-

balanced encryption and decryption of random plain text using a KeyStore loaded

key.

 This example may require sudo permissions on Linux machines.

6.3.11. NCipherLibraryInteropExample.java

This example loads an existing AES key from the Security World across all usable

modules and performs load-balanced encryption and decryption of random plain

text.

6.3.12. SignaturesExample.java

This example generates RSA, DSA, ECDSA and Ed25519 key pairs. For the

associated mechanism of each key type, it performs signing and verification of

random plain text.

6.3.13. SslClientExample.java

Before building this example, the user will need to edit SslClientExample.java to

insert an appropriate https web site address in the two relevant places. When run,

this example connects to the user-specified secure web site over an encrypted

SSL connection and dumps the index page to the console.

Before running this example, you must run PrepareSslExamples.java. For more

information, see Java JCE/CSP example utilities

Chapter 6. Java examples

nCore v13.3 Developer Tutorial 61/237

6.3.14. SslServerExample.java

This example creates a simple SSL Web server instance on the local host that can

be accessed with a Web browser.

Before running this example, you must run PrepareSslExamples.java. For more

information, see Java JCE/CSP example utilities

6.3.15. SymmetricEncryptionExample.java

This example generates symmetric keys and uses them to perform encryption and

decryption of random plain text with different cipher modes and padding types.

6.3.16. SignatureTest.java

This example utility demonstrates:

• generation of an RSA/DSA/ECDSA Key Pair

• export of the PublicKey using X509 encoding

• signing some random data

• decoding the PublicKey

• verification of the signature.

This example requires the Bouncy Castle security provider to be

loaded and configured to run properly.

6.4. Java generic stub examples

The example utilities described in this section are directly

analogous to their namesake C example utilities supplied with

the nShield C generic stub. The Java incarnations are shipped as

source code only.

6.4.1. BlobInfo.java

This example utility displays information in a blob. It demonstrates how to

determine information about the contents of a blob.

BlobInfo.java is analogous to the C Generic Stub call NFast_ExamineBlob.

Chapter 6. Java examples

nCore v13.3 Developer Tutorial 62/237

6.4.2. Channel.java

This example utility is a function-based wrapper to symmetric bulk-encryption

channels for use by EasyConnection.java.

6.4.3. CheckMod.java

This example utility checks modulo-exponentiation operations against a test file.

6.4.4. CrypTest.java

This example utility is a test program for some module algorithms. It

demonstrates:

• the use of EasyConnection

• symmetric cryptography and channels.

6.4.5. DesKat.java

This example utility is for DES known answer tests.

It demonstrates simple nCore key management usage.

6.4.6. DKTest.java

This example utility provides a simple demonstration of the use of DeriveKey.

6.4.7. EasyConnection.java

This example utility is a function-based interface to a subset of nCore.

6.4.8. Enquiry.java

This example utility displays enquiry information.

It demonstrates:

• simple nCore usage

• the enquiry command.

Chapter 6. Java examples

nCore v13.3 Developer Tutorial 63/237

6.4.9. FloodTest.java

This example utility does performance testing for modexp code.

It demonstrates:

• simple bignum usage

• asynchronous command processing (NFastApp_Wait and NFastApp_Query).

6.4.10. GenCert.java

This example utility generates a certificate.

It demonstrates the use of the BuildCmdCert class.

6.4.11. InitUnit.java

This example utility initializes a module with a dummy HKNSO (like the C initunit

utility).

6.4.12. NFEnum.java

This example utility is a helper class used by SigTest. It is an example extension to

jnfopt for looking up an nCore Enumeration class. It cannot be invoked by itself.

6.4.13. ReportVersion.java

This example utility reports the embedded version information from the current

nfjava component. ReportVersion.java outputs the version of the nfjava library

found on the class path.

These examples are not intended to be invoked directly. They are called by other

programs. The following two utilities, EasyConnection and Channel, form a Java

analog of the nCore simple command functions as shipped to C developers in

libexamples.a. You can compare and contrast this example with the C example

simplecmd.h.

You cannot invoke EasyConnection and Channel directly; CrypTest invokes them. For

more information, see the Javadoc documentation.

Chapter 6. Java examples

nCore v13.3 Developer Tutorial 64/237

6.4.14. ScoreKeeper.java

This example utility is shared code used by SigTest and FloodTest and cannot be

invoked on its own. It has helper classes for output reporting by SigTest and

FloodTest.

6.4.15. SigTest.java

This example utility does signature performance testing.

It demonstrates asynchronous command processing (NFastApp_Wait and

NFastApp_Query).

Java is not a high-performance language. On slow host systems

or systems with multiple modules, it is very common to be

limited by the CPU of the host machine. As a result, this example

often does not show the true performance capabilities of the

module. If you want to test module performance, as distinct from

application performance, use the C version of SigTest instead.

Chapter 6. Java examples

nCore v13.3 Developer Tutorial 65/237

7. Key structures
This chapter describes the data structures used by the nShield module to

represent keys and their ACLs. It includes information about:

• mechanisms which are the combination of algorithm, padding, and mode that

are used to transform plain text into cipher text or cipher text into plain text.

• plain texts which are the messages being processed. This chapter lists the

plain text formats that are supported by the nShield module.

• keys which are the secret and public values used in an algorithm. The section

of this chapter about keys describes:

◦ the format for each key type

◦ the mechanisms supported for that key type

◦ the parameters required to generate a key or key pair of this type.

• hash functions which return a fixed-length string from arbitrary-length input.

Hash functions can be used to identify a document without revealing its

contents.

• Access Control Lists (ACLs) which describe the actions that can be performed

with a specific key. This chapter describes the format of an ACL.

• certificates which are used to authorize actions on keys.

7.1. Mechanisms

A mechanism is a combination of padding, algorithm, mode, and so forth, which,

together with a key, transforms a plaintext into a ciphertext (or a ciphertext into a

plaintext).

Each mechanism has a single ciphertext format represented by M_CipherText, a

tagged union type for which the tag is an M_Mech. A mechanism may accept or

generate various different plain text formats. The details of the padding and other

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 66/237

processing may vary depending on the plain text format supplied or requested.

Mechanisms with similar forms share the same member name in

this union. For example, the 64-bit block ciphers all use

Mech_Generic64 .

union M_Mech__Cipher {
 M_Mech_SHA384Hash_Cipher sha384hash;
 M_Mech_DSA_Cipher dsa;
 M_Mech_SHA256Hash_Cipher sha256hash;
 M_Mech_DLIESe3DEShSHA1_Cipher dliese3deshsha1;
 M_Mech_TigerHash_Cipher tigerhash;
 M_Mech_DHKeyExchange_Cipher dhkeyexchange;
 M_Mech_HAS160Hash_Cipher has160hash;
 M_Mech_ECDHKeyExchange_Cipher ecdhkeyexchange;
 M_Mech_RSApPKCS1_Cipher rsappkcs1;
 M_Mech_Imech_Cipher imech;
 M_Mech_ArcFourpNONE_Cipher arcfourpnone;
 M_Mech_Generic256MAC_Cipher generic256mac;
 M_Mech_ElGamal_Cipher elgamal;
 M_Mech_RSApPKCS1pPKCS11_Cipher rsappkcs1ppkcs11;
 M_Mech_BlobCrypt_Cipher blobcrypt;
 M_Mech_Generic128_Cipher generic128;
 M_Mech_Generic192MAC_Cipher generic192mac;
 M_Mech_ECDSA_Cipher ecdsa;
 M_Mech_Generic64_Cipher generic64;
 M_Mech_SHA512Hash_Cipher sha512hash;
 M_Mech_SHA224Hash_Cipher sha224hash;
 M_Mech_Generic256_Cipher generic256;
 M_Mech_Generic192_Cipher generic192;
 M_Mech_KCDSAHAS160_Cipher kcdsahas160;
 M_Mech_Generic64MAC_Cipher generic64mac;
 M_Mech_GenericGCM128_Cipher genericgcm128;
 M_Mech_RIPEMD160Hash_Cipher ripemd160hash;
 M_Mech_Generic128MAC_Cipher generic128mac;
 M_Mech_MD5Hash_Cipher md5hash;
 M_Mech_SHA1Hash_Cipher sha1hash;
};

7.1.1. Mech_Any

Instead of explicitly specifying a mechanism, you can let the module select the

mechanism by specifying Mech_Any. The nShield module selects the mechanism as

follows:

• for decryption or signature verification, the module uses the mechanism that

is defined in the cipher text

• for encryption or signature generation, the module selects an appropriate

mechanism based on the key type and the operation as listed in the following

table.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 67/237

Key Type Encryption mechanism Signing mechanism

RSAPublic Mech_RSApPKCS1OAEP,

Mech_RSApPKCS1OAEPhSHA224,

Mech_RSApPKCS1OAEPhSHA256,

Mech_RSApPKCS1OAEPhSHA384 or

Mech_RSApPKCS1OAEPhSHA512 chosen

based on size of key.

RSAPrivate Mech_RSAhSHA1pPSS, Mech_RSAhSHA224pPSS,

Mech_RSAhSHA256pPSS,

Mech_RSAhSHA384pPSS or

Mech_RSAhSHA512pPSS chosen based on

size of key.

DHPublic Mech_ElGamal

DSAPrivate Mech_DSA, Mech_DSAhSHA224,

Mech_DSAhSHA256, Mech_DSAhSHA384, or

Mech_DSAhSHA512 chosen based on size

of key.

ECDSAPrivate Mech_ECDSA, Mech_ECDSAhSHA224,

Mech_ECDSAhSHA256, Mech_ECDSAhSHA384, or

Mech_ECDSAhSHA512 chosen based on size

of key.

DES (not available

in FIPS 140 Level 3

operational mode)

Mech_DESmCBCi64pPKCS5 Mech_DESmCBCMACi0pPKCS5

DES2 Mech_DES2mCBCi64pPKCS5 Mech_DES2mCBCMACi0pPKCS5

DES3 Mech_DES3mCBCi64pPKCS5 Mech_DES3mCBCMACi0pPKCS5

CAST Mech_CASTmCBCi64pPKCS5 Mech_CASTmCBCMACi0pPKCS5

CAST256 Mech_CAST256mCBCi128pPKCS5 Mech_CAST256mCBCMACi0pPKCS5

ArcFour Mech_ArcFourpNone

Rijndael Mech_RijndaelmCBCi128pPKCS5 Mech_RijndaelmCBCMACi0pPKCS5

Blowfish Mech_BlowfishmCBCi64pPKCS5 Mech_BlowfishmCBCMACi0pPKCS5

Twofish Mech_TwofishmCBCi128pPKCS5 Mech_TwofishmCBCMACi0pPKCS5

Serpent Mech_SerpentmCBCi128pPKCS5 Mech_SerpentmCBCMACi0pPKCS5

7.2. Key Types

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 68/237

The following sections list the keys types for the different algorithms and

mechanisms that are supported by the module. The table below shows which

mechanisms are supported by which key types.

Key type Block size Encrypt Decrypt Sign Verify

ArcFour N/A Y Y - -

Blowfish 64

Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

CAST 64

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

Cast256 128

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

DES 64

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

DES2 64

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

Triple DES 64

CBC Y Y - -

CBC MAC - - Y Y

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 69/237

Key type Block size Encrypt Decrypt Sign Verify

ECB Y Y - -

SEED 128

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

Serpent 128

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

Rijndael 128

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

GCM Y Y - -

Twofish 128

CBC Y Y - -

CBC MAC - - Y Y

ECB Y Y - -

Diffie-Hellman N/A

Key Exchange - Y - -

ElGamal Y Y - -

DSA N/A - - Y Y

ECDSA N/A - - Y Y

ECDH N/A

Key Exchange - Y - -

KCDSA - - Y Y

RSA N/A - - Y Y

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 70/237

Key type Block size Encrypt Decrypt Sign Verify

HMAC N/A

HMACMD2 - - Y Y

HMACMD5 - - Y Y

HMACSHA-1 - - Y Y

HMACRIPEMD160 - - Y Y

HMACSHA224 - - Y Y

HMACSHA256 - - Y Y

HMACSHA384 - - Y Y

HMACSHA512 - - Y Y

HMACSHA3b224 - - Y Y

HMACSHA3b256 - - Y Y

HMACSHA3b384 - - Y Y

HMACSHA3b512 - - Y Y

HMACTiger - - Y Y

Random N/A

Template N/A - - - -

Wrapped N/A - - - -

For each key type, the tables below list:

• the data that is stored in the key (separately for public and private halves of

key pairs)

• the parameters required to generate the key (or key pair):

typedef struct {
 M_KeyType type;
 union M_KeyType__Data data;
} M_PlainText ;

 typedef struct {
 M_KeyType type;
 union M_KeyType__GenParams params;
} M_KeyGenParams;

 Key types with similar forms for key data or generation

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 71/237

parameters share the same member name in these unions. For

example, keys whose data is a single block of random bytes

(CAST, ArcFour, Random, HMACMD2, HMACMD5,

HMACRIPEMD160, and Wrapped) all use the Random members of

these unions.

7.2.1. Random

7.2.1.1. Key data

typedef struct {
 M_ByteBlock k data
} M_KeyType_Random_Data;

7.2.1.2. Key generation parameters

typedef struct {
 M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

7.2.1.3. Notes

The FIPS 46-3 validation requires DES keys to have valid parity bits for which bit 0

of each byte is set to give odd parity. If you attempt to import a Triple DES key

that does not have the parity set correctly, the module returns Status_InvalidData.

7.2.2. ArcFour

This key type is a symmetric algorithm that is compatible with Ron Rivest’s RC4

cipher. It uses the key data M_KeyType_Random_Data.

7.2.2.1. Key data

struct M_Mech_ArcFourpNONE_Cipher {
 M_ByteBlock cipher; 192-bit key
};

7.2.2.2. Key generation parameters

typedef struct {

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 72/237

 M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

7.2.2.3. Mechanisms

Mech_ArcFourpNONE

The cipher text is a byte block. This mechanism has no IV.

7.2.3. Blowfish

Blowfish uses the key data M_KeyType_Random_Data. The key data length must be at

least one byte. The maximum permitted key data length is 56 bytes.

Recommended key lengths are 16, 24, 32 and 56 bytes.

7.2.3.1. Key data

typedef struct {
 M_ByteBlock k; data
} M_KeyType_Random_Data;

7.2.3.2. Key generation parameters

typedef struct {
 M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

7.2.3.3. Mechanisms

Mech_BlowfishmECBpNONE ECB

Mech_BlowfishmCBCpNONE CBC

Mech_BlowfishmCBCi64PKCS5 CBC

Mech_BlowfishmCBCMACi64PKCS5 CBC MAC see note

Mech_BlowfishmECBpPKCS5 ECB

Mech_BlowfishmCBCMACi0PKCS5 CBC MAC

The mechanism Mech_BlowfishmCBCMACi64PKCS5 is deprecated and

may be withdrawn in future firmware.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 73/237

7.2.4. CAST

This key type uses the key data M_KeyType_Random_Data, with a key length from 5 to

16 bytes as specified in RFC2144.

7.2.4.1. Mechanisms

Mech_CASTmCBCi64pPKCS5 CBC

Mech_CASTmCBCMACi64pPKCS5 see note

Mech_CASTmECBpPKCS5 ECB

Mech_CASTmCBCMACi0pPKCS5 CBC MAC

The mechanism Mech_CASTmCBCMACi64pPKCS5 is deprecated and may

be withdrawn in future firmware.

The cipher text and initialization vectors are the same as for the equivalent DES

mechanisms.

7.2.5. CAST256

This uses the same key generation parameters and data as KeyType_Random, and

allows key lengths of 16, 20, 24, 28 or 32 bytes as specified in RFC2612.

7.2.5.1. Mechanisms

Mech_CAST256mCBCi128pPKCS5 CBC with PKCS #5 padding

Mech_CAST256mECBpPKCS5 ECB with PKCS #5 padding

Mech_CAST256mCBCpNONE CBC with no padding

Mech_CAST256mECBpNONE ECB with no padding

Mech_CAST256mCBCMACi128pPKCS5 see note

Mech_CAST256mCBCMACi0pPKCS5 CBC MAC

The mechanism Mech_CAST256mCBCMACi128pPKCS5 is deprecated and may be

withdrawn in future versions.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 74/237

7.2.6. DES

The implementation of DES that is used in the nShield module

has been validated by NIST as conforming to FIPS 46-2 and FIPS

81, certificate number 24.

7.2.6.1. Key data

typedef struct {
 M_DESKey k; 64 bit key
} M_KeyType_DES_Data;

typedef union {
 unsigned char bytes[8];
 M_Word words[2];
} M_DESKey;

 56 bits plus 8 parity bits

7.2.6.2. Key generation parameters

typedef struct {
 M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

7.2.6.3. Notes

The FIPS 46-2 validation requires DES keys to have valid parity bits for which bit 0

of each byte is set to give odd parity. If you attempt to import a DES key that does

not have the parity set correctly, the module will return Status_InvalidData.

7.2.6.4. Mechanisms

Mech_DESmCBCpNONE CBC no padding

Mech_DESmCBCi64pPKCS5 CBC with PKCS5 padding

Mech_DESmCBCMACi64pPKCS5 see note

Mech_DESmECBpNONE ECB no padding

Mech_DESmECBpPKCS5 ECB with PKCS5 padding

Mech_DESmCBCMACi0pPKCS5 CBC MAC with PKCS5 padding

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 75/237

Mech_DESmCBCMACi0pNONE CBC MAC with no padding

PKCS5 padding is 1 to 8 bytes, valued 1 to 8

The mechanism Mech_DESmCBCMACi64pPKCS5 is deprecated and may

be withdrawn in future versions.

7.2.6.5. CBC

7.2.6.5.1. Cipher text

typedef struct {
 M_ByteBlock cipher;
} M_Mech_Generic64_Cipher;

7.2.6.5.2. IV

typedef struct {
 M_Block64 iv;
} M_Mech_Generic64_IV;

7.2.6.6. CBC MAC

7.2.6.6.1. Cipher text

typedef struct {
 M_Block64 mac;
} M_Mech_Generic64MAC_Cipher;

The DESmCBCMACi0pPKCS5 mechanism uses an IV of all zero bytes.

This replaces the DESmCBCMACi64pPKCS5 mechanism, which required

the IV to be passed in. This mechanism is deprecated: if an

attacker is able to manipulate this data he is able to forge a

message. For this reason, if you use -i64 mechanisms you must

ensure the IV data is fixed.

7.2.7. DES2

The implementation of DES used in the nShield module has been

validated by NIST as conforming to FIPS 46-3 certificate

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 76/237

numbers 24 and 173.

7.2.7.1. Key data

typedef struct {
 M_DES2Key k; 128 bit key
} M_KeyType_DES2_Data;

typedef union {
 unsigned char bytes[16];
 M_Word words[4];
} M_DESKey;

 112 bit plus 16 parity bits.

7.2.7.2. Key generation parameters

There are no key generation parameters.

7.2.7.3. Notes

The FIPS 46-2 validation requires DES2 keys to have valid parity bits for which bit

0 of each byte is set to give odd parity. If you attempt to import a DES2 key that

does not have the parity set correctly, the module will return Status_InvalidData.

7.2.7.4. Mechanisms

Mech_DES2mCBCpNONE CBC no padding

Mech_DES2mCBCi64pPKCS5 CBC with PKCS5 padding

Mech_DES2mCBCMACi64pPKCS5 see note

Mech_DES2mECBpNONE ECB no padding

Mech_DES2mECBpPKCS5 ECB with PKCS5 padding

Mech_DES2mCBCMACi0pPKCS5 CBCMAC with PKCS5 padding

Mech_DES2mCBCMACi0pNONE CBC MAC with no padding

The mechanism Mech_DES2mCBCMACi64pPKCS5 is deprecated and may

be withdrawn in future versions.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 77/237

7.2.7.5. CBC

7.2.7.5.1. Cipher text

typedef struct {
 M_ByteBlock cipher;
} M_Mech_Generic64_Cipher;

7.2.7.5.2. IV

typedef struct {
 M_Block64 iv;
} M_Mech_Generic64_IV;

7.2.8. Triple DES

The implementation of DES used in the module has been

validated by NIST as conforming to FIPS 46-3 certificate

numbers 24 and 173.

7.2.8.1. Key data

typedef struct {
 M_DES3Key k 192 bit key
} M_KeyType_DES3_Data;

typedef union {
 unsigned char bytes[24];
 M_Word words[6];
} M_DES3Key;

The key is 3 x(56+8) bits. nShield performs Triple DES as

encrypt, decrypt, and encrypt (using separate keys for each

stage).

7.2.8.2. Key generation parameters

There are no key generation parameters.

7.2.8.3. Mechanisms

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 78/237

Mech_DES3mCBCi64pPKCS5 CBC with PKCS #5 padding

Mech_DES3mCBCMACi64pPKCS5 see note

Mech_DES3mCBCpNONE CBC with no padding

Mech_DES3mECBpNONE ECB with no padding

Mech_DES3mECBpPKCS5 ECB with PKCS #5 padding

Mech_DES3mCBCMACi0pPKCS5 CBCMAC with PKCS #5 padding

Mech_DES3mCBCMACi0pNONE CBC MAC with no padding

The mechanism Mech_DES3mCBCMACi64pPKCS5 is deprecated and may

be withdrawn in future versions.

The cipher text and initialization vectors are the same as for the equivalent DES

mechanisms.

 nShield uses outer CBC.

7.2.9. Rijndael

Rijndael is now FIPS approved as the AES. The implementation

has been validated by NIST as conforming to FIPS 197, certificate

number 15.

This key type uses the key data M_KeyType_Random_Data.

7.2.9.1. Mechanisms

Mech_RijndaelmCBCpNONE CBC

Mech_RijndaelmCBCi128pPKCS5 CBC with PKCS5 padding

Mech_RijndaelmCBCMACi128pPKCS5 see note

Mech_RijndaelmECBpNONE ECB

Mech_RijndaelmECBpPKCS5 ECB with PKCS5 padding

Mech_RijndaelmCBCMACi128pPKCS5 CBC MAC with PKCS5 padding

Mech_RijndaelmCBCMACi128pNone CBC MAC with no padding

Mech_RijndaelmGCM GCM

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 79/237

The mechanism Mech_RijndaelmCBCMACi128pPKCS5 is deprecated and

may be withdrawn in future versions.

These mechanisms use the Generic128 cipher text and initialization vectors, except

Mech_RijndaelmGCM which uses GenericGCM128.

7.2.9.2. Key generation

Rijndael keys use the same key generation parameters and data format as the

Random key type. They must be either 128, 192, or 256 bits (that is, 16, 24 or 32

bytes long).

7.2.10. SEED

The SEED algorithm was developed by KISA (Korea Information Security Agency)

and a group of experts. SEED is a Korean national industrial association standard

(TTA KO-12.0004, 1999) and was set as a Korean Information Communication

Standard (KICS) in the year 2000. This standard is promoted by the Korean

Ministry of Information and Communication.

SEED has been optimized for the security systems most widely used in Korea, in

particular the S-boxes and configurations associated with current computing

technology.

If you wish to use the SEED algorithm, you must order and

enable it as part of the nShield KISAAlgorithms feature, as

described in the User Guide.

7.2.10.1. Key data

typedef struct {
 M_ByteBlock k; fixed-length 128-bit key
} M_KeyType_SEED;

7.2.10.2. Key generation parameters

typedef struct {
 M_Word lenbytes; must be 16 bytes
} M_KeyType_SEED_GenParams;

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 80/237

7.2.10.3. Mechanisms

Mech_SEEDmECBpNONE ECB with no padding

Mech_SEEDmECBpPKCS5 ECB with PKCS #5 padding

Mech_SEEDmCBCpNONE CBC with no padding

Mech_SEEDmCBCi128pPKCS5 CBC with PKCS #5 padding

Mech_SEEDmCBCMACi128pPKCS5 see note

Mech_SEEDmCBCMACi0pPKCS5 CBCMAC

The mechanism Mech_SEEDmCBCMACi128pPKCS5 is deprecated and

may be withdrawn in future versions.

7.2.11. Serpent

Serpent uses the key data M_KeyType_Random_Data. The maximum permitted key data

length is 32 bytes. Recommended key lengths are 16, 24 and 32 bytes.

A change was made to the interpretation of the Serpent

algorithm specification regarding byte ordering, which occurred

between versions 2.12.x and earlier, and 2.18.x and later, of

module firmware. Thus, later versions of firmware are

incompatible with earlier versions when using Serpent

mechanisms.

7.2.11.1. Key data

typedef struct {
 M_ByteBlock k; data
} M_KeyType_Random_Data;

7.2.11.2. Key generation parameters

typedef struct {
 M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

7.2.11.3. Mechanisms

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 81/237

Mech_SerpentmECBpNONE ECB with no padding

Mech_SerpentmCBCpNONE CBC with no padding

Mech_SerpentmCBCi128PKCS5 CBC with PKCS #5 padding

Mech_SerpentmCBCMACi128PKCS5 see note

Mech_SerpentmECBpPKCS5 ECB with PKCS #5 padding

Mech_SerpentmCBCMACi0PKCS5 CBCMAC

The mechanism Mech_SerpentmCBCMACi128PKCS5 is deprecated and

may be withdrawn in future versions.

7.2.12. Twofish

Twofish uses the key data M_KeyType_Random_Data. The maximum permitted key data

length is 32 bytes. Recommended key lengths are 16, 24 and 32 bytes.

7.2.12.1. Key data

typedef struct {
 M_ByteBlock k data
} M_KeyType_Random_Data;

7.2.12.2. Key generation parameters

typedef struct {
 M_Word lenbytes; length in bytes
} M_KeyType_Random_GenParams;

7.2.12.3. Mechanisms

Mech_TwofishmECBpNONE ECB with no padding

Mech_TwofishmCBCpNONE CBC with no padding

Mech_TwofishmCBCi128PKCS5 CBC with PKCS #5 padding

Mech_TwofishmCBCMACi128PKCS5 see note

Mech_TwofishmECBpPKCS5 ECB with PKCS #5 padding

Mech_TwofishmCBCMACi0PKCS5 CBCMAC

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 82/237

The mechanism Mech_TwofishmCBCMACi128PKCS5 is deprecated and

may be withdrawn in future versions.

7.2.13. Diffie-Hellman and ElGamal

Diffie-Hellman key exchange shares a common key type with ElGamal encryption

and decryption.

7.2.13.1. Private key

typedef struct {
 M_DiscreteLogGroup dlg;
 M_Bignum x;
} M_KeyType_DHPrivate_Data

M_DiscreteLogGroup is a discrete log group that may be shared between users.

7.2.13.2. Public key

typedef struct {
 M_DiscreteLogGroup dlg;
 M_Bignum gx;
} M_KeyType_DHPublic_Data

M_DiscreteLogGroup is a discrete log group that may be shared between users.

7.2.13.3. Key generation parameters

typedef struct {
 M_Word flags;
 M_Word plength;
 M_Word xlength;
 M_DiscreteLogGroup *dlg;
} M_KeyType_DHPrivate_GenParams;

• The following flags are defined:

◦ KeyType_DHPrivate_GenParams_flags_dlg_present (If this is set, the specified

DiscreteLogGroup will be used.)

◦ KeyType_DHPrivate_GenParams_flags_SafePrimes (If this is set, the module will

generate the key, so that the key validation code can verify that the key

has known good sub-group.)

◦ KeyType_DHPrivate_GenParams_flags__allflags

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 83/237

• plength is key size in bits up to a maximum of 4096.

The present implementation uses the DSA/FIPS algorithm

for generating G and P parameters, such that P must be a

multiple of 64 bits in length and at least 512 bits long.

• xlength is the length in bits of private key X . DSA specifies 160 bits.

There is no upper limit on the length of P. (P - 1) will have one prime factor of

at least 160 bits, which is required in order to make Pohlig-Hellman discrete

logs unworkable. The length of the private exponent X can be specified

separately.

• M_DiscreteLogGroup is a discrete log group that may be shared between users.

typedef struct {
 M_Bignum p prime
 M_Bignum g generator mod P
} M_DiscreteLogGroup;

DSA considers an exponent of 160 bits to be sufficient for

security. An attempt to make the length of X greater than the

length of P will have no effect.

7.2.13.4. Mechanisms

Mech_DHKeyExchange

Mech_ElGamal

Mech_DLIESe3DEShSHA1

Mech_DLIESeAEShSHA1

7.2.13.4.1. Diffie-Hellman

There is only one cryptographic operation, Decrypt, which is supported with the

mechanism DHKeyExchange and the key type DHPrivate. A Diffie-Hellman key

exchange goes as follows:

1. Alice generates a DH key pair and exports her public key.

2. Bob generates a DH key pair by using Alice’s G and P values and by setting the

dlg_present bit in the flags to GenerateKeyPair. He then exports his public key.

3. Alice takes Bob’s public key and passes it as a ciphertext to Decrypt using her

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 84/237

private key. This returns, in bignum format:

4. Bob takes Alice’s public key and passes it to Decrypt using his private key.

This returns, in bignum format:

This result is the same as that which Alice derived.

5. The session key can then be derived from this multi-precision number.

7.2.13.4.2. ElGamal

At present, ElGamal encryption only takes nShield bignums as the plain text input

and the output format.

7.2.13.4.3. DLIES

The DLIESe3DEShSHA1 and DLIESeAEShSHA1 mechanisms implement the DLIES

encryption and decryption primitive as described in IEEE P1363A (Draft 11,

December 16 2002), with the following options:

• DLSVDP-DH as the secret value derivation primitive

• KDF2 key derivation function, using SHA-1 as the underlying hash function

• Triple-DES-CBC-IV0 with 24-byte keys (Mech_DLIESe3DEShSHA1) or AES256-CBC-

IV0 with 16-byte keys (Mech_DLIESeAEShSHA1) as the symmetric encryption

scheme

• MAC1 based on SHA-1 as the message authentication scheme, with 160-bit

output length and 160-bit key length

 The Asymmetric Encryption Scheme (DHAES) mode is not used.

7.2.13.5. Cipher text

7.2.13.5.1. Diffie-Hellman

typedef struct {
 M_Bignum gx;
} M_Mech_DHKeyExchange_Cipher;

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 85/237

7.2.13.5.2. ElGamal

typedef struct {
 M_Bignum a [gk mod p]
 M_Bignum b M * (gxk) mod p
} M_Mech_ElGamal_Cipher;

where k is a random integer 1 < k < (p—1)

ElGamal signature creation and verification are not currently

implemented.

7.2.14. DSA

DSA enables users to share Discrete Log parameters, with each user having their

own public and private key. DSA has 'communities', which are sets of keys that

share a common DSADiscreteLogGroup but that have different (x, y) pairs. These are

represented by the key type DSAComm, which consists of a DSADiscreteLogGroup set of

values together with the initialization values (seed, h, and counter) from which the

DSADiscreteLogGroup values were derived (as specified by the FIPS DSA

specification).

A DSAComm key can be generated once, and then the DSADiscreteLogGroup from this

DSAComm generation can be used in subsequent DSAPrivate generations.

DSAComm key generation also allows seed values to be checked as follows:

1. When generating a DSAComm key, set the iv_present flag bit, and pass in the seed,

counter, and h values.

2. GenerateKey will follow the FIPS algorithm to generate a p, q, and g set, together

with the associated h and counter values.

3. You can now export the resulting DSAComm key and check that p, q, g, h, and

counter are what you were expecting.

4. GenerateKey will return Status_InvalidData if the given seed cannot be used to

produce a valid p, q, or g value.

The implementation of DSA that is used in modules has been

validated by NIST as conforming to FIPS 186, certificate number

11.

7.2.14.1. DSA keys

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 86/237

7.2.14.1.1. DSA common key

typedef struct {
 M_DSAInitValues iv;
 M_DSADiscreteLogGroup dlg;
} M_KeyType_DSAComm_Data;

7.2.14.1.2. DSA private key

typedef struct {
 M_DSADiscreteLogGroup dlg;
 M_Bignum x;
} M_KeyType_DSAPublic_Data;

7.2.14.1.3. DSA public key

typedef struct {
 M_DSADiscreteLogGroup dlg;
 M_Bignum y;
} M_KeyType_DSAPrivate_Data;

M_DSAInitValues:

typedef struct {
 M_Hash seed seed
 M_Word counter counter
 M_Word h h
} M_DSAInitValues;

These are the initialization values, which can be used to check that the discrete

logarithm parameters have been generated correctly.

M_DSADiscreteLogGroup:

typedef struct {
 M_Bignum p
 M_Bignum q
 M_Bignum g
} M_DSADiscreteLogGroup;

where

• p is a 512-bit to 1024-bit prime number;

• q is a 160-bit prime factor of p—1;

• g is h((p—1)/q, where h < p—1 and h((p—1)/q)mod p > 1.

• This is the discrete logarithm group. These values may be shared between

users.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 87/237

• A 160-bit number < q.

gxmod p (a p-bit number).

7.2.14.2. DSA common generation parameters

typedef struct {
 M_Word flags;
 M_Word lenbits;
 M_DSAInitValues *iv;
} M_KeyType_DSAComm_GenParams;

The following flags are defined:

• KeyType_DSAComm_GenParams_flags_iv_present

• KeyType_DSAComm_GenParams_flags__allflags

lenbits is the length in bits

M_DSAInitValues:

typedef struct {
 M_Hash seed seed
 M_Word counter counter
 M_Word h h
} M_DSAInitValues;

These are the initialization values, which can be used to check that the discrete

logarithm parameters have been generated correctly.

7.2.14.3. DSA private key generation parameters

typedef struct {
 M_Word flags;
 M_Word lenbits;
 M_DSADiscreteLogGroup *dlg;
} M_KeyType_DSAPrivate_GenParams;

The following flags are defined:

• KeyType_DSAPrivate_GenParams_flags_dlg_present (If this flag is set, GenerateKey

will use the specified DSADiscreteLogGroup.)

• KeyType_DSAPrivate_GenParams_flags_Strict (If this flag is set, the generated key

is subjected to extra consistency tests at the expense of efficiency. There is

normally no need to set this flag, unless you are supplying p, q, and g values

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 88/237

and need to check them, or unless you require strict compliance with the FIPS

140 Level 3 standard. Setting the Strict flag limits the maximum key size to

1024 bits. Otherwise, there is no maximum limit on key size.)

• KeyType_DSAPrivate_GenParams_flags__allflags

M_DSADiscreteLogGroup is the discrete logarithm group. These values may be shared

between users.

typedef struct {
 M_Bignum p;
 M_Bignum q;
 M_Bignum g;
} M_DSADiscreteLogGroup;

where:

• p is a 512-bit to 1024-bit prime number;

• q is a 160-bit prime factor of p—1;

• g is h((p—1)/q, where h < p—1 and h((p—1)/q)mod p > 1.

7.2.14.4. Cipher text

typedef struct {
 M_Bignum r;
 M_Bignum s;
} M_Mech_DSA_Cipher;

r is gk mod p mod q

s is k -1(H(m)+xr)) mod q

7.2.14.5. Plain text

Because DSA is defined to sign a SHA-1 hash directly, it has no separate raw plain

text format. Instead, the format Hash is used to indicate that the plain text which

has been provided is the SHA-1 hash.

Mech Unhashed plain text
type

Hash used for bytes
plaintext

Mech_DSA Hash

Mech_DSAhSHA224 Hash28 SHA-224

Mech_DSAhSHA256 Hash32 SHA-256

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 89/237

Mech Unhashed plain text
type

Hash used for bytes
plaintext

Mech_DSAhSHA384 Hash48 SHA-384

Mech_DSAhSHA512 Hash64 SHA-512

Mech_DSAhRIPEMD160 Hash RIPEMD-160

If the plain text format is Bytes, then the mechanism will hash the plain text itself

before signing.

7.2.14.6. Mechanisms

Mech_DSA 10

Mech_DSAhSHA224

Mech_DSAhSHA256

Mech_DSAhSHA384

Mech_DSAhSHA512

Mech_DSAhRIPEMD160

7.2.15. Elliptic Curve ECDH and ECDSA

The module supports key exchange, ECDH, and signature mechanisms.

The module supports a wide range of curves, including all the the curves listed in

FIPS 186-2 and some curves from X9.62. It also allows a user to specify a custom

curve.

The implementation of ECDSA over curves recommended for US

Government use has been validated by NIST, as conforming to

FIPS 186-2, certificate 2.

When you create a key, you must create it as either an ECDSA key or an ECDH key.

However, both keys use the same underlying structure. This ensures keys are used

for the correct purpose and prevents inadvertent use of a signing key for key

exchange, or an exchange key for signing message.

7.2.15.1. Elliptic Curve keys

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 90/237

7.2.15.1.1. Private keys

struct M_KeyType_ECPrivate_Data {
 M_EllipticCurve curve;
 M_Bignum d;
};

• curve is the curve used.

• d is an integer up to the order of the group.

7.2.15.1.2. Public keys

struct M_KeyType_ECPublic_Data {
 M_EllipticCurve curve;
 M_ECPoint Q;
};

• curve is the curve used.

• Q is a point on the curve.

7.2.15.2. Key generation parameters

struct M_KeyType_ECPrivate_GenParams {
 M_EllipticCurve curve;
};

• curve is the curve used.

7.2.15.3. Cipher text - ECDH

struct M_Mech_ECDHKeyExchange_Cipher {
 M_ECPoint gd;
};

• gd is the public point provided in the public key supplied in the key exchange.

7.2.15.4. Cipher text - ECDSA

struct M_Mech_ECDSA_Cipher {
 M_Bignum r;
 M_Bignum s;
};

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 91/237

r is x1 mod n

s is s = k-1(e + dr) mod n.

7.2.15.5. Plain text - ECDH

Mech ECDHKeyExchange can return plaintext as:

• M_ECPoint the canonical form;

• M_Bignum the x coordinate of the point;

• M_Byteblock in uncompressed octet string representation.

7.2.15.6. Plain text - ECDSA

ECDSA can accept plain text as either hash or bytes.

Mech Unhashed plain text
type

Hash used for bytes
plaintext

Mech_ECDSA Hash

Mech_ECDSAhSHA224 Hash28 SHA-224

Mech_ECDSAhSHA256 Hash32 SHA-256

Mech_ECDSAhSHA384 Hash48 SHA-384

Mech_ECDSAhSHA512 Hash64 SHA-512

Mech_ECDSAhRIPEMD160 Hash RIPEMD-160

7.2.15.7. Mechanisms

Mech_ECDSA
Mech_ECDH
Mech_ECDSAhSHA224
Mech_ECDSAhSHA256
Mech_ECDSAhSHA384
Mech_ECDSAhSHA512
Mech_ECDSAhRIPEMD160

Neither Mech_ECDSA nor Mech_ECDH handle normal

representations.

7.2.16. KCDSA

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 92/237

KCDSA is a Korean algorithm that has been standardized by the Korean

government as KCS221. The compliance of nShield’s implementation compliance

to this standard has not been independently verified.

If you wish to use the KCDSA algorithm, you must order and

enable it as part of the KISAAlgorithms feature, as described in the

User Guide. If you are outside Korea, contact for information

about obtaining the appropriate export licence.

KCDSA enables users to share Discrete Log parameters, with each user having

their own public and private key. KCDSA has ’communities’, which are sets of keys

that share a common KCDSADiscreteLogGroup but that have different (x, y) pairs.

These are represented by the key type KCDSAComm, which consists of a

KCDSADiscreteLogGroup set of values together with the initialization values (seed and

counter) from which the KCDSADiscreteLogGroup values were derived (as specified by

the KCDSA specification).

A KCDSAComm key can be generated once, and then the KCDSADiscreteLogGroup from

this KCDSAComm generation can be used in subsequent KCDSAPrivate generations.

KCDSAComm key generation also allows seed values to be checked as follows:

1. When generating a KCDSAComm key, set the iv_present flag bit, and pass in the

seed and counter values.

2. GenerateKey will follow the KCDSA algorithm to generate a p, q, and g set.

3. You can now export the resulting KCDSAComm key and check that p, q, and g are

what you were expecting.

4. GenerateKey will return Status_InvalidData if the given seed and counter cannot

be used to produce a valid p, q, or g value.

7.2.16.1. KCDSA keys

7.2.16.1.1. KCDSA common key

typedef struct {
 M_KCDSAInitValues iv;
 M_KCDSADiscreteLogGroup dlg;
} M_KeyType_KCDSAComm_Data;

M_KCDSAInitValues

typedef struct {
 M_ByteBlock seed; seed

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 93/237

 M_Word counter counter
} M_KCDSAInitValues;

These are the initialization values, which can be used to check that the discrete

logarithm parameters have been generated correctly.

M_KCDSADiscreteLogGroup is the discrete logarithm group. These values may be

shared between users.

typedef struct {
 M_Bignum p;
 M_Bignum q;
 M_Bignum g;
} M_KCDSADiscreteLogGroup;

where:

• p is a 1024-bit to 2048-bit prime number which is a multiple of 256 bits long;

• q is always 160 bits long;

• g is h((p—1)/q, where h < p—1 and h((p—1)/q)mod p > 1.

7.2.16.1.2. KCDSA private key

typedef struct {
 M_KCDSADiscreteLogGroup dlg;
 M_Bignum y;
 M_Bignum x;
} M_KeyType_KCDSAPublic_Data;

M_KCDSADiscreteLogGroup is the discrete logarithm group. These values may be

shared between users.

typedef struct {
 M_Bignum p;
 M_Bignum q;
 M_Bignum g;
} M_KCDSADiscreteLogGroup;

where:

• p is a 1024-bit to 2048-bit prime number which is a multiple of 256 bits long;

• q is always 160 bits long;

• g is h((p—1)/q, where h < p—1 and h((p—1)/q)mod p > 1.

• x is an arbitrary number where 0 < x < q.

• y is g(1/x mod q)mod p (a number less than p).

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 94/237

7.2.16.1.3. KCDSA public key

typedef struct {
 M_KCDSADiscreteLogGroup dlg;
 M_Bignum y;
} M_KeyType_KCDSAPrivate_Data;

M_KCDSADiscreteLogGroup is the discrete logarithm group. These values may be

shared between users.

typedef struct {
 M_Bignum p;
 M_Bignum q;
 M_Bignum g;
} M_KCDSADiscreteLogGroup;

where:

• p is a 1024-bit to 2048-bit prime number which is a multiple of 256 bits long;

• q is always 160 bits long; ;

• g is h((p—1)/q, where h < p—1 and h((p—1)/q)mod p > 1.

• y is g(1/x mod q)mod p (a number less than p).

7.2.16.2. Key generation parameters

7.2.16.2.1. KCDSA common generation parameters

typedef struct {
 M_Word flags;
 M_Word plen;
 M_Word qlen;
 M_KCDSAInitValues *iv;
} M_KeyType_KCDSAComm_GenParams;

• The following flags are defined:

◦ KeyType_KCDSAComm_GenParams_flags_iv_present

◦ KeyType_KCDSAComm_GenParams_flags__allflags

• plen is the length of p in bits, a multiple of 256 where 1024 ≤ plen ≤ 2048.

• qlen is the length of q in bits, a multiple of 32 where 160 ≤ qlen ≤256. This

value must currently be 160.

M_KCDSAInitValues

typedef struct {
 M_ByteBlock seed; seed

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 95/237

 M_Word counter counter
} M_KCDSAInitValues;

These are the initialization values, which can be used to check that the discrete

logarithm parameters have been generated correctly.

KCDSA private key generation parameters

typedef struct {
 M_Word flags;
 M_Word plen;
 M_Word qlen;
 M_KCDSADiscreteLogGroup *dlg;
} M_KeyType_KCDSAPrivate_GenParams;

• The following flags are defined:

◦ KeyType_KCDSAPrivate_GenParams_flags_dlg_present (If this flag is set,

GenerateKey will use the specified KCDSADiscreteLogGroup.)

◦ KeyType_KCDSAPrivate_GenParams_flags__allflags

• plen is the length of p in bits.

• qlen is the length of q in bits.

• M_KCDSADiscreteLogGroup is the discrete logarithm group. These values may be

shared between users.

typedef struct {
 M_Bignum p;
 M_Bignum q;
 M_Bignum g;
} M_KCDSADiscreteLogGroup;

where:

• p is a 1024-bit to 2048-bit prime number which is a multiple of 256 bits long;

• q is always 160 bits long; ;

• g is h((p—1)/q, where h < p—1 and h((p—1)/q)mod p > 1.

7.2.16.3. Cipher text

typedef struct {
 M_ByteBlock r;
 M_Bignum s;
} M_Mech_KCDSA_Cipher;

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 96/237

• r is h(gkmod p).

• s is x(k - (r⊕h (z||m))) mod q

The symbol ⊕ represents a bit-wise XOR operation. The symbol

|| represents concatenation of Byteblocks

7.2.16.4. Plain text

 See Key Types for a list of plain text formats.

KCDSA hashes the message m as h(z||m), where z is derived from the public key.

For short messages, m may be supplied directly as PlainTextType_Bytes. For longer

messages, the hash h(z||m) may be computed externally and supplied as

PlainTextType_Hash.

7.2.16.5. Mechanisms

Mech_KCDSAHAS160 110

Mech_KCDSASHA1 111

Mech_KCDSARIPEMD160 112

Mech_KCDSASHA224

Mech_KCDSASHA256

7.2.17. RSA

7.2.17.1. Public key

typedef struct {
 M_Bignum e Exponent
 M_Bignum n Modulus
} M_KeyType_RSAPublic_Data;

RSA public keys contain exponent and modulus only. The exponent is usually

simple, reducing the complexity of the modular exponentiation. RSA keys

generated by an nShield module have the public exponent 0x10001 by default.

7.2.17.2. Private key

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 97/237

typedef struct {
 M_Bignum p
 M_Bignum q
 M_Bignum dmp1
 M_Bignum dmq1
 M_Bignum iqmp
 M_Bignum e
} M_KeyType_RSAPrivate_Data;

• dmp1 is D MODP -1

• dmq1 is D MODQ -1

• iqmp is Q-1MODP

RSA private keys, for which the exponent is usually large, contain additional

information that enables the modular exponentiation to be optimized by using the

Chinese Remainder Theorem.

7.2.17.3. Generation parameters

Generation parameters
typedef struct {
 M_Word flags;
 M_Word lenbits;
 M_Bignum *given_e;
 M_Word *nchecks;
} M_KeyType_RSAPrivate_GenParams;

• The following flags are defined:

◦ KeyType_RSAPrivate_GenParams_flags_given_e_present

If this flag is set, the user can specify which public exponent is to be used.

If this flag is not set, the public exponent will be set to 0x10001 or, for very

short keys, 0x11.

◦ KeyType_RSAPrivate_GenParams_flags_nchecks_present

If this flag is set, the user can specify the number of Rabin-Miller checks

that are to be done on the primes. The default for this number varies with

key size to give a 2-100 probability of error.

◦ KeyType_RSAPrivate_GenParams_flags_UseStrongPrimes

Setting this flag requests key generation in accordance with ANSI X9.31

requirements. Specifically:

▪ the key length must be at least 1024 bits, and a multiple of 256 bits

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 98/237

▪ primes p and q are 'strong' - that is p+1, p-1, q+1 and q-1 each have at

least one prime factor >2100

▪ primes p and q each pass 8 iterations of the Rabin-Miller test followed

by the Lucas test

▪ p and q differ somewhere in their most significant 100 bits.

◦ KeyType_RSAPrivate_GenParams_flags__allflags

• *given_e specifies the public exponent to be used. This must be an odd value

greater than 1 and less than half the requested key length.

• *nchecks specifies the number of Rabin-Miller checks to be performed.

7.2.17.4. Mechanisms

For RSAPublic and RSAPrivate keys, the following mechanisms are provided:

Mech_RSApPKCS1= see note 1

Mech_RSAhSHA1pPKCS1= see note 2

Mech_RSAhRIPEMD160pPKCS1= see note 2

Mech_RSApPKCS1OAEP= see note 3

Mech_RSApPKCS1OAEPhSHA224

Mech_RSApPKCS1OAEPhSHA256

Mech_RSApPKCS1OAEPhSHA384

Mech_RSApPKCS1OAEPhSHA512

Mech_RSAhSHA1pPSS

Mech_RSAhRIPEMD160pPSS

Mech_RSAhSHA224pPSS

Mech_RSAhSHA256pPSS

Mech_RSAhSHA384pPSS

Mech_RSAhSHA512pPSS

1. This mechanism has the following behavior:

◦ Encrypt

▪ accepts plain text of the type Bignum or Bytes

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 99/237

▪ for plaintext type Bytes pads and encrypts the message according to

PKCS #1

▪ for plaintext type Bignum encrypts the input directly

▪ returns a cipher text of the type M_Mech_RSApPKCS1_Cipher

◦ Decrypt

▪ accepts cipher text of the appropriate type M_Mech_RSApPKCS1_Cipher

▪ decrypts the message and strips the padding

▪ returns plain text in format Bytes

◦ Sign

▪ accepts plain text of the type Bignum or Bytes

▪ for plaintext type Bytes pads and encrypts the message according to

PKCS #1

▪ for plaintext type Bignum signs the input directly

▪ returns a cipher text of the type M_Mech_RSApPKCS1_Cipher

◦ Verify

▪ accepts plain text of the type Bignum or Bytes

▪ accepts cipher text of the type M_Mech_RSApPKCS1_Cipher, which is

decrypted and compared to the appropriate hash of the plain text.

This mechanism does not hash the message before signing

it.

You should use the Hash command in order to produce a hash to pass to the

Sign or Verify command. For PKCS #1 compatible signatures, the ObjectID that

identifies the hash algorithm should be placed before the hash value itself to

form a plain text of the type Bytes. Alternatively, you can use RSAhMD5pPKCS1 and

similar mechanisms that hash the plaintext first.

Although the RSApPKCS1 mechanism will accept a hash plain

text for signature or verification, this operation will not result

in a valid PKCS #1 signature.

2. These mechanisms will Sign and Verify only. They have the following behavior:

◦ Sign accepts plain text of the type Bignum, Bytes or appropriate hash.

▪ for Bignum no padding is performed

▪ for Bytes, Sign hashes this plain text with the selected hash function,

adds the correct ObjectID, pads the result using PKCS #1 padding.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 100/237

▪ the hash must be the correct size for the hash mechanism specified:

adds the correct ObjectID, pads the hash using PKCS #1 padding, the

resulting padded string is then encrypted.

◦ Verify accepts plain text of type Bytes and cipher text of the type

M_Mech_RSApPKCS1_Cipher, which is decrypted, has its padding stripped, and

is then compared to the plain text.

You must make sure that the message fits into a single command block. If

the message is too large to fit into a single block, the server will use

channel commands to pass the command, which will fail because channel

commands do not support RSA. If you are not certain that the data will fit

into a single command block, use separate Hash and Sign commands.

3. This mechanism performs encryption and decryption with OAEP padding. It

implements the RSAES-OAEP-ENCRYPT and RSAES-OAEP-DECRYPT primitives as given

in PKCS #1 v2.0, using SHA-1 as the Hash option and MGF1-with-SHA1 as the

MGF function.

This is similar in concept to, but in practice totally

incompatible with, the OAEP as used in SET.

The input to the Encrypt function must be a Bytes type plain text with a length

from 0 to (modulus length in bytes minus 42) bytes inclusive.

Thus, a 512-bit modulus (of 64 bytes) will be able to encode up to 22 bytes of

information.

This quantity is insufficient to make a direct blob. You must

use at least a 528-bit modulus to make a direct blob.

Unlike the SET OAEP mechanism, PKCS #1 OAEP preserves the length of the

plain text block.

RSAES-OAEP defines an encoding parameters string, p. This string is a byte

block that is used as extra padding. In order to pass encoding parameters to

the Encrypt command, set the given_iv_present flag, and enter the encoding

parameters as the IV. In order to pass encoding parameters to the Decrypt

command, set the IV in the iv member of the cipher parameter. The IV is in the

form of a byte block p, the length of which may be 0.

7.2.17.5. Cipher text - PKCS #11 padding

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 101/237

typedef struct {
 M_Bignum m;
} M_Mech_RSApPKCS1_Cipher;

7.2.17.6. Cipher text - OAEP padding

typedef struct {
 M_Bignum m;
} M_Mech_RSApSETOAEP_Cipher;

7.2.18. DeriveKey

7.2.18.1. DKTemplate

A DKTemplate is a template key whose key data contains a marshalled ACL and

application data. DKTemplate keys cannot be created with GenerateKey because this

would produce a random ACL. You must Import the key.

typedef struct {
 M_ByteBlock appdata;
 M_ByteBlock nested_acl;
} M_KeyType_DKTemplate_Data;

• appdata specifies application data for the new key.

• nested_acl is the marshalled ACL for the new key. Use the function

NFastApp_MarshalACL() in order to produce an ACL in the correct format.

7.2.18.2. Wrapped

A wrapped key contains encrypted key data as a byte block. A wrapped key has

the same structure as a random key, but is a separate type.

You can generate a wrapped key by generating two random numbers and XORing

them together to create a key. If you randomly generate both halves of a DES or a

triple DES key, you must use one of the mechanisms that sets the parity of the

resultant key: DeriveMech_DESjoinXORsetParity or DeriveMech_DES3joinXORsetParity.

Alternatively, you can marshal keys, as described in Mechanisms.

7.2.18.3. Generation parameters

typedef struct {

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 102/237

 M_Word flags;
 M_Word length;
} M_KeyType_Wrapped_GenParams;

• No flags are defined.

• length specifies the length in bytes:

◦ 8 bytes for a wrapped DES key

◦ 24 bytes for a wrapped Triple DES key

7.2.18.4. Derive Key Mechanisms

DeriveMech_DESsplitXOR see note 1

DeriveMech_DESjoinXOR see note 2

DeriveMech_DES2splitXOR see note 1

DeriveMech_DES2joinXOR see note 2

DeriveMech_DES3splitXOR see note 1

DeriveMech_DES3joinXOR see note 2

DeriveMech_DESjoinXORsetParity see note 2

DeriveMech_DES2joinXORsetParity see note 2

DeriveMech_DES3joinXORsetParity see note 2

DeriveMech_RandsplitXOR see note 1

DeriveMech_RandjoinXOR see note 2

DeriveMech_CASTsplitXOR see note 1

DeriveMech_CASTjoinXOR see note 2

DeriveMech_EncryptMarshalled see note 3

DeriveMech_DecryptMarshalled see note 3

DeriveMech_PKCS8Encrypt see note 4

DeriveMech_PKCS8Decrypt see note 4

DeriveMech_RawEncrypt see note 5

DeriveMech_RawDecrypt see note 5

DeriveMech_AESsplitXOR see note 1

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 103/237

DeriveMech_AESjoinXOR see note 2

DeriveMech_Any

DeriveMech_PublicFromPrivate see note 6

DeriveMech_ECCMQV

DeriveMech_ConcatenateBytes

DeriveMech_ConcatenationKDF

DeriveMech_NISTKDFmCTRpRijndaelCMACr32

DeriveMech_RawEncryptZeroPad

DeriveMech_RawDecryptZeroPad

DeriveMech_AESKeyWrap

DeriveMech_AESKeyUnwrap

DeriveMech_ECKA

DeriveMech_ECIESKeyWrap see note 7

DeriveMech_ECIESKeyUnwrap see note 8

1. These mechanisms take a base key of the specified type and a wrapping key

of type Random to produce an output key of type Wrapped.

2. These mechanisms take a base key of type Wrapped and a wrapping key of type

Random to produce an output key of the specified type.

3. The EncryptMarshalled and DecryptMarshalled mechanisms are provided to allow

export of keys from a module in FIPS 140 Level 3 mode and import into a

module in the same mode.

The EncryptMarshalled mechanism takes a template key, a base key of any

marshallable type, and a wrapping key of any type capable of encrypting, and

does the following:

a. Marshals an M_PlainText structure that represents the base key to produce

a byte string.

b. Turns the byte string into Bytes plaintext, and encrypts it with the

wrapping key to produce ciphertext.

c. Marshals the ciphertext into a further byte string.

d. Creates a key of the type Wrapped that has the ACL given in the template

key and contains the byte string from step c as data. That is, the wrapped

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 104/237

data is a marshalled ciphertext which is an encryption of the marshalled

key data.

All marshalling is done in module-internal format (little-

endian arrays of little-endian words).

Template and Wrapped keys can be imported into the module even in FIPS 140

Level 3 mode. The import must be authorized by a certificate signed by the

nShield Security Officer’s key KNSO.

The DecryptMarshalled mechanism performs the complementary operation: it

unmarshals and decrypts a ciphertext represented as a Wrapped key, then

unmarshals the resulting plaintext to recover the M_PlainText structure for the

output key.

An example of importing keys using the DecryptMarshalled mechanism:

1. Generate an RSA key pair Kpub, Kpriv. Kpub must have export-as-plain

permissions; Kpriv must have a DeriveKey action group that specifies a role

of WrapKey and a mechanism of DecryptMarshalled. Export Kpub.

2. Marshall the key Ki to be imported. Pad the result according to PKCS #1

and encrypt it with Kpub (for example, using the ModExp command).

3. Marshal the ciphertext: write Mech_RSApPKCS1 as an M_Word (02 00 00 00), the

length of the bignum, then the bytes in little-endian order. Import the

resulting byteblock as a key Kw of type Wrapped.

4. Create a template key Kt that contains the desired ACL for the key to be

imported, and import it.

5. Use DeriveKey with Kt as the template, the Kw as the base key, and Kpriv as

the wrapper key.

The resulting key is Ki imported with the correct ACL.

4. The PKCS8Encrypt and PKCS8Decrypt mechanisms are provided to allow private

key data for asymmetric algorithms to be imported and exported.

This mechanism is not intended for secure transport of key

data between nShield modules. It has a number of security

weaknesses, not least poor protection of key integrity. It is

provided only as an aid to interoperating with other systems

when more secure methods are not available.

The PKCS8Encrypt and PKCS8Decrypt mechanisms have the following structure:

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 105/237

struct M_DeriveMech_PKCS8Encrypt_DKParams {
 M_IV iv;
};
struct M_DeriveMech_PKCS8Decrypt_DKParams {
 M_IV iv;
};

The PKCS8Encrypt mechanism takes a Base key of type RSAPrivate, DSAPrivate,

ECDSAPrivate, ECDHPrivate or DHPrivate, and a Wrap key of any symmetric type

capable of encrypting byte streams. The private key data is BER-encoded

according to PKCS #8. (This process is also described in the PKCS #11

specification under Wrapping/unwrapping private keys.) The resulting byte block

is encrypted, using the given iv, which includes a mechanism. The data of the

ciphertext is converted into a key of type Wrapped.

The PKCS8Decrypt mechanism performs the opposite process: it takes a Wrapped

key type as the Base key and a symmetric key as the Wrapping key. The data

is decrypted using the given iv and mechanism, and then BER-decodes to

give a RSAPrivate, DSAPrivate, ECDSAPrivate or DHPrivate output key.

The following errors may indicate mechanism-specific problems:

◦ TypeMismatch: The ciphertext type for the given mechanism is not a simple

byteblock, and so cannot be converted to or from a Wrapped key type.

◦ NotYetImplemented: During encoding, this error indicates that the Base key

is not of a type for which BER-encoding is supported. During decoding,

this error indicates that an element has been encountered which is not

used for the supported key types (for example, a negative integer value).

This may indicate the data has been corrupted.

◦ UnknownParameter: During decoding, this error indicates that a key type

other than those supported, or an unknown 'version' integer, has been

encountered.

◦ Malformed: The BER-decoding has been unsuccessful, probably due to

corrupted data, for example, because the data is too short, or because an

illegal byte value has been encountered).

5. The RawEncrypt and RawDecrypt mechanisms are provided to allow raw key data

to be encrypted and decrypted using any key that accepts a cipher text as

Bytes. Alternatively, for RawEncrypt only, a signing or hashing mechanism can

be provided instead of an encrypt one. In these cases, the raw key data is

signed or hashed instead.

This mechanism is not intended for secure transport of key

data between nShield modules. It has a number of security

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 106/237

weaknesses, not least poor protection of key integrity. It is

provided only as an aid to interoperating with other systems

when more secure methods are not available.

These mechanisms have the following structure:

struct M_DeriveMech_RawEncrypt_DKParams {
 M_IV iv;
};
struct M_DeriveMech_RawDecrypt_DKParams {
 M_IV iv;
 M_KeyType dst_type;
};

The RawEncrypt mechanism processes the key as follows:

a. It extracts the key data of the Base key as a byte block.

b. If an encryption mechanism is specified in the IV, the key data is

encrypted using the Wrapping key, IV and the mechanism specified in the

IV, which must be a valid mechanism for the given Wrapping Key.

Mechanisms that do not perform padding cannot encrypt plain texts

which are not multiples of the block length. For example, DESmECBpNONE can

encrypt only base keys that are a multiple of 8 bytes in length.

If a signing mechanism is specified in the IV, the key data is signed using

the Wrapping key, IV and the mechanism specified in the IV, which must

be a valid mechanism for the given Wrapping Key.

If a hashing mechanism is specified in the IV, the key data is hashed using

the Wrapping key (if the mechanism requires one), IV and the mechanism

specified in the IV, which must be a valid mechanism for the given

Wrapping Key. HMAC mechanisms require a wrapping key and others do

not. For more information see HMAC signatures.

c. The resulting ciphertext, signature or hash is converted directly into a

Wrapped key. No mechanism, IV, or base key type information is saved

with the Wrapped data. This data must be transported separately.

RawDecrypt performs the reverse process.The type of the key to be created, and

the IV to be used when decrypting, are passed in the dst_type and iv fields,

respectively.

The following errors have specific meanings:

◦ TypeMismatch: The chosen Base key type is not a DES or simple ByteBlock

key type (for example, an RSAPrivate key), so it cannot be converted to or

from a byte block plaintext. Alternatively, the specified mechanism in the

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 107/237

IV does not use a byte block for its ciphertext (for example, it uses

ciphertexts containing Bignums) so the ciphertext cannot be converted to

or from Wrapped key data.

◦ InvalidData: The data cannot be made into a key of the given type. For

example, the decrypted data was too short or too long for the given

destination key type, or the destination key type was a DES, DES2 or

DES3 key and the decrypted data had parity errors. You can force the

parity to be set correctly, by using RawDecrypt to produce a key of type

Wrapped, and importing a Random key of the right length with all bytes

zero. Then use the DESjoinXORsetParity mechanisms on these two keys to

produce a DES key with correct parity bits.

6. DeriveMech_PublicFromPrivate constructs the corresponding public key given

one private key of any type.

The following is a non-exhaustive list of common error returns specific to this

key derivation mechanism:

◦ TypeMismatch: given key is not a private key.

◦ InvalidParameter: more than one key supplied.

7. The DeriveMech_ECIESKeyWrap mechanism takes a base key of the specified

symmetric type and a wrapping key of type ECDHPublic to produce an output

key of type Wrapped.

8. The DeriveMech_ECIESKeyUnwrap mechanism takes a base key of type ciphertext

and a wrapping key of type ECDHPrivate to produce an output key of type

keytype.

7.3. Hash functions

Hash functions take an input of arbitrary length and return an output of fixed

length.

The Hash function supports the RIPEMD-160, SHA-1, SHA-256, SHA-384, SHA-512,

Tiger, MD2, and MD5 mechanisms.

All the hashes that the module uses internally employ the SHA-1 algorithm.

7.3.1. SHA-1

SHA-1 is a hash function that has been approved by NIST. SHA-1 returns a 20-byte

result.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 108/237

The implementation of SHA-1, SHA-256, SHA-384 and SHA-512

in the nShield module has been validated by NIST as conforming

to FIPS 18-2, certificate 255.

7.3.1.1. Mechanism

Mech_SHA1Hash

7.3.1.2. Reply

typedef struct {
 M_Hash20 h;
} M_Mech_SHA1Hash_Cipher;

7.3.2. Tiger

Tiger is a hash function designed by Ross Anderson and Eli Biham. It is designed

to be efficient on 64-bit processors and to be no slower than MD5 on 32-bit

processors.

7.3.2.1. Mechanism

Mech_TigerHash

7.3.2.2. Reply

typedef struct {
 M_Hash24 h;
} M_Mech_TigerHash_Cipher;

7.3.3. SHA-224

SHA-224 is a member of the SHA-2 hash function family that yields a 28-byte

result.

7.3.3.1. Mechanism

Mech_SHA224

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 109/237

7.3.3.2. Reply

typedef struct {
 M_Hash28 h;
} M_Mech_SHA224Hash_Cipher;

7.3.4. SHA-256

SHA-256 is a member of the SHA-2 hash function family that yields a 32-byte

result.

7.3.4.1. Mechanism

Mech_SHA256

7.3.4.2. Reply

typedef struct {
 M_Hash32 h;
} M_Mech_SHA256Hash_Cipher;

7.3.5. SHA-384

SHA-384 is a member of the SHA-2 hash function family that yields a 48-byte

result.

7.3.5.1. Mechanism

Mech_SHA384Hash

7.3.5.2. Reply

typedef struct {
 M_Hash48 h;
} M_Mech_SHA384Hash_Cipher;

7.3.6. SHA-512

SHA-512 is a member of the SHA-2 hash function family that yields a 64-byte

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 110/237

result.

7.3.6.1. Mechanism

Mech_SHA512Hash

7.3.6.2. Reply

typedef struct {
 M_Hash64 h;
} M_Mech_SHA512Hash_Cipher;

7.3.7. MD2

MD2 is a hash function that was designed by Ron Rivest. MD2 returns a 16-byte

hash.

7.3.7.1. Mechanism

Mech_MD2Hash

7.3.7.2. Reply

typedef struct {
 M_Hash16 h;
} M_Mech_MD2Hash_Cipher;

7.3.8. MD5

MD5 is a hash function that was designed by Ron Rivest. MD5 returns a 16-byte

hash.

7.3.8.1. Mechanism

Mech_MD5Hash

7.3.8.2. Reply

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 111/237

typedef struct {
 M_Hash16 h;
} M_Mech_MD5Hash_Cipher;

7.3.9. RIPEMD 160

RIPEMD 160 is a hash function that was developed as part of the European Union’s

RIPE project. RIPEMD 160 returns a 20-byte hash.

7.3.9.1. Mechanism

Mech_RIPEMD160Hash

7.3.9.2. Reply

typedef struct {
 M_Hash20 h;
} M_Mech_RIPEMD160Hash_Cipher;

7.3.10. HAS160

HAS160 is a hash function designed for use with the KCDSA algorithm. (See

KCDSA.) HAS160 returns a 20-byte hash.

If you wish to use the HAS160 hash function, you must order and

enable it as part of the KISAAlgorithms feature, as described in the

User Guide.

7.3.10.1. Mechanism

Mech_HAS160Hash 109

7.3.10.2. Reply

typedef struct {
 M_Hash20 h;
} M_Mech_HAS160Hash_Cipher;

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 112/237

7.4. HMAC signatures

The sign and verify commands can create and verify MACs that have been created

with the HMAC procedure and any supported hashing algorithm.

See RFC2104 for a description of HMAC.

The nShield implementations of HMAC SHA-1, HMAC SHA-224,

HMAC SHA-256, HMAC SHA-384 and HMAC SHA-512 have been

validated by NIST as conforming to FIPS 198, certificate 3.

The following key types are defined:

• KeyType_HMACMD2

• KeyType_HMACMD5

• KeyType_HMACSHA1

• KeyType_HMACRIPEMD160

• KeyType_HMACSHA224

• KeyType_HMACSHA256

• KeyType_HMACSHA384

• KeyType_HMACSHA512

• KeyType_HMACSHA3b224

• KeyType_HMACSHA3b256

• KeyType_HMACSHA3b384

• KeyType_HMACSHA3b512

• KeyType_HMACTiger

All these key types contain random data that is stored in byte blocks of variable

length.

They use the key type Random for their data and key generation parameters.

The following mechanisms are defined:

• Mech_HMACMD2

• Mech_HMACMD5

• Mech_HMACSHA1

• Mech_HMACRIPEMD160

• Mech_HMACSHA224

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 113/237

• Mech_HMACSHA256

• Mech_HMACSHA384

• Mech_HMACSHA512

• Mech_HMACSHA3b224

• Mech_HMACSHA3b256

• Mech_HMACSHA3b384

• Mech_HMACSHA3b512

• Mech_HMACTiger

7.5. ACLs

An ACL is a list of actions that are permitted for this object. An ACL consists of a

list of permission groups.

Each permission group is a list of actions combined with an optional set of limits,

either numerical limits or time limits, and optionally the hash of the key needed to

authorize these actions.

By creating multiple permission groups with different use limits and certifiers

you create an ACL:

typedef struct {
 int n_groups
 M_PermissionGroup *groups;
} M_ACL;

• n_groups is the number of groups.

• *groups This is a list of permission groups. Each permission group consists of

the following items:

◦ optionally, the key hash of a key that must be used to certify all operations

within this permission group. The given key must be used to produce a

certificate that accompanies the request. This certificate can also be

required to be ’fresh’. If no key hash is given, this is a public permission

group and defines operations available without a certificate.

◦ 0 or more use limits for this permission group. If a permission group has

use limits, operations permitted by this group are only allowed if the use

limits have not been exhausted. If a permission group has no use limits,

these actions are always permitted.

Each use limit specifies either an identifier for a counter or a time limit. If a

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 114/237

permission group specifies both a counter and a time limit, the action will

fail if either limit is exhausted. Performing any of the actions listed as

action elements for this permission group decreases the count of the

specified counter by 1 for each action.

◦ one or more action elements. These specify the operations to which the

use limits apply.

typedef struct {
 M_Word flags;
 int n_limits;
 M_UseLimit *limits;
 int n_actions;
 M_Action *actions;
 M_KeyHash *certifier;
 M_KeyHashAndMech *certmech;
 M_ASCIIString *moduleserial;
} M_PermissionGroup;

• The following flags are defined:

◦ PermissionGroup_flags_certmech_present Set this flag if actions in this group

must be certified with a key that matches the given hash and mechanism.

◦ PermissionGroup_flags_certifier_present Set this flag if actions in this

group must be certified with a key that matches the given hash. If none of

flags PermissionGroup_flags_certifier_present,

PermissionGroup_flags_certmech_present, or

PermissionGroup_flags_NSOCertified have been set, then this is a public

permission group, and actions can be performed without a certificate.

The PermissionGroup_flags_certifier_present flag is

included for backwards compatibility only. If you are

creating a new ACL, use

PermissionGroup_flags_certmech_present.

◦ PermissionGroup_flags_FreshCerts Set this flag if the certificate must be

freshly produced. If this flag is not set, certificates may be reused

indefinitely.

◦ PermissionGroup_flags_LogKeyUsage Set this flag if Sign, Verify, Encrypt or

Decrypt (and corresponding Cmd_ChannelOpen) actions in this group should

be logged by the nShield Audit Logging capability.

If Audit Logging is not enabled for the module

attempting to use a key with

PermissionGroup_flags_LogKeyUsage set the module

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 115/237

returns Status_InvalidACL.

◦ PermissionGroup_flags_moduleserial_present Set this flag if the actions in

this group can only be performed on a specific module, whose serial

number matches the given serial number.

◦ PermissionGroup_flags_NSOCertified Set this flag if the actions in this group

must be certified by the Security Officer’s key KNSO, whatever that is set to

for this module at this time.

If you set more than one of

PermissionGroup_flags_certifier_present,

PermissionGroup_flags_certmech_present, or

PermissionGroup_flags_NSOCertified, the module returns

Status_InvalidACL.

• n_limits is the number of limits.

• *limits is a list of use limits, defined below.

• If more than one set of use limits is defined:

◦ if the use limits are in the same permissions group, all counters and time

limits must be valid, and all referenced counters are decreased by 1

◦ if the use limits are in different permission groups, the module uses the

first permission group that permits the action.

• n_actions is the number of actions.

• *actions is the list of actions to which the use limits apply.

• *certifier is either the hash of the key that is required to authorize the use of

this ACL entry or a NULL pointer indicating that no further authorization is

required.

The certifier field is included for backwards compatibility

only. You are encouraged to use the certmech field. The

certifier field may be removed in future releases.

*certmech: M_KeyHashAndMech has the following structure:

typedef struct {
 M_KeyHash hash;
 M_PlainText mech;
} M_KeyHashAndMech;

• hash is the hash of the key that is required to authorize the use of this ACL

entry or a NULL pointer, indicating that no further authorization is required.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 116/237

• mech is the mechanism that is to be used to sign the certificate. You can

specify Mech_Any, in which case the ACL will behave exactly as if you had used

the certifier field.

 Signingkey certificates do not check the mechanism.

• *moduleserial is the serial number of the module on which the actions in this

permission group must be performed. This must be the exact string returned

by the NewEnquiry command for the module.

7.6. Use limits

Use limits
typedef struct {
 M_UseLim type;
 union M_UseLim__Details details;
} M_UseLimit;

The following Uselim types are defined:

• UseLim_Global

• UseLim_AuthOld

• UseLim_Time

• UseLim_NonVolatile

• UseLim_Auth

The details depend on the action type:

union M_UseLim__Details {
 M_UseLim_Global_Details global;
 M_UseLim_Time_Details time;
 M_UseLim_NonVolatile_Details nonvolatile;
 M_UseLim_Auth_Details auth;
};

A global use limit has the following structure:

typedef struct {
 M_LimitID id;
 M_Word max;
} M_UseLim_Global_Details;

• id is a unique 20-byte identifier for the counter for this use limit. When a

counter is created, it is set to 0. Any time a user performs an action that

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 117/237

requires a use limit, the module compares the value of the counter to the limit

in the ACL. If the counter value is less than the limit, the action is permitted

and the counter’s value is increased by 1. Otherwise, the action is prohibited.

Global and per-authorization counters are stored separately on the module.

Therefore, a global use limit may have the same hash as a per-authorization

use limit, and these hashes will refer to separate counters.

Global counters are stored separately for each key, and per-authorization

counters are stored separately for each logical token.

This means that the two matching LimitID s will only refer to the same counter

if either:

◦ they are both in Global use limits in the same ACL

◦ they are both in Auth use limits for keys loaded using the same logical

token.

• max is the absolute maximum number of times that the actions specified in this

permission group can be performed. Global limit counters are created when a

key object is imported, generated or derived using the DeriveKey command.

They are destroyed when that object is destroyed. They are never reset.

When a key is duplicated (using the Duplicate command), or loaded with the

LoadBlob command, all permission groups containing Global use limits are

removed from its ACL. This is to ensure that actions subject to Global use

limits can only be performed when the key was originally imported, generated

or derived.

A time limit has the following structure:

typedef struct {
 M_Word seconds;
} M_UseLim_Time_Details;

• seconds is a per authorization limit that sets the length of time, in seconds,

during which the actions specified in this permission group can be performed

before the key needs to be reauthorized. Time limits only apply to keys

protected by a logical token. The time is taken from the point at which the

token was recreated.

If you specify more than one time limit within an ACL, the shortest time limit

will apply. If you specify a time limit and a use count limit, both must be valid

in order for an action to be authorized.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 118/237

If you apply a time limit to a key that is not loaded from a

logical token protected blob, all permission groups with time

limits will be unavailable and attempting to use these limits

will return Status_AccessDenied.

nonvolatile limits are only available on nShield modules. The use limit is stored in a

NVRAM file. A non-volatile limit has the following structure:

struct M_UseLim_NonVolatile_Details {
 M_UseLim_NonVolatile_Details_flags flags;
 M_FileID file;
 M_NVMemRange range;
 M_Word maxlo;
 M_Word maxhi;
 M_Word prefetch;
};

• No flags are defined.

• file is the fileId of the NVRAM file containing the use limit.

• range is the memory range within the file for this limit.

• maxlo and maxhi are the values for the limit stored as two 32-bit words.

• prefetch: In order to reduce the number of NVRAM write cycles, you can

specify a number of limits to prefetch. The module will update the limit by this

number and decrement an in-memory counter for each use. When the counter

reaches zero the NVRAM value will again update the NVRAM.

A per-authorization use limit (auth) has the following structure:

typedef struct {
 M_LimitID id;
 M_Word max;
} M_UseLim_Auth_Details;

• id is a unique 20-byte identifier for the counter for this use limit. When a

counter is created, it is set to 0. Any time a user performs an action that

requires a use limit, the module compares the value of the counter to the limit

in the ACL. If the counter value is less than the limit, the action is permitted

and the counter’s value is increased by 1. Otherwise, the action is prohibited.

Global and per-authorization counters are stored separately on the module.

Therefore, a global use limit may have the same hash as a per-authorization

use limit, and these hashes will refer to separate counters.

Global counters are stored separately for each key, and per-authorization

counters are stored separately for each logical token.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 119/237

This means that the two matching LimitIDs will only refer to the same counter

if either:

◦ they are both in Global use limits in the same ACL

◦ they are both in Auth use limits for keys loaded using the same logical

token.

• max is the number of times that the actions specified in this permission group

can be performed before the logical token needs to be reauthorized.

Per-authorization limit counters are created when a key is loaded from a token

blob, unless a counter with the same LimitID already exists for this token (in

which case, the existing counter is used). This can mean that all the per-

authorization use limits for a key have been exhausted already when it is

loaded. In such a case, you must reload the logical token.

Keys that have been loaded from blobs under different tokens have separate

counters even if they have the same LimitID.

Firmware versions 2.12.0 or later contain logic to prevent an attacker loading

the same logical token twice and thereby gaining two separate sets of

counters. It works as follows:

Every time a smart card is inserted, all the logical token shares on it are

marked available. When a share is loaded for use in a logical token, it is

marked used, unless the ReadShare command sets the UseLimitsUnwanted flag.

If any share is loaded - locally or remotely - when it is already marked used, the

logical token is marked UseLimitsUnavailable. No per-authorization use limits

are allowed for any keys loaded using this second logical token. This ensures

only one set of use limits counters can be created for each physical insertion

of a token.

The mechanism for controlling per-authorization limits

changed in firmware 2.12.0 to prevent a possible attack

which may have resulted in the limit being circumvented. On

new firmware ACLs using UseLim_Auth and UseLimAuth_Old

both use the new mechanism. However, the nfkmverify

program will note use of the old style limit as this will use

the old behavior on old firmware.

Although it is possible to load a logical token on several modules, using

remote slots, only one copy of the logical token can be allocated the per-

authorization use limits.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 120/237

7.7. Actions

typedef struct {
 M_Act type;
 union M_Act__Details details;
} M_Action;

type must be one of the actions listed below:

• Act_NoAction=

• Act_OpPermissions= - see OpPermissions

• Act_MakeBlob= - see MakeBlob

• Act_MakeArchiveBlob= - see MakeArchiveBlob

• Act_NSOPermissions= - see NSO

• Act_DeriveKey= - see DeriveKey and DeriveKeyEx

• Act_DeriveKeyEx= - see DeriveKey and DeriveKeyEx

• Act_NVMemOpPerms= - see NVRAM

• Act_FeatureEnable= - see NVRAM

• Act_NVMemUseLimit=

• Act_SendShare= - see SendShare

• Act_ReadShare= - see ReadShare

• Act_StaticFeatureEnable=

• Act_UserAction= - see UserAction

• Act_FileCopy= - see FileCopy

details depend on the chosen action type:

union M_Act__Details {
 M_Act_FeatureEnable_Details featureenable;
 M_Act_DeriveKey_Details derivekey;
 M_Act_DeriveKeyEx_Details derivekeyex;
 M_Act_SendShare_Details sendshare;
 M_Act_NVMemUseLimit_Details nvmemuselimit;
 M_Act_NVMemOpPerms_Details nvmemopperms;
 M_Act_StaticFeatureEnable_Details staticfeatureenable;
 M_Act_NSOPermissions_Details nsopermissions;
 M_Act_OpPermissions_Details oppermissions;
 M_Act_FileCopy_Details filecopy;
 M_Act_MakeArchiveBlob_Details makearchiveblob;
 M_Act_MakeBlob_Details makeblob;
 M_Act_UserAction_Details useraction;
 M_Act_ReadShare_Details readshare;
};

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 121/237

7.8. Action types

7.8.1. OpPermissions

typedef struct {
 M_Word perms;
} M_Act_OpPermissions_Details;

The following flags (perms) are defined:

• Act_OpPermissions_Details_perms_DuplicateHandle: Setting this flag grants

permission to create a copy of the key with the same ACL. Duplicating a key

does not enable you to perform any further actions, because both copies use

the same use counters.

• Act_OpPermissions_Details_perms_UseAsCertificate: Setting this flag allows use

of the KeyID to authorize a command that requires a certificate.

• Act_OpPermissions_Details_perms_ExportAsPlain

• Act_OpPermissions_Details_perms_GetAppData

• Act_OpPermissions_Details_perms_SetAppData

• Act_OpPermissions_Details_perms_ReduceACL

• Act_OpPermissions_Details_perms_ExpandACL

• Act_OpPermissions_Details_perms_Encrypt

• Act_OpPermissions_Details_perms_Decrypt

• Act_OpPermissions_Details_perms_Verify

• Act_OpPermissions_Details_perms_UseAsBlobKey: Setting this flag allows use of

this key either in the MakeBlob command to encrypt a key blob or in the

LoadBlob command to decrypt a key from a blob.

• Act_OpPermissions_Details_perms_UseAsKM: Only DES3 keys can be used for

module keys, KM.

• Act_OpPermissions_Details_perms_UseAsLoaderKey: When this flag is set, an

encryption key is only permitted to perform decryption when loading an SEE

machine or SEE World onto the module.

• Act_OpPermissions_Details_perms_Sign

• Act_OpPermissions_Details_perms_GetACL

• Act_OpPermissions_Details_perms_SignModuleCert

• Act_OpPermissions_Details_perms__allflags

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 122/237

7.8.2. MakeBlob

This action type allows the creation of module key, or token, key blobs with the

given key (see also MakeArchiveBlob).

typedef struct {
 M_Word flags;
 M_KMHash *kmhash;
 M_TokenHash *kthash;
 M_TokenParams *ktparams;
 M_MakeBlobFilePerms *blobfile;
} M_Act_MakeBlob_Details;

• The following flags are defined:

◦ Act_MakeBlob_Details_flags_AllowKmOnly

If this flag is set, you can create blobs directly under a module key or

under a logical token. If this flag is not set, you must use a logical token.

◦ Act_MakeBlob_Details_flags_AllowNonKm0

If this flag is set, you can create blobs for this key using module keys, or

logical tokens based on module keys, except for the internally generated

KM0. If this flag is not set, you must use KM0 or logical tokens based on KM0.

◦ Act_MakeBlob_Details_flags_kmhash_present

Set this flag in order to restrict the blobs that can be made with this key

to blobs that use the module key whose hash is specified or to logical

tokens that are based on this module key. If this flag is not set, any

module key may be used. If this hash is not KM0, you must set the

AllowNonKM0 flag.

◦ Act_MakeBlob_Details_flags_kthash_present

Set this flag in order to restrict the blobs that can be made with this key

to blobs that use the token whose hash is specified. If this flag is not set,

any token may be used. If this token is not based on KM0, you must set the

AllowNonKM0 flag.

◦ Act_MakeBlob_Details_flags_ktparams_present

Set this flag in order to restrict the blobs that can be made with this key

to blobs that use a token with either the given parameters or with more

restrictive ones. If this flag is not set, any token can be used.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 123/237

◦ Act_MakeBlob_Details_flags_AllowNullKmToken

If this flag is set, the user can create token blobs for this key with a token

protected by the null module key.

◦ Act_MakeBlob_Details_flags_blobfile_present

If this flag is set the blob will be stored in the NVRAM or smart card file

specified - it will not be returned to the host.

◦ Act_MakeBlob_Details_flags__allflags

 The key blob must meet the requirements of all the flags.

• *kmhash - see Act_MakeBlob_Details_flags_kmhash_present above.

• *kthash - see Act_MakeBlob_Details_flags_kthash_present above.

• *ktparams - see Act_MakeBlob_Details_flags_ktparams_present above.

• *blobfile

The following structure specifies the NVRAM or smart card files to which you

want to restrict writing the blob.

struct M_MakeBlobFilePerms {
 M_MakeBlobFilePerms_flags flags;
 M_PhysToken *devs;
 M_KeyHash *aclhash;
};

◦ The following flags are defined:

▪ MakeBlobFilePerms_flags_devs_present

If set, the blob may only be stored in the storage devices specified by

the M_FileDeviceFlags word.

▪ MakeBlobFilePerms_flags_aclhash_present

Set this flag if the structure contains a M_KeyHash.

◦ *devs is the device on which to store the blob.

◦ *aclhash is the hash of a Template Key defining the ACL to use for the file

storing the key. The key must be provided when making the blob.

If you want to restrict the making of blobs to a set of module keys, or to a set

of tokens, then you must include a MakeBlob entry for each module or token

hash.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 124/237

7.8.3. MakeArchiveBlob

This action type allows the creation of direct and indirect archive key blobs with

the given key.

typedef struct {
 M_Word flags;
 M_PlainText mech;
 M_KMHash *kahash;
 M_MakeBlobFilePerms *blobfile;
} M_Act_MakeArchiveBlob_Details;

• The following flags are defined:

◦ Act_MakeArchiveBlob_Details_flags_kahash_present

If this flag is set, you can make an archive key blob for this key with the

key whose hash is specified. If this flag is not set, any archive key may be

used.

Including an Act_MakeArchiveBlob entry without

kahash_present in an open permission group creates a

security loophole.

◦ Act_MakeArchiveBlob_Details_flags_blobfile_present

If this flag is set the blob will be stored in the NVRAM or smart card file

specified - it will not be returned to the host.

• mech

For making direct archive blobs, this must be Mech_DES3mCBCi64pPKCS5 or

Mech_Any; for indirect blobs this specifies the mechanism which must be used

to encrypt the session key. If set to Mech_Any, any mechanism appropriate for

the type of the archiving key is allowed. See Mechanisms.

• *kahash is the key hash.

• *blobfile — see MakeBlob

7.8.4. NSO

This action type is used only in certificates that approve critical functions that

have been defined in the SetKNSO command. It should not be used in an ACL for a

key.

typedef struct {

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 125/237

 M_NSOPerms perms;
} M_Act_NSOPermissions_Details;

M_NSOPerms has the following structure:

typedef struct {
 M_Word ops;
} M_NSOPerms;

The following flags (ops) are defined. These are identical to those used in the

SetNSOPerms command.

• NSOPerms_ops_LoadLogicalToken

• NSOPerms_ops_ReadFile

• NSOPerms_ops_WriteShare

• NSOPerms_ops_WriteFile

• NSOPerms_ops_EraseShare

• NSOPerms_ops_EraseFile

• NSOPerms_ops_FormatToken

• NSOPerms_ops_SetKM

• NSOPerms_ops_RemoveKM

• NSOPerms_ops_GenerateLogToken

• NSOPerms_ops_ChangeSharePIN

• NSOPerms_ops_OriginateKey

• NSOPerms_ops_NVMemAlloc

• NSOPerms_ops_NVMemFree

• NSOPerms_ops_GetRTC

• NSOPerms_ops_SetRTC

• NSOPerms_ops_DebugSEEWorld

• NSOPerms_ops_SendShare

• NSOPerms_ops_ForeignTokenOpen

• NSOPerms_ops__allflags

7.8.5. NVRAM

This action type allows operations to be performed upon files that have been

stored in the nonvolatile memory or on a smart card or soft token.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 126/237

struct M_Act_NVMemOpPerms_Details {
 M_Act_NVMemOpPerms_Details_perms perms;
 M_NVMemRange *subrange;
 M_NVMemRange *exactrange;
 M_Word *incdeclimit;
};

• The following operations (perms) are defined.

◦ Act_NVMemOpPerms_Details_perms_Read

◦ Act_NVMemOpPerms_Details_perms_Write

◦ Act_NVMemOpPerms_Details_perms_Incr

◦ Act_NVMemOpPerms_Details_perms_Decr

◦ Act_NVMemOpPerms_Details_perms_BitSet

◦ Act_NVMemOpPerms_Details_perms_BitClear

◦ Act_NVMemOpPerms_Details_perms_Free

◦ Act_NVMemOpPerms_Details_perms_subrange_present

◦ Act_NVMemOpPerms_Details_perms_exactrange_present

◦ Act_NVMemOpPerms_Details_perms_incdeclimit_present

◦ Act_NVMemOpPerms_Details_perms_GetACL

◦ Act_NVMemOpPerms_Details_perms_LoadBlob

This permission allows the contents to be used as a blob by the Loadblob

command.

◦ Act_NVMemOpPerms_Details_perms_Resize

• *subrange

This specifies the subrange to which this operation can be applied; the

operation can apply to any part of the specified range in the ACL.

• *exactrange

This is a subrange to which this operation can be applied only if the range

exactly matches the specified range in the ACL.

• *incdeclimit

This is the maximum amount that this range can be increased or decreased in

one operation.

7.8.6. ReadShare

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 127/237

This action type enables a logical token share to be read normally using the

ReadShare command.

typedef struct {
 M_ReadShareDetails rsd;
} M_Act_ReadShare_Details;

typedef struct {
 M_ReadShareDetails_flags flags; No flags are defined
} M_ReadShareDetails;

7.8.7. SendShare

This action type enables a logical token share to be read remotely and sent over

an impath.

typedef struct {
 M_Act_SendShare_Details_flags flags;
 M_RemoteModule *rm;
 M_ReadShareDetails *rsd;
} M_Act_SendShare_Details;

• The following flags are currently defined:

◦ Act_SendShare_Details_flags_rm_present

This flag is set if the action contains a RemoteModule structure.

◦ Act_SendShare_Details_flags_rsd_present

This flag is set if the action contains a ReadShareDetails structure.

• *rm

The impath over which the share data is to be sent must match this

RemoteModule structure.

• *rsd — see ReadShare

7.8.8. FileCopy

This action permits files stored on a smart card, soft token or in NVRAM to be

copied to another location. The action specifies which location the file can be

copied to and from.

struct M_Act_FileCopy_Details {

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 128/237

 M_Act_FileCopy_Details_flags flags;
 M_PhysToken to;
 M_PhysToken from;
};

The following flag is defined: Act_FileCopy_Details_flags_ChangeName.

If set the new file may have a different FileID from the original file.

7.8.9. UserAction

This action does not permit any operations. Instead it can be checked by the

CheckUserAction command. This enables applications to make use of all modules

ACl checking features - including use limits, time limits, certifiers and so on - to

restrict actions in their own code.

struct M_Act_UserAction_Details {
 M_UserActionInfo allow;
};

7.8.10. DeriveKey and DeriveKeyEx

These action types enable the key to be used in the DeriveKey command. They

allow the key to be used in a single specific role. If you want to create a key that

can be used in more than one role, you must include a separate action entry for

each role. If the Cmd_DeriveKey_Args_flags_WorldHashMech flag has been set in the

DeriveKey command, then the DeriveKeyEx action should be used.

typedef struct {
 M_Word flags;
 M_DeriveRole role;
 M_DeriveMech mech;
 int n_otherkeys;
 M_KeyRoleID *otherkeys;
 M_DKMechParams *params;
} M_Act_DeriveKey_Details;

typedef struct {
 M_Act_DeriveKeyEx_Details_flags flags;
 M_DeriveRole role;
 M_DeriveMech mech;
 int n_otherkeys;
 M_vec_KeyRoleIDEx otherkeys;
 M_DKMechParams *params;
} M_Act_DeriveKeyEx_Details;

• The following flags are defined:

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 129/237

◦ Act_DeriveKey_Details_flags_params_present

◦ Act_DeriveKeyEx_Details_flags_params_present

• role can be one of the following:

◦ DeriveRole_TemplateKey (template)

◦ DeriveRole_BaseKey (base key)

◦ DeriveRole_WrapKey (wrapping key)

• mech — see Mechanisms.

• n_otherkeys - the number of keys in the otherkeys table

• *otherkeys

The following keys can be used in the other roles of the DeriveKey command:

typedef struct {
 M_DeriveRole role;
 M_KeyHash hash;
} M_KeyRoleID;

typedef struct {
 M_DeriveRole role;
 M_KeyHashEx hash;
} M_KeyRoleIDEx;

◦ role

You can define keys for any or all of the roles. You can specify one or

more keys for each role. If you do not specify a key for a particular role,

then any key can be used in that role.

◦ hash is either SHA-1 or a stronger hash determined by the

Cmd_DeriveKey_Args_flags_WorldHashMech, which can be obtained via the

GetKeyInfoEx command.

• *params

The mechanism parameters to use for the DeriveKey operation.

struct M_DKMechParams {
 M_DeriveMech mech;
union M_DeriveMech__DKParams params;
};

• mech

The mechanism to use. The module will not permit you to set a M_DKMechParams

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 130/237

with a mechanism that is different to that previously defined in the ACL. If you

attempt this the module returns Status_InvalidACL.

• params

The derive key mechanism parameters— see Derive Key Mechanisms.

The module applies the following rules to determine which derive key

operations are permitted:

◦ If any of the requested or allowed DeriveMech values mismatch, the

operation is never allowed.

◦ If the allowed DKMechParams are not present, any requested parameters are

allowed.

◦ If the mechanism has an empty DKParams, the operation is allowed

◦ For other mechanisms, this comparison is not at present defined. The

module will return NotYetImplemented for attempts to set, in a key’s ACL,

DKMechParams with mechanisms for which this is the case.

7.8.11. Using DeriveKey — an example

The following example shows how to use the DeriveKey command to split a DES

key into two random halves and then recombine these halves to recreate the

original key. The following diagram illustrates this process:

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 131/237

First, import the two template keys. A template key contains an ACL and an

Appdata file that can be applied to the results of the DeriveKey operation. By

importing these elements first, their key hashes can be determined, and these

hashes can be referenced in the ACLs for the remaining keys. This ensures that the

two derived keys will have the correct ACL.

Next, create the wrapping key. Determine its hash and then that of the base key.

After all the input keys have been have created, use the DeriveKey command to

combine the base key and the wrapping key.

Finally, unwrap the wrapped key. Check that the new DES key has the same hash,

and therefore the same data, as the original. Also check that the new DES key has

correctly inherited the ACL and application data from the template key.

1. Use the Import command with the following parameters to import a template

key for an ACL that allows the use of DeriveKey with this key as the base key,

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 132/237

any mechanism, and any other keys:

module 1

type DKTemplate

appdata 02020202

nested_acl 01000000 00000000 00000000 02000000 01000000 6c200000

05000000 00000000 01000000 00000000 00000000

ACL

n_groups 1

groups[0]

flags 0x0

n_limits 0

n_actions 1

actions[0]

type DeriveKey

flags 0x0

role TemplateKey

mech Any

n_otherkeys 0

appdata 0

Create the nested_acl by using the NFastApp_MarshalACL() command.

Such use of the Import command will return

idka= IDKA 0010

2. Get this key’s hash by using the GetKeyInfo command with the following

parameters:

flags; 0x0
key; IDKA 0010

This command returns

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 133/237

type; DKTemplate
hash; HKA 0010

3. Use the Import command with the following parameters to import a template

key for an ACL that contains oppermissions as follows:

◦ ExportAsPlain GetAppData Encrypt Decrypt Verify Sign GetACL

module 1

type DKTemplate

appdata 01010101

nested_acl 01000000 00000000 00000000 01000000 01000000

8c330000

ACL

n_groups 1

groups[0]

flags 0x0

n_limits 0

n_actions 1

actions[0]

type DeriveKey

flags 0x0

role TemplateKey

mech Any

n_otherkeys 0

appdata 0

Such use of the Import command will return:

key IDKA 0011

In order to create a nested_acl in C, use the NFastApp_MarshalACL()

command.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 134/237

In order to create a nested ACL in Java, use the marshall() method from

the M_ACL class.

The following Java fragment demonstrates the use of this method:

...
 M_ACL acl;
 MarshallContext tempMctx;
 M_ByteBlock bb;
 M_KeyType_Data_Template data;
 acl = yourACL;
 tempMctx = new MarshallContext();
 acl.marshall(tempMctx);
 bb = new M_ByteBlock (tempMctx.getBytes());
 data = new M_KeyType_Data_Template();
 data.nested_acl = bb;
...

4. Get this key’s hash by using the GetKeyInfo command with the following

parameters:

key IDKA 0011

This command returns:

type DKTemplate
hash HKA 0011

5. Make a wrapping key by using the GenerateKey command:

◦ When wrapping, insist on using template HKA 0010

◦ When unwrapping, insist on using template HKA 0011.

flags 0x0

module 1

type Random

lenbytes 8

ACL

n_groups 1

groups[0]

flags 0x0

n_limits 0

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 135/237

n_actions 3

actions[0]

type OpPermissions

perms
DuplicateHandle
ExportAsPlain
ReduceACL
GetACL

actions[1]

type DeriveKey

flags 0x0

role WrapKey

mech DESsplitXOR

n_otherkeys 1

role TemplateKey

hash HKA 0010

actions[2]

type DeriveKey

flags 0x0

role WrapKey

mech DESjoinXOR

n_otherkeys 1

role TemplateKey

hash HKA 0011

Such use of the GenerateKey command returns:

key IDKA 0012

6. Get this key’s hash by using the GetKeyInfo command:

key IDKA 0012

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 136/237

This command returns:

type Random
hash HKA 0012

7. Use the GenerateKey command with the following parameters to generate a

DES key that can only be wrapped using:

◦ The DESsplitXOR mechanism

◦ HKA 0012 as the wrapping key

module 1

type DES

n_groups 1

groups[0]

flags 0x0

n_limits 0

n_actions 2

actions[0]

type OpPermissions

perms
ReduceACL
GetACL

actions[1]

type DeriveKey

flags 0x0

role BaseKey

mech DESsplitXOR

n_otherkeys 1

role WrapKey

hash HKA 0012

This returns:

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 137/237

key IDKA 0013

8. Get this key’s hash by using the GetKeyInfo command with the following

parameters:

key IDKA 0013

This command returns:

type DES
hash HKA 0013

9. The DES key can now be combined with the random key to produce a second

random key by using the DeriveKey command with the following parameters:

flags 0x0

mech DESsplitXOR

n_keys 3

keys[0] IDKA 0010

keys[1] IDKA 0013

keys[2] IDKA 0012

This command returns:

key IDKA 0014

At this point, this process has produced:

◦ A DES key IDKA 0013

◦ Two random keys: IDKA 0012 and IDKA 0014

The two random keys can be combined to recreate the key

data in the DES key. This can be demonstrated by combining

the keys that use the DeriveKey command and then using the

GetKeyInfo to check that the hash of the new key matches

the hash of the DES key that was determined in Step 8.

10. Use the DeriveKey command with the following parameters to combine the

keys:

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 138/237

flags 0x0

mech DESjoinXOR

n_keys 3

keys[0] IDKA 0011

keys[1] IDKA 0014

keys[2] IDKA 0012

This command returns:

key IDKA 0015

This is a new KeyID because this is a new instance of the key.

This instance of the key has taken its appdata and ACL from

the template key that was created earlier: IDKA 0011

11. Get the hash of this new key by using the GetKeyInfo command with the

following parameters:

key IDKA 0015

This command returns:

type DES
hash HKA 0013

This is the same hash as before, which proves that the key

has been combined correctly

12. Check that the new key has inherited the application data from the template

key by using the GetAppData command with the following parameters:

key IDKA 0015

This command returns:

appdata 01010101

This is the application data that was provided by the template key.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 139/237

13. Check that the new key has inherited the ACL from the nested ACL in the

template key by using the GetACL command with the following parameters:

key IDKA 0015

This command returns

acl.n_groups 1

groups[0]

flags none 0x00000000

n_limits 0

n_actions 1

actions[0]

type OpPermissions

perms
ExportAsPlain
GetAppData
Encrypt
Decrypt
Verify
Sign
GetACL

7.9. Certificates

The nShield module uses certificates to enable a given user to authorize another

user to perform an action.

A certificate is a signed message. The key that is used to sign the certificate must

match the key hash in the ACL it is authorizing. The message can contain an ACL;

this ACL can be used to restrict the operation to be approved by the certificate, or

it can be used to require a further certificate.

Certificates can be either fresh or reusable.

A fresh certificate includes a challenge value. This is a random number that was

generated previously by the module with the GetChallenge command.

The module remembers a maximum of 126 challenges. These challenges

automatically expire after 30 seconds or on redemption. Expired challenges are

removed from the modules memory.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 140/237

If the module memory contains more than 40 challenges, it delays the issuance of

new challenges. This means that with 40 or fewer challenges outstanding, it issues

new challenges instantly. With more than 40 challenges outstanding, you get a

successful response after a two-second delay. If the module memory is full, it fails

after a delay of four seconds unless an existing outstanding challenge expires or is

redeemed during the delay period. In this situation, if an outstanding challenge

expires or is redeemed during the delay, you get a successful response. These

delays apply to each Cmd_GetChallenge independently.

When a user presents a fresh certificate, the module deletes the matching

challenge from the list. If the same certificate is presented a second time, it will be

rejected.

The list of challenges is cleared whenever the unit is reset.

Therefore, a fresh certificate:

• can only be used once

• must be used on the module that generated the challenge

• may become invalid if left too long before it is used

If you submit a certificate containing a challenge that is not on the module’s list of

current challenges, the server returns the status Status_UnknownChallenge.

A reusable certificate does not contain a challenge and can be used as often as is

required. It can also be used on any module.

An ACL can specify that the required certificate must be fresh. If you present a

reusable certificate when the ACL requires a fresh certificate, the certificate will be

rejected.

If you possess the required key, you can always create a fresh certificate. However,

this requires a certain amount of processing, both on the module and on the host.

In order to prevent unnecessary load, you can authorize a command by presenting

a certificate that contains the required key’s KeyID. In order for this certificate to be

valid, you must have loaded the key yourself. You cannot pass the KeyID to another

user. In order to authorize another user, you must create a properly signed

certificate.

Code executing in the SEE can be signed by one or more keys by using the

signature tools provided with the CodeSafe Developer Kit. By presenting a

certificate of the type CertType_SEECert, code signed in this way can perform any

operation for which the signing key has permission.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 141/237

7.9.1. Using a certificate to authorize an action

If you are given a certificate, you must include it with the command it authorizes,

after all the arguments for that command.

For situations in which you are presenting a single certificate:

• it must not require further authorization

• the hash of the key that signed the certificate must match the hash that is

specified in the ACL

For situations in which you need to present a chain of certificates, the first

certificate must not require any further authorization. For every certificate in the

chain, the module checks to see that the hash of the signing key matches the hash

given in the certifier field of the ACL that is included in the next certificate or, if

this is the last certificate in the chain, the certifier field of the ACL for the key

being authorized. The ACL in each certificate in the chain must permit the

operation to be performed.

If a certificate, or any certificate in a certificate chain, does not authorize the

requested action, the module will return the status Status_AccessDenied.

7.9.2. Generating a certificate to authorize another operation

It is the responsibility of the cryptographic application to build certificates. This

process is assisted by the NFast_BuildCmdCert() function that is provided in the

generic stub library.

7.9.2.1. Structure

typedef struct {
 M_KeyHash keyhash;
 M_CertType type;
 union M_CertType__CertBody body;
} M_Certificate;

• keyhash is the hash of the key that is used to sign the certificate. This hash

must match the hash that is specified in the key’s ACL or in the previous

certificate in the chain.

• The following type values are defined:

◦ CertType_Invalid

◦ CertType_SigningKey

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 142/237

◦ CertType_SingleCert

◦ CertType_SEECert

• The certificate body (body) has one of the following formats:

union M_CertType__CertBody {
 M_CertType_SigningKey_CertBody signingkey;
 M_CertType_SingleCert_CertBody singlecert;
};

• A signingkey has the following body:

typedef struct {
 M_KeyID key;
} M_CertType_SigningKey_CertBody;

• Where:

◦ key is the KeyID of the key that must be loaded in order to authorize this

command. The key must have the following properties:

◦ the hash of the key must match the hash that was given in the ACL

◦ the key must have UseAsCertificate permission set in its ACL in an open

group.

• A singlecert certificate has the following body:

typedef struct {
 M_PlainText pubkeydata;
 M_CipherText signature;
 M_ByteBlock certsignmsg;
} M_CertType_SingleCert_CertBody;

◦ signature is the certsignmsg, which is signed with the private key that

corresponds to pubkeydata.

• A certsignmsg has the following structure, which must be marshalled into a

byte block:

typedef struct {
 M_MagicValue header;
 M_Word flags;
 int n_hks;
 M_KeyHash *hks;
 M_Nonce *nonce;
 M_ACL *acl;
 M_MagicValue footer;
} M_CertSignMessage;

• header

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 143/237

This must be set to the value MagicValue_CertMsgHeader, defined in messages-ags-

dh.h.

• flags

The following flags are defined:

◦ CertSignMessage_flags_nonce_present

◦ CertSignMessage_flags_acl_present

◦ CertSignMessage_flags_do_not_cache

• n_hks and *hks

This table can be used to restrict the keys to which this certificate applies. If

there are entries in this table, then the hash of the key object used—or, for an

NSO certificate, the hash of the module key used—must also be in this table. If

the table is empty (n_hks = 0), then the certificate can be used to authorize

any operations on a key with a matching ACL.

• *nonce

This is a nonce returned by the GetChallenge command.

• *acl

Optionally, this is a valid ACL that authorizes the action to be performed. If

this ACL contains a certmech or a certifier field in a permission group, then a

valid certificate signed by the key whose hash is in the permission group must

precede this certificate in the chain.

• footer

This must be set to the value MagicValue_CertMsgFooter, defined in messages-ags-

dh.h.

The certsgnmsg block should be passed to a suitable signature algorithm. For RSA

signature keys, use a mechanism that hashes the block first (for example,

RSAhSHA1pPKCS1). The module checks all of the above and returns:

• Status_BadCertKeyHash if the verification key does not match the given hash

• Status_VerifyFailed if the signature cannot be verified with the given key

• Status_UnknownChallenge if the nonce was not one that the module had issued

recently

• Status_AccessDenied if the ACL still does not permit your request for some

other reason.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 144/237

The certificate type CertType_SEECert, however, has an empty CertBody. In order to

use certificates of this type:

1. Specify in the M_Certificate structure the hash of the signing key that was

used to sign the SEE World data that authorized the action.

2. The access control system checks to ensure that the SEE World data was, in

fact, signed by the specified key.

3. If so, the certificate is accepted much as a signingkey certificate would be.

However, because a signingkey certificate is always treated as fresh but an SEE

certificate is not, the flag PermissionGroup_flags_FreshCerts must not be set in

the next ACL in the stack.

Thus, code executing within the SEE can authorize itself to perform an action

requiring authorization from a key that signed the code. It can do this by creating

an M_Certificate, setting its key hash appropriately, and setting its type to SEECert.

Chapter 7. Key structures

nCore v13.3 Developer Tutorial 145/237

8. NFKM Functions
This chapter describes the functions and structures that are used in the C NFKM

library. This library gives access to Security World key-management functions.

8.1. Debugging NFKM functions

Most of the NFKM functions that are described in this chapter can write data to a

debug or error log. However, they do not usually do so except under

circumstances outside of those encountered during normal operation (for

example, if the module is not properly initialized). You can control the writing of

data to a debug or error log with the NFKM_LOG environment variable. For more

information on the NFKM_LOG environment variable, see the User Guide.

Use the NFKM_getinfo call to get the current state before using any other call that

relies on the data in the NFKM_SlotInfo structure being up-to-date.

8.2. Functions

Several operations, especially card set creation and loading, require multiple

function calls. In this case there is usually a *_begin function which must be called

first. There is a *_nextxxx function that can be called a number of times. Finally

there is a *_done function. If, due to user input you decide not to complete the

operation there is a *_abort function which clears up memory.

8.2.1. NFKM_changepp

Change the passphrase on a card.

M_Status NFKM_changepp(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const NFKM_SlotInfo *slot,
 unsigned flags,
 const M_Hash *oldpp,
 const M_Hash *newpp,
 NFKM_ShareFlag remove,
 NFKM_ShareFlag set,
 struct NFast_Call_Context *cctx
);

• const NFKM_SlotInfo *slot is the slot in which the card is loaded

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 146/237

• unsigned flags is a flags word, the following flag is defined:

#define NFKM_changepp_flags_NoPINRecovery 1u

• const M_Hash *oldpp is a pointer to the current passphrase hash

• const M_Hash *newpp is a pointer to the new passphrase hash

• NFKM_ShareFlag remove is a list of shares whose passphrases you want to

remove, regardless of newpp

• NFKM_ShareFlag set is a list of shares whose passphrases you want to set or

change.

The remove and set flags must be disjoint. A default appropriate

to the type of card in the slot is used if both remove and set are

zero.

8.2.2. NFKM_checkconsistency

This function checks the general consistency of the Security World data:

M_Status NFKM_checkconsistency(
 NFast_AppHandle app,
 NFKM_DiagnosticContextHandle callctx,
 NFKM_diagnostic_callback *informational,
 NFKM_diagnostic_callback *warning,
 NFKM_diagnostic_callback *fatal,
 struct NFast_Call_Context *cctx
);

It returns Status_OK unless:

• there was a fatal error, in which case it returns the return value from fatal(),

which must be nonzero

• any other diagnostic callback returned nonzero, in which case it returns that

callback’s return value (because checking was aborted at that point).

8.2.3. NFKM_checkpp

Verifies that a passphrase is correct for a given card. Each share on the card which

has a passphrase set is checked.

M_Status NFKM_checkpp(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const NFKM_SlotInfo *slot,

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 147/237

 const M_Hash *pp,
 struct NFast_Call_Context *cctx
);

8.2.4. NFKM_cmd_generaterandom

Utility function: calls the nCore GenerateRandom command. Requires an app handle

and an existing connection.

M_Status NFKM_cmd_generaterandom(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 M_Word wanted,
 unsigned char **block_r,
 struct NFast_Call_Context *cctx
);

Sets *block_r to point to newly allocated memory containing the random data.

8.2.5. NFKM_cmd_destroy

Utility function: calls the nCore Destroy command to destroy an nCore object.

Requires an app handle and an existing connection.

M_Status NFKM_cmd_destroy(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 M_ModuleID mn,
 M_KeyID idka,
 const char *what,
 struct NFast_Call_Context *cctx
);

The what argument should describe what sort of thing you are destroying, for the

benefit of people reading log messages created when things go wrong.

8.2.6. NFKM_cmd_loadblob

Utility function: calls the nCore Loadblob command to load a blob. Requires an app

handle and an existing connection.

M_Status NFKM_cmd_loadblob(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 M_ModuleID mn,
 const M_ByteBlock *blob,
 M_KeyID idlt,
 M_KeyID *idk_r,

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 148/237

 const char *whatfor,
 struct NFast_Call_Context *cctx
);

Set idlt to zero if the blob is module-only.

The whatfor argument should describe what blob you are loading, for the benefit

of people reading log messages created when things go wrong.

8.2.7. NFKM_cmd_getkeyplain

Utility function: calls the nCore Export command to obtain the plain text of a key

object. Requires an app handle and an existing connection.

M_Status NFKM_cmd_getkeyplain(
 NFast_AppHandle app, NFastApp_Connection
 conn,
 M_ModuleID mn,
 M_KeyID idka,
 M_KeyData *keyvalue_r,
 const char *what,
 struct NFast_Call_Context *cctx
);

The what argument should describe what sort of key you are querying the plain

text of, for the benefit of people reading log messages created when things go

wrong.

When you’ve finished with the exported key data, call NFastApp_Free_KeyData on it.

8.2.8. NFKM_erasecard

This function erases an operator card in the given slot:

M_Status NFKM_erasecard(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const NFKM_SlotInfo *slot,
 NFKM_FIPS140AuthHandle fips140auth,
 struct NFast_Call_Context *cctx
);

8.2.9. NFKM_erasemodule

Erases a module. The module must be in (pre-)init mode. All NSO permissions are

granted, and the security officer’s key is reset to its default.

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 149/237

M_Status NFKM_erasemodule(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const NFKM_ModuleInfo *m,
 struct NFast_Call_Context *cc
);

• const NFKM_ModuleInfo *m is a pointer to the module to be erased.

8.2.10. NFKM_hashpp

This function hashes a passphrase for use as an Operator Card Set passphrase:

M_Status NFKM_hashpp(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const char *string,
 M_Hash *hash_r,
 struct NFast_Call_Context *cctx
);

8.2.11. NFKM_initworld_*

8.2.11.1. NFKM_initworld_abort

Destroys a Security World initialization context.

void NFKM_initworld_abort(
 NFKM_InitWorldHandle iwh
);

• NFKM_InitWorldHandle iwh is the handle for Security World initialization returned

by NFKM_initworld_begin.

8.2.11.2. NFKM_initworld_begin

Does the initial part of work for a Security World initialization. The following

diagram illustrates the paths through the NFKM_initworld process:

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 150/237

M_Status NFKM_initworld_begin(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 NFKM_InitWorldHandle *iwh,
 const NFKM_ModuleInfo *m,
 const NFKM_InitWorldParams *iwp,
 struct NFast_Call_Context *cc
);

• NFKM_InitWorldHandle *iwh is a pointer to the address of handle to set

• const NFKM_ModuleInfo *m is a pointer to the module to be initialized

• const NFKM_InitWorldParams *iwp is a pointer to the parameters for new world

If this function fails, nothing will have been allocated and no further action need

be taken; if it succeeds, the handle returned must be freed by calling

NFKM_initworld_done or NFKM_initworld_abort.

It will help if you call NFKM_getinfo again after this function — otherwise you won’t

be able to refer to the module’s slots since it was in PreInitialisation mode last

time you looked.

8.2.11.3. NFKM_initworld_done

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 151/237

Finishes Security World initialization.

M_Status NFKM_initworld_done(
 NFKM_InitWorldHandle iwh
);

• NFKM_InitWorldHandle iwh is the handle for Security World initialization returned

by NFKM_initworld_begin.

If this function succeeds, the handle will have been freed; if it fails, you must still

call NFKM_initworld_abort.

8.2.11.4. NFKM_initworld_gethash

Fetches the identifying hash for new administrator cards created by this job.

void NFKM_initworld_gethash(
 NFKM_InitWorldHandle iwh,
 M_Hash *hh
);

• NFKM_InitWorldHandle iwh is the handle for Security World initialization returned

by NFKM_initworld_begin.

• M_Hash *hh is a pointer to a memory location to which you want the function to

write the hash

8.2.11.5. NFKM_initworld_nextcard

Writes an administrator card.

M_Status NFKM_initworld_nextcard(
 NFKM_InitWorldHandle iwh,
 NFKM_SlotInfo *s,
 const M_Hash *pp,
 int *left
);

• NFKM_InitWorldHandle iwh is the handle for Security World initialization returned

by NFKM_initworld_begin.

• NFKM_SlotInfo *s is a pointer to the slot containing the admin card

• const M_Hash *pp is a pointer to the passphrase for the card

• int *left is the address to store number of cards remaining.

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 152/237

8.2.11.6. NFKM_initworld_setinitmoduleparams

Configures the parameters for module initialization at the end of the world

initialization.

M_Status NFKM_initworld_setinitmoduleparams(
 NFKM_InitWorldHandle iwh,
 const NFKM_InitModuleParams *imp
);

• NFKM_InitWorldHandle iwh is the handle for Security World initialization returned

by NFKM_initworld_begin.

• const NFKM_InitModuleParams *imp is a pointer to the module initialization

params.

8.2.12. NFKM_loadadminkeys_*

8.2.12.1. NFKM_loadadminkeys_begin

Initializes an operation to load administrator keys. Initially, no tokens are selected

for loading. The following diagram illustrates the paths through the

NFKM_loadadminkeys process:

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 153/237

M_Status NFKM_loadadminkeys_begin(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 NFKM_LoadAdminKeysHandle *lakh,
 const NFKM_ModuleInfo *m,
 struct NFast_Call_Context *cc
);

• NFKM_LoadAdminKeysHandle *lakh is a pointer to the address to which the

function writes a handle for this operation.

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 154/237

• const NFKM_ModuleInfo *m is a pointer to the module on which you wish to load

the keys.

8.2.12.2. NFKM_loadadminkeys_done

Frees a key loading context. Any keys and tokens remaining owned by the context

are destroyed.

void NFKM_loadadminkeys_done(
 NFKM_LoadAdminKeysHandle lakh
);

• NFKM_LoadAdminKeysHandle lakh is the handle returned by

NFKM_loadadminkeys_begin

8.2.12.3. NFKM_loadadminkeys_{get,steal}{key,token}

These are convenience functions which offer slightly simpler interfaces than

NFKM_loadadminkeys_getobjects.

The steal functions set the NFKM_LAKF_STEAL flag, which the get functions do not;

the key functions load keys whereas the token functions fetch logical tokens. See

NFKM_loadadminkeys_getobjects for full details about the behavior of these functions.

M_Status NFKM_loadadminkeys_getkey(
 NFKM_LoadAdminKeysHandle lakh,
 int i,
 M_KeyID *k
);

M_Status NFKM_loadadminkeys_stealkey(
 NFKM_LoadAdminKeysHandle lakh,
 int i,
 M_KeyID *k
);

M_Status NFKM_loadadminkeys_gettoken(
 NFKM_LoadAdminKeysHandle lakh,
 int i,
 M_KeyID *k
);

M_Status NFKM_loadadminkeys_stealtoken(
 NFKM_LoadAdminKeysHandle lakh,
 int i,
 M_KeyID *k

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 155/237

);

• NFKM_LoadAdminKeysHandle lakh is the handle returned by

NFKM_loadadminkeys_begin

• int i is the label for the key or token

• M_KeyID *k is a pointer to the address to store the keyid

A key cannot be loaded once its logical token has been stolen.

Therefore, if you want to steal a key and its token, you must steal

the key first.

8.2.12.4. NFKM_loadadminkeys_getobjects

Extracts objects from the admin keys context.

M_Status NFKM_loadadminkeys_getobjects(
 NFKM_LoadAdminKeysHandle lakh,
 M_KeyID *v,
 const int *v_k,
 const int *v_lt,
 unsigned f
);

• NFKM_LoadAdminKeysHandle lakh is the handle returned by

NFKM_loadadminkeys_begin

• M_KeyID *v is a pointer to the output vector of keyids

• const int *v_k is a vector of key labels

• const int *v_lt is a vector of token labels

• unsigned f is a bitmap of flags

Extracts objects from the admin keys context. Logical tokens must have been

loaded using the selecttokens, loadtokens and nextcard interface; keys must have

their protecting logical token loaded already. The KeyIDs for the objects are stored

in the array v in the order of their labels in the v_k and v_lt vectors, keys first. The

label vectors are terminated by an entry with the value -1. Either v_k or v_lt (or

both) may be null to indicate that no objects of that type should be loaded.

Usually, the context retains ownership of the objects extracted: the objects will

remain available to other callers, and will be Destroyed when the context is freed.

If the flag NFKM_LAKF_STEAL is set in f, the context will forget about the object; it will

not be available to subsequent callers, nor be Destroyed automatically.

 Stealing a logical token will prevent keys from being loaded from

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 156/237

blobs until that token is reloaded. However, note that keys which

have already been loaded but not stolen will remain available.

As an example, consider the case where LTR has been loaded. Two calls are made

to getobjects: one which fetches KRE, and a second which steals the token LTR. It is

no longer possible to get KRA (because LTR is now unavailable), but further requests

to get KRE will be honoured.

If an error occurs, the contents of the vector v are unspecified, and no objects will

have been stolen. However, some of the requested keys may have been loaded.

8.2.12.5. NFKM_loadadminkeys_loadtokens

Starts loading the necessary tokens. It might be possible that they’re all loaded

already, in which case *left is reset to zero on exit.

M_Status NFKM_loadadminkeys_loadtokens(
 NFKM_LoadAdminKeysHandle lakh,
 int *left
);

• NFKM_LoadAdminKeysHandle lakh is the handle returned by

NFKM_loadadminkeys_begin

• int *left is the address at which to store the number of cards remaining.

8.2.12.6. NFKM_loadadminkeys_nextcard

Reads an admin card.

M_Status NFKM_loadadminkeys_nextcard(
 NFKM_LoadAdminKeysHandle lakh,
 const NFKM_SlotInfo *s,
 const M_Hash *pp, int *left
);

• NFKM_LoadAdminKeysHandle lakh is the handle returned by

NFKM_loadadminkeys_begin

• const NFKM_SlotInfo *s is a pointer to slot to read

• const M_Hash *pp is a pointer to passphrase hash, or NULL if the card has no

passphrase

• int *left is the address at which to store the number of cards remaining.

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 157/237

8.2.12.7. NFKM_loadadminkeys_selecttoken

Selects a single token to be loaded.

M_Status NFKM_loadadminkeys_selecttokens(
 NFKM_LoadAdminKeysHandle lakh,
 int k
);

• NFKM_LoadAdminKeysHandle lakh is the handle returned by

NFKM_loadadminkeys_begin

• int *k is a key or token label. A key label requests that the token protecting

that key be loaded.

8.2.12.8. NFKM_loadadminkeys_selecttokens

Selects a collection of tokens to be loaded.

M_Status NFKM_loadadminkeys_selecttokens(
 NFKM_LoadAdminKeysHandle lakh,
 const int *k
);

• NFKM_LoadAdminKeysHandle lakh is the handle returned by

NFKM_loadadminkeys_begin

• const int *k is an array of key or token labels

The array is terminated by an entry containing the value -1. Each entry may be

either a key or token label. A key label requests that the token protecting that key

be loaded.

8.2.12.9. NFKM_loadadminkeys_whichtokens

Discovers which logical tokens will be read in the next or current loadtokens

operation.

NFKM_ShareFlag NFKM_loadadminkeys_whichtokens(
 NFKM_LoadAdminKeysHandle lakh
);

• NFKM_LoadAdminKeysHandle lakh is the handle returned by

NFKM_loadadminkeys_begin

Returns a bitmap of logical tokens to be loaded.

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 158/237

8.2.13. NFKM_loadcardset_*

8.2.13.1. NFKM_loadcardset_abort

This function aborts the loading of a card set:

void NFKM_loadcardset_abort(
 NFKM_LoadCSHandle state
);

8.2.13.2. NFKM_loadcardset_begin

Use the NFKM_getinfo call to get the current state before using

any other call that relies on the data in the NFKM_SlotInfo

structure being up to date.

This function prepares to load a card set. The following diagram illustrates the

paths through the NFKM_loadcardset process:

M_Status NFKM_loadcardset_begin(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const NFKM_ModuleInfo *module,
 const NFKM_CardSet *cardset,
 NFKM_LoadCSHandle *state_r,
 struct NFast_Call_Context *cctx
);

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 159/237

8.2.13.3. NFKM_loadcardset_done

This function completes the loading of a card set:

M_Status NFKM_loadcardset_done(
 NFKM_LoadCSHandle state,
 M_KeyID *logtokid_r
);

8.2.13.4. NFKM_loadcardset_nextcard

Use the NFKM_getinfo call to get the current state before using

any other call that relies on the data in the NFKM_SlotInfo

structure being up to date.

This function attempts to load the next card in a card set:

M_Status NFKM_loadcardset_nextcard(
 NFKM_LoadCSHandle state,
 const NFKM_SlotInfo *slot,
 const M_Hash *pp,
 int *sharesleft_r,
 struct NFast_Call_Context *cctx
);

It returns Status_OK if the card was loaded successfully. Otherwise, in the event of

an error, the return value will be TokenIOError, PhysTokenNotPresent, DecryptFailed, or

potentially something else in the event of an unrecoverable error. After any error,

even a recoverable one, *sharesleft_r is not changed.

8.2.14. NFKM_loadworld_*

8.2.14.1. NFKM_loadworld_abort

Destroys a Security World loading context.

void NFKM_loadworld_abort(
 NFKM_LoadWorldHandle lwh
);

• NFKM_LoadWorldHandle lwh is the handle for the Security World to be loaded

returned by NFKM_loadworld_begin.

8.2.14.2. NFKM_loadworld_begin

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 160/237

Initializes an operation to program a module with an existing Security World. The

following diagram illustrates the paths through the NFKM_loadworld process:

M_Status NFKM_loadworld_begin(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 NFKM_LoadWorldHandle *lwh,
 const NFKM_ModuleInfo *m,
 struct NFast_Call_Context *cc
);

• NFKM_LoadWorldHandle *lwh is a pointer to the address of handle to fill in

• const NFKM_ModuleInfo *m is a pointer to the module to be initialized

If this function fails, nothing will have been allocated and no further action need

be taken; if it succeeds, the handle returned must be freed by calling

NFKM_loadworld_done or NFKM_loadworld_abort.

As with initializing new Security Worlds, it will help if you call NFKM_getinfo again

after this function.

8.2.14.3. NFKM_loadworld_done

Finishes Security World loading.

M_Status NFKM_loadworld_done(
 NFKM_LoadWorldHandle lwh
);

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 161/237

• NFKM_LoadWorldHandle lwh is the handle for the Security World to be loaded

returned by NFKM_loadworld_begin.

If this function succeeds, the handle will have been freed; if it fails, you must still

call NFKM_loadworld_abort.

8.2.14.4. NFKM_loadworld_nextcard

Reads an administrator card.

M_Status NFKM_loadworld_nextcard(
 NFKM_LoadWorldHandle lwh,
 const NFKM_SlotInfo *s,
 const M_Hash *pp, int *left
);

• NFKM_LoadWorldHandle lwh is the handle for the Security World to be loaded

returned by NFKM_loadworld_begin.

• const NFKM_SlotInfo *s is a pointer to the slot containing the admin card

• const M_Hash *pp is a pointer to the passphrase for the card

• int *left is a pointer to the address to store number of cards remaining

8.2.14.5. NFKM_loadworld_setinitmoduleparams

Configures the parameters for module initialization at the end of the world

initialization.

M_Status NFKM_loadworld_setinitmoduleparams(
 NFKM_LoadWorldHandle lwh,
 const NFKM_InitModuleParams *imp
);

• NFKM_LoadWorldHandle lwh is the handle for the Security World to be loaded

returned by NFKM_loadworld_begin

• const NFKM_InitModuleParams *imp is a pointer to the module initialization

parameters.

8.2.15. NFKM_makecardset_*

8.2.15.1. NFKM_makecardset_abort

This function aborts the creation of a card set:

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 162/237

void NFKM_makecardset_abort(
 NFKM_MakeCSHandle state
);

8.2.15.2. NFKM_makecardset_begin

This function prepares to make a new card set. The following diagram illustrates

the paths through the NFKM_makecardset:

NFKM_makecardset_setflags, NFKM_makecardset_makeshareacl or

NFKM_makecardset_setshareacl are not recommended for normal

use

Use the NFKM_getinfo call to get the current state before using

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 163/237

any other call that relies on the data in the NFKM_SlotInfo

structure being up to date.

M_Status NFKM_makecardset_begin(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const NFKM_ModuleInfo *module,
 NFKM_MakeCSHandle *state_r,
 const char *name,
 int n,
 int k,
 M_Word flags,
 int timeout,
 NFKM_FIPS140AuthHandle fips140auth,
 struct NFast_Call_Context *cctx
);

• const NFKM_ModuleInfo *module is a pointer to the module to use to make the

card set

• NFKM_MakeCSHandle *state_r is a pointer to the card set state.

typedef struct NFKM_MakeCSState
*NFKM_MakeCSHandle;

• const char *name is the name to use for this card set.

• int n is the total number of cards in the set

• int k is the the quorum, the number of cards that must be read to recreate the

logical token.

• M_Word flags a flags word, the following flag is defined:

NFKM_SAF_REMOTE 1u /*Allow remote reading of shares */

• int timeout is the time out for the card set or 0 for no time out. This is the

time in seconds from the loading of the card set after which the module will

destroy the logical tokens protected by the card set.

NFKM_FIPS140AuthHandle fips140auth is only required in FIPS 140 Level 3 Security

Worlds.

8.2.15.3. NFKM_makecardset_done

This function completes the creation of a card set:

M_Status NFKM_makecardset_done(
 NFKM_MakeCSHandle state,
 NFKM_CardSetIdent *ident_r,

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 164/237

 NFKM_FIPS140AuthHandle fips140auth
);

8.2.15.4. NFKM_makecardset_gethash

The functions fetches the identifying hash for cards created by this makecardset

job.

void NFKM_makecardset_gethash(
 NFKM_MakeCSHandle mch,
 M_Hash *hh
);

8.2.15.5. NFKM_makecardset_getlogicaltoken

Fetches the logical token id for a card set which has been written.

M_Status NFKM_makecardset_getlogicaltoken(
 NFKM_MakeCSHandle mch,
 M_KeyID *ltid,
 unsigned f
);
#define NFKM_MCF_STEAL 1u

Only call this function after NFKM_makecardset_nextcard says there are no shares left.

If you set NFKM_MCF_STEAL in f then you get to keep the logical token id and

NFKM_makecardset_done won’t destroy it.

8.2.15.6. NFKM_makecardset_makeshareacl

Constructs a share ACL.

M_Status NFKM_makecardset_makeshareacl(
 NFKM_MakeCSHandle mch,
 M_Word f,
 M_ACL *acl
);

Dispose of the ACL using NFastApp_FreeACL when you’ve finished.

8.2.15.7. NFKM_makecardset_nextcard

Use the NFKM_getinfo call to get the current state before using

any other call that relies on the data in the NFKM_SlotInfo

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 165/237

structure being up to date.

This function writes the next card in a new card set:

M_Status NFKM_makecardset_nextcard(
 NFKM_MakeCSHandle state,
 const char *name,
 NFKM_SlotInfo *slot,
 const M_Hash *pp,
 int *sharesleft_r,
 NFKM_FIPS140AuthHandle fips140auth
);

It returns values and semantics as for NFKM_loadcardset_nextcard.

The per-card name must be NULL for n=1 card sets, and non-NULL for all other card

sets.

8.2.15.8. NFKM_makecardset_setflags

M_Word NFKM_makecardset_setflags(
 NFKM_MakeCSHandle mch,
 M_Word bic,
 M_Word xor
);

Returns the current flags; then clears the bits in bic and toggles the bits in xor.

The flags wanted are the Card_flags_* ones.

It is best to avoid using this function; instead, pass appropriate

CardSet_flags_ to NFKM_makecardset_begin and it will automatically

set appropriate share flags.

8.2.15.9. NFKM_makecardset_setshareacl

Sets the ACL to be set on subsequent shares of this card set.

void NFKM_makecardset_setshareacl(
 NFKM_MakeCSHandle mch,
 M_ACL *acl
);

The ACL is not copied: the pointer must remain valid. The initial state is that no

ACL is set for shares; to return to this state, pass a null pointer.

 It is best to avoid using this function; instead, pass appropriate

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 166/237

CardSet_flags_ to NFKM_makecardset_begin and it will construct and

use an appropriate ACL.

8.2.16. NFKM_newkey_*

8.2.16.1. NFKM_newkey_makeacl

This function creates the ACL for a new key:

M_Status NFKM_newkey_makeacl(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const NFKM_WorldInfo *world
 const NFKM_CardSet *cardset
 M_Word flags,
 M_Word opperms_base,
 M_Word opperms_maskout,
 M_ACL *acl
 struct NFast_Call_Context *cctx
);

1. const NFKM_WorldInfo *world must be non-NULL.

2. const NFKM_CardSet *cardset must be NULL for module-only protection, or non-

NULL for Operator Card Set protection.

3. The following flags are defined:

a. NFKM_NKF_IKWID

If this flag is set, NFKM_makeacl does not perform its standard checks. This

lets you create keys with esoteric ACLs. IKWID stands for 'I know what I’m

doing'. You should not set this flag unless you are sure this is true.

b. NFKM_NKF_NVMemBlob

If this flag is set, NFKM_makeacl creates an NVRAM key blob, using the

standard ACL options.

c. NFKM_NKF_NVMemBlobX

If this flag is set, NFKM_makeacl creates an NVRAM key blob, using the

extended options.

d. NFKM_NKF_PerAuthUseLimit

If this flag is set, NFKM_makeacl creates an ACL with a per auth use limit.

e. NFKM_NKF_Protection_mask

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 167/237

f. NFKM_NKF_ProtectionCardSet

g. NFKM_NKF_ProtectionModule

It is not necessary to set this flag in conjunction with NFKM_makeacl or

NFKM_makeblobs.

h. NFKM_NKF_ProtectionNoKey

This flag can be used when generating only public keys.

i. NFKM_NKF_ProtectionUnknown

It is not necessary to set this flag in conjunction with NFKM_makeacl or

NFKM_makeblobs.

j. NFKM_NKF_PublicKey

If this flag is set, NFKM_makeacl creates the ACL for the public half of a key.

k. NFKM_NKF_Recovery_mask

l. NFKM_NKF_RecoveryDefault, NFKM_NKF_RecoveryRequired,

NFKM_NKF_RecoveryDisabled, NFKM_NKF_RecoveryForbidden

If any of these flags are returned by NFKM_findkey, it indicates that recovery

is enabled.

Result for a new key if the Security World
has recovery:

enabled disabled

NFKM_NKF_RecoveryDefault enabled disabled

NFKM_NKF_RecoveryRequired enabled InvalidACL

NFKM_NKF_RecoveryDisabled disabled disabled

NFKM_NKF_RecoveryForbidden InvalidACL disabled

m. NFKM_NKF_RecoveryNoKey

If this flag is returned by NFKM_findkey, it indicates that there is no private

key.

n. NFKM_NKF_RecoveryUnknown

If this flag is returned by NFKM_findkey, it indicates that recovery is

unknown.

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 168/237

o. NFKM_NKF_SEEAppKey

If this flag is set, NFKM_makeacl creates an ACL with a certifier for a SEE

World. It has been superseded by NFKM_NKF_SEEAppKeyHashAndMech.

p. NFKM_NKF_SEEAppKeyHashAndMech

If this flag is set, NFKM_makeacl creates an ACL with a certifier for a SEE

World specifying the key hash and signing mechanism.

q. NFKM_NKF_TimeLimit

If this flag is set, NFKM_makeacl creates an ACL with a time limit.

r. NFKM_NKF_HasCertificate

4. M_ACL *acl —the ACL will be overwritten and, therefore, should not contain any

pointers to memory that has been operated on by malloc.

Set to have oppermissions values like _Sign, _Decrypt,_UseAsBlobKey,

_UseAsCertificate, or similar. In many cases, you can set oppermissions to be

one or more of the following macros, depending on the capabilities of the key:

◦ NFKM_DEFOPPERMS_SIGN

◦ NFKM_DEFOPPERMS_VERIFY

◦ NFKM_DEFOPPERMS_ENCRYPT

◦ NFKM_DEFOPPERMS_DECRYPT

You can also use some combination of those macros for keys that can do

both, such as RSA and symmetric keys:

#define NFKM_DEFOPPERMS_SIGN
(Act_OpPermissions_Details_perms_Sign|Act_OpPermissions_Details_perms_UseAsCertificate
|Act_OpPermissions_Details_perms_SignModuleCert)
#define NFKM_DEFOPPERMS_VERIFY (Act_OpPermissions_Details_perms_Verify)
#define NFKM_DEFOPPERMS_ENCRYPT
(Act_OpPermissions_Details_perms_Encrypt|Act_OpPermissions_Details_perms_UseAsBlobKey)
#define NFKM_DEFOPPERMS_DECRYPT
(Act_OpPermissions_Details_perms_Decrypt|Act_OpPermissions_Details_perms_UseAsBlobKey)

If you wish to modify the default ACL, you may do so after calling this

function. In such a case, the ACL will be allocated dynamically.

The Protection flags either must be Unknown or they must be NFKM_Module or

NFKM_CardSet and correspond to whether cardset is non-NULL. In any case,

NFKM_CardSet determines the protection.

You must free the ACL at some point, either by using NFastApp_FreeACL or, if the

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 169/237

ACL was part of a command, as part of a call to NFastApp_Free_Command.

8.2.16.2. NFKM_newkey_makeaclx

This is an alternative to NFKM_newkey_makeacl which enables you to define more

complex ACLs by defining input in the NFKM_MakeACLParams structures.

M_Status NFKM_newkey_makeaclx(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const NFKM_WorldInfo *w,
 const NFKM_MakeACLParams *map,
 M_ACL *acl,
 struct NFast_Call_Context *cc
);

typedef struct NFKM_MakeACLParams {
M_Word f;
M_Word op_base, op_bic;
const NFKM_CardSet *cs;
const M_Hash *seeinteg; SEEAppKey
M_Word timelimit; TimeLimit
const M_KeyHashAndMech *seeintegkham; SEEAppKeyHashAndMech
M_Word pa_uselimit; PerAuthUseLimit
NFKM_FIPS140AuthHandle fips; NVMemBlob, maybe others later
const M_Hash *hknvacl; NVMemBlobX
} NFKM_MakeACLParams;

The values for NFKM_WorldInfo and NFKM_CardSet are the same as for

NFKM_newkeymakeacl.

If you are creating a key for a SEE application, specify the

application signing key using a M_KeyHashAndMech. Use of an M_Hash

is deprecated.

8.2.16.3. NFKM_newkey_makeblobs

This function creates the working and recovery blobs for a newly generated key:

M_Status NFKM_newkey_makeblobs(
 NFast_AppHandle app,
 const NFKM_WorldInfo *world,
 M_KeyID privatekey,
 M_KeyID publickey,
 const NFKM_CardSet *cardset,
 M_KeyID logtokenid,
 M_Word flags,
 NFKM_Key *newkeydata_io,
 struct NFast_Call_Context *cctx
);

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 170/237

• world must be non-NULL.

• One or both of privatekey and publickey may be 0 if only one-half, or possibly

even neither, is to be recorded. If the key is a symmetric key, supply it as

privatekey.

• cardset and logtokenid must be set consistently; either both must be NULL or

both must be non-NULL, depending on whether cardset was 0 in NFKM_makeacl.

• flags should be as in NFKM_makeacl for the private half (_PublicKey must not be

specified).

This call overwrites the previous contents of newkeydata_io members privblob,

-pubblob and privblobrecov, so these should not contain pointers to any memory

that has been operated on by malloc. This call also fills in the hash member. It does

not change the other members, which must be set appropriately before the caller

uses NFKM_recordkey.

8.2.16.4. NFKM_newkey_makeblobsx

This function creates the working and recovery blobs for a newly generated key—

it offers more functionality than NFKM_newkey_makeblobs as you can specify details

for the blobs in a parameters structure. In particular it may be used to create a key

blob stored in NVRAM.

M_Status NFKM_newkey_makeblobsx(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const NFKM_WorldInfo *w,
 const NFKM_MakeBlobsParams *mbp,
 NFKM_Key *k,
 struct NFast_Call_Context *cc
);

typedef struct NFKM_MakeBlobsParams {
M_Word f;
M_KeyID kpriv, kpub, lt;
const NFKM_CardSet *cs;
NFKM_FIPS140AuthHandle fips; NVMemBlob, maybe others later
M_KeyID knv; NVMemBlob[X]
M_KeyID knvacl; NVMemBlobX
} NFKM_MakeBlobsParams;

8.2.16.5. NFKM_newkey_writecert

Sets up the key generation certificate information for a new key.

M_Status NFKM_newkey_writecert(
 NFast_AppHandle app,

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 171/237

 NFastApp_Connection conn,
 const NFKM_ModuleInfo *m,
 M_KeyID kpriv,
 M_ModuleCert *mc,
 NFKM_Key *k,
 struct NFast_Call_Context *cctx
);

The argument mc should be the key generation certificate for a symmetric or

private key.

To free the data stored in the Key structure, call NFKM_freecert.

8.2.17. NFKM_operatorcard_changepp

This function has been superseded by the NFKM_changepp function,

see NFKM_changepp.

This function changes the passphrase on an operator card:

M_Status NFKM_operatorcard_changepp(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const NFKM_SlotInfo *slot,
 const M_Hash *oldpp,
 const M_Hash *newpp,
 struct NFast_Call_Context *cctx
);

Either oldpp or newpp may be NULL to indicate the absence of a passphrase.

8.2.18. NFKM_operatorcard_checkpp

This function has been superseded by the NFKM_checkpp function,

see NFKM_checkpp.

This function checks the passphrase on an operator card:

M_Status NFKM_operatorcard_checkpp(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 const NFKM_SlotInfo *slot,
 const M_Hash *pp,
 struct NFast_Call_Context *cctx
);

pp may be NULL to indicate the absence of a passphrase.

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 172/237

8.2.19. NFKM_recordkey

This function writes the key blobs to the kmdata area of the host computer’s hard

disk:

M_Status NFKM_recordkey(
 NFast_AppHandle app,
 NFKM_Key *key,
 struct NFast_Call_Context *cctx
);

NFKM_recordkey does not take over any of the memory in the key. Whether the key

is module protected, smart-card protected, or has some other kind of protection is

inferred from the privblob details.

The NFKM_Key block should be cleared to all-bits-zero before use. If you use any

advanced features, set the version field (member v) to the correct value before

calling recordkey.

8.2.20. NFKM_recordkeys

NFKM_recordkeys does the same job as NFKM_recordkey for multiple keys.

M_Status NFKM_recordkeys(
 NFast_AppHandle app,
 NFKM_Key **k,
 size_t n,
 struct NFast_Call_Context *cc
);

Either all the keys are written or none are.

8.2.21. NFKM_replaceacs_*

8.2.21.1. NFKM_replaceacs_abort

Destroys an admin card replacement context.

void NFKM_replaceacs_abort(
 NFKM_ReplaceACSHandle rah
);

NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 173/237

8.2.21.2. NFKM_replaceacs_begin

Starts a job to replace the Administrator Card Set. The following diagram

illustrates the paths through the NFKM_replaceacs process:

M_Status NFKM_replaceacs_begin(
 NFast_AppHandle app,
 NFastApp_Connection conn,
 NFKM_ReplaceACSHandle *rah,
 const NFKM_ModuleInfo *m,
 struct NFast_Call_Context *cc
);

• NFKM_ReplaceACSHandle *rah is a pointer to the address to which the function

will write the job handle

• const NFKM_ModuleInfo *m is a pointer to the module to use for the transfer

If this function fails, there is nothing else to do; if it succeeds, you must either go

all the way through NFKM_replaceacs_done or call NFKM_replaceacs_abort to throw

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 174/237

away all of the state.

8.2.21.3. NFKM_replaceacs_done

Wraps up an admin card replacement job.

M_Status NFKM_replaceacs_done(
 NFKM_ReplaceACSHandle rah
);

• NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

8.2.21.4. NFKM_replaceacs_gethash

Fetches the identifying hash for new administrator cards created by this job.

void NFKM_replaceacs_gethash(
 NFKM_ReplaceACSHandle rah,
 M_Hash *hh
);

• NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

• M_Hash *hh is a pointer to the address to write the hash

8.2.21.5. NFKM_replaceacs_middle

Does the work in the middle of an admin card set replacement job.

M_Status NFKM_replaceacs_middle(
 NFKM_ReplaceACSHandle rah
);

NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

8.2.21.6. NFKM_replaceacs_preflightcheck

Verifies that a replaceacs operation is safe.

int NFKM_replaceacs_preflightcheck(
 NFast_AppHandle app,
 const NFKM_WorldInfo *w,
 int *unsafe,
 struct NFast_Call_Context *cc
);

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 175/237

• NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

• const NFKM_WorldInfo *w is a pointer to the world information

• int *unsafe is cleared if safe, nonzero if not

If the operation is safe, *unsafe is cleared; otherwise it will contain a nonzero value.

Later, this might explain in more detail what the problem is. Currently, the only

check is for world file entries which aren’t understood (and therefore might be

blobs of keys which would need to be replaced).

8.2.21.7. NFKM_replaceacs_readcard

Reads an administrator card, with a view to replacing it.

M_Status NFKM_replaceacs_readcard(
 NFKM_ReplaceACSHandle rah,
 const NFKM_SlotInfo *s,
 const M_Hash *pp,
 int *left
);

• NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

• const NFKM_SlotInfo *s is a pointer to the slot containing the admin card

• const M_Hash *pp is a pointer to the passphrase hash for the card

• int *left is a pointer to the address to store number of cards remaining

8.2.21.8. NFKM_replaceacs_writecard

Writes a replacement administrator card.

M_Status NFKM_replaceacs_writecard(
 NFKM_ReplaceACSHandle rah,
 NFKM_SlotInfo *s, const M_Hash *pp,
 int *left
);

• NFKM_ReplaceACSHandle rah is the job handle returned by NFKM_replaceacs_begin

• NFKM_SlotInfo *s is a pointer to the slot containing admin card

• const M_Hash *pp is a pointer to the passphrase hash for the card

• int *left is a pointer to the address to store number of cards remaining

Chapter 8. NFKM Functions

nCore v13.3 Developer Tutorial 176/237

9. nCore API commands
This chapter describes the complete nShield command set. It is divided into the

following sections:

• Basic commands

These commands are available on all nShield modules. They do not offer any

key-management functionality

• Key-management commands

These commands are only available on nForce and nShield modules.

• Commands used only by the generic stub

These commands are included for information only. You should not need to

call them directly. Commands are listed alphabetically within each section. For

each command, the following information is listed:

• the command name

• the states in which the command can be issued

• the required inputs

• the expected output

If the module is unable to complete a requested command due

to a non-fatal condition, such as lack of memory or an unknown

command, the module sends a response with no reply data. The

reply’s cmd value is sent to Cmd_ErrorReturn with the condition

indicated by the status word that was returned in the header.

Unless specified otherwise, there is a limit of 8K on the total

message that can be sent to the nShield server for each

command, or in reply. This means that the maximum length of

any byteblock sent for processing must be somewhat less that

8K.

9.1. Basic commands

The following basic commands, described in this section, are available on all

nShield modules:

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 177/237

• ClearUnit

• ClearUnitEx

• ModExp

• ModExpCrt

These commands perform cryptographic acceleration without key management.

These commands are intended for use by applications that manage their own

keys.

9.1.1. ClearUnit

All non-error states "Privileged" users only

This command resets a module, returning it to the same mode that it was

previously in. The module and server negotiate to enable the module to be reset

without disturbing the host’s PCI subsystem. When the module is cleared:

• all object handles (IDKA, IDKT, etc.) are invalidated

• any share reassembly process that is currently active is aborted

• the module enters the self-test state.

ClearUnit does not destroy:

• module keys KM

• module signing key KML

• long-term fixed signing key KLF

• nShield Security Officer’s key KNSO.

9.1.1.1. Arguments

struct M_Cmd_ClearUnit_Args {
 M_ModuleID module; ModuleID
};

9.1.1.2. Reply

The reply structure for this command is empty.

The status is Status_OK or, if the unit is already being reset, Status_UnitReset. The

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 178/237

reply is sent immediately (that is, before the unit is actually cleared).

9.1.1.3. Notes

In versions of the server prior to 1.40, the ClearUnit command caused a hard reset.

In release 1.40, the ClearUnit command was given a new command number, and

the old command number was renamed OldClearUnit, which is included for

backward compatibility only. From release 1.40, servers interpret ClearUnit and

OldClearUnit as ClearUnit. The ClearUnit command fails with Status_UnknownCommand

on servers older than release 1.40.

9.1.2. ClearUnitEx

All non-error states "Privileged" users only

This command resets a module, and optionally enables you to change the mode as

required. ClearUnitEx is implemented entirely by the hardserver, which:

• Checks and sets the scratchpad registers

• Sets a want clear state on the command target

Further behavior is identical to the ClearUnit command, including sending

ClearUnit (not ClearUnixEx) to the module. See ClearUnit for more about the

ClearUnit command.

9.1.2.1. Arguments

bitmap: flags
 harmless: 16-
ModuleID module [<module to be reset>]
ModuleMode mode [<desired module mode>]

• Flags are not currently used.

9.1.2.2. Module mode settings

The following desired module mode settings are available:

ModuleMode Default =0
ModuleMode Maintenance =1
ModuleMode Operational =2
ModuleMode Initialisation =3

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 179/237

9.1.2.3. Reply

• The ModuleMode value in the reply corresponds to the bit field in scratchpad 0.

• If the module is already part way through a reset, then @ref Status_UnitReset is

returned.

• If the request cannot be completed because the main application of the

module does not support software mode changes, then @ref

Status_ModuleApplicationNotSupported is returned.

• If the request cannot be completed because the module monitor does not

support software mode changes, then @ref Status ModuleMonitorNotSupported is

returned.

Firmware releases prior to v12 do not support changing the

mode without use of the MOI switch. The mode argument must be

0. With the appropriate firmware, the mode argument can be used

to change the mode.

9.1.3. ModExp

Operational state initialization state

This command performs modular exponentiation on parameters passed by the

client.

9.1.3.1. Arguments

struct M_Cmd_ModExp_Args {
 M_Bignum a; A base
 M_Bignum p; P power
 M_Bignum n; N modulus
};

9.1.3.2. Reply

struct M_Cmd_ModExp_Reply {
M_Bignum r;
};

where r = APmod N

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 180/237

9.1.4. ModExpCrt

Operational state initialization state

This command performs modular exponentiation on parameters passed by the

client. ModExpCrt uses the Chinese Remainder Theorem to reduce the time it takes

to perform the operation.

9.1.4.1. Arguments

struct M_Cmd_ModExpCrt_Args {
 M_Bignum a; A base
 M_Bignum p; P modulus larger factor
 M_Bignum q; Q modulus smaller factor
 M_Bignum dmp1; D mod (P-1)
 M_Bignum dmq1; D mod (Q-1)
 M_Bignum iqmp; Q-1 mod P
};

9.1.4.2. Reply

Uses M_Cmd_ModExp_Reply.

9.1.4.3. Notes

It is assumed that P >= Q.

9.2. Key-management commands

The commands described in this section, are only available on key-management

modules.

If you send any of these commands to an acceleration-only module, it fails with

the status value Status_InvalidState.

9.2.1. ChangeSharePIN

Operational state initialization state

This command enables a PIN that protects a single share to be changed. The old

PIN must be provided unless the share has no PIN. Likewise, the new PIN must be

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 181/237

provided unless the PIN is being removed.

The module decrypts the share using the old PIN and the KM associated with the

token. If the share is decrypted correctly, the module encrypts it using the new

PIN and the KM. It then writes the newly encrypted share to the smart card or

software token.

This operation can be performed regardless of whether or not the logical token

associated with this share is "present". The only requirement is that both the smart

card with the share and the KM associated with the token be present within the

module.

9.2.1.1. Arguments

struct M_Cmd_ChangeSharePIN_Args {
 M_Cmd_ChangeSharePIN_Args_flags flags;
 M_PhysToken token;
 M_KMHash hkm;
 M_ShortHash hkt;
 M_Word i;
 M_PIN *oldpin;
 M_PIN *newpin;
};

• The following flags are defined:

◦ Cmd_ChangeSharePIN_Args_flags_oldpin_present

Set this flag if the input contains the old PIN. The old PIN must be

specified unless the share was previously encrypted without a PIN or if

the share uses the protected PIN path.

◦ Cmd_ChangeSharePIN_Args_flags_newpin_present

Set this flag if the input contains the new PIN. The new PIN must be

specified unless the share is to be encrypted without a PIN or if the share

uses the protected PIN path.

◦ Cmd_ChangeSharePIN_Args_flags__allflags

• M_KMHash hkm is Module key hash HKM

• M_ShortHash hkt is a short, 10-byte token hash, such as returned by GetSlotInfo.

• M_Word i is the share number

• M_PIN *oldpin is the old PIN, or NULL

• M_PIN *newpin is the new PIN, or NULL

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 182/237

9.2.1.2. Reply

The reply structure for this command is empty.

9.2.2. ChannelOpen

Operational state, initialization state Requires a ClientID

This command opens a communication channel that can be used for bulk

encryption. Data can then be transferred over this channel by using the

ChannelUpdate command.

 Channel operations are only available for symmetric algorithms.

9.2.2.1. Arguments

typedef struct {
 M_ModuleID module;
 M_ChannelType type;
 M_Cmd_ChannelOpen_Args_flags flags;
 M_ChannelMode mode;
 M_Mech mech;
 M_KeyID *key;
 M_IV *given_iv;
} M_Cmd_ChannelOpen_Args;

• M_ChannelType type is the data transfer mechanism for the channel. At present,

only ChannelType_Simple is supported. Alternatively, ChannelType_Any can be

used to let the module pick the"best" channel type that it supports.

ChannelType_Any
ChannelType_Simple

• M_Cmd_ChannelOpen_Args_flags flags The following flags are defined:

◦ Cmd_ChannelOpen_Args_flags_key_present

Set this flag if the command contains a KeyID. The command must include

a KeyID unless you are using a hashing mechanism.

◦ Cmd_ChannelOpen_Args_flags_given_iv_present

Set this flag if the command designates which initialization vector to use.

For encryption and signature mechanisms, if this flag is not set and the

mechanism requires an initialization vector, the module will create a

random iv and return it in the reply. For decryption and verification

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 183/237

mechanisms, this flag must be set and the M_IV must be specified or

Status_InvalidParameter will be returned.

• M_ChannelMode mode determines the operation to perform on this channel. The

following modes are defined:

◦ ChannelMode_Encrypt

◦ ChannelMode_Decrypt

◦ ChannelMode_Sign

◦ ChannelMode_Verify

• M_Mech mech is the mechanism to use. See Mechanisms for information on

supported mechanisms.

• M_KeyID *key is the KeyID of the key to use on the channel. The key must have

the appropriate Encrypt, Decrypt, Sign, or Verify permissions in its ACL. It must

also be an appropriate type for the given mechanism. In order to use unkeyed

hash mechanisms, this key field must be absent.

• M_IV *given_iv is the initialization vector to use on the channel. This field is

optional for the Encrypt and Sign modes, but it must be given for the Decrypt

and Verify modes. Status_InvalidParameter is returned if this field is not

present when it is required or if it has an incorrect mechanism.

9.2.2.2. Reply

typedef struct {
M_Cmd_ChannelOpen_Reply_flags flags;
M_KeyID idch;
M_IV *new_iv;
M_ChannelOpenInfo openinfo;
} M_Cmd_ChannelOpen_Reply;

• M_Cmd_ChannelOpen_Reply_flags flags

The following flag is defined: Cmd_ChannelOpen_Reply_flags_new_iv_present. This

flag is set if the new_iv field is present.

• M_KeyID idch is the ID of the Channel. It is like a KeyID; it may be used to refer

to the channel and can be destroyed with the Destroy command after use.

However, it will be different to the KeyID.

The server will destroy the channel automatically when the

last connection associated with the application that created

it closes.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 184/237

• M_IV *new_iv is an initialization vector for the channel. It is returned only if the

channel mode is Encrypt or Sign and no given_iv has been sent with the

command.

• M_ChannelOpenInfo openinfo is extra information about the channel:

struct M_ModuleChannelOpenInfo {
M_ChannelType type;
union M_ChannelType__ExtraMCOI info;
};

• M_ChannelType type is the channel type used.

• union M_ChannelType__ExtraMCOI info is extra information that is dependent on

the channel type. It allows the client to access a device driver, if necessary, in

order to perform data transfer.

9.2.3. ChannelUpdate

Operational state, initialization state Requires a ClientID

This command transfers data over a communication channel for bulk encryption.

Such a channel must be opened with the ChannelOpen command before the

ChannelUpdate command can be used.

 Channel operations are only available for symmetric algorithms.

Data is streamed into an open channel by giving one or more Update commands.

The last data block to be processed should have the final flag set. This final block

does not have to contain any input data (except in Verify mode; see below). Input

data does not have to be multiples of the block size for block ciphers; the module

will buffer the data internally as necessary. In general, the output block will contain

all the data that can be encrypted/decrypted unambiguously given the input so

far. However, PKCS #5 padding usually lags behind by a block when decrypting.

For decryption—and for encryption in non-padding modes—you must have

supplied a whole number of input blocks. Otherwise, a status of

Status_EncryptFailed or Status_DecryptFailed will be returned. Status_DecryptFailed

is also used if unpadding fails during decryption.

For signing modes, no output will be generated until the final bit is set, in which

case the signature or hash will be output as the byte block.

For verification modes, no output is generated. Instead, the plain text message

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 185/237

must be input by ChannelUpdate commands with their final bit clear, then a

ChannelUpdate with the final bit set is given, with the signature/hash bytes given as

the input block. This will return a status of OK or VerifyFailed, as appropriate.

9.2.3.1. Arguments

struct M_Cmd_ChannelUpdate_Args {
 M_Cmd_ChannelUpdate_Args_flags flags;
 M_KeyID idch;
 M_ByteBlock input;
};

• The following flag is defined: Cmd_ChannelUpdate_Args_flags_final. This flag

indicates the last block of input data.

• M_KeyID idch is the ChannelID returned by ChannelOpen.

• M_ByteBlock input is a byte block of input data (it may be of zero length)

9.2.3.2. Reply

struct M_Cmd_ChannelUpdate_Reply {
 M_ByteBlock output;
};

M_ByteBlock output is a byte block containing output data from the channel. This

block may be of zero length.

9.2.4. Decrypt

Operational state, initialization state Requires a ClientID

This command takes a cipher text and decrypts it with a previously stored key.

The limit of 8K does not apply to data decrypted by this command. This is

because the Generic Stub library splits the command into a ChannelOpen command

followed by a number of ChannelUpdate commands. Only symmetric mechanisms

use channels; asymmetric mechanisms cannot.

For information on formats, see Encrypt.

9.2.4.1. Arguments

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 186/237

struct M_Cmd_Decrypt_Args {
 M_Cmd_Decrypt_Args_flags flags;
 M_KeyID key;
 M_Mech mech;
 M_CipherText cipher;
 M_PlainTextType reply_type;
};

• No Flags are defined.

• M_KeyID key is IDKA.

• M_Mech mech: See Mechanisms for information on supported mechanisms. If mech

is not Mech_Any, then it must match the mechanism of the ciphertext,

cipher.mech. If it does not match, then a MechanismNotExpected error is returned.

9.2.4.2. Reply

struct M_Cmd_Decrypt_Reply {
 M_PlainText plain;
}

9.2.5. DeriveKey

Operational state, initialization state Requires a ClientID

This command creates a new key object from a number of other keys that have

been stored already on the module. Then, DeriveKey returns a KeyID for the new

key.

There are two special key types used by DeriveKey:

• a template key — the template is used to provide the ACL and application data

for the output key

• a wrapped key — a key type for holding encrypted keys.

9.2.5.1. Arguments

struct M_Cmd_DeriveKey_Args {
 M_Cmd_DeriveKey_Args_flags flags;
 M_DeriveMech mech;
 int n_keys;
 M_vec_KeyID keys;
 union M_DeriveMech__DKParams params;
} M_Cmd_DeriveKey_Args;

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 187/237

• The following flag is defined: Cmd_DeriveKey_Args_flags_WorldHashMech Indicates

that the hash mechanism for Security World keys will be used for identifying

keys. By enabling the Cmd_DeriveKey_Args_flags_WorldHashMech flag, keys shall be

identified by the selected world hash mechanism. See DeriveKey and

DeriveKeyEx.

• M_DeriveMech mech

See Derive Key Mechanisms for information on supported mechanisms.

• int n_keys

This value is the number of keys that have been supplied in the key table.

• M_vec_KeyID keys

This is a table containing the KeyIDs of the keys that are to be used. You must

enter the KeyIDs of these keys in the following order:

a. template key

b. base key

c. wrapping key(s)

Each key must be of the correct type for the mechanism.

Each of these keys must have an ACL that permits them to be used for

DeriveKey operations in this role.

Any of the keys may have an ACL that requires a certificate.

If more than one of the keys requires a certificate, then all

the certificates must have the same signing key.

• union M_DeriveMech__DKParams params

Parameters for the specific wrapping mechanism. See Derive Key Mechanisms.

union M_DeriveMech__DKParams {
 M_DeriveMech_ConcatenationKDF_DKParams concatenationkdf;
M_DeriveMech_PKCS8Encrypt_DKParams pkcs8encrypt;
M_DeriveMech_PKCS8Decrypt_DKParams pkcs8decrypt;
M_DeriveMech_RawDecrypt_DKParams rawdecrypt;
M_DeriveMech_AESKeyWrap_DKParams aeskeywrap;
M_DeriveMech_AESKeyUnwrap_DKParams aeskeyunwrap;
M_DeriveMech_RawDecryptZeroPad_DKParams rawdecryptzeropad;
M_DeriveMech_ECCMQV_DKParams eccmqv;
M_DeriveMech_ECDHKA_DKParams ecdhka;
M_DeriveMech_ECIESKeyUnwrap_DKParams ecieskeyunwrap;
M_DeriveMech_ECIESKeyWrap_DKParams ecieskeywrap;
M_DeriveMech_ConcatenateBytes_DKParams concatenatebytes;
M_DeriveMech_RawEncrypt_DKParams rawencrypt;
M_DeriveMech_NISTKDFmCTRpRijndaelCMACr32_DKParams nistkdfmctrprijndaelcmacr32;

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 188/237

M_DeriveMech_RawEncryptZeroPad_DKParams rawencryptzeropad;
};

9.2.5.2. Reply

struct M_Cmd_DeriveKey_Reply {
 M_KeyID key;
};

The M_KeyID points to the derived key. The ACL and application data for this key

are the ACL and application data that have been stored as the key data of the

template key. The key type is defined by the mechanism used. The key data is

determined by the base key, the wrapping key (or wrapping keys), and the

mechanism.

9.2.5.3. Notes

The key derivation mechanisms provide a means of converting keys of many

different types into KeyType_Wrapped and then back again. The type of the original

key is usually not preserved in the Wrapped data format (the EncryptMarshalled

mechanism does preserve type).

Therefore, one key may be converted to another of a different type by unwrapping

it with a different mechanism. Indeed, the key data itself may be modified by

unwrapping it with a different key.

This feature is provided to increase flexibility and interoperability, which is a major

goal of the DeriveKey command. However, it can be a potential weak point in

security. Therefore, Entrust recommends that whenever a base key is turned into a

Wrapped key type, if the new key is to be used within the nShield environment, the

ACL for the new key be set only to allow decoding back to the original key. This is

done by setting the DeriveKey ACL entry in the wrapped key so that:

• the mech field identifies the correct decoding mechanism

• the otherkeys table identifies the correct unwrapping key in the right role.

9.2.6. Destroy

Operational state, initialization state Requires a ClientID

This removes a key object from memory and zeroes any storage associated with it.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 189/237

This command can be used to destroy:

• a key object by specifying an IDKA

• a logical token by specifying an IDKT

• a ModuleSEEWorld by specifying a KeyID

• an impath by specifying an ImpathID

• an FTSessionID or FileTransferID

• a channel

• a foreign token lock

• multiple objects that were previously merged by means of MergeKeyIDs. Only

the merged KeyID is removed; the underlying keys remain loaded.

When an object has multiple KeyIDs, Destroy only removes the KeyID for the current

ClientID or SEEWorld. The underlying object is removed when the last KeyID for the

object is destroyed.

It is an error to Destroy an IDKA that has not been issued previously by the nShield

server or that has already been destroyed.

An IDKA may be reused for a new object after the current object

is destroyed.

A key that forms part of a merged set made with MergeKeyIDs (see MergeKeyIDs)

cannot be destroyed. Attempts to do so will return an ObjectInUse error. Destroy

the merged KeyID first.

9.2.6.1. Arguments

struct M_Cmd_Destroy_Args {
M_KeyID key;
};

M_KeyID key can be any object with an M_KeyID, such as an IDKA, an IDKT, or the SEE

World’s KeyID.

9.2.6.2. Reply

The reply structure for this command is empty.

9.2.7. Duplicate

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 190/237

Operational state, initialization state Requires a ClientID

This command duplicates a key object within module memory and returns a new

handle to it. The new key object can then be manipulated independently of the

original key object.

The new key inherits its ACL from the original key.

9.2.7.1. Arguments

struct M_Cmd_Duplicate_Args {
 M_KeyID key;
};

M_KeyID key is IDKA.

9.2.7.2. Reply

struct M_Cmd_Duplicate_Reply {
 M_KeyID newkey;
};

M_KeyID newkey is IDKA2.

9.2.8. Encrypt

Operational state, initialization state Requires a ClientID

This command encrypts data by using a previously loaded key. It returns the

cipher text.

The limit of 8K does not apply to data encrypted by this command. This is

because the Generic Stub library splits the command into a ChannelOpen command

followed by a number of ChannelUpdate commands. Only symmetric mechanisms

use channels; asymmetric mechanisms cannot.

9.2.8.1. Arguments

struct M_Cmd_Encrypt_Args {
 M_Cmd_Encrypt_Args_flags flags;
 M_KeyID key;
 M_Mech mech;

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 191/237

 M_PlainText plain;
 M_IV *given_iv;
};

• The following flag is defined:

Cmd_Encrypt_Args_flags_given_iv_present

This flag must be set if the command includes the initialization vector. If this

flag is not set, the module will generate a random initialization vector if one is

required by this mechanism.

• M_KeyID key is IDKA.

• M_Mech mech

See Mechanisms for information on supported mechanisms. If Mech_Any is

specified and an IV is given, the mechanism is taken from that IV. Otherwise, if

Mech_Any is not specified, the given mechanism is used. Moreover, if an IV is

given, its mechanism must match the given mechanism, otherwise

Status_MechanismNotExpected will be returned.

• M_IV *given_iv

This can be either the IV to use or otherwise NULL if no IV is defined or if you

prefer that the module choose an IV on its own.

9.2.8.2. Reply

struct M_Cmd_Encrypt_Reply {
 M_CipherText cipher;
};

9.2.9. Export

Operational state, initialization state Requires a ClientID

This command is used to extract key material in plain text.

Most private key objects should have an ACL (or ACLs) that

forbid the reading of this data in plain text.

9.2.9.1. Arguments

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 192/237

struct M_Cmd_Export_Args {
 M_KeyID key;
};

9.2.9.2. Reply

struct M_Cmd_Export_Reply {
 M_KeyData data;
};

9.2.10. FirmwareAuthenticate

Operational state, initialization state, maintenance state

This command is used to authenticate the firmware in a module by comparing it to

a firmware image on the host. If performed in the maintenance state it can be

used to authenticate the monitor.

Use the fwcheck command-line utility to perform this operation.

9.2.11. FormatToken

Operational state, initialization state May require a KNSO certificate

This command initializes a smart card.

9.2.11.1. Arguments

struct M_Cmd_FormatToken_Args {
M_Cmd_FormatToken_Args_flags flags;
M_PhysToken token;
M_KMHash *auth_key;
};

• The following flag is defined:

Cmd_FormatToken_Args_flags_auth_key_present

Set this flag if the input includes a module key hash to use for challenge-

response authentication. This flag can only be used if the smart card supports

authentication.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 193/237

• M_KMHash *auth_key is the HKM of a module key or a NULL pointer. The module key

is combined with the unique identity of the token to produce the key to be

used for challenge-response authentication.

9.2.11.2. Reply

The reply structure for this command is empty.

9.2.12. GenerateKey and GenerateKeyPair

Operational state, initialization state Requires a ClientID

May require a KNSO certificate

The GenerateKey command randomly generates a key object of the given type and

with the specified ACL (or ACLs) and stores it in internal RAM.

The GenerateKeyPair command randomly generates a matching public and private

key pair.

Use GenerateKey for symmetric algorithms.

For public-key algorithms, use GenerateKeyPair.

9.2.12.1. Arguments

struct M_Cmd_GenerateKey_Args {
 M_Cmd_GenerateKey_Args_flags flags;
 M_ModuleID module;
 M_KeyGenParams params;
 M_ACL acl;
 M_AppData *appdata;
};

struct M_Cmd_GenerateKeyPair_Args {
 M_Cmd_GenerateKeyPair_Args_flags flags;
 M_ModuleID module;
 M_KeyGenParams params;
 M_ACL aclpriv;
 M_ACL aclpub;
 M_AppData *appdatapriv;
 M_AppData *appdatapub;
} M_Cmd_GenerateKeyPair_Args;

• The following flags are defined:

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 194/237

◦ Cmd_GenerateKey_Args_flags_Certify

If this flag is set, the reply will contain a certificate of data type ModuleCert

that describes the security policy for this key or key pair. This certificate

enables an observer, such as an organization’s Security Officer or a

certificate authority, to check that the key or key pair was generated in

compliance with a stated security policy before they allow the key to be

used. The certificate contains:

▪ HKA for the key

▪ the application data field or fields

▪ the ACL (or ACLs)

▪ The certificate is signed by the module’s private key.

◦ Cmd_GenerateKey_Args_flags_appdata_present

You must set this flag if the request contains application data for the

symmetric key.

◦ Cmd_GenerateKey_Args_flags_PairwiseCheck

If this flag is set, the module performs a consistency check on the key by

creating a random message, then encrypting and decrypting this

message. The test fails if the encrypted message is the same as the plain

text or if the encrypted message fails to decrypt to the plain text.

◦ Cmd_GenerateKeyPair_Args_flags_Certify

◦ Cmd_GenerateKeyPair_Args_flags_appdatapriv_present

You must set this flag if the request contains application data for the

private key.

◦ Cmd_GenerateKeyPair_Args_flags_appdatapub_present

You must set this flag if the request contains application data for the

public key.

◦ Cmd_GenerateKeyPair_Args_flags_PairwiseCheck

• M_ModuleID module

If the module ID is nonzero, the key is loaded onto the specified module. If the

module ID is 0, the key is loaded onto the first available module. You can use

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 195/237

the GetWhichModule command to determine which modules contain which keys).

• M_KeyGenParams params

The key type and required parameters needed to generate this key or key pair

are as follows:

struct M_KeyGenParams {
 M_KeyType type;
 union M_KeyType__GenParams params;
};

• The following key types are defined:

◦ KeyType_ArcFour Use GenerateKey

◦ KeyType_Blowfish

◦ KeyType_CAST Use GenerateKey

◦ KeyType_CAST256

◦ KeyType_DES Use GenerateKey

◦ KeyType_DES2 Use GenerateKey

◦ KeyType_DES3 Use GenerateKey

◦ KeyType_DHPrivate Use GenerateKeyPair

◦ KeyType_DHPublic Do not use for key generation

◦ KeyType_DKTemplate

◦ KeyType_DSAComm Use GenerateKey

◦ KeyType_DSAPrivate Use GenerateKeyPair

◦ KeyType_DSAPublic Do not use for key generation

◦ KeyType_HMACMD2

◦ KeyType_HMACMD5

◦ KeyType_HMACRIPEMD160

◦ KeyType_HMACSHA1

◦ KeyType_HMACSHA256

◦ KeyType_HMACSHA384

◦ KeyType_HMACSHA512

◦ KeyType_HMACSHA3b224

◦ KeyType_HMACSHA3b256

◦ KeyType_HMACSHA3b384

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 196/237

◦ KeyType_HMACSHA3b512

◦ KeyType_HMACTiger

◦ KeyType_IDEA

◦ KeyType_KCDSAComm

◦ KeyType_KCDSAPrivate

◦ KeyType_KCDSAPublic

◦ KeyType_Random Use GenerateKey

◦ KeyType_RC2

◦ KeyType_RC5

◦ KeyType_Rijndael

◦ KeyType_RSAPrivate Use GenerateKeyPair

◦ KeyType_RSAPublic Do not use for key generation

◦ KeyType_SEED

◦ KeyType_Serpent

◦ KeyType_Skipjack

◦ KeyType_Twofish

◦ KeyType_Void KeyType_Wrapped Created by DeriveKey

◦ KeyType_Any Do not use for key generation

◦ KeyType_None Do not use for key generation

When generating a key pair, you must specify the key type

for the private half of the key pair.

 The following key types have key generation parameters:

union M_KeyType__GenParams {
M_KeyType_RSAPrivate_GenParams rsaprivate;
M_KeyType_DSAPrivate_GenParams dsaprivate;
M_KeyType_Random_GenParams random;
M_KeyType_DSAComm_GenParams dsacomm;
M_KeyType_DHPrivate_GenParams dhprivate;
M_KeyType_Wrapped_GenParams wrapped;
};

◦ M_KeyType_RSAPrivate_GenParams rsaprivate. See RSA.

◦ M_KeyType_DSAPrivate_GenParams dsaprivate. See DSA.

◦ M_KeyType_Random_GenParams random. See Random.

◦ M_KeyType_DSAComm_GenParams dsacomm. See DSA.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 197/237

◦ M_KeyType_DHPrivate_GenParams dhprivate. See Diffie-Hellman and ElGamal.

◦ M_KeyType_Wrapped_GenParams wrapped. Generating a wrapped key creates a

random key block — this may be useful in some key derivation schemes.

DES and Triple DES do not have any key generation parameters. ArcFour and

CAST use the same parameters as the key type RANDOM. ElGamal uses key

type Diffie-Hellman.

• M_ACL acl

See ACLs.

• M_AppData *appdata

This is application data. If the command contains application data, the

appropriate flag must be set. If no appdata is provided, the appdata stored with

the key is set to all-bits-zero.

• M_ACL aclpriv

ACL for private half

• M_ACL aclpub

ACL for public half

• M_AppData *appdatapriv

appdata for private half.

• M_AppData *appdatapub

appdata for public half.

9.2.12.2. Reply

struct M_Cmd_GenerateKey_Reply {
 M_Cmd_GenerateKey_Reply_flags flags;
 M_KeyID key;
 M_ModuleCert *cert;
};

struct M_Cmd_GenerateKeyPair_Reply {
 M_Cmd_GenerateKeyPair_Reply_flags flags;
 M_KeyID keypriv;
 M_KeyID keypub;
 M_ModuleCert *certpriv;
 M_ModuleCert *certpub;

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 198/237

};

• The following flags are defined:

◦ Cmd_GenerateKey_Reply_flags_cert_present

◦ Cmd_GenerateKeyPair_Reply_flags_cert_present

These flags are set if the reply contains a certificate or a certificate pair.

• M_KeyID key is IDKA.

• M_ModuleCert *cert is a certificate that describes how the key was generated.

struct M_ModuleCert {
 M_CipherText signature;
 M_ByteBlock modcertmsg;
};

struct M_ModCertMsg {
 M_ModCertType type;
 union M_ModCertType__ModCertData data;
};

union M_ModCertType__ModCertData {
 M_ModCertType_KeyGen_ModCertData keygen;
};

struct M_ModCertType_KeyGen_ModCertData {
 M_ModCertType_KeyGen_ModCertData_flags flags:
 M_KeyGenParams genparams;
 M_ACL acl;
 M_Hash hka;
};

◦ M_ModCertType type From release 1.67.15 and later, this should be type KeyGen

with code 2. The previous type, now called OldKeyGen, did not distinguish

between public and private keys and should no longer be used

The following flag is defined:

▪ ModCertType_KeyGen_ModCertData_flags_public

Set this flag if this is the public half of a key pair.

◦ M_KeyGenParams genparams

These are the key generation parameters to be used to generate this key.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 199/237

◦ M_ACL acl

This is the ACL that was applied to this key when it was created.

◦ M_Hash hka

This is the SHA-1 hash of the key value.

9.2.12.3. Notes

If the Strict_FIPS140 flag was set in the SetKNSO command, GenerateKey or

GenerateKeyPair will fail with status Status_StrictFIPS140 if you attempt to generate

a secret key that can be exported as plain text. A secret key is any key that can

have Sign or Decrypt permissions.

9.2.13. GenerateLogicalToken

Operational state, initialization state Requires a ClientID

May require a KNSO certificate

This command generates a random token key KT, associates it with the given

properties and secret-sharing parameters (n and t), and encrypts it with the given

module key that is identified by its hash, HKM.

The result is stored internally, and an identifier IDKT and a hash HKT are returned. The

token is referred to by its identifier in commands and by its hash in ACLs.

9.2.13.1. Arguments

struct M_Cmd_GenerateLogicalToken_Args {
 M_ModuleID module;
 M_KMHash hkm;
 M_TokenParams params;
};

• M_ModuleID module

If the module ID is nonzero, the key is loaded onto the specified module. If the

module ID is 0, the token is generated on the first available module.

• M_KMHash hkm is the HKM of the module key to use to protect this token. If you

supply an all zero HKM, the module will use the null module key.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 200/237

9.2.13.2. Reply

struct M_Cmd_GenerateLogicalToken_Reply {
 M_KeyID idkt;
 M_TokenHash hkt;
};

• M_KeyID idkt is IDKT

• M_TokenHash hkt is HKT

9.2.14. GetChallenge

Operational state, initialization state Requires a ClientID

The GetChallenge command returns a nonce that is used to build a fresh certificate.

See Certificates. GetChallenge is also used during impath setup.

9.2.14.1. Arguments

struct M_Cmd_GetChallenge_Args {
 M_ModuleID module;
};

9.2.14.2. Reply

struct M_Cmd_GetChallenge_Reply {
 M_KMHash nonce;
};

9.2.15. GetKML

Operational state, initialization state

This command is used to retrieve a KeyID for the module’s long-term public key.

This key is generated by InitialiseUnit and is held internally. KML has ACL

permissions that allow it to be extracted as plain text, to be used to verify

signatures, to view its own ACL, and to extend its ACL.

9.2.15.1. Arguments

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 201/237

struct M_Cmd_GetKML_Args {
 M_ModuleID module;
};

9.2.15.2. Reply

struct M_Cmd_GetKML_Reply {
 M_KeyID idka;
};

M_KeyID idka is IDKA for KML

9.2.16. GetTicket

Operational state, initialization state Requires a ClientID

This command gets a ticket for a specific KeyID. The ticket can then be passed to

another client or to an SEE application, which can redeem the ticket for a KeyID in

its name space.

Tickets can be single-use or permanent, and they can specify the destination.

The program should treat tickets as opaque objects. nShield

reserves the right to change the structure of tickets at any time.

9.2.16.1. Arguments

struct M_Cmd_GetTicket_Args {
M_Cmd_GetTicket_Args_flags flags;
M_KeyID obj;
M_TicketDestination dest;
union M_TicketDestination__TicketDestSpec destspec;
};

• The following flags are defined:

◦ Cmd_GetTicket_Args_flags_Reusable

If this flag is set, the ticket can be used multiple times. Otherwise, the

ticket can only be used once.

◦ Cmd_GetTicket_Args_flags_HarmlessInfoFlags

Set if the nShield server understands new destinations,

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 202/237

TicketDestination_AnyKernelClient and later. The nShield will set this flag

automatically.

• M_KeyID obj

The object for which a ticket is required. This may be any object with a KeyID,

for example a key, token or SEEWorld.

• M_TicketDestination dest are destinations at which this ticket can be

redeemed:

typedef enum M_TicketDestination {
 TicketDestination_Any =
 TicketDestination_AnyClient =
 TicketDestination_NamedClient =
 TicketDestination_AnySEEWorld =
 TicketDestination_NamedSEEWorld =
 TicketDestination_AnyKernelClient
 TicketDestination__Max =
} M_TicketDestination;

• TicketDestination_Any

This specifies any destination. If the nShield server has not set

Cmd_GetTicket_Args_flags_HarmlessInfoFlags this will not include

TicketDestination_AnyKernelClient or later destinations.

• TicketDestination_AnyClient

This specifies any client connected to this server.

• TicketDestination_NamedClient

This is the specific client that is named in the

M_TicketDestination__TicketDestSpec.

• TicketDestination_AnySEEWorld

This specifies any SEEWorld loaded on this module.

• TicketDestination_NamedSEEWorld

This is the specific SEEWorld that is named in the
M_TicketDestination__TicketDestSpec

• TicketDestination_AnyKernelClient

This specifies any client operating in kernel space. This can only be used if the

nShield server reports that the module offers the kernel interface.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 203/237

• union M_TicketDestination__TicketDestSpec destspec

This specifies a specific destination:

union M_TicketDestination__TicketDestSpec {
 M_TicketDestination_NamedSEEWorld_TicketDestSpec namedseeworld;
 M_TicketDestination_NamedClient_TicketDestSpec namedclient;
};

• M_TicketDestination_NamedSEEWorld_TicketDestSpec namedseeworld

This is the KeyID of the SEEWorld:

struct M_TicketDestination_NamedSEEWorld_TicketDestSpec {
 M_KeyID world;
};

• M_TicketDestination_NamedClient_TicketDestSpec namedclient

This is the SHA-1 hash of the ClientID:

struct M_TicketDestination_NamedClient_TicketDestSpec {
 M_Hash hclientid;
};

9.2.16.2. Reply

struct M_Cmd_GetTicket_Reply {
 M_nest_Ticket ticket;
};

M_nest_Ticket ticket is a ticket for this object to pass to the destination.

9.2.17. Hash

Operational state, initialization state

This command hashes a message.

There is no limit to the size of the plaintext. This is because the Generic Stub

library splits the command into a ChannelOpen command followed by a number of

ChannelUpdate commands. Only symmetric mechanisms use channels; asymmetric

mechanisms cannot.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 204/237

9.2.17.1. Arguments

struct M_Cmd_Hash_Args {
 M_Cmd_Hash_Args_flags flags;
 M_Mech mech;
 M_PlainText plain;
};

• No flags are defined.

• M_Mech mech - see Mechanisms.

• M_PlainText plain This must be in the format M_PlainTextType_Bytes_Data.

9.2.17.2. Reply

struct M_Cmd_Hash_Reply {
 M_CipherText sig; Hash
};

9.2.18. ImpathKXBegin

Operational state, initialization state Requires a ClientID

This command creates a new intermodule path (impath) and returns a key-

exchange message that is to be sent to the peer module.

An impath is a cryptographically secure channel between two nShield nC-series

hardware security modules. Data sent through such a channel is secure against

both eavesdroppers and active adversaries. The channel can carry arbitrary user

data as well as module-protected secrets, such as share data, to be passed

directly between modules.

Modules are identified by means of M_RemoteModule structures. The elements of a

M_RemoteModule describe a specific module or a set of modules—for example, those

modules that know a particular module key—as well as information about how

modules must prove their identity. The M_RemoteModule structures are the primary

means for describing security policy decisions about impaths.

In many cases you do not need to define the impath yourself. If

you use the nCore remote slot commands, the nShield server will

create the required impaths automatically.

9.2.18.1. Arguments

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 205/237

struct M_Cmd_ImpathKXBegin_Args {
 M_Cmd_ImpathKXBegin_Args_flags flags;
 M_ModuleID module;
 M_RemoteModule me;
 M_RemoteModule him;
 M_ImpathKXGroupSelection hisgroups;
 M_Nonce n;
 int n_keys;
 M_vec_KeyID keys;
};

• No flags are defined.

• M_ModuleID module

The module ID of the module which is to be the local end of the impath.

• M_RemoteModule me

This is an M_RemoteModule structure describing the local module. It must exactly

match the him structure being used at the other end of the impath.

• M_RemoteModule him

This is an M_RemoteModule structure describing the peer module. It must exactly

match the me structure being used at the other end of the impath.

• M_ImpathKXGroupSelection hisgroups

This is the peer module’s list of supported key-exchange groups. This list can

be obtained, for example, by using the NewEnquiry command on the remote

module. The list is used to select the key-exchange group that is to be used

when setting up the impath.

• M_Nonce n

This is a challenge obtained from the remote module by using the GetChallenge

command.

• int n_keys is the size of the keys table

• M_vec_KeyID keys

This is a table of KeyIDs for the user keys whose hashes are listed in me.hks. The

keys must have the SignModuleCert permission enabled. User keys may be

either private or symmetric.

9.2.18.2. Reply

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 206/237

struct M_Cmd_ImpathKXBegin_Reply {
 M_ImpathID imp;
 M_ByteBlock kx;
};

• M_ImpathID imp

This is the ID for this impath. After the impath is no longer required, it can be

disposed of by using the Destroy command.

• M_ByteBlock kx

This is a key-exchange message that is to be transmitted to the peer module.

(See ImpathKXFinish.)

9.2.19. ImpathKXFinish

Operational state, initialization state Requires a ClientID

This command completes an impath (intermodule path) key exchange. It leaves

the impath ready for data transmission and receipt.

9.2.19.1. Arguments

struct M_Cmd_ImpathKXFinish_Args {
 M_Cmd_ImpathKXFinish_Args_flags flags;
 M_ImpathID imp;
 M_NetworkAddress *addr;
 int n_keys;
 M_vec_KeyID keys;
 M_ByteBlock kx;
};

• The following flag is defined:

◦ Cmd_ImpathKXFinish_Args_flags_addr_present

Indicates whether the M_NetworkAddress *addr is present.

• M_ImpathID imp is the ID for the impath

• M_NetworkAddress *addr

This is the network address of the peer host. If supplied, this is compared

against the addr field in the him structure given to the ImpathKXBegin command.

• int n_keys is the size of the keys table.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 207/237

• M_vec_KeyID keys

This is a table of KeyIDs for the user keys, public or symmetric, whose hashes

were listed in the hks table in the him structure given to the ImpathKXBegin

command.

• M_ByteBlock kx

This is the key-exchange message returned by ImpathKXBegin on the peer

module.

9.2.19.2. Reply

The reply structure for this command is empty.

9.2.20. ImpathReceive

Operational state, initialization state Requires a ClientID

This command decrypts a user-data message that was encrypted using an impath.

9.2.20.1. Arguments

struct M_Cmd_ImpathReceive_Args {
 M_ImpathID imp;
 M_ByteBlock cipher;
};

• M_ImpathID imp is the ID for the impath.

• M_ByteBlock cipher is the cipher text emitted by an ImpathSend command issued

to the peer module. Each cipher text message can be received once only, in

order to prevent replay attacks.

9.2.20.2. Reply

struct M_Cmd_ImpathReceive_Reply {
 M_ByteBlock data;
};

M_ByteBlock data is a recovered plain text message.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 208/237

9.2.21. ImpathSend

Operational state, initialization state Requires a ClientID

This command encrypts a user message using an impath’s keys, ready for

transmission to the peer host.

9.2.21.1. Arguments

struct M_Cmd_ImpathSend_Args {
 M_Cmd_ImpathSend_Args_flags flags;
 M_ImpathID imp;
 M_ByteBlock data;
};

• No flags are defined.

• M_ImpathID imp is the ID for the impath.

• M_ByteBlock data is the message to be sent.

9.2.21.2. Reply

struct M_Cmd_ImpathSend_Reply {
 M_ByteBlock cipher;
};

M_ByteBlock cipher is the cipher text corresponding to the given plain text data.

The plain text can be recovered by issuing an ImpathReceive command to the peer

module.

9.2.22. InitialiseUnit

Pre-initialization state, initialization

state

"Privileged" users only

This command causes a module in the pre-initialization state to enter the

initialization state.

When the module enters the initialization state, it erases all module keys KM,

including KM0. It also erases the module’s signing key, KML, and the hash of the

Security Officer’s keys, HKNSO. It does not erase the long-term KLF key. It then

generates a new KML and KM0.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 209/237

In order to use the module after it has been initialized, you must set a new

Security Officer’s key.

When the module is in the pre-initialization state, you cannot

obtain a ClientID. In order to use commands that require a

ClientID, use the NewClient command after the module enters the

Initialization state.

9.2.22.1. Arguments

struct M_Cmd_InitialiseUnit_Args {
 M_ModuleID module;
};

9.2.22.2. Reply

The reply structure for this command is empty.

9.2.23. LoadBlob

Operational state, initialization state Requires a ClientID

This command allows a key blob to be loaded into the module. If this process is

successful, a new IDKA handle will be generated and returned.

For KM blobs, the required KM value must be present in the module’s internal

storage.

For KT blobs, the logical token containing KT must be "present". This is not possible

if the KM associated with that KT is not present in the module. See

GenerateLogicalToken and LoadLogicalToken.

For the archival key blobs Ki or KAR, the appropriate key object must be loaded.

9.2.23.1. Arguments

struct M_Cmd_LoadBlob_Args {
 M_Cmd_LoadBlob_Args_flags flags;
 M_ModuleID module;
 M_ByteBlock blob;
 M_KeyID *idkb;
} M_Cmd_LoadBlob_Args;

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 210/237

• The following flag is defined:

Cmd_LoadBlob_Args_flags_idkb_present

See *idkb below.

• M_ModuleID module is the module id.

• M_ByteBlock blob is a key blob.

• M_KeyID *idkb

In order to load a blob encrypted under a token or recovery key, set the

idkb_present flag and include the identifier of either the token or the recovery

key (IDKT for tokens, IDKAR for recovery keys) in the data as idkb. Otherwise, do

not set idkb_present, and set idkb to NULL.

9.2.23.2. Reply

struct M_Cmd_LoadBlob_Reply {
 M_KeyID idka;
};

M_KeyID idka is IDKA.

9.2.24. LoadLogicalToken

Operational state, initialization state Requires a ClientID

May require a KNSO certificate

This command is used to initiate loading a token from shares.

The command returns an IDKT. The token and any loaded shares can be removed

by issuing the Destroy command with this identifier.

When this command is issued, the module allocates space for a share-reassembly

process. In order to assemble the token, the application must issue one or more

ReadShare commands (see ReadShare).

9.2.24.1. Arguments

struct M_Cmd_LoadLogicalToken_Args {
 M_ModuleID module;
 M_TokenHash hkt;

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 211/237

 M_KMHash hkm;
 M_TokenParams params;
};

• M_ModuleID module is the module ID of the module. If you enter a module ID of

0, the command returns with status InvalidParameter.

• M_TokenHash hkt is HKT

• M_KMHash hkm is the HKM of the module key that is to be used to protect this

token. If you supply an all-zero HKM, the module will use the null module key.

• M_TokenParams params

The shares information must match that which was given when the token was

generated. The flags and time limit are read from the token, and values set in

the command are ignored.

9.2.24.2. Reply

struct M_Cmd_LoadLogicalToken_Reply {
 M_KeyID idkt;
};

M_KeyID idkt is the IDKT.

9.2.25. MakeBlob

Operational state, initialization state Requires a ClientID

This command requests that the module generate a key blob using a key whose

identifier is given. The ACL for the key must allow the key to be exported as a

blob, otherwise the command will fail.

The ACL for the key IDKA must have a MakeBlob entry (for Module and Token blobs)

or MakeArchiveBlob entry (for Direct or Indirect blobs) which permits making a blob

with the requested parameters.

For a KM key, the relevant key must be stored internally within the module.

For a KT key, the logical token containing this key must be "present". Otherwise,

the handle of another key object can be given to encrypt the blob. To succeed, the

key object needs a UseAsBlobKey permission.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 212/237

9.2.25.1. Arguments

struct M_Cmd_MakeBlob_Args {
 M_Cmd_MakeBlob_Args_flags flags;
 M_BlobFormat format;
 M_KeyID idka;
 union M_BlobFormat__MkBlobParams blobkey;
 M_ACL *acl;
 M_MakeBlobFile *file;
};

• The following flags are defined:

◦ Cmd_MakeBlob_Args_flags_acl_present

Set this flag if the command contains a new ACL.

◦ Cmd_MakeBlob_Args_flags_file_present

Set this flag to store the blob in an NVRAM or smart card file, defined by

the M_MakeBlobFile.

• M_BlobFormat format

The following formats are defined:

◦ BlobFormat_Module

Blob encrypted by a module key.

◦ BlobFormat_Token

Blob encrypted by a Logical Token.

◦ BlobFormat_Direct

Blob encrypted by a symmetric archiving key. Currently only Triple DES

keys may be used.

◦ BlobFormat_Indirect

Blob encrypted by an public archiving key, this requires the private key to

decrypt. Currently only RSA keys may be used.

◦ BlobFormat_UserKey

Not yet supported.

• union M_BlobFormat__MkBlobParams blobkey

The following MKBlobParams are defined for the four different blob types:

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 213/237

struct M_BlobFormat_Direct_MkBlobParams \{
 M_KeyID idki;
};

struct M_BlobFormat_Indirect_MkBlobParams \{
 M_KeyID idkr;
 M_Mech mech;
};

struct M_BlobFormat_Module_MkBlobParams {
 M_KMHash hkm;
};

struct M_BlobFormat_Token_MkBlobParams {
 M_KeyID idkt;
};

struct M_BlobFormat_UserKey_MkBlobParams {
 M_KeyID idkr;
 M_Mech mech;
};

union M_BlobFormat__MkBlobParams {
 M_BlobFormat_Module_MkBlobParams module;
 M_BlobFormat_Token_MkBlobParams token;
 M_BlobFormat_Direct_MkBlobParams direct;
 M_BlobFormat_Indirect_MkBlobParams indirect;
 M_BlobFormat_UserKey_MkBlobParams userkey;
};

• M_KeyID idki

This is the KeyID of a Triple DES key that is to be used to encrypt the blob.

• M_KeyID idkr

This is the KeyID of the public key that is to be used to encrypt the blob.

• M_Mech mec

This is the public key mechanism that is to be used to encrypt the blob.

• M_KMHash hkm

This is the hash of the module key that is to be used to encrypt the blob.

• M_KeyID idkt

This is the KeyID of the token that is to be used to encrypt the blob.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 214/237

• M_ACL *acl

This is either an ACL to be used for the key blob or NULL. If no ACL is specified,

the loaded key’s existing ACL is recorded in the blob. See ACLs.

The ACL created for the blob does not include permission groups that have

global limits (as opposed to per-authorization limits).

The permissions of the new ACL must be a subset of those specified by the

existing ACL. For more information, see SetACL.

• M_MakeBlobFile *file

A structure defining the file in which to store the blob.

struct M_MakeBlobFile {
 M_MakeBlobFile_flags flags;
 M_KeyID kacl;
 M_PhysToken file;
};

• No flags are defined.

• M_KeyID kacl

The KeyID of a template key defining the ACL for this file. This ACL must

contain the LoadBlob permission.

• M_PhysToken file

A FileSpec specifying the location of the file.

9.2.25.2. Reply

struct M_Cmd_MakeBlob_Reply {
 M_ByteBlock blob;
};

M_ByteBlock blob is a KeyBlob.

9.2.26. MergeKeyIDs

All non-error states Requires a ClientID

In situations where one key has been loaded onto several modules, this key will

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 215/237

have a different KeyID on each module. The MergeKeyIDs command takes a list of

KeyIDs, which are assumed to refer to the same key, and creates a new KeyID that

can be used to refer to the key on any module. This facilitates load sharing and

fail-over strategies.

9.2.26.1. Arguments

struct M_Cmd_MergeKeyIDs_Args {
 int n_keys;
 M_vec_KeyID keys;
};

• int n_keys is the number of keys.

• M_vec_KeyID keys is a list of IDKA.

9.2.26.2. Reply

struct M_Cmd_MergeKeyIDs_Reply {
 M_KeyID newkey;
};

M_KeyID newkey is IDKA

9.2.26.3. Notes

MergeKeyIDs does not check to see whether the supplied KeyIDs actually refer to the

same key.

Merged KeyIDs may not themselves be supplied to MergeKeyIDs.

A merged KeyID will continue to work even if some of the modules containing the

component KeyIDs are reset or fail, though performance may be reduced in such

cases. The merged KeyID will only stop working after all the modules containing

the component KeyIDs are reset or fail.

MergeKeyIDs can be used to group keys, logical tokens, SEE Worlds, and any other

objects that are referred to by a KeyID and destroyed by Destroy.

The server does not attempt to ensure that the merged KeyIDs refer to the same

underlying data, or even to the same types of objects.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 216/237

9.2.27. ReadShare

Operational state, initialization state Requires a ClientID

This command is used to assemble a logical token from shares.

The smart card architecture keeps public data storage areas

separate from the areas that are used to store logical token

shares. Specifically, if a given piece of information can be read or

written with ReadShare or WriteShare, then it cannot be read or

written with ReadFile or WriteFile. The converse is also true.

9.2.27.1. Arguments

struct M_Cmd_ReadShare_Args {
 M_Cmd_ReadShare_Args_flags flags;
 M_PhysToken token;
 M_KeyID idkt;
 M_Word i;
 M_PIN *pin;
};

• The following flags are defined:

◦ Cmd_ReadShare_Args_flags_pin_present

This flag must be set if the input includes a PIN.

If the slot uses the ProtectedPINPath, do not include the

PIN with the command.

◦ Cmd_ReadShare_Args_flags_UseLimitsUnwanted

If this flag is set the module does not allocate Per-Authorisation Use limits

to this logical token. Keys protected by the assembled local token will only

be permitted to perform actions that do not have use limits. Per

authorisation use limits can only be allocated to one logical token for each

insertion of the card. However, it is possible that the logical token is

required on several modules, or by several clients on one module.

Therefore, you should set this flag, if you are aware that you do not need

the uselimits and wish to make them available elsewhere.

• M_KeyID idkt is the IDKT.

• M_Word i is share number i.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 217/237

• M_PIN *pin

If the share is protected by a PIN, this must be specified in order to

successfully decrypt the share, otherwise pin must be a NULL pointer. If the

input includes a PIN, the pin_present flag must be set.

9.2.27.2. Reply

struct M_Cmd_ReadShare_Reply {
 M_Word sharesleft;
};

M_Word sharesleft is the number of shares that are still required in order to recreate

the token. You can issue further ReadShare commands when the shares are present.

A sharesleft value of 0 indicates that all shares are present. At that point, the

module will automatically assemble the token.

9.2.27.3. Notes

If an error occurs during an individual share reading operation (because of, for

example, an incorrect PIN or the wrong token), the current state of the logical

token is retained, and the operation can simply be repeated.

If an error occurs during the final share reassembly process (implying that the

shares have been corrupted in some way), the logical token is invalidated, and

Status_TokenReassemblyFailed is returned. The token must then be destroyed, and

the whole operation must be restarted.

At any time during the share reassembly sequence, the host can abort it (and

clear the reassembly buffer) by calling Destroy with the given IDKT. If the client

closes before the token has been assembled, the server automatically issues the

Destroy command.

9.2.28. RedeemTicket

Operational state, initialization state Requires a ClientID

This command gets a KeyID in return for a key ticket.

9.2.28.1. Arguments

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 218/237

struct M_Cmd_RedeemTicket_Args {
 M_Cmd_RedeemTicket_Args_flags flags;
 M_ModuleID module;
 M_nest_Ticket ticket;
};

• No flags are defined.

• M_ModuleID module

This specifies the module ID of the module that contains this object.

• M_nest_Ticket ticket

This is the ticket that is supplied by GetTicket.

9.2.28.2. Reply

struct M_Cmd_RedeemTicket_Reply {
 M_KeyID obj;
};

M_KeyID obj is the new KeyID for this object.

9.2.29. RemoveKM

Operational state, initialization state Requires a ClientID

May require a KNSO certificate

"Privileged" users only

This command deletes a given KM value from permanent storage. The deletion

process overwrites the value in order to ensure its destruction.

 KM0 cannot be deleted.

9.2.29.1. Arguments

struct M_Cmd_RemoveKM_Args {
 M_ModuleID module;
 M_Cmd_RemoveKM_Args_flags flags;
 M_KMHash hkm;
};

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 219/237

• M_ModuleID module is the ModuleID.

• No flags are defined.

• M_KMHash hkm is HKM.

9.2.29.2. Reply

The reply structure for this command is empty.

9.2.30. RSAImmedSignDecrypt

Operational state, initialization state

This command performs RSA decryption by using an RSA private key that is

provided in plain text.

9.2.30.1. Arguments

struct M_Cmd_RSAImmedSignDecrypt_Args {
 M_Bignum m;
 M_Bignum k_p;
 M_Bignum k_q;
 M_Bignum k_dmp1;
 M_Bignum k_dmq1;
 M_Bignum k_iqmp;
};

• M_Bignum m Ciphertext

• M_Bignum k_p P modulus first factor

• M_Bignum k_q Q modulus first factor

• M_Bignum k_dmp1 D MODP-1

• M_Bignum k_dmq1 D MODQ-1

• M_Bignum k_iqmp Q-1 MODP

9.2.30.2. Reply

struct M_Cmd_RSAImmedSignDecrypt_Reply {
 M_Bignum r;
};

M_Bignum r is plain text .

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 220/237

9.2.30.3. Notes

The plain text and cipher text are in the nShield bignum format.

No padding is done.

9.2.31. RSAImmedVerifyEncrypt

Operational state, initialization state

This command performs RSA encryption with an RSA public key provided in plain

text.

9.2.31.1. Arguments

struct M_Cmd_RSAImmedVerifyEncrypt_Args {
 M_Bignum a;
 M_Bignum k_e;
 M_Bignum k_n;
};

• M_Bignum a Message

• M_Bignum k_e Key exponent

• M_Bignum k_n Key modulus

9.2.31.2. Reply

Uses M_Cmd_RSAImmedSignDecrypt_Reply.

9.2.31.3. Notes

The plain text and cipher text are in nShield bignum format.

No padding or unpadding is performed.

9.2.32. SetACL

Operational state, initialization state Requires a ClientID

This command replaces the ACL of a given key object with a new ACL. The

existing ACL must have either ExpandACL or ReduceACL permission. If the existing

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 221/237

ACL only includes the ReduceACL permission, you must set the

Cmd_SetACL_Args_flags_reduce flag, and also the new ACL must be a subset of the

existing ACL.

9.2.32.1. Arguments

struct M_Cmd_SetKM_Args {
 M_Cmd_SetKM_Args_flags flags;
 M_KeyID idka;
 M_ACL *acl;
};

• The following flag is defined:

◦ Cmd_SetACL_Args_flags_reduce

If this flag is not set, the command checks the ExpandACL permission in the

existing ACL. However, if this flag is set:

▪ the command checks the ReduceACL permission in the existing ACL

▪ the new ACL must be a subset of the existing ACL

• M_KeyID idka is IDKA.

• M_ACL *acl is the new ACL for the key.

9.2.32.2. Reply

The reply structure for this command is empty.

9.2.32.3. Notes

The new ACL will be a subset of the original ACL if for every action in the new

ACL there exists an entry in the existing ACL in a permission group with:

• the same certifier or no certifier

• the same or more restrictive FreshCerts flag

• use limits that are at least as permissive as those in the new ACL

The use limits are considered to be as permissive as those in the new ACL if for

each limit in the original ACL there is a limit in the new ACL:

• of the same type, global or per-authorization

• with the same limit ID

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 222/237

• with a use count and a time limit that are no greater than those in the original.

The following changes count as reducing an ACL:

• adding a certifier or NSOCertified to a group

• adding UseLimits to a group that did not have them previously

• adding a time limit or a use count to a use limit that did not have one

previously

• reducing an existing use count or time limit

• adding a module serial number to a group.

The following changes do not count as reducing an ACL:

• changing the certifier for a group

• changing the module serial number for a group

• changing a use count to a time limit or changing a time limit to a use count

• changing from NSOCertified to a specific certifier or changing from a specific

certifier to NSOCertified.

If the Strict_FIPS140 flag was set in the SetKNSO command, then

SetACL will fail with status Status_FIPS_Compliance if you attempt

to add ExportAsPlain to the ACL of a secret key. A secret key is

any key that can have Sign or Decrypt permissions.

If you want to record the new ACL permanently, you must make a new blob of the

key.

9.2.33. SetKM

Operational state, initialization state Requires a ClientID

May require a KNSO certificate

"Privileged" users only

This command allows a key object to be stored internally as a module key (KM)

value. The KM value is derived from the key material given by IDKA. The ACL and

other information associated with IDKA are not stored.

9.2.33.1. Arguments

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 223/237

struct M_Cmd_SetKM_Args {
 M_ModuleID module;
 M_Cmd_SetKM_Args_flags flags;
 M_KeyID idka;
};

• M_ModuleID module

• No flags are defined.

• M_KeyID idka is IDKA.

• KA must be a DES3 key with UseAsKM permission.

9.2.33.2. Reply

The reply structure for this command is empty.

9.2.33.3. Notes

If you attempt to set as a KM a key that has the same hash as an existing KM, then

SetKM will overwrite the existing module key with the new key. If you are

attempting to overwrite KM0, the command will return Status_AccessDenied.

9.2.34. SetNSOPerms

Initialization state only Requires a ClientID

"Privileged" users only

The SetNSOPerms command stores the key hash HKA, which is returned by GetKeyInfo

as the new Security Officer’s key.

It also determines which operations require a KNSO certificate.

The SetNSOPerms command requires you to set a flag if you want

an operation to be allowed without a certificate. This is the

opposite behavior to the SetKNSO command.

This command may only be called once after each use of InitialiseUnit (see

InitialiseUnit). After it is set, the Security Officer’s key can only be changed by

completely reinitializing the module.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 224/237

9.2.34.1. Arguments

struct M_Cmd_SetNSOPerms_Args {
 M_ModuleID module;
 M_Cmd_SetNSOPerms_Args_flags flags;
 M_KeyHash hknso;
 M_NSOPerms publicperms;
};

• M_ModuleID module is the module id

• The following flag is defined:

◦ Cmd_SetNSOPerms_Args_flags_FIPS140Level3

If this flag is set, the module adopts a security policy that complies with

FIPS 140 Level 3. This enforces the following restrictions:

▪ the Import command fails if you attempt to import a key of a type that

can be used to sign or decrypt messages.

Use of the Import command for other key types

requires a KNSO certificate.

▪ GenerateKey and GenerateKeyPair require KNSO certificates

▪ GenerateKey and GenerateKeyPair fail if you attempt to generate a key of

a type that can be used to sign or decrypt messages with an ACL that

allows ExportAsPlain

▪ SetACL fails if you attempt to add the ExportAsPlain action to the ACL

of a key of a type that can be used to sign or decrypt messages.

All cryptographic mechanisms which do not use a FIPS-approved

algorithm are disabled. (This restriction is new for firmware versions

2.18.13 and later).

Cryptographic algorithms which are disabled are: ArcFour, Blowfish,

CAST, CAST256, HAS160, KCDSA, MD2, MD5, RIPEMD160, SEED,

Serpent, Tiger, Twofish.

The following algorithms are unaffected: DES, DES2, DES3, Diffie-

Hellman, DSA, Rijndael (AES), RSA, SHA-1, SHA-256, SHA-384 and

SHA-512

In order to fully comply with FIPS 140 Level 3 you must also

ensure that none of the following are set:
NSOPerms_ops_ReadFile, NSOPerms_ops_WriteFile,

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 225/237

NSOPerms_ops_EraseShare, NSOPerms_ops_EraseFile,

NSOPerms_ops_FormatToken, NSOPerms_ops_GenerateLogToken,

NSOPerms_ops_SetKM, NSOPerms_ops_RemoveKM.

• M_KeyHash hkns is HKA to set as HKNSO

• M_NSOPerms publicperms

The NSOPerms word is a bit map that determines which operations do not

require a certificate from the nShield Security Officer. These certificates can

be reusable. The following flags are defined:

◦ NSOPerms_ops_LoadLogicalToken

◦ NSOPerms_ops_ReadFile

◦ NSOPerms_ops_WriteShare

◦ NSOPerms_ops_WriteFile

◦ NSOPerms_ops_EraseShare

◦ NSOPerms_ops_EraseFile

◦ NSOPerms_ops_FormatToken

◦ NSOPerms_ops_SetKM

◦ NSOPerms_ops_RemoveKM

◦ NSOPerms_ops_GenerateLogToken

◦ NSOPerms_ops_ChangeSharePIN

◦ NSOPerms_ops_OriginateKey Not allowed in SetKNSO

◦ NSOPerms_ops_NVMemAlloc Not allowed in SetKNSO

◦ NSOPerms_ops_NVMemFree Not allowed in SetKNSO

◦ NSOPerms_ops_GetRTC Not allowed in SetKNSO

◦ NSOPerms_ops_SetRTC Not allowed in SetKNSO

◦ NSOPerms_ops_DebugSEEWorld Not allowed in SetKNSO

◦ NSOPerms_ops_SendShare Not allowed in SetKNSO

◦ NSOPerms_ops_ForeignTokenOpen Not allowed in SetKNSO

9.2.34.2. Reply

The reply structure for this command is empty.

9.2.34.3. Notes

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 226/237

Modules that are supplied by nShield are initialized with no

operations that require KNSO certificates. This means that the key

whose hash is installed as HKNSO is irrelevant.

9.2.35. SetRTC

Operational state, initialization state Requires an SEE-Ready module

May require a KNSO certificate

"Privileged" users only

9.2.35.1. Arguments

struct M_Cmd_SetRTC_Args {
 M_ModuleID module;
 M_Cmd_SetRTC_Args_flags flags;
 M_RTCTime time;
};

• M_ModuleID module

The module ID of the module. If you enter a module ID of 0, the command

returns with status InvalidParameter.

• The following flag is defined:

◦ Cmd_SetRTC_Args_flags_adjust

If this flag is set, the module calculates the difference between the current

time according to the RTC and the time supplied in the command. Next, it

divides this difference by the length of time since the clock was last set in

order to determine a drift rate. The result of all future calls to GetRTC is

corrected using this drift rate. The command returns status OutOfRange if

the implied drift rate is larger than the chip’s guaranteed maximum drift

rate. If, however, this flag is not set, the module will clear any current drift

rate adjustment.

• M_RTCTime time is the new time.

9.2.35.2. Reply

The reply structure for this command is empty.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 227/237

9.2.36. Sign

Operational state, initialization state Requires a ClientID

This command signs a message with a stored key.

For information on formats, see Encrypt.

Sign pads the message as specified by the relevant algorithm, unless you use

plaintext of the type Bignum.

You cannot sign a message that is longer than the maximum size

of an nShield command. In order to sign longer messages, use

the Hash command first, and then call Sign with the appropriate

Hash plain text type.

9.2.36.1. Arguments

struct M_Cmd_Sign_Args {
 M_Word flags;
 M_KeyID key;
 M_Mech mech;
 M_PlainText plain;
 M_IV *given_iv
};

• No flags are defined.

• M_KeyID key is the IDKA.

9.2.36.2. Reply

struct M_Cmd_Sign_Reply {
 M_CipherText sig;
};

9.2.37. SignModuleState

Operational state, initialization state Requires a ClientID

SignModuleState makes the module generate a signed Module Certificate that

contains data about the current state of the module. Optionally, a challenge value

may be supplied to provide a provably fresh certificate.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 228/237

9.2.37.1. Arguments

struct M_Cmd_SignModuleState_Args{
 M_ModuleID module;
 M_Cmd_SignModuleState_Args_flags flags;
 M_SignerType enum;
 M_Nonce challenge;
 M_wrap_vec_ModuleAttribTag *attribs;
};

• The following flags are defined:

◦ Cmd_SignModuleState_Args_flags_challenge_present

This flag must be set if the command contains a challenge.

◦ Cmd_SignModuleState_Args_flags_attribs_present

This flag must be set if the command contains Module Attribute Tags. If

not set the module delivers a default set of attributes.

• SignerType can have the following values:

◦ KLF: The certificate is signed by the KLF long-term key. Status_NotAvailable

is returned if this key has not been set.

◦ KML: The certificate is signed by the KML key. This is always available

(except in pre-initialization mode, when the command is not accepted

anyway).

◦ Appkey: The certificate is signed a user key, using the given mechanism

(which can be Mech_Any). The key must have a new OpPermission bit in its

ACL, called SignModuleCert. SignModuleCert is a less generate permission

than Sign: the module uses it only to sign well-formed messages whose

content it believes to be true. Sign permission doesn’t imply SignModuleCert

permission.

• M_wrap_vec_ModuleAttribTag *attribs is a list of the attributes to include in the

signed message

struct M_wrap_vec_ModuleAttribTag {
 int n;
 M_vec_ModuleAttribTag v;
};

The following attributes are defined:

◦ ModuleAttribTag_None

◦ ModuleAttribTag_Challenge (default if included in command)

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 229/237

◦ ModuleAttribTag_ESN (default)

◦ ModuleAttribTag_KML (default)

◦ ModuleAttribTag_KLF (default)

◦ ModuleAttribTag_KNSO (default)

◦ ModuleAttribTag_KMList (default)

◦ ModuleAttribTag_PhysSerial

◦ ModuleAttribTag_PhysFIPSl3

◦ ModuleAttribTag_FeatureGoldCert

◦ ModuleAttribTag_Enquiry

◦ ModuleAttribTag_AdditionalInfo

◦ ModuleAttribTag_ModKeyInfo

9.2.37.2. Reply

The reply structure for this command is as follows:

struct M_Cmd_SignModuleState_Reply {
 M_ModuleCert *cert;
};

M_ModuleCert *cert is a certificate that describes how the key was generated.

struct M_ModuleCert {
 M_CipherText signature;
 M_ByteBlock modcertmsg;
};

struct M_ModCertMsg {
 M_ModCertType type;
 union M_ModCertType__ModCertData data;
};

union M_ModCertType__ModCertData {
 M_ModCertType_KeyGen_ModCertData keygen;
};

struct M_ModCertType_KeyGen_ModCertData {
 M_ModCertType_KeyGen_ModCertData_flags flags:
 M_KeyGenParams genparams;
 M_ACL acl;
 M_Hash hka;
};

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 230/237

• M_ModCertType type is one of the following:

◦ None

◦ Challenge: appears if a challenge is present in the SignModuleState

command

◦ ESN: ASCII string

◦ KML: KML key, defined with key hash and key data

◦ KLF: KLF key, defined with key hash and key data

◦ KNSO: not present if module is in initialization mode

◦ KMList

• The following flag is defined:

◦ ModCertType_KeyGen_ModCertData_flags_public

Set this flag if this is the public half of a key pair.

• M_KeyGenParams genparams

These are the key generation parameters to be used to generate this key.

• M_ACL acl

This is the ACL that was applied to this key when it was created.

• M_Hash hka

This is the SHA-1 hash of the key value.

9.2.38. StaticFeatureEnable

Operational state, initialization state

This command is used to enable a purchased feature. It requires a certificate

signed by the nShield master feature enabling key, KSA, authorizing the feature on

the specified module.

Use the fet command-line utility to perform this function.

9.2.38.1. Arguments

struct M_Cmd_StaticFeatureEnable_Args {
 M_ModuleID module; Module ID
 M_FeatureInfo info;

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 231/237

};

M_FeatureInfo info is a description of the feature to authorize

9.2.38.2. Reply

The reply structure for this command is empty.

9.2.39. UpdateMergedKey

All non-error states Processed by the nShield Server.

This command allows a merged key set to be manipulated, listed, or both.

9.2.39.1. Arguments

struct M_Cmd_UpdateMergedKey_Args {
 M_PlainText mkey; IDKA
 M_Cmd_UpdateMergedKeys_Args_flags flags
 int n_addkeys;
 M_KeyID *addkeys;
 int n_delkeys;
 M_KeyID *delkeys;
};

• M_PlainText mkey (IDKA) is a merged key set created with MergeKeyIDs.

• The following flags are defined:

◦ Cmd_UpdateMergedKey_Args_flags_ListWorking

If this flag is set, the keys in the resulting merged key that are in working

modules are returned.

◦ Cmd_UpdateMergedKey_Args_flags_ListNonworking

If this flag is set, the keys in the resulting merged key that are not in

working modules are returned.

These two flags can be set together if required.

• M_KeyID *addkeys is a table of keys to be added to the merged key.

Merged key IDs that currently contain no key IDs are allowed.

• M_KeyID *delkeys is a table of keys to be deleted from the merged key.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 232/237

Including a key in this list deletes all copies of the specified

key.

9.2.39.2. Reply

struct M_Cmd_UpdateMergedKey_Reply {
 int n_keys;
 M_KeyID *keys;
};

M_KeyID *keys is a table containing the merged key that results once the specified

keys are added and deleted from the input merged key.

If ListWorking is set, keys in working modules are included; if ListNonWorking is set,

keys not in working modules are included. If both are set, all keys are included.

9.2.39.3. Notes

You cannot add a merged key to another merged key, or delete a merged key

from another merged key.

The same key can be present more than once in a merged key.

The keys specified in addkeys are added to the target merged key first. The keys

specified in delkeys are then deleted. This means that if the same key is present in

both addkeys and delkeys, it is not present in the resulting merged key.

9.2.40. Verify

Operational state, initialization state Requires a ClientID

This command verifies a digital signature. It returns Status_OK if the signature

verifies correctly and Status_VerifyFailed if the verification fails.

The limit of 8K does not apply to data signed by this command. This is because

the Generic Stub library splits the command into a ChannelOpen command followed

by a number of ChannelUpdate commands.

For information on formats, see Sign.

9.2.40.1. Arguments

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 233/237

struct M_Cmd_Verify_Args {
 M_Cmd_Verify_Args_flags flags;
 M_KeyID key;
 M_Mech mech;
 M_PlainText plain;
 M_CipherText sig;
};

• No flags are defined.

• M_KeyID key: IDKA

• M_Mech mech: set Mech_Any in order to use the mechanism specified in the

signature. If you specify a mechanism, Verify will compare this with the

mechanism in the signature and return Status_MechanismNotExpected if the

mechanisms do not match.

• M_PlainText plain: message.

• M_CipherText sig: signature.

9.2.40.2. Reply

The reply structure for this command is empty.

9.2.41. WriteShare

Operational state, initialization state Requires a ClientID

May require a KNSO certificate

This command creates one share of a logical token and writes it to a smart card

identified by the SlotID, insertion counter pair. The i value identifies the share

number. This command needs to be given once for each share that is to be

generated.

9.2.41.1. Arguments

struct M_Cmd_WriteShare_Args {
 M_Cmd_WriteShare_Args_flags flags;
 M_PhysToken token;
 M_KeyID idkt;
 M_Word i;
 M_PIN *pin;
 M_ACL *acl;
};

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 234/237

• The following flags are defined:

◦ Cmd_WriteShare_Args_flags_pin_present

This flag must be set if the input includes a passphrase.

◦ Cmd_WriteShare_Args_flags_UseProtectedPINPath

Set this flag if the token reads a passphrase by means of a protected path.

However, this feature is not currently implemented.

◦ Cmd_WriteShare_Args_flags_acl_present

Set this flag if the command contains an ACL for the share.

Setting both pin_present and UseProtectedPINPath will

cause the command to fail with InvalidParameter.

• M_KeyID idkt: IDKT

• M_Word i is the share number for the share you are writing. Share numbers

start at 0. Each share in a token can only be written once.

• M_ACL *acl is an ACL for this share. If no ACL is specified, a default ACL is

assumed, containing a single ReadShare action without any flags set and

requiring no certification.

If any shares of a logical token are to have an ACL set, you

must set an ACL for all of them. Shares with ACLs cannot be

read in modules running firmware earlier than version 1.75.0.

9.2.41.2. Reply

The reply structure for this command is empty.

9.3. Commands used by the generic stub only

The following commands are used by the generic stub library to connect to the

module.

• ExistingClient

• NewClient

Applications usually do not have to call these commands directly.

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 235/237

9.3.1. ExistingClient

All non-error states Connection must not be associated

with a ClientID

This command identifies a connection as belonging to an existing client. There

must be at least one other connection from this client still open. The

ExistingClient command is called automatically by the generic stub function

NFastApp_Connect as appropriate, for example when making an additional

connection to an existing client.

9.3.1.1. Arguments

struct M_Cmd_ExistingClient_Args {
 M_Cmd_ExistingClient_Args_flags flags;
 M_ClientID client;
};

• No flags are defined.

• M_ClientID client: RSC

9.3.1.2. Reply

struct M_Cmd_ExistingClient_Reply {
 M_Cmd_ExistingClient_Reply_flags flags;
};

No flags are defined.

9.3.2. NewClient

Initialization state, operational state Connection must not be associated

with a ClientID

This command asks the module for a random number to use as the ClientID for a

new connection. It is called automatically by the generic stub function

NFastApp_Connect.

9.3.2.1. Arguments

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 236/237

typedef struct M_Cmd_NewClient_Args {
 M_Cmd_NewClient_Args_flags flags;
};

No flags are defined.

9.3.2.2. Reply

struct M_Cmd_NewClient_Reply {
 M_Cmd_NewClient_Reply_flags flags;
 M_ClientID client;
};

• No flags are defined.

• M_ClientID client: RSC

Chapter 9. nCore API commands

nCore v13.3 Developer Tutorial 237/237

	nShield API Documentation: nCore v13.3 Developer Tutorial
	Table of Contents
	1. Introduction
	1.1. Read this guide if …
	1.2. Model numbers
	1.3. Further information
	1.4. Security advisories
	1.5. Contacting Entrust nShield Support

	2. nCore architecture
	2.1. Programming environment architecture
	2.2. Generating a key
	2.3. Loading a key
	2.4. Transacting a command

	3. C tutorial
	3.1. Overview
	3.2. Before connecting to the hardserver
	3.3. Connecting to the hardserver
	3.4. Generating a symmetric key
	3.5. Generating an asymmetric key
	3.6. Using a key
	3.7. Encrypting a file
	3.8. Cleaning up resources

	4. Java tutorial
	4.1. Overview
	4.2. Before connecting to the hardserver
	4.3. Connecting to the hardserver
	4.4. Generating a key
	4.5. Using a key
	4.6. Signing a file
	4.7. Cleaning up resources

	5. Python 3 tutorial
	5.1. Prerequisites
	5.2. Set up the environment for nfpython
	5.3. Create and configure the virtualenv
	5.4. nfpython connections and commands
	5.5. Worked nfpython example for hash, sign, and verify

	6. Java examples
	6.1. Extract and compile the Java examples
	6.2. Java key management example utilities
	6.3. Java JCE/CSP example utilities
	6.4. Java generic stub examples

	7. Key structures
	7.1. Mechanisms
	7.2. Key Types
	7.3. Hash functions
	7.4. HMAC signatures
	7.5. ACLs
	7.6. Use limits
	7.7. Actions
	7.8. Action types
	7.9. Certificates

	8. NFKM Functions
	8.1. Debugging NFKM functions
	8.2. Functions

	9. nCore API commands
	9.1. Basic commands
	9.2. Key-management commands
	9.3. Commands used by the generic stub only

